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Abstract. Let Γ be a finitely generated virtually nilpotent group. We consider three closely
related problems: (i) convergence to a deterministic asymptotic cone for an equivariant ergodic
family of inner metrics on Γ, generalizing Pansu’s theorem; (ii) the asymptotic shape theorem for
First Passage Percolation for general (not necessarily independent) ergodic processes on edges of
a Cayley graph of Γ; (iii) the sub-additive ergodic theorem over a general ergodic Γ-action. The
limiting objects are given in terms of a Carnot-Carathéodory metric on the graded nilpotent group
associated to the Mal’cev completion of Γ.

1. Introduction and statement of the main results

Let Γ be a finitely generated virtually nilpotent group. The topic of this paper may be viewed from
three slightly different perspectives:

(i) As a generalization of the result of Pansu [12] showing that the asymptotic cone of an invari-
ant inner metric d on Γ is the Carnot group G∞ (the graded nilpotent Lie group associated
with the Mal’cev completion G of Γ) equipped with a certain Carnot-Carathéodory metric
d∞. Here we show that if one replaces a single invariant metric d by an equivariant ergodic
family {dx | x ∈ X} of inner metrics on Γ, then a.e. (Γ, dx, e) has the same asymptotic
cone which is the Carnot group G∞ equipped with a fixed Carnot-Carathéodory metric
associated to certain averages of the family {dx | x ∈ X}.

(ii) As a result about asymptotic shape for First Passage Percolation model over Γ driven by a
general ergodic process Γ y (X,m). (The case of independent times was recently studied
by Benjamini and Tessera [2]).

(iii) As a Subadditive Ergodic Theorem over a general ergodic probability measure preserving
(hereafter p.m.p.) action Γ y (X,m). Given a measurable function c : Γ × X → R,
satisfying

c(γ1γ2, x) ≤ c(γ1, γ2.x) + c(γ2, x) (γ1, γ2 ∈ Γ),

and some additional conditions, we show that for a.e. x ∈ X there is a unique limit to
c(γ, x) suitably normalized; the limit is described on the Carnot group G∞ using a Carnot-
Carathéodory construction.

Let us recall some facts about nilpotent groups. Upon passing to a finite index subgroup and
dividing by a finite normal subgroup, we assume hereafter that our group Γ is a torsion-free nilpotent
group with torsion-free abelianization Γab ∼= Zd; this adjustment does not change the problem - see
§2.4 below. By the classical work of Mal’cev, a finitely generated, torsion-free, nilpotent group Γ
can be embedded as a discrete subgroup of a connected, simply connected, nilpotent real Lie group
G so that G/Γ is compact. Moreover, such an embedding Γ < G is unique up to automorphisms
of G. This G is often called the Mal’cev completion of Γ. Associated with G one has the
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graded nilpotent connected, simply connected, real Lie group G∞, that is constructed from the
quotient spaces gi/gi+1 of the descending central series g = g1 > g2 > · · · > gr+1 = {0} of the
Lie algebra of G (see below). In particular, one can identify the abelianizations Gab := G/[G,G]
and Gab

∞ = G∞/[G∞, G∞] via g/g2 ∼= g∞/g2∞. The graded Lie group G∞ admits a one parameter
family {δt | t > 0} of automorphisms that induce the linear homotheties ×t on the real vector space
Gab

∞
∼= gab ∼= gab∞ . Such a group G∞ (with the family of homotheties, or similarities) is sometimes

called a Carnot group.

Example 1.1. The integral Heisenberg group HZ embeds in the 3-dimensional real Heisenberg
group

HR =







Mx,y,z =





1 x z
0 1 y
0 0 1



 | x, y, z ∈ R







by restricting x, y, z to be integers. In this case G = HR is itself graded: G = G∞. The abelianiza-
tion Gab is two dimensional, and G → Gab is given by Mx,y,z 7→ (x, y). The homotheties are given
by

δt(Mx,y,z) = Mtx,ty,t2z.

Let d be a an inner right-invariant1 metric d on Γ, e.g. d(γ1, γ2) = |γ1γ
−1
2 |S , where |γ|S is the

length of a shortest word representing γ using elements of a fixed generating set S for Γ. In [12]
Pansu proved that associated with such d there is a right-invariant proper metric d∞ on G∞, that
is homogeneous in the sense that

d∞(δt(g), δt(g
′)) = t · d∞(g, g′) (g, g′ ∈ G∞, t > 0)

and such that there is Gromov-Hausdorff convergence

(1.1) (Γ,
1

t
· d, e) → (G∞, d∞, e).

The metric d∞ is a result of Carnot-Carathéodry construction applied to a certain norm on Gab ∼=
Gab

∞ , associated to d.

To state our results we need to fix some further notations. Let Γ be a finitely generated, torsion-
free, nilpotent group, denote by G its Mal’cev completion, and by G∞ the associated Carnot group
with homotheties {δt | t > 0}. Fix a right-invariant inner metric d on Γ, e.g. a word metric as
above, and let d∞ on G∞ be the associated Carnot-Carathéodory metric as in Pansu’s theorem.

Given a function f : Γ → R one can consider an asymptotic cone of its graph in Γ×R, i.e. possible
Gromov-Hausdorff limits of

Graph(f) = {(γ, f(γ)) | γ ∈ Γ} ⊂ Γ× R

with (e, 0) being the marked point. The functions f that will appear below, will be special in
several ways:

(f1) the rescaled graphs Graph(f) actually have a unique Gromov-Hausdorff limit,
(f2) this limit is given by a graph Graph(Φ) of a function Φ : G∞ → R,
(f3) the function Φ : G∞ → R appears in a Carnot-Carathéodory construction; in particular, it

is homogeneous: Φ(δt(g)) = t · Φ(g) for g ∈ G∞ and t > 0.

1One often considers left-invariant metrics; our choice of right-invariance is dictated by our notation for sub-additive
cocycles.
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The convergence in (f2) implies that

t−1
i · f(γi) → Φ(g) whenever sclti (γi) → g ∈ G∞,

where the latter relates to the Gromov-Hausdorff limit (1.1) with ti → ∞. Let us say that two
functions f, f ′ : Γ → R are asymptotically equivalent if

f(γ)− f ′(γ) = o(|γ|S).

Then f satisfies (f1)-(f3) with Φ iff f ′ does. One might say that Φ is the unique homogeneous
representative of the asymptotic equivalence class of f (here the uniqueness statement
follows from the fact that different homogeneous functions cannot be asymptotically equivalent).

Theorem A.
Let Γ be a finitely generated virtually nilpotent group, Γ y (X,m) an ergodic probability measure-
preserving action, and c : Γ×X → R+ a measurable subadditive cocycle. Assume that

(i) For some 0 < k ≤ K < +∞ one has k · |γ|S ≤ c(γ, x) ≤ K · |γ|S for a.e. x ∈ X.
(ii) For a.e. x ∈ X for every ǫ > 0 there is a finite set F ⊂ Γ so that for every x′ ∈ Γ.x any

γ ∈ Γ can be written as γ = δn · · · δ2δ1 with δi ∈ F and

c(δ1, x
′) + c(δ2, δ1.x

′) + · · ·+ c(δn, δn−1 · · · δ1.x
′) ≤ (1 + ǫ) · c(γ, x′).

Then for a full measure set of x ∈ X the functions c(−, x) : Γ → R are asymptotically equivalent
to each other and are represented by a unique homogeneous function Φ : G∞ → R, that is obtained
in the following construction.

Construction 1.2. Given a subadditive cocycle c : Γ×X → R+ over an ergodic action Γ y (X,m)
of a finitely generated virtually nilpotent group Γ.

• Up to finite index and finite kernel (once Γ y (X,m) and c : Γ × X → R+ are adjusted
accordingly) we are reduced to the case that Γ is a finitely generated nilpotent group that
is torsion free and has torsion-free abelianization Γab.

• Define a subadditive function c : Γ → R+ by integration:

c(γ) :=

∫

X
c(γ, x) dm(x).

• Define a subadditive function f : Γab−→R+ by minimizing F over fibers:

f(γab) := inf
{

c(γ1) | γ
ab = γab1

}

.

• Define φ : gab∞ → R+ by viewing Γab as a lattice in the vector space Γab ⊗ R and observing
that there is a unique homogeneous subadditive function (a possibly asymmetric norm)

φ : Γab ⊗ R−→R+

representing f : Γab−→R+.
• Define Φ : G∞ → R+ to be the homogeneous function associated to φ viewed as an asym-
metric norm on Γab ⊗ R ∼= Gab ∼= gab ∼= gab∞ and applying the Carnot-Carathéodory con-
struction.

For more details see §§2.2–2.4.
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Recall that a metric d on a metric space M is called inner if given ǫ > 0 there is R < ∞ so that
for any p, q ∈ M one can find n ∈ N and p0, . . . , pn so that: p0 = p, pn = q, d(pi−1, pi) < R for
1 ≤ i ≤ n, and

d(p0, p1) + d(p1, p2) + · · ·+ d(pn−1, pn) ≤ (1 + ǫ) · d(p, q).

The following result can be viewed as a generalization of Pansu’s result on a single right-invariant
inner metric on Γ to equivariant ergodic families of inner metrics.

Theorem B.
Let Γ be a finitely generated virtually nilpotent group, Γ y (X,m) an ergodic p.m.p. action, and
let {dx | x ∈ X} be a measurable family of inner metrics on Γ that is right-equivariant:

(1.2) dx(γ1, γ2) = dγ.x(γ1γ
−1, γ2γ

−1) (γ, γ1, γ2 ∈ Γ),

and satisfies a uniform bi-Lipschitz estimate 0 < a ≤ dx/d ≤ b < ∞ where d is some right-invariant
word metric on Γ.

Then there exists a right-invariant homogeneous metric dφ on G∞ so that for a.e. x ∈ X there is
Gromov-Hausdorff convergence

(Γ,
1

t
· dx, e)

GH
−→ (G∞, dφ, e).

Here dφ(g1, g2) = Φ(g2g
−1
1 ) with Φ from Construction 1.2 corresponding to

(1.3) c(γ, x) := dx(e, γ).

One can also start from a sub-additive cocycle c : Γ×X → R+ and define

(1.4) dx(γ1, γ2) := c(γ2γ
−1
1 , γ1.x) (x ∈ X, γ1, γ2 ∈ Γ).

The resulting measurable family of functions is equivariant (as in (1.2)), and each is a (possibly
asymmetric) metric on Γ; condition A(ii) on c corresponds to dx being inner.

