ASYMPTOTIC SHAPES OF BAYES SEQUENTIAL TESTING REGIONS!
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Summary. The large-sample limiting shapes of the Bayes sequential testing
regions of composite hypotheses are found explicitly. The result obtained is re-
lated to the Sequential Probability Ratio Test in the same way that the likeli-
hood ratio statistic for composite hypotheses is related to the Neyman-Pearson
test for simple hypotheses.

1. Introduction. For many sequential decision problems the optimal solutions
have been fully characterized, but the characterization is far from being explicit
and often cannot be utilized in practical applications even with the aid of high
speed computers. On the other hand, heuristic approaches and simplifying
assumptions have led to procedures that are easy to apply and sometimes easy
to evaluate, but there is no reason to believe that those procedures are optimal
in any sense of the word. It is possible to bridge the gap between the extremes
by developing an asymptotic theory.

In Wald’s work [16] there are some approximations which are asymptotically
valid for large samples; a more systematic study of asymptotic questions was
done by Chernoff [5], [6] and Anscombe [2]. As sample size is not one of the given
parameters of a sequential problem, large sample theory has to be defined in
terms of a different parameter, and Chernoff defined large sample theory as the
study of sequential problems when the cost of an observation approaches zero.
The results obtained by Chernoff are mainly concerned with certain heuristically
plausible procedures and include a study of the asymptotic performance of those
procedures. In this paper we also use the cost parameter to define large sample
theory, but we deal with the exactly optimal procedures; and, though we can-
not describe them explicitly, their optimality properties enable us to obtain
explicit asymptotic formulae for them.

The nature of these asymptotic formulae is best explained in geometric terms.
The main difficulty in the problems we shall consider is that of obtaining an
optimal sampling plan. The choice of terminal decisions is relatively easy.
Geometrically, a sampling plan can be represented by a region in the space of all
(n, S,), where n is the ordinal number of the observation, and S, is a statistic
which sums up the relevant information obtained through the n first observa-
tions. Our results are based on the fact that, for a fixed problem with cost of an
observation equal to ¢, the optimal region grows with diminishing ¢ in such a
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manner that its shape approaches a limiting shape while its size goes to infinity
in all directions. It is that limiting shape for which we obtain explicit formulae.

The problems we treat can also be described from a point of view that is more
oriented towards applications. In fixed sample size theory, the practical problem
of testing whether a parameter of a distribution is larger than some preassigned
number is most easily solved when it is formalized as a problem of a simple hy-
pothesis versus a simple alternative. This is justified for two reasons. First, in
practice it becomes unimportant which action is finally chosen when the param-
eter lies in some intermediate “indifference region.” Second, certain monotonicity
properties of the procedures assure a performance at least as good as achieved
at the two theoretically assumed parameter values, when the true value of the
parameter lies outside those two values.

The problem of testing a simple hypothesis versus a simple alternative was
also the first one to be treated in sequential theory, and the Bayes solution of
the problem is given by Wald’s Sequential Probability Ratio Test. However,
the justifications for formalizing the practical problem in this manner do not
apply to the sequential case. It still holds true that an operating characteristic
of any plausible procedure which yields acceptable error probabilities at the
two chosen parameter values controls the error probabilities adequately in the
practical problem, but the performance of a sequential procedure cannot be
judged by the operating characteristic alone: the expected sample size must be
taken into account as well. It has been pointed out (Kiefer and Weiss [11]) that
the performance -of the Sequential Probability Ratio Test becomes quite un-
satisfactory when the true parameter value lies between the hypotheses. Com-
bining this fact with Chernoff’s result [6], [7] that the relative contribution of
sampling costs to the total risk of an optimal sequential procedure tends to 100
per cent as ¢ approaches zero, we must come to the conclusion that for a large-
sample theory the restriction to simple hypotheses is not permissible.

