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ASYMPTOTIC SEQUENTIAL TESTS FOR REGULAR
FUNCTIONALS OF DISTRIBUTION FUNCTIONS*

PRANAB KUMAR SEN

SKumary . The theory of asymptotic sequential likelihood ratio tests for
composite hypotheses, developed by Bartlett [3] and Cox [6], among others, is
extended here to cover a broad class of regular functionals of distribution
functions. Various properties of the proposed sequential tests are studied and
compared with those of some alternative procedures. A few applications are
sketched.

Lo IRtkRduction. Consider a sequence {Xl,Xz,...} of independent and ident-
ically distributed random vectors (i.i.d.r.v.) having a p(>l)-variate distri-
bution function (d.f.) F(x), xeRp, the p-dimensional Euclidean space. Assuming
that the form of F is specified and it involves only a set of unknown parameters,

Bartlett [3] and Cox [6] considered large sample sequential likelihood ratio

tests (SLRT) for a parameter while treating the others as nuisance parameters.

Basically, these procedures are quasi-sequential; starting with an initial sample
(of at least moderately large size), observations are drawn sequentially until a
terminal decision is reached.

In a broad class of nonparametric problems, the form of F is not known; it
is only assumed that F belongs to some suitable family F of d.f. on R’. 1In
this setup, (estimable) parameters are defined as functionals of F, defined on

3:; we may refer to Halmos [7], von Mises [9] and Hoeffding [8], for details.

*Work supported by the National Institutes of Health, Grant GM-12868.



The fact that the functional form of F is unknown makes it difficult to adapt
the probability ratio or the likelihood ratio principle underlying the classical
sequential testing theory. Nevertheless, it is shown here that for testing a
null hypothesis H

6(F)=60 against H 6(F)=61, where ©(F) is a regular

0 1’
functional (estimable parameter) of F, by the same motivation as in Bartlett [3]
and Cox [6], sequential tests can be constructed, which for every pair (60,61):
60+61, of parameters, terminates with probability‘one, and which for 61 approach-

ing to 0., enjoy all the basic properties of the SLRT.

0
Along with the preliminary notions, the proposed tests are described in
section 2. Sections 3 and 4 deal with the properties of the proposed tests. 1In

section 5, an alternative procedure based on the Anscombe [2] and the Chow and
Robbins [5] theory of fixed-width (sequential) confidence intervals is considered
and compared with the earlier ones. A few applications are briefly sketched in
the last section.

R RRRAARARRR AN RREARR R ARA RRRARRRARRRRRAR . Consider a functional 8(F)

defined on . 0(F) is said to have the degree m(>1), when m is the smallest

positive integer for which a kernel ¢(Xl,...,Xm) unbiasedly estimates O(F) i.e.,
fél;r;lf q)(xl’.--,Xm)dF(xl)---dF(Xm) = Eqb(Xl,...,Xm) = e(F)’ (2.1)

for all Fe #, where we assume, without any loss of generality, that ¢ is sym-

metric in its arguments. For every 0<c<m, define

wc(xl,...,xc) = E¢(xl,...,xc,XC+l,...,xm)—6(F), wo = 03 (2.2)

= -
CC(F) = EwC(Xl"..’XC)’ (:O(F) = 0, (2-3)



It follows from the results of Hoeffding [8] that

0 < i;c(F) < (c/d)Z;d for all 1<c<d<m, (2.4)

and, O(F) is termed stationary of order zero whenever

F) > n <o, 2.5
C]( ) 0 and 7 (F) <« ( )
We desire to provide a sequential test for

H.: 6(F)=60 vs. H.: 6(F)=61=60+A; 6 A known. (2.6)

0 1 0’

Our proposed tests are based on the natural estimates of 6(F), considered

earlier by von Mises [7] and Hoeffding [8], among others. For a sample (Xl,...,Xn)

of size n, define the empirical d.f.
=, lyn P
Fn(x) =n zi=1 c(x Xi)’ xeR", (2.7)

where for a p-vector u, c(u)=1 if all the p coordinates of u are non-negative

and c(u)=0, otherwise. Then, von Mises' differentiable statistical function

G(Fn) is defined as

G(Fn) = féééf ¢(x ...,xm)an(xl)...an(xm)
=n " Zl 1 Zl 2L 0, X ), (2.8)

l m



so that S(Fn) is the corresponding regular functional of the empirical d.f.
Fn. Note that G(Fn) is not necessarily an unbiased estimator of 6(F) though
Fn unbiasedly estimates F. Hoeffding [8] considered the unbiased estimator

(U-statistic)