A natural example of an equivariant family of metrics as above appears in the following setting,
known as First Passage Percolation model. Fix a Cayley graph (V,E) for Γ defined by some
finite symmetric generating set S ⊂ Γ (so V = Γ and E = {(γ, sγ) | γ ∈ Γ, s ∈ S}), and fix a
0 < a < b < ∞. Define X := [a, b]E – the space of functions x : E → [a, b]; we think of x(v,v′) as
the time it takes to cross edge (v, v′) ∈ E. Since Γ acts by automorphisms on (V,E), it also acts
continuously on the compact metric space X. Let m be some Γ-invariant ergodic Borel probability
measure on X, e.g. the Bernoulli measure m = µE where µ is some probability measure on [a, b].
Every x ∈ X defines the time it takes to cross any given edge e ∈ E and we can define

dx(v, v
′) = inf

{

n
∑

i=1

x(vi−1,vi) | v0 = v, vn = v′, (vi−1, vi) ∈ E

}

to be the minimal travel time from v to v′ in the particular realization x ∈ X of the configuration
of passage times of edges. One is now interested in the asymptotic shape as T → ∞ of the set

BΓ
x(T ) := {v ∈ V | dx(e, v) < T}

of vertices that can be reached from the origin e ∈ V in time < T , for a typical configuration x ∈ X.

Corollary C.
With the notations as above, there exists a homogeneous function Φ : G∞ → R+, given in Con-
struction 1.2, so that for m-a.e. x ∈ X the sets BΓ

x(T ) are within o(T )-approximation from

{g ∈ G∞ | Φ(g) < T}
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which is a δT image of a fixed set:

BΓ
x(T ) ∼ {g ∈ G∞ | Φ(g) < T} = δT ({g ∈ G∞ | Φ(g) < 1}) .

Thus {g ∈ G∞ | Φ(g) < 1} gives the asymptotic shape of a.e. BΓ
x(T ) rescaled by T for T ≫ 1.

It follows from Theorem A that for m-a.e. x ∈ X for any ǫ > 0 for T > T (x, ǫ)

{g ∈ G∞ |Φ(g) < 1− ǫ} ⊂ sclT
(

BΓ
x(T )

)

⊂ {g ∈ G∞ |Φ(g) < 1 + ǫ}

which is equivalent to the statement of the Corollary.

Let us make some remarks about these results.

(1) I. Banjamini and R. Tessera [2] recently established the asymptotic shape theorem for the First
Passage Percolation model (Corollary C) for the case of an independent distribution on edges, i.e.
the measure m = µE . In this framework their result is stronger: the assumption is weaker (rather
than compact support the distribution µ is assumed to have a finite exponential moment) and
they can quantify the convergence to the asymptotic shape. However, the proofs, being based on
probabilistic techniques, do not seem to apply to the general ergodic case as in Corollary C.

(2) The abelian case Γ = Zd was considered by Boivin [4] in the context of First Passage Percolation
as in Corollary C, and then by Björkland [3] in the more general context of sub-additive cocycles
as in Theorem A. Both results are proved under weaker integrability condition, namely c(γ,−) ∈
Ld,1(X,m) (Lorentz space). This integrability condition is known to be sharp for sub-additive
cocycles over general ergodic Zd-actions [5]. We note that in [3] no a priori innerness assumption
is imposed, but in retrospect it is satisfied.

(3) Assumption (ii) in Theorem A (and the corresponding assumption of innerness of metrics in
Theorem B) is necessary for the limit object Φ (and dφ) to be geodesic. Yet, it will become clear
from the proof below that this condition is not needed for the inequality

lim sup
sclt(γ)→g

1

t
· c(γ, x) ≤ Φ(g) (g ∈ G∞)

for m-a.e. x ∈ X. In fact, the proof of this inequality (see §4.1) does not require the lower
estimate in Theorem A(i); it only uses the inequality c(γ, x) ≤ K · |γ|S , which is equivalent to
c(γ,−) ∈ L∞(X,m) for γ ∈ S a generating set for Γ.

(4) It is possible that assumption (i) in Theorem A can be relaxed. Yet, note that already in the
Abelian case Γ = Zd pointwise convergence requires Ld,1(X,m)-integrability.

(5) Let Γ < G and G∞ be as above. Theorems A and B show that asymptotic shapes are classified
by Φ (and dφ) for some unique, possibly asymmetric, norm φ : gab∞ → R+. The converse also holds:
for every asymmetric norm φ the associated Carnot-Carathéodory Φ and dφ arise as an asymptotic
shape for some cocycle over Γ, in fact from a subadditive function F : Γ → R+. However, the
question of which asymptotic shapes (equivalently norms) can appear in First Passage Percolation
with independent distribution on edges remains widely open.

We would like to emphasize the following remark.

Remark 1.3. An important example of subadditive cocycles over group actions are

c(γ, x) = log ‖A(γ, x)‖
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where A : Γ×X → SLd(R) is a matrix valued cocycle, i.e. satisfies A(γ1γ2, x) = A(γ1, γ2.x)A(γ2, x).
If Γ is not Abelian, then the results of this paper do not apply to such cocycles – they system-
atically fail the innerness assumption. Yet, for any amenable group Γ (in particular, nilpotent)
one can describe the asymptotic behavior of such cocycles: they are asymptotically equivalent to a
homogeneous subadditive function, namely the pull-back of a norm φ on the abelianization Γab

1 ⊗R

for some finite index subgroup Γ1 < Γ. More precisely, the norm has the form

φ(γ) = max
1≤j≤d

|χj(γ
ab)|

for some characters χ1, . . . , χd : Γ1
ab ⊗ R → R. In particular, if Γ is a non-abelian nilpotent

group, such homogeneous functions do not grow along the commutator subgroup unlike Carnot-
Carathéodry metrics. This can be shown by applying a form of Zimmer’s Cocycle Reduction lemma
(using the fact that Γ is amenable) that allows one to bring the cocycle to an upper triangular form
and read off the growth from the diagonal.

Plan of the paper.
In Section 2 we recall some background on graded nilpotent Lie groups, the Carnot-Carathéodory
construction, Pansu’s fundamental result on the asymptotic cone of nilpotent groups, and the
construction of φ, Φ and dφ associated with the sub-additive cocycle c : Γ × X → R+. Section 3
contains two basic preliminary results needed for the proofs of the main theorems. One results
concerns approximation of admissible curves in the asymptotic cone G∞ by expressions of the form
Tn
k · · ·Tn

2 T
n
1 that we call polygonal paths in Γ. The second result (Theorem 3.3) is of independent

interest; it is an ergodic theorem for sub-additive cocycles along above mentioned polygonal paths.
With these preparations at hand we prove Theorems A and B in Section 4.

Acknowledgements. The authors would like to thank Itai Benjamini, Romain Tessera, and Tim
Austin for their interest in this work, useful comments and encouragement. This work was sup-
ported in part by the NSF grant DMS-1207803, Simons Foundation, and MSRI.

2. The Carnot group as the asymptotic cone

In this section we recall Pansu’s construction of the asymptotic cone (G∞, d∞) of a finitely generated
nilpotent group and give our construction of (G∞, dφ), the almost sure asymptotic cone of the
random (pseudo) metric space (Γ, dx).

2.1. The graded Lie algebra/group.
Let Γ be a finitely generated, torsion-free, nilpotent group and G be its Mal’cev completion. In
this subsection we construct the associated Carnot group. Since the Lie groups here are connected
and simply connected, one can work with the Lie algebras. Let g be the Lie algebra of G, and set

g
1 := g, g

i+1 := [g, gi].

Being nilpotent, G satisfies gr+1 = {0} for some r ∈ N. Since [gi, gj ] ⊂ gi+j (and in particular
[gi+1, gj ], [gi, gj+1] ⊂ gi+j+1) the Lie bracket on g defines a bilinear map

(

g
i/gi+1

)

⊗
(

g
j/gj+1

)

−→ (gi+j/gi+j+1),

which can then be used to define the Lie bracket [−,−]∞ on

(2.1) g∞ :=

r
⊕

i=1

vi, where vi := g
i/gi+1
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by extending the above maps linearly. The resulting pair (g∞, [−,−]∞) is called the graded Lie
algebra associated to g. Note that the linear maps

δt : g∞ → g∞, δt(v1, . . . , vr) = (t · v1, t
2 · v2, . . . , t

r · vr),

satisfy δt([v, w]∞) = [δt(v), δt(w)]∞ and δts = δt ◦ δs for v, w ∈ g∞, t, s > 0. Hence {δt | t > 0}
is a one-parameter family of automorphisms of the Lie algebra g∞, and therefore define a one-
parameter family of automorphisms of the Lie group G∞ := exp∞(g∞), that we will still denote
by {δt | t > 0}. (Here we denote the exponential map g∞ → G∞ by exp∞ to distinguish it from
exp : g → G).

The graded Lie algebra naturally appears in the following limiting procedure. Choose a splitting
of g as a direct sum of vector subspaces

(2.2) g = V1 ⊕ · · · ⊕ Vr, so that g
i = Vi ⊕ · · · ⊕ Vr,

and choose a vector space identification L : g → g∞ so that L(Vi) = vi the ith summand of g∞. For
t > 0 define the vector space automorphism σt of g by setting σt(v) = ti · v for v ∈ Vi (i = 1, . . . , r).
Then the Lie brackets [−,−]t on g, given by

[v, w]t := σ 1

t
([σt(v), σt(w)]) ,

defines a Lie algebra structure on g that is isomorphic to the original [−,−] = [−,−]1 via σt.
However, one has

[L(v), L(w)]∞ = lim
t→∞

[v, w]t

due to the fact that for v ∈ Vi, w ∈ Vj the ”leading term” of [v, w] lies in Vi+j , while the higher
terms that belong to Vi+j+1 ⊕ · · · ⊕ Vr become insignificant under the rescaling (see [12]).

Using the log : G → g and exp∞ : g∞ → G∞ maps we obtain a family of maps

(2.3) sclt (−) : Γ
<

−→ G
log
−→ g

σ
t−1

−→ g
L

−→ g∞
exp

∞−→ G∞ (t > 0)

that explains the asymptotic cone description of Pansu [12] as follows. Let d be an inner right-
invariant metric d on Γ and

(Γ,
1

t
· d, e)

GH
−→ (G∞, d∞, e)

the Gromov-Hausdorff convergence. Then a sequence γi ∈ Γ, rescaled by t−1
i with ti → ∞ as

i → ∞, converges to g ∈ G∞ iff sclti (γi) → g in G∞. We shall often write

g = lim
i→∞

1

ti
• γi instead of sclti (γi) → g.

The metric part of the statement shows that for ti → ∞ and γi, γ
′
i ∈ Γ

(2.4) g = lim
i→∞

1

ti
• γi, g′ = lim

i→∞

1

ti
• γ′i =⇒ d∞(g, g′) = lim

i→∞

1

ti
· d(γi, γ

′
i).

The limiting distance d∞ on G∞ is homogeneous in the sense that

d∞(δs(g), δs(g
′)) = s · d∞(g, g′) (g, g′ ∈ G∞, s > 0).

This distance is right-invariant (this follows from Lemma 2.2). The distance d∞ appears in the
sub-Finsler Carnot-Carathéodory construction discussed below. Meanwhile let us point out two
Lemmas.
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Lemma 2.1. For γ ∈ Γ one has

lim
n→∞

1

n
• γn = exp∞(L ◦ π ◦ log(γ)) = exp∞(π∞ ◦ L ◦ log(γ)),

where π : g → V1 and π∞ : g∞ : g∞ → v1 are the linear projection corresponding to (2.2), (2.1).

Proof. Denote by πk : g → Vk (k = 1, . . . , r) the linear projections according to (2.2), so π = π1.
Then

1

n
• γn = exp∞

(

r
∑

k=1

1

nk
· L ◦ πk ◦ log(γ

n)

)

= exp∞

(

L ◦ π1 ◦ log(γ) +
r
∑

k=2

1

nk−1
· L ◦ πk ◦ log(γ)

)

and, since n−k+1 · L ◦ πk ◦ log(γ) → 0 for 2 ≤ k ≤ r, the statement is clear. �

Lemma 2.2.
Given sequences ti → ∞, γi, γ

′
i ∈ Γ with 1

ti
• γi → g and 1

ti
• γ′i → g′ then 1

ti
• γiγ

′
i → gg′.

Proof. This follows from the Baker-Campbell-Hausdorff formula (cf. §3.3 and the proof of Lemma 5.5
in [6]). �

2.2. Carnot-Carathéodory constructions.
We follow [12, (17)-(20)]. Denote by gab∞ the abelianization of the graded Lie algebra g∞. It is
isomorphic to the abelianization gab of g, and can also be identified with the direct summand v1 of
g∞:

g
ab
∞

∼= g
ab ∼= v1 <

r
⊕

i=1

vi = g∞.

Vectors in v1 < g∞ are called horizontal. A tangent vector v ∈ TgG∞ at g ∈ G∞ is horizontal if its
right-translate under g−1 is in v1 < g∞ = TeG∞. Hence the horizontal vectors form a sub-bundle
of the tangent bundle TG∞; this is a totally non-integrable sub-bundle because g∞ is generated as
a Lie algebra by v1. Let us say that a continuous piecewise smooth curve ξ : [a, b] → G∞ whose
tangent vectors ξ′(t) are horizontal for Lebesgue a.e. t ∈ [a, b] are admissible. Any two points
g1, g2 ∈ G∞ can be connected by an admissible curve – this follows from total non-integrability of
the sub-bundle of horizontal vectors by Chow’s theorem.

Let φ : gab∞ → R+ be an asymmetric norm (or rather a not necessarily symmetric norm), that is
assume φ satisfies for all v, w ∈ gab∞ , t > 0, and some 0 < a ≤ b < ∞:

φ(v + w) ≤ φ(v) + φ(w),

φ(t · v) = t · φ(v),

a · ‖v‖ ≤ φ(v) ≤ b · ‖v‖

(2.5)

for some reference Euclidean norm ‖ − ‖. Such an asymmetric norm φ can be used to measure
horizontal vectors in TG∞ by right-translating them back to v1 < g∞ = TeG∞. Given a curve
ξ : [α, β] → G∞ as above its φ-length is defined to be

(2.6) lengthφ(ξ) :=

∫ β

α
φ(ξ′(t)ξ(t)−1) dt.

We define the φ-distance by

dφ(g1, g2) := inf
{

lengthφ(ξ) | ξ is an admissible curve from g1 to g2
}

.
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Starting from a fixed Euclidean norm ‖−‖ on gab∞ , one obtains the sub-Riemannian metric d‖−‖ on
G∞, also known as a Carnot-Carathéodory metric; it is right-invariant, homogeneous with respect
to the homotheties {δt | t > 0}, and defines the usual topology on G∞.

For a general asymmetric norm φ : gab∞ → R+ as in (2.5) we obtain

dφ : G∞ ×G∞ −→ R+,

that is a right-invariant, homogeneous, asymmetric metric, bi-Lipschitz to a Carnot-Carathéodory
metric:

dφ(g1g, g2g) = dφ(g1, g2),

dφ(δt(g1), δt(g2)) = t · dφ(g1, g2),

dφ(g1, g2) ≤ dφ(g1, h) + dφ(h, g2),

a · d‖−‖(g1, g2) ≤ dφ(g1, g2) ≤ b · d‖−‖(g1, g2).

(2.7)

Being right-invariant dφ is completely determined by the function

Φ : G∞ → R, Φ(g) := dφ(e, g), dφ(g1, g2) = Φ(g2g
−1
1 ).

This function Φ is sub-additive, homogeneous, and bi-Lipschitz to a Carnot-Carathéodory norm

Φ(δt(g)) = t · Φ(g),

Φ(g1g2) ≤ Φ(g1) + Φ(g2),

a · d‖−‖(e, g) ≤ Φ(g) ≤ b · d‖−‖(e, g).

(2.8)

If φ is actually a norm, i.e. φ(−v) = v, then Φ and dφ are also symmetric: Φ(g−1) = Φ(g) and
dφ(g1, g2) = dφ(g2, g1). In this case dφ is a sub-Finsler Carnot-Carathéodory metric on G∞ defined
by the norm φ. Hereafter we shall use the term Carnot-Carathéodory metric (or just a CC-
metric) when referring to a possibly asymmetric dφ associated to φ as in (2.5). Pansu’s metric
d∞ on G∞, referred to in the previous section, is the Carnot-Carathéodory metric associated to a
certain norm on g∞, that itself is determined by the given inner right-invariant metric d on Γ [12].
The proof does not really use the symmetry assumption, so it can be applied almost verbatim to
asymmetric norms. The infimum in the definition of dφ(g1, g2) is achieved by a (unique) curve, that
will be called a dφ-geodesic. But we shall use this fact only in reference to d∞ (or the classical
d‖−‖).

The notion of φ-length can be extended to curves ξ : [0, 1] → G∞ that are d∞-rectifiable, i.e. ones
for which

sup







n
∑

j=1

d∞ (ξ(sj−1), ξ(sj)) | n ∈ N, 0 = s0 < s1 < · · · < sn = 1







< +∞.

Pansu shows ([12]) that such a curve is absolutely continuous, a.e. differentiable on [0, 1], and that
its derivative is a.e. horizontal, so the integral (2.6) makes sense. The φ-length of such curves can
also be defined by

lengthφ(ξ) = sup







n
∑

j=1

dφ (ξ(sj−1), ξ(sj)) | n ∈ N, 0 = s0 < s1 < · · · < sn = 1







.
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2.3. From a sub-additive function F : Γ → R+ to a CC-metric on G∞.
Consider a sub-additive function F : Γ → R+ that is bi-Lipschitz to a word metric, i.e. satisfies

F (γ1γ2) ≤ F (γ1) + F (γ2),

a · d(e, γ) ≤ F (γ) ≤ b · d(e, γ),
(2.9)

for some constants 0 < a ≤ b < ∞. Note that the upper linear bound F (γ) ≤ bd(e, γ) follows
automatically from subadditivity and the fact that Γ is finitely generated; so the content of the
second assumption is the lower linear bound for F : Γ → R+.

Such a function induces a subadditive function

f : Γab → R+

using the following general construction.

Lemma 2.3. Let 1 → ∆ → Γ → Λ → 1 be a short exact sequence of groups, and F : Γ → R+ a
subadditive function. Then the function

f : Λ → R+ defined by f(γ∆) := inf{F (γδ) | δ ∈ ∆}

is subadditive.

Proof. Given λ1, λ2 ∈ Λ and ǫ > 0 choose γ1, γ2 ∈ Γ so that λi = γi∆ and F (γi) ≤ f(λi) + ǫ for
i = 1, 2. Then λ1λ2 = γ1γ2∆, so

f(λ1λ2) ≤ F (γ1γ2) ≤ F (γ1) + F (γ2) ≤ f(λ1) + f(λ2) + 2ǫ.

Since ǫ > 0 is arbitrary we get f(λ1λ2) ≤ f(λ1) + f(λ2). �

Now recall that Γ is a uniform lattice in its Mal’cev completion G. In fact, viewing G as the
R-points G = GR of a Q-algebraic group G, we may think of Γ as (commensurable to) GZ. Taking
the abelianization is a Q-algebraic operation, hence Γab is (commensurable to) Gab

Z , a lattice in

Gab
R = Gab. Hence Γab, that is abstractly isomorphic to Zd, is a lattice in Gab, that is continuously

isomorphic to Rd with d = dim v1. One often writes

Gab = Γab ⊗ R

to emphasize that Γab is a lattice in the real vector space Gab.

Lemma 2.4. Let Λ be a lattice in a finite dimensional real vector space V , and f : Λ → R+ be a
subadditive function. Then there exists a unique homogeneous subadditive function φ : V → R+ so
that f is asymptotically equivalent to φ|Λ; in particular

φ(λ) = lim
n→∞

1

n
f(nλ) = inf

n≥1

1

n
f(nλ).

Moreover, if c1 ≤ f(λ)/‖λ‖ ≤ c2 on Λ, then c1 ≤ φ(v)/‖v‖ ≤ c2 on V \ {0}.

This is an easy and well known fact; but see Burago’s [7] for much finer results in case of a coarsely
geodesic metric.

Remark 2.5. It follows that any subadditive function f : Zd → R+ is automatically inner in the
following sense: given ǫ > 0 there is R < ∞ so that any λ ∈ Zd can be written as λ = λ1 + · · ·+ λn

with
f(λi) ≤ R (i = 1, . . . , n), f(λ1) + · · ·+ f(λn) ≤ (1 + ǫ) · f(λ).