LR Bl PR T SRS I

o = {1<d <...<i <n}. (2.9)
n n,m 1 m ’ e

We motivate our proposed sequential tests by the same principle underlying
the asymptotic sequential likelihood ratio tests of Bartlett [3] and Cox [6].
If F is of specified form involving as parameters 6 (under test) and S (nuisance),
these authors working with the ratio of the two maxima of the likelihood function
under the two (composite) hypotheses HO: 6=60 VS. Hl: 6=61—60+A, 90, A known,

were able to approximate the same, at the n-th stage, by
6 - Y
nAIee(en 2[60+61]), (2.10)

where én is the (unrestricted) maximum likelihood estimator of 8, and I66 is the
Fisher information for 6. The asymptotic reduction in (2.10) along with the
normality and other properties of the maximum likelihood estimates enables us
to claim that the SLRT has asymptotically (as A>0) all the properties of the
classical Wald [16] sequential probability ratio test (SPRT) where § is assumed
to be known.

In the nonparametric setup, Un is the optimal (minimum variance) unbiased
estimator of O6(F), and G(Fn) is asymptotically equivalent, in probability, to
Un i.e., n%[Un—e(Fn)]EO as > (cf. [8]). Moreover, n%[Un—e(F)] (or n%[e(Fn)—

0(F)]) is asymptotically normally distributed with zero mean and variance



' mzcl(F) (>0), which may be consistently estimated as follows. For n>m, let
n-1,-1 v« ] , «
= ... <i< (25t
Voi . 7) Zi ¢(xi,x12, ,Xim), 1<i<n, (2. i1

*
where the summation Zi extends over all possible 1<i <...<im§p with ij%i,

2
2<j<m. Then, from Sen [10],

P
n [v .—Un]2 > gl(F) as n>o, (2.12)

Thus, looking at (2.10) and the asymptotic SLRT, we are, at least heuristi-
cally, in favor of replacing én by Un’ I;é by mzsi, and thereby, considering
the following procedure.

Corresponding to our desired first and second kinds of error o, B (where
we take 0<a,B<)), we consider two numbers A(<(1-B)/a) and B(>B/(1-a)), so that
0<B<1<A<», Then, we start with an initial sample of size n0(=nO(A), moderacely
large for small A), and define a stopping variable N(=N(A)) as the smallest

positive integer (zno) for which
2 2 2 2
< -1 1
m sn log B nA[Un 2(60+81)] <m sn(log A) (2.13)

22
1 1+ = -1 . Ty =
is vitiated. 1If for N(A)=N, nA[Un 6(60+61)] < m s, log B, re accept HO. 6 (F) @O,
2 2
. . _1 . = =
while if nA[Un 2(60+61)] > m s log A, we accept Hl. 8 (F) 61 60+A, A>Q.
A parallel sequential procedure based on G(Fn) may be posed as follows.
. -(m-1) n n
* = — * o0 >
Let us define V¥ . =n ) Zim=l ¢(xi,xi2,...,x, ) = [eoof QR aRyse e )

a 12=l m Rp(m—l)
dF (x.)...dF (x ), 1<i<n, and let
n 2 n m —



n 2
[v* i-G(Fn)] . (2.14)

2 -1
op* = @™ LNy

Then, in the second procedure, we replace, in (2.13), Un by G(Fn) and s, by
sg, while the rest remains the same. It will be seen later on that the two
procedures have asymptotically (as A+>0) the same properties.

The heuristic proposal made above is justified theoretically in the next
two sections.

QAnAEEKR&RE&RRRARKRXER&A&EX' We have the following theorem.

TheRxem 31t- Under (2.5), both the procedures terminate with probability

one i.e., for every (fixed) O0(F) and A(>0), P{N(A)>n]6(F)} > 0 as n,

Proof. By definition in (2.13), for every n>n

O’
22 2 2
_m Sn m Sr
—_ =1
Pe{N(A)>n} = Pe{———rA (log B) < [U_ 5(05+0,)] < —5— (log 4), noirin}
< P {m%s%(log B)/nA < [U (6 40.)] < mZs>(log A)/nA} (3.1)
— 9 n g n *V0 "1 n g i *

where P6 stands for the probability computed for 8(F)=6. Now, we have three
situations: (a) O(F) > %(60+61), (b) B(F) < %(60+61) and (c) O(F) = %(60+61).
We know that {Un} being a reverse martingale sequence (cf. Berk [4]) converges
almost surely (a.s.) to 8(F) as n>, Also, Sproule [14] has strengthened
(2.12) to si*Cl(F) a.s. as n>°. Hence, mzsi(log A)/nA and mzsi(log A) /nA both
a.s. converge to zero as n>°; on the other hand, in cases (a) and (b),
[Un—5(90+61)]»[6(F)—%(60+Gl)](+0) a.s. as n>°, Hence, (3.1) tends to 0 as
n>°, In case (c), mzsi(log B)/(Avn) and mzsi(log A)/(AVn) both a.s. converge

1
to 0 as n>©, whereas né[Un—5(60+Gl)] is asymptotically normally distributed

with zero mean and a finite (positive) variance mzcl(F); hence, (3.1) again tends



to 0 as n»°, Finally, it follows from Sen [12] that IG(Fn)-Un|+O a.s. as n>o,
and hence, the proof for the second procedure follows on parallel lines. Q.E.D.