Indeed, this is clear for the asymmetric norm φ : Rd → R+ associated with f in Lemma 2.4, and
translates to f by the virtue of the approximation.
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Lemma 2.6. Let F : Γ → R+ be a subadditive function, f : Γab → R+ and φ : Γab ⊗ R → R+ be
defined by Lemmas 2.3 and 2.4. Then for any γ ∈ Γ one has

lim
n→∞

1

n
F (γn) = inf

n≥1

1

n
F (γn) = lim

n→∞

1

n
f((γab)n) = inf

n≥1

1

n
f((γab)n) = φ(γab)

for any γ ∈ Γ with γab = γ[Γ,Γ] denoting the image in Γab.

Proof. The sequence an = F (γn) is sub-additive, i.e. an+m ≤ an + am for all n,m ∈ N; hence
an/n converges to inf an/n. Next we note that Lemmas 2.1 and relation (2.4) imply that whenever
γ1, γ2 ∈ Γ satisfy γab1 = γab2 one has

lim
n→∞

1

n
· d(γn1 , γ

n
2 ) = 0.

Since any sub-additive function is automatically Lipschitz with respect to the word metric, it follows
that limF (γn1 )/n = limF (γn2 )/n. Thus this limit of F (γn)/n depends only on γab, and is easily
seen to be lim f((γab)n)/n, i.e. φ(γab). �

We can now apply the Carnot-Carathéodory construction to define a (possibly asymmetric) metric
dφ on G∞ by

(2.10) dφ(g, g
′) := inf

{

lengthφ(ξ)
∣

∣ ξ is an admissible curve from g to g′
}

.

2.4. From a cocycle c : Γ×X → R+ to the CC-metric.
Let Γ be a finitely generated, virtually nilpotent group, Γ y (X,m) an ergodic p.m.p. action, and
c : Γ ×X → R+ a subadditive cocycle with c(γ,−) ∈ L∞(X,m) for every γ ∈ Γ. We start with a
couple of remarks about passing to finite index subgroups and dividing by finite kernels.

Let Γ′ < Γ be a subgroup of finite index. The action of Γ′ on (X,m) has at most [Γ : Γ′]-many
ergodic components permuted by the Γ-action. Let c′ : Γ′ ×X ′ → R+ be the restriction of c to one
of the Γ′-ergodic components X ′ ⊂ X. If one shows that there is some function Φ : G∞ → R+ so
that for a.e. x′ ∈ X ′ the function c′(−, x′) : Γ′ → R+ is asymptotically equivalent to Φ, then the
same would apply to c(−, x) : Γ → R+ for a.e. x ∈ X. Indeed choosing representatives γ1, . . . , γn
for Γ′\Γ for every γ ∈ Γ one can write

c(γ, x) = c(γ′γi, x) ≤ c(γ′, γi.x) + ‖c(γi, x)‖∞

for some γ′ ∈ Γ′; similarly

c(γ′, x) = c(γγ−1
i , x) ≤ c(γ, γ−1

i .x) + ‖c(γ−1
i , x)‖∞.

Hence c(γ, x) is at uniformly bounded distance from c(γ′, γ±1
i .x), and therefore has the same as-

ymptotic behavior.

LetN be a finite normal subgroup of Γ. Then Γ1 := Γ/N acts ergodically by p.m.p. transformations
on (X1,m1) := (X,m)/N . A subadditive cocycle c : Γ×X → R+ defines c1 : Γ1 ×X1 → R+ by

c1(γ1, x1) := max{c(γ, x) | pr(γ) = γ1, pr(x) = x1}.

Then c1 : Γ1 ×X1 → R+ is a sub-additive cocycle, and it is within bounded distance from c(γ, x).

Furthermore we note that conditions (i) and (ii) of Theorem A pass to c′ and c1 as above. (Condition
(ii) for c′ is an easy exercise using subadditivity and innerness; the others are immediate.) Hence in
the context of Theorem A (and Theorem B) we may assume without loss of generality that Γ itself



12 MICHAEL CANTRELL AND ALEX FURMAN

is finitely-generated, torsion-free, nilpotent group with torsion-free abelianization Γab. Hereafter
we shall make this assumption.

Let us define the function

c : Γ → R+ by setting c(γ) :=

∫

X
c(γ, x) dm(x).

Observe that c is a sub-additive function, because sub-additivity of c and Γ-invariance of m imply

c(γ1γ2) =

∫

X
c(γ1γ2, x) dm(x) ≤

∫

X
c(γ1, γ2x) dm(x) +

∫

X
c(γ2, x) dm(x) = c(γ1) + c(γ2).

Moreover one always has an upper linear estimate

c(γ) ≤ K1 · |γ|S with K1 := max{c(s) | s ∈ S}.

The definition of c requires only L1-integrability of the functions c(γ, x). We note the point-wise
bi-Lipschitz condition (i) passes to the average, and we have

(2.11) k · |γ|S ≤ c(γ) ≤ K1 · |γ|S

with constants 0 < k ≤ K1 < +∞ and any γ ∈ Γ.

Remark 2.7. It does not seem to be obvious why the condition of being inner for the sub-additive
cocycle c : Γ×X → R+ (condition (ii) in Theorem A) should imply innerness for the average sub-
additive function c : Γ → R+. It will follow from our results that for an L∞-cocycle c over an ergodic
Γ-action the average c is indeed inner as it is asymptotically equivalent to a Carnot-Carathéodory
function Φ.

We can now summarize the construction

Proposition 2.8. Let Γ y (X,m) and c : Γ×X → R+ be a subadditive cocycle satisfying condition
(i) in Theorem A. Then:

• The average function

c(γ) :=

∫

X
c(γ, x) dm(x)

is a subadditive function on Γ, satisfying bi-Lipschitz condition (2.11).
• This subadditive function defines a subadditive, homogeneous φ : Γab ⊗ R → R+, such that

lim
n→∞

1

n
c(γn) = φ(γab) (γ ∈ Γ).

Moreover, for some 0 < a ≤ b < ∞ one has a ·‖v‖ ≤ φ(v) ≤ b ·‖v‖ for all v ∈ Γab⊗R ∼= gab∞.
• The Carnot-Carathéodory construction defines an asymmetric distance on G∞

dφ : G∞ ×G∞ → R+

that is right-invariant, homogeneous, and bi-Lipschitz to d∞ as in (2.7). We denote

Φ(g) := dφ(e, g) (g ∈ G∞).
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3. Preparation for the main proofs

In this section we prepare two tools for the proof of the main results. The first tool is a purely
geometric fact that allows one to approximate an admissible curve in the asymptotic cone G∞ of
Γ by rescaled sequences of the form Tn

k · · ·Tn
2 T

n
1 in Γ; we call such sequences polygonal paths. The

second tool is an ergodic theorem for a sub-additive cocycle along polygonal paths over a general
ergodic, p.m.p. action of a nilpotent group.

3.1. Approximating curves in G∞ by polygonal paths in Γ.
This subsection concerns purely geometric aspects of the convergence of Γ to its asymptotic cone
G∞ (and is unrelated to the action Γ y (X,m) and the cocycle c : Γ×X → R+).

As before, Γ is a finitely generated, torsion-free, nilpotent group with torsion-free abelianization, d
is a right-invariant word metric on Γ, (G∞, d∞) is the asymptotic cone, and

sclt (−) : Γ−→G∞ (t > 0)

are the maps defined in (2.3) that realize the Gromov-Hausdorff convergence

(Γ,
1

t
· d, eΓ) −→ (G∞, d∞, e).

We also fix a (possibly) asymmetric norm

φ : gab∞ −→ R+

satisfying (2.5) and use it to associate length lengthφ(ξ) to admissible curves ξ : [0, 1] → G∞. We
denote the balls in G∞ by

B(g, ǫ) := {g′ ∈ G∞ | d∞(g, g′) < ǫ}.

Proposition 3.1 (Approximation of curves by polygonal paths).
Given a Lipschitz curve ξ : [0, 1] → G∞ with ξ(0) = e, and ǫ > 0 one can find k, p, n0 ∈ N,
T1, . . . , Tk ∈ Γ so that for n ≥ n0 one has:

k
∑

j=1

d∞

(

1

np
• Tn

j · · ·Tn
2 T

n
1 , ξ(

j

k
)

)

< ǫ,

and
∣

∣

∣

∣

1

p
·
(

φ(T ab
k ) + · · ·+ φ(T ab

1 )
)

− lengthφ(ξ)

∣

∣

∣

∣

< ǫ.

We emphasize the order of the main quantifiers: the elements T1, . . . , Tk and p ∈ N depend only on
the required accuracy ǫ > 0 (and of course the curve ξ), and provide ǫ-good approximation at all
sufficiently large scales.

We shall need this proposition (in combination with Theorem 3.3) in two cases:

• In § 4.1 we choose ξ to be a φ-geodesic connecting e to some g. In this case ξ is a smooth
admissible curve and we are interested in the inequality

1

p
·
(

φ(T ab
k ) + · · ·+ φ(T ab

1 )
)

≤ lengthφ(ξ) + ǫ = Φ(g) + ǫ

while d∞( 1
np • Tn

k · · ·Tn
2 T

n
1 , g) < ǫ.
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• In § 4.2 we get a Lipschitz curve ξ connecting e to some g. In this case we are interested in
the inequality

1

p
·
(

φ(T ab
k ) + · · ·+ φ(T ab

1 )
)

≥ lengthφ(ξ)− ǫ ≥ Φ(g)− ǫ

while requiring
k
∑

j=1

d∞

(

1

np
• Tn

k · · ·Tn
2 T

n
1 , ξ(

j

k
)

)

< ǫ

which is stronger than just d∞( 1
np • Tn

k · · ·Tn
2 T

n
1 , g) < ǫ.

Proof of Proposition 3.1.
First we work in G∞. Our goal is to find k ∈ N and horizontal vectors

v1, . . . , vk ∈ v1 ⊂ g∞

so that, denoting hj := exp∞(vj) one has

(3.1)

k
∑

j=1

d∞(hj · · ·h1, ξ(
j

k
)) <

1

2
ǫ, |

k
∑

j=1

φ(vj)− lengthφ(ξ)| <
1

2
ǫ.

For a fixed k ∈ N, that we will take to be sufficiently large, we define v1, . . . , vk inductively as
follows: set

v1 := π∞ ◦ log∞(ξ(
1

k
)), h1 := exp∞(v1).

Assuming v1, . . . , vj−1 were chosen, set

vj := π∞ ◦ log∞(ξ(
1

k
)(hj−1 · · ·h1ξ(0))

−1), hj := exp∞(vj).

Here π∞ : g∞ → v1 is the linear projection corresponding to the decomposition g∞ = ⊕r
i=1vi.

Let us now show that by choosing k large enough we can guarantee (3.1). To this end we need
the fact ([12, Lemme (18)]) that in the unit ball in G∞ the ”horizontal component” gives an
approximation with at most quadratic error. More precisely, there is a constant C1 so that for all
g ∈ B(e, 1):

d∞(g, exp∞ ◦π∞ ◦ log∞(g)) ≤ C1 · d∞(e, g)2.

Hence for large k one has for j = 1, . . . , k:

d∞

(

hj · · ·h1, ξ(
j

k
)

)

≤ C1 · d∞

(

hj−1 · · ·h1, ξ(
j

k
)

)2

≤ C1 ·

(

d∞

(

hj−1 · · ·h1, ξ(
j − 1

k
)

)

+ d∞

(

ξ(
j − 1

k
), ξ(

j

k
)

))2

≤ C2 ·
1

k2

for some C2 depending on C1 and the Lipschitz constant of ξ. Hence for all k large enough

k
∑

j=1

d∞

(

hj · · ·h1, ξ(
j

k
)

)

< C2 · k ·
1

k2
=

C2

k
<

1

2
ǫ.

The second fact that we want to use is that a Lipschitz curve ξ : [0, 1] → G∞ is rectifiable. Therefore

lengthφ(ξ) = lim
k→∞

k
∑

j=1

dφ

(

ξ(
j − 1

k
), ξ(

j

k
)

)

.
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One also has a constant C so that
∣

∣dφ(g, g
′)− φ ◦ π∞ ◦ log∞(g′g−1)

∣

∣ ≤ C · d∞(g, g′)2

whenever g′ ∈ B(g, 1). Thus for all sufficiently large k and for each j = 1, . . . , k, we have
∣

∣

∣

∣

dφ

(

ξ(
j − 1

k
), ξ(

j

k
)

)

− φ(vj)

∣

∣

∣

∣

≤

∣

∣

∣

∣

dφ

(

hj−1 · · ·h1, ξ(
j

k
)

)

− φ(vj)

∣

∣

∣

∣

+ dφ

(

hj−1 · · ·h1, ξ(
j − 1

k
)

)

≤ C3 ·
1

k2

and the second inequality in (3.1) follows.

We have now found k ∈ N and horizontal vectors v1, . . . , vk ∈ v1 satisfying (3.1), and need to find
T1, . . . , Tk ∈ Γ, p ∈ N, and n0 > 0 as in the Proposition. We need the following

Lemma 3.2.
Given a horizontal vector v ∈ v1 < g∞ and ǫ′ > 0 there exist τ ∈ Γ, p ∈ N and n0 so that

|
1

p
φ(τab)− φ(v)| < ǫ′, d∞(

1

np
• τn, exp∞(v)) < ǫ′ (n > n0)

where exp∞ : g∞ → G∞ is the exponential map on G∞.

Proof. Since 1
p • Γ becomes denser and denser in G∞ as p → ∞, one can find p ∈ N and γ ∈ Γ so

that 1
p • γ is close to exp∞(v). Recall that

1

p
• γ = exp∞

(

1

p
· L ◦ π1 ◦ log(γ) +

1

p2
· L ◦ π2 ◦ log(γ) + · · ·+

1

pr
· L ◦ πr ◦ log(γ)

)

where πj : g → Vj = L−1(vj) are the linear projections. Since v ∈ v1 = L(π1(g)), it follows that
p−1 · L ◦ π1 ◦ log(γ) and v are close. Hence we may choose p and γ (to be called τ) so that

d∞

(

exp∞

(

1

p
· L ◦ π1 ◦ log(γ)

)

, exp∞(v)

)

< ǫ′,

∣

∣

∣

∣

φ(
1

p
· L ◦ π1 ◦ log(γ))− φ(v)

∣

∣

∣

∣

< ǫ′.

Now considering powers 1
n • γn we are done by applying Lemma 2.1. This proves Lemma 3.2. �

Choose ǫ′ ∈ (0, ǫ/2k) small enough to ensure that whenever h′1, . . . , h
′
k ∈ G∞ are ǫ′-close to

h1, . . . , hk, respectively, one has

k
∑

j=1

d∞
(

h′j · · ·h
′
2h

′
1, hj · · ·h2h1

)

<
1

2
ǫ.

Let us now apply Lemma 3.2 with ǫ′ > 0 as above to obtain elements τ1, . . . , τk and p1, . . . , pk ∈ N

so that the pairs (τj , pj) satisfy

|
1

pj
φ(τabj )− φ(vj)| < ǫ′ <

ǫ

2k
, d∞

(

1

npj
• τnj , hj

)

< ǫ′ (j = 1, . . . , k).

Replacing a pair (τj , pj) by (τ qj , q · pj) with any q ∈ N, the above inequalities clearly remain valid.

So taking p := p1 · · · pk and replacing (τj , pj) by (Tj := τ
p/pj
j , p) we get elements T1, . . . , Tk ∈ Γ so

that for n ≫ 1

d∞

(

1

np
• Tn

j , hj

)

< ǫ′ and |
1

p
φ(T ab

j )− φ(vj)| < ǫ′ <
ǫ

2k
(j = 1, . . . , k).



16 MICHAEL CANTRELL AND ALEX FURMAN

In view of Lemma 2.2 we know that for every j = 1, . . . , k

d∞

(

1

np
• (Tn

j · · ·Tn
1 ), (

1

np
• Tn

j ) · · · (
1

np
• Tn

1 )

)

→ 0.

Thus for all n large enough, we have

k
∑

j=1

d∞

(

1

np
• Tn

j · · ·Tn
1 , hj · · ·h1

)

<
1

2
ǫ,

while
∣

∣

∣

∣

∣

∣

1

p
·

k
∑

j=1

φ(T ab
j )−

k
∑

j=1

φ(vj)

∣

∣

∣

∣

∣

∣

<
1

2
ǫ.

Combined with (3.1) this establishes the required inequalities. This completes the proof of Propo-
sition 3.1. �

3.2. An Ergodic Theorem along polygonal paths.
The goal of this subsection is to prove the following result that might have an independent interest.

Theorem 3.3 (Ergodic theorem along polygonal paths).
Let Γ be a finitely generated torsion-free nilpotent group with torsion-free abelianization, Γ y (X,m)
an ergodic p.m.p. action, c : Γ × X → R+ a measurable, non-negative, subadditive cocycle with
c(γ,−) ∈ L∞(X,m) for every γ ∈ Γ, and c and φ as above. Then for any T1, . . . , Tk ∈ Γ one has
m-a.e. and L1(X,m)-convergence

lim
n→∞

1

n
· c(Tn

j , T
n
j−1 · · ·T

n
1 x) = φ(T ab

j )

for each j = 1, . . . , k, and consequently

lim
n→∞

1

n

(

c(Tn
k , T

n
k−1 · · ·T

n
1 x) + · · ·+ c(Tn

2 , T
n
1 x) + c(Tn

1 , x)
)

= φ(T ab
k ) + · · ·+ φ(T ab

1 ).

The L1 convergence holds under a weaker assumption: c(γ,−) ∈ L1(X,m).

The case k = 1 was shown by Austin [1] under the weaker assumption that c(γ,−) ∈ L1(X,m) for
every γ ∈ Γ. For reader’s convenience we include a proof.

Theorem 3.4 (Austin [1]).
Let c : Γ × X → R+ be a subadditive cocycle with c(γ,−) ∈ L1(X,m) for every γ ∈ Γ. Then for
any T ∈ Γ one has

lim
n→∞

1

n
c(Tn, x) = φ(T ab)

for m-a.e. x ∈ X and in L1(X,m).

Proof. Kingman’s subadditive ergodic theorem, applied to the sub-additive cocycle hn(x) := c(Tn, x)
over (X,m, T ), gives an m-a.e. and L1 convergence

lim
n→∞

1

n
c(Tn, x) = h(x),
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where h(x) is a measurable T -invariant function, satisfying
∫

X
h(x) dm(x) = lim

n→∞

1

n
·

∫

X
hn(x) dm(x) = lim

n→∞

1

n
c(Tn) = φ(T ab).

(We used Lemma 2.6 in the last equality). Fix γ ∈ Γ and denote γn := TnγT−n. Since γnT
n = Tnγ

we have

(3.2) c(Tn, x)− c(γ−1
n , γnT

n.x) ≤ c(γnT
n, x) = c(Tnγ, x) ≤ c(Tn, γ.x) + c(γ, x).

Denote fn(x) = n−1(c(γn, x)+c(γ−1
n , γnT

n.x)) and observe that since one has |γ−1
n |S = |γn|S = o(n)

(cf. Breuillard [6, Lemma 5.6])

‖fn‖1 ≤
K1

n
· 2|γn|S → 0, where K1 = max

s∈S
‖c(s,−)‖1.

Thus there is a sequence ni → ∞ so that fni
(x) → 0 for m-a.e. x ∈ X. Dividing (3.2) by n, and

taking the limit along the subsequence ni, one obtains

h(x) ≤ h(γ.x).

Since this is true a.e. for every γ ∈ Γ, h is Γ-invariant. By ergodicity it is constant. This constant
is φ(T ab) by integration. �

In the general case of k ≥ 2 the term n−1 · c(Tn
1 , x) converges to φ(T ab

1 ) by the above, but dealing
with the next terms, such as n−1 · c(Tn

2 , T
n
1 .x), one faces a ”moving target” problem. We shall

overcome this difficulty by finding regions Z2, . . . , Zk ⊂ X, where n−1c(Tn
ℓ , z) = φ(T ab

ℓ ) + o(1)
for z ∈ Zℓ, and perturbing the polygonal path Tn

k · · ·Tn
2 T

n
1 slightly to make sure to land in the

appropriate regions at appropriate times. We need several lemmas.

Lemma 3.5 (Parallelogram inequality).
Given α, β, τ, τ ′ ∈ Γ one has

∣

∣c(τ, α.x)− c(τ ′, β.x)
∣

∣ ≤ K · (d(α, β) + d(τα, τ ′β))

for K = maxs∈S ‖c(s,−)‖∞.

Proof. Let us write β = δα and τ ′β = ωτα, so

|δ| = |δ−1| = d(α, β), |ω| = |ω−1| = d(τα, τ ′β).

Since τ ′ = ωτδ−1 we have

c(τ ′, β.x) = c(ωτδ−1, β.x) ≤ c(ω, τα.x) + c(τ, α.x) + c(δ−1, β.x)

≤ c(τ, α.x) +K · (|ω|+ |δ−1|).