%AAAQEAERHAARNAXRR&&&RR&' For theoretical justifications, we now consider
the asymptotic situation where A+0; this is comparable to the asymptotic sit-
uvation in (sequential) fixed-width confidence interval problems, treated in
Chow and Robbins [5], and others. 1In practice, the results are valid whenever
we have the access to choose small A. For A*0, we concentrate ourselves to a
range of possible values of 6(F) also contracting to 0 as A>0. Specifically,
we assume that 6(F)el, where

A

I, = {6(E)=6+04: ¢el}, I = {¢: [o]<k], (4.1)

where K(>1) is a finite constant. We may remark that if 6(F)¢IA, then asympto-
tically the OC function will be either very close to zero or to one, and hence,
will cease to be of any statistical interest. Further, looking at (2.13) and
the a.s. convergence of (4i) Un to 8(F) and (ii) si to Cl(F), we are confident
that as A0, a terminal decision will not be reached (in probability) at an
early stage. Consequently, there is no harm in letting n0(=no(A))->oo as A»o, but
at a slower rate as compared to the ASN of N(A). We shall see later on that the
ASN of N(A) increases at a rate of A—z as A>0. Hence, we assume that

ny(8) = » but lim AznO(A) = 0. 4.2)

Hmy A>0

These assumptions are also implicitly needed to justify rigorously the procedure

of Bartlett [3] and Cox [6].



Consider now a standard Brownian motion wt: 0<t<wo, and denote by

Wt first crosses the line Y-l log B + vt (-9)
P(6,Y) - P . S (4.3)
before crossing the line v = log A + yt(%-9): O<t<eo

P(9) = lim o P(6,¥): el = {¢: [o]<k}. (4.4)
Let then the OC function of the sequential procedure in (2.13) be
LA(¢) = P{HO: 6(F)=60 is accepted |6(F)=eo+¢A}. (4.5)

Theorem 4.1. Under (2.5) and (4.2),

llmA_>0 A((1)) = P(p) for all oel; (4.6)
11mA 50 A(O) = 1-o and limA+0 LA(l) = B. 4.7)

Remark. The last equation specifies the asymptotic (as A+0) consistency
of the proposed sequential test.

Proof. For every e>0, let us define

(2) (A) = [{(log AB"l)/eA}Z], (4.8)

(l)(A) = max{n (8), [(log AB” Yyes/n?yy,

where [s] denotes the largest integer contained in s. Then, by (2.13),

PN < ndP )}

mzsi(log B) . mzsi(log A) (1)
= PG{T— < [Ur—2(60+61] < B v a— nO(A)irf_n (A)}. (4.9)

Since, si*@l(F) a.s. as n>* and (4.2) holds, we conclude that for every n>0,

Pe{si_i (1+n)C1(F), nO(A)fyfp(l)(A)} + 1 as A*0. Consequently, (4.9) is bounded

above by



2
P, ([u,50,+0,)] < 2 ¢ (1) (log 487, 0 W<raa™ @)} + 0, 4.10)

where n(A)>0 as A>0. Now, for all G(F)EIA, ]6(F)—%(60+61)| < (K+1)A, and hence,
for every K(<«), we can always select an €>0, such that IG(F)—%(60+61)] <

2 -1 (1) @D)] -1
(m /2Ar)cl(F)(l+n) log AB for all rjpo (A). [Note that for ripo A), (xrd)
> A(e log AB—l)—l can be made large by proper choice of €>0.] Hence, (4.10) is

bounded above by

2
Pl[U_-0 ()| < SR (), () (Log 4D, nyW<r<niP @} +n). 1D

Now, using the reverse martingale property of U-statistics (cf. [4]), and thereby
applying the Chow extension of the Hijek-Rényi inequality (as in Sen [11],
(3.6)), the first term of (4.11) can be easily shown to be bounded by

(1)

[46%/m” (140) (log AB ) (F)][Cn’ (F){ng

(A)—nO(A)}]

1 2 -1
<o @z /5, ®) 114082/ (14n) 1og AB7)
f_Coe < g', where Co <o, independently of A, € and n. (4.12)

Thus, for every §>0, there exists an €>0, such that

Lin, o P {N(W)<n{P (1)} < 46 for all 8(P) eI, (4.13)

Again, as in (3.1), for every 0 (F) EIA,

[t

m(log B)s n-[U -}(6.+6.)] m(log A)s
Py (N)>n$P (1)} < p——pB <« — B0 10 1} L (4.14)

3 ms 3
An n An

n=néz)(A)
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1 1
Now, s§+C1(F) a.s. as n>, and nz[Un—G(F)]/me(F) is asymptotically normally

1
distributed with zero mean and unit variance. Therefore, nz[Un—lz(90+61)]/msn

1
is asymptotically normally distributed with mean [6(F)—12(90+91)]/m[C1(F)]2 and

(2)
0

i
almost surely to me[;l(F)]z, as A>0. Hence, the right hand side of (4.14) is

- L
unit variance. On the other hand, m(log AB l)sn/Anz, for n=n (8), converges

asymptotically bounded above by

1
-3

(2m) me[Z;l(F)]l/z e, (4.15)

which can be made smaller than % by proper choice of €(>0). This leads us to
the following: for every G(F)SIA, and for every &>0, there exists an €(>0),

such that

. (1) (2)
Lim, o Paing™ (8) < N(@) < nj” (W)} > 1-6. (4.16)
Consider now a stopping variable N*(A) defined as the smallest positive

integer n(znO(A)) for which
n’z, (F) (log B)/A < a[U_—5(8#0,)1 < n’c, (F) (log A)/A (4.17)

and accept H, if

is vitiated; if n[Un—5(90+61)] i_ngl(F)(log B)/A accept H 1

O,

n[Un—5(90+61)] z_mzcl(F)(log A)/A. By the same technique as in above, it

follows that (4.16) also holds for N*(A). Further, si+§l(F) a.s. as n>°, and
(1) (2) 2_ , ‘o

hence, as A»0, for all n, (A)Epﬁpo ), Isn Ql(F)|+O,_w1th probability one.

Thus, if we denote by LK(¢), the OC function of the procedure in (4.17), then

from (2.13), (4.17) and the above discussion, we conclude that
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limy o |1, (@)-L{(@)| = 0 for all ¢el. (4.18)

(L (2)
0 0

1
K€(<m), if we linearly interpolate Ar[Ur—e(F)]/m[Cl(F)]2 between two consecutive

(1) (2)

<r<
o =My

the process weakly converges to a Brownian movement process &(t;A), where

L
Since for n (A)<n<n (A), n’A is bounded above by a positive constant

r, n (A), we may, after using the results in Sen [12], conclude that
E{E(t;A)} = 0,4t and E{&(s;A)E(t;A), sﬁp} = sAz, 0<s<t<», As such, if we let

L
A' = A/m[Cl(F)]z, we have from (4.13), (4.17) and the above that
lim, o ILK(¢)—P(¢,A')|= 0 for all ¢eI, (4.19)
and hence, by (4.4), (4.18) and (4.19)
limA+0 LA(¢) = limA'+0 P(p,A") = P(p) for all ¢el. (4.20)

For testing a simple H 6=90 against a simple H 6=81=60+A (F known),

0 1
consider the Wald sequential probability ratio test (SPRT) of strength (o,B).
For small A, the excess over the boundaries can be neglected, so that

A = (1-R)/a+0(A), B = B/(1-a)+0(A), and on denoting by LZ(¢) the OC function
of the SPRT, we have from Wald [16],

LZ(O) = 1-a and lim LZ(l) = B. (4.21)

Limy g A0

On the other hand, the sequence of logarithm of Probability ratio forms a
martingale sequence on which Theorem 4.4 of Strassen [15] yields the weak con-

vergence to a Brownian movement process. Consequently, as in (4.19) and (4.20),
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. limy o LZ(qb) = P(¢) for all ¢el. (4.22)

Thus, (4.7) follows directly from (4.20), (4.21) and (4.22). Q.E.D.

In passing, we may remark that by Sen [12], n%[e(Fn)—Un]+0 a.s. as n>
and lsi—(sg)zl+0 a.s. as >, Consequently, by some routine steps it follows
that Theorem 4.1 remains valid for the alternative procedure based on G(Fn) and
s*,
n

We now proceed to study the ASN of N(A). It is quite clear from (4.8) and
(4.16) that as A>0, Ee{N(A)}->00 for all G(F)SIA. However, we shall see that
under certain regularity conditions, AZEe{N(A)} converges to some limit (depend-
ing on 6(F) and F) as A+0. This result is used in the next section to compare
the asymptotic efficacy of the proposed procedures.

In addition to (2.5), we assume that for some &>0,

v(F) = E{lqb(Xl,...,Xm)|4+6}<Oo for all TFe (4.23)

It may be remarked that in the classical SPRT, Wald [16], while computing the
ASN assumed the existence of the moment generating function of the logarithm
of the density ratio, and (4.23) is no more restrictive than that. Our next
theorem relates to the rate of growth of the ASN when 6(F) + %(60+61).