Conversely

c(τ, α.x) = c(ω−1τ ′δ, α.x) ≤ c(ω−1, τ ′β.x) + c(τ ′, β.x) + c(δ, α.x)

≤ c(τ ′, β.x) +K · (|ω−1|+ |δ|).

�
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Lemma 3.6. Let T ∈ Γ, δ > 0, and a measurable subset E ⊂ X be given. Then the set

E∗ :=

{

x ∈ X | lim inf
n→∞

#{n′ < δ · n | Tn−n′

.x ∈ E}

δ · n
> 0

}

has m(E∗) ≥ m(E). Moreover, given ǫ > 0 there is N so that the set

E∗
N :=

{

x ∈ X | ∀n ≥ N,
#{n′ < δ · n | Tn−n′

.x ∈ E}

δ · n
> 0

}

has m(E∗
N ) > m(E)− ǫ.

Proof. Given a function f ∈ L1(X,m) and integers 1 ≤ k < n consider the averaged function

An
kf(x) :=

1

n− k
·
n−1
∑

j=k

f(T j .x).

Birkhoff’s pointwise ergodic theorem asserts m-a.e. convergence

lim
n→∞

An
0f = E(f | BT )

to the conditional expectation of f with respect to the the sub-ξ-algebra of T -invariant sets BT .
(The conditional expectation is defined only up to null sets, but so is the above convergence). We
observe that since

An
0f(x) =

k

n
·Ak

0f(x) +
n− k

n
·An

kf(x),

taking k = ⌈(1− δ)n⌉ with 0 < δ < 1 fixed and letting n → ∞, it follows that for m-a.e. x ∈ X

1

η · n

n
∑

⌈(1−η)n⌉

f ◦ T j −→ E(f | BT ).

Applying this to the characteristic function f = 1E of E ⊂ X, we deduce that for m-a.e. x ∈ X

lim
n→∞

#{⌈(1− δ)n⌉ ≤ j ≤ n | T j .x ∈ E}

δ · n
= hE(x),

where hE := E(E | BT ) is the the conditional expectation of 1E . Since 0 ≤ hE(x) ≤ 1 a.e. while
∫

hE = m(E), it follows that the set {x ∈ X | hE(x) > 0} has measure ≥ m(E). Yet the set
{x | hE(x) > 0} is, up to null sets, precisely E∗. Hence m(E∗) ≥ m(E).

For the second statement, note that {E∗
N} is an increasing sequence of measurable sets whose union

(=limit) is E∗. �

Lemma 3.7 (Small perturbations of polygonal paths).
Given T1, . . . , Tk ∈ Γ and ǫ > 0, there is δ > 0 and N so that for all n ≥ N we have:

1

n
· d(Tn−nk

k Tn−n2

2 Tn−n1

1 , Tn
k T

n
k−1 · · ·T

n
2 T

n
1 ) < ǫ

for any 0 ≤ n1, . . . , nk ≤ δ · n.

This Lemma can also be shown by rescaling and passing to the Gromov-Hausdorff limit in G∞ and
relying on Lemma 2.2. Here we give a more direct argument.
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Proof. It suffices to show that for fixed k ∈ N, T, T1, . . . , Tk ∈ Γ, ǫ′ > 0, there is δ > 0 so that for
n ≫ 1 one has:

(3.3) d(Tn
k · · ·Tn

2 T
n
1 T

−m, Tn
k · · ·Tn

2 T
n
1 ) < ǫ′ · n (∀m < δ · n).

Indeed, applying such an argument to Tj+1, . . . , Tℓ and T = Tj with ǫ′ = ǫ/k we get

1

n
(Tn

ℓ · · ·Tn
j+1T

n−nj

j T
n−nj−1

j−1 · · ·Tn−n1

1 , Tn
ℓ · · ·Tn

j+1T
n
j T

n−nj−1

j−1 · · ·Tn−n1

1 ) < ǫ′,

and summing these inequalities over j = 1, . . . , ℓ− 1, we get the estimate ℓ · ǫ′ ≤ ǫ as required.

To establish (3.3) use the general group-theoretic identity ba = a[a−1, b]b to push terms from the
right to the left creating some commutator factors. More precisely

Tn
k · · ·Tn

2 T
n
1 T

−m = Tn
k · · ·Tn

2 · (T−m · [Tm, Tn
1 ]) · T

n
1

= Tn
k · · ·Tn

3 (T−m · [Tm, Tn
2 ] · [T

m, Tn
1 ] · [[T

m, Tn
1 ]

−1, Tn
2 ])T

n
2 T

n
1 = . . .

= (T−m[Tm, Tn
k ] · · · [T

m, Tn
1 ] · · · ) · T

n
k · · ·Tn

2 T
n
1

where the expression in the parentheses is a product of O(k) factors each being a higher commutator
of the form

[· · · [[Tm, Tn
j1 ]

−1, Tn
j2 ] · · · , T

n
js ].

We need to show that the word length of the expression in parentheses is < ǫn, and it suffices to
show that each of the O(k)-commutator expressions has length < ǫ′n, where ǫ′ depends on ǫ and
k. Iterated commutators of order s above the nilpotency degree r give identity. For s ≤ r one has
(cf. [6, Lemma 3.8])

(3.4) [· · · [Tm, Tn
j1 ]

−1, · · · , Tn
js ] = [· · · [T, Tj1 ], · · · , Tjs ]

±m·ns

For each one of the finitely many elements γ = [· · · [T, Tj1 ], · · · , Tjs ] as above, we have

|γp|S ≤ Cγ · p
1

s+1 (p ≥ 1),

because such γ lies in the (s + 1)-term of the lower central series Γs+1 = [Γ,Γs] = [Γ, [Γ . . . ]], and
the growth rate on this subgroup is asymptotically scaled by ts+1 (recall that in the asymptotic
cone G∞ the homothety δt acts by multiplication by tj on the gj/gj+1-subspace of g∞). Therefore
the length of the elements in (3.4) is bounded by

C(m · ns)
1

s+1 < C(δ · ns+1)
1

s+1 = Cδ
1

s+1 · n

which can be made < 2−kǫ by choosing δ > 0 small enough. �

Finally, we are ready for the proof of the Ergodic Theorem along Polygonal Paths.

Proof of Theorem 3.3.
Fix ǫ > 0 and let δ > 0 and N be as in Lemma 3.7.

Choose a small η > 0 and let M ∈ N be large enough so that for each j = 1, . . . , k the set

Yj :=

{

y ∈ X | ∀n ≥ M : |
1

n
· c(Tn

j , y)− φ(T ab
j )| < ǫ

}

has m(Yj) > 1− η.

Let Zk := Yk, and apply Lemma 3.6 with E = Zk to find Mk ∈ N so that the set

(Zk)
∗
Mk

:=

{

z ∈ X | ∀n > Mk,
#{n′ < δ · n | Tn−n′

.z ∈ Zk}

δ · n
> 0

}
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satisfies m((Zk)
∗
Mk

) > m(Zk)− η > 1− 2η. Define Zk−1 := Yk−1 ∩ (Zk)
∗
Mk

, and observe that

m(Zk−1) > 1− 3η.

One then continues inductively to define Zj−1 := (Zj)
∗
Mj

∩ Yj−1 (for j = k − 1, . . . , 3, 2), where

Mj ∈ N is chosen large enough to ensure that the set

(Zj)
∗
Mj

:=

{

z ∈ X | ∀n > Mj ,
#{n′ < δ · n | Tn−n′

.z ∈ Zj}

δ · n
> 0

}

has

m((Zj)
∗
Mj

) > m(Zj)− η.

The sets Z1, Z2, . . . , Zk that are defined in this manner satisfy

m(Z1) > m(Z2)− 2η > m(Z3)− 4η > · · · > m(Zk)− 2(k − 1)η > 1− (2k − 1)η.

Let N := max(M,M1, . . . ,Mk). Then for every n > N and every z ∈ Zj , there is nj < δ ·n so that
Tn−nj .z ∈ Zj+1 and

∣

∣

∣

∣

1

n
· c(Tn

j , z)− φ(T ab
j )

∣

∣

∣

∣

< ǫ.

Thus for z in a set Z1 of size > 1− (2k − 1)η and every n ≥ N , there exist n1, . . . , nk all bounded
by δ · n, so that

∣

∣

∣

∣

1

n
· c(Tn

j , T
n−nj−1

j−1 · · ·Tn−n2

2 Tn−n1

1 .z)− φ(T ab
j )

∣

∣

∣

∣

< ǫ.

Applying Lemma 3.7 we have for each j = 1, . . . , k:

d(Tn
j T

n−nj−1

j−1 · · ·Tn−n2

2 Tn−n1

1 , Tn
j T

n
j−1 · · ·T

n
2 T

n
1 ) < nǫ,

d(T
n−nj−1

j−1 · · ·Tn−n2

2 Tn−n1

1 , Tn
j−1 · · ·T

n
2 T

n
1 ) < nǫ.

So by Lemma 3.5 and the Lipschitz property we have

(3.5)
∣

∣

∣c(Tn
j , T

n−nj−1

j−1 · · ·Tn−n2

2 Tn−n1

1 .z)− c(Tn
j , T

n
j−1 · · ·T

n
2 T

n
1 .z)

∣

∣

∣ < 2Knǫ.

Therefore for every x ∈ Z1 and n > N one has:

(3.6)

∣

∣

∣

∣

1

n
· c(Tn

j , T
n
j−1 · · ·T

n
2 T

n
1 .x)− φ(T ab

j )

∣

∣

∣

∣

< (2K + 1)ǫ (j = 1, . . . , k).

Applying this argument with a sequence of η → 0, m-a.e. x ∈ X would belong to at least one of the
sets Z1, and therefore would satisfy (3.6) for all n > N(x, ǫ). As ǫ > 0 was arbitrary, this proves
that for m-a.e. x ∈ X

lim
n→∞

1

n
· c(Tn

j , T
n
j−1 · · ·T

n
2 T

n
1 .x) = φ(T ab

j ) (j = 1, . . . , k)

which in turn gives the convergence of the sum over j = 1, . . . , k to φ(T ab
1 )+ · · ·+φ(T ab

k ). The L1-
convergence here follows by Lebesgue’s Dominated convergence, because under the L∞-assumption
the terms are uniformly bounded.

However, the latter conclusion of L1-convergence does not require the assumption c(γ,−) ∈ L∞(X,m),
and holds under the weaker assumption c(γ,−) ∈ L1(X,m) for γ ∈ Γ. In the pointwise convergence
argument, for every x from a set Z1 of large measure, for all n large enough we compared the values
of the cocycle along a polygonal path with that for a perturbed path (3.5) and used Lemma 3.5 to
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show that the values are close. In the L1-context it is more natural to compare a polygonal path
with the average of all perturbations:

c(Tn
j , T

n
j−1 · · ·T

n
1 .x)−

1

(δn)j−1
·

⌊δn⌋
∑

nj−1=0

· · ·

⌊δn⌋
∑

n1=0

c(Tn
j , T

n−nj−1

j−1 · · ·Tn−n1

1 .x)

and replace Lemma 3.5 by its L1-version:
∫

X
|c(τ, α.x)− c(τ ′, β.x)| dm(x) ≤ K1 · (d(α, β) + d(τα, τ ′β))

where K1 := max{‖c(s,−)‖1 | s ∈ S}. We leave out the rather obvious details for this argument,
as it it is not needed here. �

4. Proof of Theorems A, B

Throughout this section Γ, Γ y (X,m), and c : Γ×X → R+ are as in Theorem A, and

φ : Γab ⊗ R ∼= g∞ → R+, Φ : G∞ → R+, dφ : G∞ ×G∞ → R+

are as in Proposition 2.8. We denote by d∞ the corresponding right-invariant, homogeneous metric
on G∞ that appears in Pansu’s Carnot-Carathéodory construction. We denote

B(g, ǫ) := {g′ ∈ G∞ | d∞(g, g′) < ǫ}

the corresponding balls in G∞. Consider the functions

c∗(g, x) := lim
ǫց0

lim sup
t→∞

sup
sclt(γ)∈B(g,ǫ)

1

t
c(γ, x),

c∗(g, x) := lim
ǫց0

lim inf
t→∞

inf
sclt(γ)∈B(g,ǫ)

1

t
c(γ, x).

While this is not necessary for our argument, it is impossible to ignore the fact that c∗(g,−) and
c∗(g,−) are a.e. constant.

Lemma 4.1. For each g ∈ G∞ the functions c∗(g,−), c∗(g,−) are m-a.e. constants, denoted c∗(g),
c∗(g), respectively.

Proof. For any fixed g ∈ G∞ the functions c∗(g,−), c∗(g,−) : X → R+ are measurable. Fix γ0 ∈ Γ.
Then for any ǫ > 0 for all t > t(g, γ0, ǫ) one has

1

t
• γ ∈ B(g, ǫ) =⇒

1

t
• γγ0,

1

t
• γγ−1

0 ∈ B(g, 2ǫ).

Since for every x ∈ X
1

t
c(γγ0, x) ≤

1

t
c(γ, γ0.x) +

1

t
c(γ0, x)

it follows that c∗(g, x) ≤ c∗(g, γ0.x) and c∗(g, x) ≤ c∗(g, γ0.x). Applying the same argument to γ−1
0

and γ0.x we observe that c∗(g,−) and c∗(g,−) are measurable Γ-invariant functions. Hence they
are a.e. constants, because Γ y (X,m) is ergodic. �

In the following subsections we shall proceed in the following steps:

(1) Show that c∗(g) ≤ Φ(g) for all g ∈ G∞.
(2) Show that Φ(g) ≤ c∗(g) for all g ∈ G∞.
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(3) The obvious inequality c∗ ≤ c∗ combined with the above implies that t−1
i · c(γi, x) → Φ(g)

whenever sclti (γi) → g in G∞. We shall show that for a.e. x ∈ X the above convergence is
uniform over g ∈ B(e, 1) and will deduce Theorem A by rescaling.

(4) We will prove Theorem B by combining the ideas of the previous steps.

Let X0 ⊂ X be the set of x ∈ X for which c∗(g, x) = c∗(g), c∗(g, x) = c∗(g), and Theorem 3.3 holds
for all k ∈ N and every choice of T1, . . . , Tk ∈ Γ. We imposed countably many condition where each
holds m-a.e., therefore m(X \X0) = 0.

4.1. The upper bound: c∗(g) ≤ Φ(g).
Fix x ∈ X0, and assume, towards contradiction, that there exists η > 0 and sequences ti → ∞ and
γi ∈ Γ so that

(4.1) lim
i→∞

1

ti
• γi = g, while

1

ti
c(γi, x) > dφ(e, g) + η.

Fix a small ǫ > 0, namely ǫ = η/(K + 3), where K is as in Theorem A(i). Choose a φ-geodesic
ξ : [0, 1] → G∞, i.e. a smooth admissible curve such that

ξ(0) = e, ξ(1) = g, lengthφ(ξ) = Φ(g)

(we could choose any smooth curve from e to g with lengthφ(ξ) < Φ(g)+ ǫ with a sufficiently small
ǫ > 0). Applying Proposition 3.1 we find k ∈ N, elements T1, . . . , Tk ∈ Γ, and a multiple p ∈ N that
give ǫ-approximation to the curve ξ. Set

ni := ⌊
ti
p
⌋, Si := Tni

k · · ·Tni

2 Tni

1 .

Note that

lim sup
i→∞

1

ti
· d(Si, γi) = lim sup

i→∞
d∞(

1

ti
• Si,

1

ti
• γi) = lim sup

i→∞
d∞(

1

ti
• Si, g) < ǫ.

Since c(−, x) : Γ → R+ is K-Lipschitz, we have for all sufficiently large i ≫ 1.

1

nip
·

k
∑

j=1

c(Tni

j , Tni

j−1 · · ·T
ni

1 .x) ≥
1

nip
· c(Si, x) >

1

ti
· c(Si, x)− ǫ

>
1

ti
· c(γi, x)−K · ǫ− ǫ > Φ(g) + (η − (K + 1)ǫ).

The above inequalities use sub-additivity, the fact that nip/ti → 1, the Lipschitz property of c(−, x),
and the assumption (4.1) that we try to refute. Applying Theorem 3.3 we have

lim
i→∞

1

nip
·

k
∑

j=1

c(Tni

j , Tni

j−1 · · ·T
ni

1 .x) =
1

p
·
(

φ(T ab
k ) + · · ·+ φ(T ab

1 )
)

.

However, by part (ii) of Proposition 3.1, one also has

1

p
·
(

φ(T ab
k ) + · · ·+ φ(T ab

1 )
)

< lengthφ(ξ) + ǫ < Φ(g) + ǫ.

This leads to a contradiction, due to our choice of ǫ = η/(K + 3). Thus (4.1) is impossible.
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4.2. The lower bound: c∗(g) ≥ Φ(g).
Let us now prove the inequality c∗(g) ≥ Φ(g). Fix g ∈ G∞, x ∈ X0, and assume, towards
contradiction, that there exists η > 0 and sequences ti → ∞ and γi ∈ Γ so that

(4.2) lim
i→∞

1

ti
• γi = g while

1

ti
c(γi, x) < Φ(g)− η.

We take a small ǫ > 0 and an associated finite set F ⊂ Γ as in condition (ii) of Theorem A. Apply
the following argument to each γi from the sequence satisfying (4.2).

Each γi can be written as a product

γi = δi,si · · · δi,2δi,1,

where δi,j ∈ F for all 1 ≤ j ≤ si and

si
∑

j=1

c(δi,j , δi,j−1 · · · δi,1.x) < (1 + ǫ) · c(γi, x).

Consider the sequence of points

gi,j :=
1

ti
• δi,j · · · δi,1 (j = 1, . . . , si).

Define a piecewise d∞-geodesic curve

ξi : [0, 1]−→G∞

connecting e to 1
ti
• γi = gi,si via the points gi,j , which are to be visited at times

ξi(
ci,1 + · · ·+ ci,j
ci,1 + · · ·+ ci,si

) = gi,j , where ci,j := c(δi,j , δi,r−1 · · · δi,1.x).

Between these times ξi(−) follows an appropriately rescaled g∞-geodesic. So ξi traces in G∞ the
points associated to partial products representing a discrete path from e to γi, with time parameter
chosen according to the ci,j-steps.

The bi-Lipschitz condition for c(−, x) in terms of d (condition (i) in Theorem A), implies that
ξi : [0, 1] → G∞ is a uniformly Lipschitz sequence of maps with ξi(0) = e. Hence by Arzela-Ascoli,
upon passing to a subsequence, we may assume that ξi converge (uniformly) to a Lipschitz curve

ξ : [0, 1] −→ G∞, ξ(0) = e, ξ(1) = g.

Since we are working towards a contradiction to (4.2) which holds for sub-sequences, we may assume
that ξi → ξ without complicating our notations any further.

With the Lipschitz curve ξ at hand and small ǫ > 0, Proposition 3.1 provides k ∈ N, T1, . . . , Tk ∈ Γ
and p ∈ N that give ǫ-good approximation for the curve ξ: In particular, for large i ≫ 1 and
ni := ⌊ti/p⌋ one has

k
∑

j=1

d∞

(

1

nip
• (Tni

j · · ·Tni

2 Tni

1 ), ξ(
j

k
)

)

< ǫ.

For each i ∈ N, choose 0 = ri(0) < ri(1) < · · · < ri(k) = si so that for j = 1, . . . , k:

ci,ri(j−1)+1 + · · ·+ ci,ri(j)

ci,1 + · · ·+ ci,si
−→

1

k
,

and write γi = πi,k · · ·πi,2πi,1 with πi,j := δi,ri(j) · · · δi,ri(j−1)+1. Then

πi,j · · ·πi,2πi,1 = δi,ri(j) · · · δi,2δi,1 (j = 1, . . . , k).
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We have

ξ(
j

k
) = lim

i→∞
ξi(

j

k
) = lim

i→∞

1

nip
• πi,j · · ·πi,2πi,1.

Thus for all large enough i:

k
∑

j=1

d∞

(

1

nip
• Tni

j · · ·Tni

2 Tni

1 ,
1

nip
• πi,j · · ·πi,2πi,1

)

< ǫ

and therefore for all large enough i:

k
∑

j=1

1

nip
· d
(

Tni

j · · ·Tni

2 Tni

1 , πi,j · · ·πi,2πi,1

)

< ǫ.

We now apply Lemma 3.5 with

α = Tni

j−1 · · ·T
ni

1 , τ = Tni

j , β = πi,j−1 · · ·πi,1, τ ′ = πi,j

to deduce that for all large enough i:

k
∑

j=1

1

nip
·
∣

∣

∣
c(Tni

j , Tni

j−1 · · ·T
ni

1 .x)− c(πi,j , πi,j−1 · · ·πi,1.x)
∣

∣

∣
< 2Kǫ.