Theorem 4.2. Under (2.5), (4.2) and (4.23), for every ¢(+%)€I,

m?'Z;l(F){P(cb) log B+[1-P(¢)] log A}

lim,,2 _ -
A'*O{A Ecb (N(A))} - (¢_1/2) - lP(CP), (4 -24)

where E¢ stands for the expectation under O(F) = 60+¢A, oel.
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Proof. We only consider the case of ¢>%; the case of ¢<% follows similarly.

For some arbitrarily small £(>0), we define

1

n, (8) = (eA”%] and n, (8) = [mzcl(F)(log I R YN A (4.25)

Then, we have

2%e NGp) = %)

5 nP {N(A)=n}], (4.26)

ninl(A)+znl(A)<n§n2(A)+zn>n2(A) ¢

where obviously,

rlinl(A)an){N(A)=n}<€ for all ¢elI. (4.27)

£% 'y
Now, by using the fact that Zn>knP{N=n} = (k+1)P{N>k} + ijl P{N>n}, we have

X Zn>n2(A)nP¢{N(A)=n} = {nz(A)+l}P¢{N(A)>n2(A)} + ) P{N(A)>n}. (4.28)

nZ(A)+l

Let now n(>0) be an arbitrarily small positive number. Then, upon noting that
(An)—lmz(log AB-l)(l+n)§l(F)<A€(¢—%) for all nzpz(A), and proceeding as in

(4.14), we have for nipz(A),

P¢{N(A)>n} j_P{mZ(log B)si<nA[Un—5(60+91)]<m2(log A)si}
< P{n’ (log B) (1+n)T; (F)<nb[U_-(0 :+6,)J<n” (log A) (14n)T, (F)}
+ P{si>(l+n)§l(F)}

< P08 (F)]> 9= b(1-e)} + P{s2> (1) (F)). (4.29)
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Now, from Sen [13], for every r>2, if El¢|r <oo,
E{[ (v -6} <cn "7, ¢ <, (4.30)
and therefore by the Markov inequality, under (4.23),

P{IU_-6(F)] > Co-}p)a(l-€)}

| A

P{]Un—G(E)]>(¢—€)A(l—€)}

'4"6n'2'6/2, C<o, (4.31)

I

Cl(¢-*5)A(1-€)]

Again, it has been shown by Sprqule [14] that si in (2.12) can be expressed
as a linear combinatidn of several U-statistics, for each of which, moment of
the order 2+8/2 exists, for some 8>0 (implied by (4.23)). Hence, using (4.30)
and the Markov inequality,

Pis2> iz} < e o 7, (4.32)

where §'=6/4>0 and C(n)<» for every n>0. From (4.25), (4.28), (4.29), (4.31)

and (4.32), we have by routine computations that

lim ; » _ v
A>0 n>n2(A)nP¢{N(A) Q}f& i ‘for all ¢eI, (4.33)

where €'(>0) can be made arbitrarily Sméll, depending on £€(>0). Therefore,

it suffices to show that for ¢>%(é1),
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. n, ()
iiE{Az[Xni(A)+l P, IN)>n}1} = b(8). (4.34)
For this, we define
z =m 2121 ¢1(Xi) and W = Un—n—lzn, (4.35)

and let Ni(A), i=1,2, be two stopping variables, defined to be the smallest

positive integer n(ZnO(A)) for which the following
2 i mn 2 i
m (1+(-1) n)cl(F)(log B)<A[Zn- 7?(90+61)]<m (1+(-1) H)Cl(F)(log A) (4.36)

is vitiated, where n(>0) is arbitrarily small, and for Ni(A)=n, if
mn 2 i _ ] ‘
A[Zn— 2 (60+61)] <o (+(-1) n)cl(F) log B, we accept Hy: 6(F)—60, while if

Alz_- 26 +6.)] 3_m2(1+(-uin);1(F) log A, we accept H : B(F)=0,; i=1,2.

1
Now, the Zn involve summations of i.i.d.r.v., and for small A, the excess over
the boundaries can be neglected. Further, proceeding precisely on the same

line as in the proof of Theorem 4.1, it follows that the OC function for each

Ni(A) satisfies (4.6) and (4.7), i=1,2. Hence, by the fundamental identity of

Wald [16], we have for ¢>%(cI),

1o 2E, L W1 = a+D @), 1-1,2. (4.37)

Also, by arguments similar to in (4.25) through (4.33),

lim, 2 n,(4)
{a [E¢N1(A)_an(A)+l

A0 P¢{Ni(A)>n}]} = 0, i=1,2, (4.38)
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. for all ¢>%(eI). Let us now consider the following.