For i ≫ 1 we have

1

ti
· c(γi, x) >

nip

(1 + ǫ)ti
·

1

nip
·

si
∑

r=1

c(δi,r, δi,r−1 · · · δi,1.x)

≥ (1− ǫ) ·
1

nip
·

k
∑

j=1

ri(j)
∑

r=ri(j−1)+1

c(δi,r, δi,r−1 · · · δi,1.x)

≥ (1− ǫ) ·
1

nip
·

k
∑

j=1

c(πi,j , πi,j−1 · · ·πi,1.x)

> (1− ǫ) ·





1

nip
·

k
∑

j=1

c(Tni

j , Tni

j−1 · · ·T
ni

1 .x)− 2Kǫ





using sub-additivity of c in the third inequality. Theorem 3.3 gives

lim
i→∞

1

nip
·

k
∑

j=1

c(Tni

j , Tni

j−1 · · ·T
ni

1 .x) =
1

p

(

φ(T ab
k ) + · · ·+ φ(T ab

1 )
)

> lengthφ(ξ)− ǫ.

Since ξ is only one of many possible admissible curves connecting ξ(0) = e to ξ(1) = g (and most
likely is sub-optimal in terms of the φ-length), one has

lengthφ(ξ) ≥ dφ(e, g) = Φ(g).

Therefore we deduce

lim inf
i→∞

1

ti
· c(γi, x) ≥ (1− ǫ) · (Φ(g)− (2K + 1)ǫ) .

A choice of small enough ǫ > 0 contradicts (4.2). This proves the claimed inequality

Φ(g) ≤ c∗(g).
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4.3. Proof of Theorem A.
The results of the two previous subsections giving c∗(g) ≤ Φ(g) ≤ c∗(g), combined with the trivial
inequality c∗(g) ≤ c∗(g), show

c∗(g) = c∗(g) = Φ(g).

Equivalently

(4.3) lim
ǫց0

lim sup
t→∞

sup

{

|
1

t
· c(γ, x)− Φ(g)| :

1

t
• γ ∈ B(g, ǫ)

}

= 0.

We need to prove that for m-a.e. x ∈ X (or rather every x ∈ X0) one has

∀ǫ > 0, ∃R < ∞ : |γ|S ≥ R =⇒ |c(γ, x)− Φ(scl1 (γ))| < ǫ · |γ|S .

Indeed, if the claim were not true, we could find ǫ0 > 0 and a sequence γn ∈ Γ with |γn|S → ∞, so
that

|c(γn, x)− Φ(scl1 (γn))| ≥ ǫ0 · |γn|S .

The sequence

gn :=
1

|γn|S
• γn

has

lim sup
n→∞

d∞(gn, e) ≤ 1.

Hence {gn | n ∈ N} is bounded. Since balls in G∞ are precompact, there is a subsequence γni

converging to some g ∈ G∞ (in fact g ∈ B(e, 1)). Denote ti := |γni
|S . We note that

d∞(
1

ti
• γni

, δ 1

ti

(scl1 (γni
))) → 0

and therefore

lim
i→∞

1

ti
· Φ(scl1 (γni

)) = lim
i→∞

Φ(δ 1

ti

(scl1 (γni
))) = Φ( lim

i→∞

1

ti
• γni

) = Φ(g).

Finally (4.3) implies
1

ti
|c(γni

, x)− ti · Φ(g)| → 0

contrary to the assumption. This proves Theorem A.

4.4. Proof of Theorem B.
The main claim is that given any g, g′ ∈ G∞ and sequences ti → ∞, γi, γ

′
i ∈ Γ, so that

(4.4) lim
i→∞

1

ti
• γi −→ g, lim

i→∞

1

ti
• γ′i = g′

one necessarily has for every x ∈ X0:

lim
i→∞

1

ti
· c(γ′iγ

−1
i , γi.x) = dφ(g, g

′).

To show this we employ a variant on the upper bound argument §4.1 and on the lower bound
argument §4.2. In both of these arguments we use a fixed admissible curve ξ0 connecting e to g in
G∞, concatenated with an appropriate curve ξ connecting g to g′ in G∞.

Denote by ξ1 : [0, 2] → G∞ the curve that connects e to g′ via g:

ξ1(0) = e, ξ1(1) = g, ξ1(2) = g′; ξ1(s+ 1) = ξ(s).
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Fix a small ǫ > 0, and apply Proposition 3.1 to ξ1 to find

T1, . . . , T2k ∈ Γ, p ∈ N,

so that

(4.5)

∣

∣

∣

∣

∣

∣

1

p
·

2k
∑

j=k+1

φ(T ab
j )− lengthφ(ξ)

∣

∣

∣

∣

∣

∣

< ǫ,

while for all n ≥ n0

(4.6)

k
∑

j=1

d∞

(

1

np
• Tn

k+j · · ·T
n
2 T

n
1 , ξ(

j

k
)

)

< ǫ.

Note that the last condition is a trivial consequence of the estimate on

k
∑

j=1

d∞

(

1

np
• Tn

j · · ·Tn
2 T

n
1 , ξ1(

j

k
)

)

+
k
∑

j=1

d∞

(

1

np
• Tn

k+j · · ·T
n
2 T

n
1 , ξ1(

j

k
+ 1)

)

,

while (4.5) can be obtained from approximating the φ-lengths of ξ1 and ξ0 by

1

p
·

2k
∑

j=1

φ(T ab
j ), and

1

p
·

k
∑

j=1

φ(T ab
j )

and the obvious relation

lengthφ(ξ) = lengthφ(ξ1)− lengthφ(ξ0).

Next, choosing ξ to be a φ-geodesic connecting g to g′, and taking ni = ⌊ti/p⌋, we get

lim
i→∞

d∞(
1

nip
• γi, g) = lim

i→∞
d∞(

1

nip
• γ′i, g

′) = 0

and

lim sup
i→∞

1

nip
· d(γi, T

ni

k · · ·Tni

1 ) ≤ ǫ, lim sup
i→∞

1

nip
· d(γ′i, T

ni

2k · · ·Tni

1 ) ≤ ǫ.

Following the same argument as in §4.1 (using Lemma 3.5 and Theorem 3.3), we have

lim sup
i→∞

1

ti
· c(γ′iγ

−1
i , γi.x) ≤ lim sup

i→∞

1

nip
· c(Tni

2k · · ·Tni

k+1, T
ni

k · · ·Tni

1 .x) + 2Kǫ

≤ lim
i→∞

1

nip
·

k
∑

j=1

c(Tni

k+j , T
ni

k+j−1 · · ·T
ni

1 .x) + 2Kǫ =
1

p
·

k
∑

j=1

φ(T ab
k+j) + 2Kǫ

< lengthφ(ξ) + (2K + 1)ǫ = dφ(g, g
′) + (2K + 1) · ǫ.

Since ǫ > 0 was arbitrary, this shows the upper bound:

lim sup
i→∞

1

ti
· c(γ′iγ

−1
i , γi.x) ≤ dφ(g, g

′).

The lower bound,

lim inf
i→∞

1

ti
· c(γ′iγ

−1
i , γi.x) ≥ dφ(g, g

′)
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is trivial if g = g′. Hence we assume g 6= g′ which implies that |γ′iγ
−1
i |S → ∞. We now use the

innerness assumption (corresponding to condition (ii) in Theorem A). Fix an arbitrary small ǫ > 0
and rewrite γ′iγ

−1
i as a product of

γ′iγ
−1
i = δi,si · · · δi,1, while

si
∑

r=1

c(δi,r, δi,r−1 · · · δi,1γi.x) < (1 + ǫ) · c(γ′iγ
−1
i , γi.x).

where δi,j belong to a fixed finite set F ⊂ Γ (depending on ǫ and x ∈ X0). One then proceeds as in
§4.2 to construct a uniformly Lipschitz sequence of piecewise geodesic curves connecting g to ≈ g′,
and to use Arzela-Ascoli to pass to a convergent subsequence that produces a Lipschitz curve

ξ : [0, 1] → G∞, ξ(0) = g, ξ(1) = g′.

We are going to concatenate ξ0 with ξ to get ξ1 : [0, 2] → G∞ as before. The long products
γ′iγ

−1
i = δi,si · · · δi,1 can be sub-partitioned so that

γ′iγ
−1
i = πi,k · · ·πi,2πi,1

while for j = 1, . . . , k one has

ξ(
j

k
) = ξ1(

k + j

k
) = lim

i→∞

1

ti
• (πi,j · · ·πi,1γi).

We now invoke the T1, . . . , T2k and p ∈ N satisfying (4.5) and (4.6). One has

lim sup
i→∞

k
∑

j=1

1

nip
· d(Tni

k+j · · ·T
ni

1 γi, πi,j · · ·πi,1γi) ≤ ǫ

The sub-additivity gives

k
∑

j=1

c(πi,j , πi,j−1 · · ·πi,2πi,1γi.x) ≤

si
∑

r=1

c(δi,r, δi,r−1 · · · δi,1γi.x).

Combining these facts, one shows that for a subsequence of the given ti, γi, γ
′
i one has:

lim inf
i→∞

1

ti
· c(γ′iγ

−1
i , γi.x) ≥ lim inf

i→∞

1

1 + ǫ
·

1

nip

k
∑

j=1

c(πi,j , πi,j−1 · · ·πi,2πi,1, γi.x)

≥ (1− ǫ) ·



lim inf
i→∞

1

nip
·

k
∑

j=1

c(Tni

k+j , T
ni

k+j−1 · · ·T
ni

1 .x)− 2Kǫ





= (1− ǫ) ·

(

1

p
·
(

φ(T ab
2k ) + · · ·+ φ(T ab

k+1)
)

− 2Kǫ

)

≥ (1− ǫ) · (lengthφ(ξ)− (2K + 1)ǫ) ≥ (1− ǫ) · (dφ(g, g
′)− (2K + 1)ǫ).

Since ǫ > 0 is arbitrary, and any subsequence of ti, γi, γ
′
i contains a sub-sub-sequence satisfying the

above, it follows

lim inf
i→∞

1

ti
· c(γ′iγ

−1
i , γi.x) ≥ dφ(g, g

′).

In view of the lim sup inequality, the lower bound is also proven. As in the proof of Theorem A one
can easily deduce that for m-a.e. x ∈ X for every ǫ > 0 there is R < ∞ so that for |γ|S , |γ

′|S > R
one has

|c(γ′γ−1, γ.x)− dφ(scl1 (γ) , scl1
(

γ′
)

)| < ǫ ·max(|γ|S , |γ
′|S).

This completes the proof of Theorem B.
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