Lemma 4.3. For every nl(>0), under (2.5),

P{nfgzﬁA)lAnwnl>nl} f'\)l(A’n )3 iig \)1(A Ny ) = (4.39)
Proof. It follows from Berk [4] that {Un,nzm} forms a reverse martingale
sequence, and the same proof applies to {n_lzn,nZl}; both these are defined
with respect to a common sequence of o-fields. Hence, by (4.35), {Wn,an} is
also a reverse martingale sequence. Now, for {Wn,nO(A)<n§p2(A)}, we reverse
the ordering of the index set {i} to {nz(A)—i+l, liigpz(A)—nO(A)}, and thereby,
convert the sequence into a (forward) martingale sequence. Then, we use the

Chow extension of the Hajek-Rényi inequality (cf. [11, (3.6)1), and obtain that

max -2
P{ninz(A)lAnw |>n } < ? ny {n (A)EW 0, (1) +

nz(A) -1 9

nz(A) -1 9
<8’ %ec {1+ ] {1-[(n, (1) -3)/ (n, (B)-3+1) 17}

< X ”1 2 g (F){1 + 2 log[n (A)/m]}

1°m

2

-2 -2,~-2
< A%y clcm(F){l + 2 log C, + 2 log(e A9}, 1<C <o,

2
as some routine computations yield that E{Wz} < C.C (F)n“2 and E{Wz—w 2 }

’ n — 1°1 n n+l
5_ClCl(F)[n_z—(n+1)—2](where C1<w). Since the right hand side of (4.40) con-

verges to 0 as A0 (for every fixed n>0), the lemma follows.

®
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Also, by (4.32), for every nl>0, there exists a positive C(nl) (<=), such

that

Pl (A)Tiﬁn () Si > (I+n))g, (F)} §_C(nl)[no(A)]‘5'
0=

_ lim _
= vz(A,nl) where s V2(A,nl) = 0. (4.41)

Therefore, by (4.35), (4.39), (4.41) and the definition of N(A), for every n

€[n1(A),n2(A)], as A»0,

P {N(A)>n} < P

A {n® (log B)s? < INRETCREINY

¢

< m2(log A)si, no(A)§;<n}

I A

Py{n” (log B) (14n)g, (®) < 8[z - 220 +0,)]

< n’(log &) 1+, (F), 0, (A)<r<n} + v(8,n)

P¢{N2(A)>n} +v(4,n), n=2n,, | (4.42)

where limA+O v(A,n)=0. Essentially, by similar steps,

P, (N@)>n} > BN, (0)>n} - va,n), (4.43)

for all n e[nl(A),nz(A)] and A+0. Consequently, by (4.34), (4.37) and (4.38),

we get that
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Y@ - pin (8% (@,n) [ny (8)-n, (A)]} <

lim ,2 1im

a0 &7 EN@) < @mu@) + 2 iR @,n) [ny (4)-n ()] . (4.44)

Since, by (4.25), (4.40) and (4.41), Lim, o 8%(A,n)n,(A)>0 and n(>0) is
arbitrary, the proof follows.

A similar proof follows for the alternative procedure based on {G(Fn)}
and {sg}.

The above proof fails when ¢=%. However, if

(d/d$)P ($) = (d/d$)P($) = P'(¢) exists, (4.45)

k-0 b+o

by using (4.24) and the L'Hospital's rule, we obtain that

lim

1aol8°E N3] = nPe (P’ (o) [log (4B D)1, (4.46)

A AR AAARERAAN A RRARRRAARA RERRRANKR . Derived from the theory of

bounded-length (sequential) confidence intervals of Chow and Robbins [5],
Albert [1] has considered a second type of sequential tests in linear models,

which may be extended as follows.

Had Cl(F) been known, n%[Un—G(F)]/mC?(F) would have asymptotically a normal
distribution with zero mean and unit variance. Hence, for a test for (2.6),
based on Un’ if for small A, we want to have the strength (a,B), we could have

used a fixed-sample size procedure with n specified by

n > nA(u,B) = [mzll(F){Ta+TB}2/A2], (5.1)
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where Ta is the upper 1000% point of the standard normal distribution. Since
si, defined by (2.12), converges a.s. to Ql(F) as n>°, we may consider the
following sequential procedure:

define a stopping variable N*(A) as the smallest positive integer

. 2 2 2 . 1/2
< . = -
n for which s_m (Ta+T8) /A < n; accept H 6 (F) 60 if n [Url 60]/msn

o
< Tu and reject HO, otherwise.

Along the same line as in Sproule [14], who extended the Chow-Robbins [5]

theory of bounded-length confidence intervals to U-statistics, it follows that
i * =
Lim, (B {N*(8)}/n, (@,8)} = 1, ¥oeT, (5.2)

(in fact, E N*(A) does not depend on ¢). Thus, on comparing (4.24), (4.46),

)
(5.1) and (5.3), we obtain that the asymptotic relative efficiency (A.R.E.) of

N*(A) with respect to N(A) is

e(®) = pIHIEN@) 1/ [BN* ()
P(¢)log B+[1-P(¢)]log A if ¢%%
_ (¢‘%){TQ+TB}2
P' () (log AB—l)/{Ta+TB}2’ if ¢=k, (5.3)

For ¢=0 or 1, P(¢) is known, and hence, e(d) can be easily computed. For

example, when a=B=.05 and ¢=0(or 1), e($) equals to 0.48, which is considerably
less than one. 1In fact, the table on page 57 in Wald [16] is quite appropriate
here and reveals the supremacy of the earlier procedure over the one considered

in this section. Because of the remark made before (4.45), the two procedures
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of section 2 are asymptotically equally efficient too.

6 A Hications.

(1) Sequential test for variance of a distribution. Let {Xl,X

SYRERY,

be iidrv with a univariate d.f. F(x), defined on the real line (~°,®), and let

[o0] [oe]

WE) = [ xdF(x), 0°(F) = [ x2dF(x)-p2(F), (6.1)

—=00 Ll o]

where we assume that 0<0(F)<®. We want to test

2

Hy: o2 (F) = 03 (known) vs. H.: O2(F) = og+h, A known. (6.2)

1
Since for the kernel ¢(X,Y) = %(X—Y)z, Ed = GZ(F), by (2.8) and (2.9), we have
2 v, =2 _ 1.2 _lyn
o"(F) = [, %X )%/n and U_ = [n/(a-1)]o (F ), where X == ] 7 X.. (6.3)
Also, by (2.11), (2.12) and some routine steps, we get that

sp = [0/ (-1 5 [ K% - (o212, (6.4)

(0% = - 10 T )% - uie? )1, (6.5)

Hence, we have no problem in following the sequential procedures in (2.13) or
the alternative one after (2.14). Incidentally, here Cl(F) = %{E(X-u)4—o4(F)},
and hence, the computations in (4.24) or (4.46) pose no problem.

(ii) Sequential tests for independence. Let Xi = (Xil),Xiz)), i=1,2,...,

be iidrv with a bivariate d.f. F(xl,xz), —W<x1,x2<w. We want to test the
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(1)

hypothesis that X s X(z)

are stochastically independent i.e.,
= [e o] [e o] 2
HO. F(XI’XZ) = F(xl, YF( ,xz)-V(xl,xz)eR . (6.6)

Various alternative hypotheses may be framed to test for departure from inde-
pendence. This may be the usual correlation between X(l), X(z), or the grade
correlation {for definition etc., see [8 ]}, or some sort of association of

the two variates. We consider here a simple case; the other cases follow on
parallel lines.

Let us define the probability of concordance by

©) _ 1) _,Q) ,(2)_,(2) 1), 1) ,(2) ,(2)
H(F) = P{Xl <Xy, X K, } o+ P{Xl X, X TR, }, (6.7)

, €, ;
g In (6.6), H(F)—z’ while

>(or <)} indicates a positive (or negative) association between the two var-

where we assume that F is continuous. Then, under H

©)
Tery

iates. In fact, the tau correlation coefficient, proposed by Kendall and others,
is given by T(F) = ZH(C)(F) - 1. Thus, we want to test for HO in (6.6) against
an alternative that T(F) = A, A>0.

Let c(ul,uz) be 1 if both uy and u, are non-negative, and let c(ul,u2)=0,
otherwise. Then,

-1 1 1 2 2
u = 2(;) ) C(Xi )-x§ ),xi )-xg ))—1 (6.8)

1<i<j<n
unbiasedly estimates T(F). In a sample of n observations, let Cni be the
number of Xj’ 15j(+i)§p, which are concordant with Xi’ 1<i<n, so that

U = 4

n
n E?E:IT zi=l Cni-l. Then, by (2.11) and (2.12), we have here



2_ 1 tn -1, 2
s = T3 i=l{Z(n 1) Cni Un} .

Thus, we can again proceed as in section 2. Since under (6.7), Z,(F) = =
1 9’

for small A, we may replace si by %-in the definition of N(A).

(iii) Sequential tests based on generalized U-statistics. Let {Xl,X

be iidrv with a d.f. F(x), and let {Yl,YZ,.

iidrv with a d.f. G(x). Consider a functional

8(F,G) = [eoof ¢(xl,...,xml,yl,...,ymz)dF(xl)...dF(xml)dG(yl)

. >
of degree (ml,mz), m, >1, mZZ}. For every n> max[ml,mz], let

1

n,~-1l,n.-1

U= () ZC ZC JCS T LTI S

2’

..} be an independent sequence of

22

(6.9)

.

...dG(ymz) (6.10)

be the U~-statistic corresponding to 0(F,G), while G(Fn,Gn) is defined by

replacing F and G in (6.10) by Fn(x) = n—l

c(y-Yj), respectively. Also, let

n-1,-1,n .-1 cx
Voo G G 23 Ie BOHK; sesXy Yy e

1 2 n,m 2 m 1

172 1

n,-1, n-1,-1 *
\Y ., = X, 5eee,X, Y.,Y, ,..
n,o0j (ml) (mz—l) zCn o Z‘j ¢( i i ’75 iy

’ 1 l

where the summation ZI (Z;) extends over all possible 1§i2<...<im

i 41, a=o. ... <i
lj*l’ j=2, >y (L_lz

2121 c(x—Xi) and Gn(y) = n_l Z,

esY, )s

<n with
1

<...<i <n with j,+j, i=2,...,m,), and finally set
my=— i 2

(6.11)

1

(6.12)
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o~ ™%,1 n,2’ (6.14)
2 _ 1 n 12 2 _ 1 n _ 2
Sn,l T n-1 zi=l[vn,io Un] ? sn,2 n-1 Zj=1[Vn,oj Un] : (6.15)
Then, we may consider a sequential procedure for testing
HO: 6(F,G)=60 vs. le 6(F,G)=61=60+A, A>0, (6.16)

based on the same stopping variable as in (2.13), wherein we replace mzsi by
Vi. A similar procedure follows for G(Fn,Gn).

Let thEH q)lo(xi) = E{¢(xi,xi ""’Xi ’Y. ,...’Yj )}’ ¢01(Yi) =

2 m, J1 m,
E{0(X, ,...,X, ,v.,Y. ,...,Y. )}, and let
1 m, J 2 “m
1 2
VE(F,6) = my B{o)(x)-0(F,)} + m) Blog (¥)-6(F,6)}, (6.17)

Then, by direct generalization of Theorems 4.1 and 4.2, it can be shown that
(4.6), (4.7), (4.24) and (4.46) hold; the only change is to replace ngl(F)
by VZ(F,G). The above results also can be easily extended to functionals of

c(>2) independent distributions.
We conclude this section with an example of 6(F,G) having a lot of practical

importance. Consider the functional
8(F,G) = P{X<Y} = [ F(x)dG(x), (6.18)

and suppose we want to test the hypotheses in (6.16). There are two possible

ways of constructing sequential tests for the same.
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(2) The Wald SPRT. Define r, as 1 or 0 according as Xj<Yi or Xizyi’
i>1. Thus, P{ri=l} = E{ri} = 6(F,G), and as the r, are iidrv with a binomial
distribution, we may directly use the Wald [16] SPRT. Thus, theorem 4.1 holds
here, while the ASN, as given in Wald [16, p.57] reduces (as A>0) for 0(F,G) =

60+¢A, ¢el, to

P(¢)log B + {1-P(¢)}log A
{60+¢A}10g{1+681A} + {l—eo—eA}log{l—(1-60)_1A}

80(1-60)
= {P(¢)1og B + {1-P($)}1log AH1+0(A)}. (6.19)

(9—%5)A

(b) Asymptotic sequential test based on the Wilcoxon statistic. The

generalized U-statistic corresponding to 6(F,G) is

_ =2 n n
Uy =m " 2y Zj=1 LACTERTD

n~2 7.2 {No of X.<Y,, 1<i<n}.
j=1 i3 ==

n—l z n

so1 Fa(y) (6.20)

where Fn(x) is the empirical d.f. for X "Xn' By definition, in (6.12)~-

10"
(6.15), we have

2

I n _ _ 2 n _ 2
vi= o7 (0 1-6_(x)-u 17 + Zj=l[Fn(Yj) v 19, (6.21)

where Gn is the empirical d.f. for Yl""’Yn' Thus, we may proceed as in

(2.13) with the change suggested after (6.17).
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‘ Note that by (6.17)

v2(F,G) = E[l—c(xl)]2 + E[F(Yl)]2 - 28%(F,0), (6.22)
so that the ASN as A+0 is given by

v2(F,G)
— {P(¢)1log B + [1-P(¢)]log AH1+0o(1)]}, (6.23)
(¢o=%)A

where O(F,G) = 60+¢A, ¢eI. From (6.19) and (6.23), we obtain the A.R.E. of

the Wald SPRT with respect to the proposed test equal to
2
Y (F,G)/Go(l—eo). (6.24)

In particular, when we want to test FZG against shift alternative, 60=%,
VZ(F,G)=%, so that (6.24) equals to %3 which clearly indicates the supremacy
of the second procedure. 1In general, (6.24) is less than unity; this is

because of the fact that whereas Un compares every Xi with every Yj, the Wald

SPRT does not do so, and hence, looses some information.
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