Thus one is led to consider problems with more than two possible parameter
values. A possible approach has been suggested by Kiefer and Weiss [11] who
obtained some properties of optimal solutions. The ad hoc “straight line pro-
cedures” of Anderson [1], Armitage [3], and Donnelly [8)] are also aimed at this
problem. Basically, Kiefer and Weiss suggest incorporating an indifference region
by having a region where there is no loss for wrong decisions, but its parameter
points are possible values, and the sample size for those values must therefore
be considered. The existence of an indifference region can be incorporated in the
formal framework through an appropriate loss function. The existence of an
indifference region turns out to be essential for the success of our method, and
we do not know whether the results obtained remain valid when no indifference
region exists.

Another requirement for applicability of our approach concerns the existence
of a sufficient statistic whose dimension does not increase with the number of
observations. In the present paper we treat only the case where S, , the sum of
the observation, is a real sufficient statistic. The parameter space is in that case
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a real line or interval, and we restrict our considerations to testing one-sided
hypotheses about this parameter.

In a forthcoming paper the results will be generalized to other types of sta-
tistics and to different kinds of hypotheses.

2. Bounds for Bayes regions. The observations are assumed to be independent
and identically distributed according to a probability law that belongs to a
one-parameter family of the Koopman-Darmois type [12]. The defining property
of the Koopman-Darmois type is the existence of a cumulative sufficient sta-
tistic, that is, a sufficient statistic for a single observation which, when summed
over n observations yields a sufficient statistic for n observations. We denote the
statistic for the 7th observation by X; and, as there is no danger of confusion, we
shall refer to X itself as the 7th observation.

According to Koopman [12] there exists a measure F dominating the family,
and a real function b(0) of the parameter 6, such that the probability density
functions of X relative to the dominating measure can be written

(1) f(z, 6) = exp [6z — b(0)].
Similarly, the sufficient statistic S, = > 2.1 X, has a density function

(2) fa(s, 8) = exp [6s — nb(8)].

To see the significance of b(0), we consider the moment generating function
(3) Ey(e'™) = f 00 gp = O f &0 gF;
on the other hand we have

(4) Foo(l) = 1 = fe(t+0)r—b(t+0) dF = P f £z gp

Dividing (3) by (4) we see that the moment generating function exists whenever
¢ is such that ¢ + 6 is in the domain of definition of b(8), and is given by

(5) Eo(e™) = exp [b(8 + ) — b(8)].

Existence of the moment generating function implies existence of all moments,
as well as all semiinvariants. We may therefore differentiate the logarithm of (5)
k times at ¢ = O, and obtain d*b/d6" for the kth semiinvariant; in particular,
4(0) = Eo(X) = b'(6) and Vare(X) = b”(6). Hence, b”(6) is non-negative. If
for some 6, b”(0) equals zero, the distribution of X for that 6 is degenerate. The
logarithm of its moment generating function is linear, and by (5), b(6) is linear
as well, and b”(6) is equal to zero identically.

Ruling out this degenerate case, we have b”(6) positive, b(8) strictly convex,
and Es(X) = b’(8) is a monotone increasing function, whose inverse function
we denote by 6(u).

The parameter space @ is the domain of existence of b(8). As b(6) can fail to
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exist only by becoming infinite, its convexity implies that the domain consists
of an interval, possibly unbounded on either side. We now define a null hypothesis
Hy = {0]|6 = me} and an alternative hypothesis H, = {6 |0 = m,}, where my
and m, lie in the parameter space, and m, < m; . The loss structure is defined by
a non-negative bounded measurable function (), which is the penalty for
making a wrong decision when 6 is the true parameter value. We assume the
utility unit chosen so that /() is bounded above by one. The open interval
(mo , my) will be called the “indifference region”, and throughout that interval
1(0) is equal to zero. Outside (mo, m;), I(8) is assumed to be positive. The
supremum of /(#) over H; we denote by L;. The cost of each observation is a
constant ¢, expressed in the same utility unit as 1(9).

As a “measure of distinguishability” of the hypotheses, we introduce the second
difference of b(8) for the indifference region,

(6) A = b(me) + b(mi) — 2b[F(mo + ma)].

The number A is positive (because b(8) is a convex function) and plays a role
similar to the Kullback-Leibler [13] information number.

A terminal decision may be made at any stage of sampling.

Finally, we assume a given a prior: probability distribution W on the parame-
ter space. For any decision procedure ¥ the risk o(F, W) is now a well defined
number, and we are interested in the procedure @&, the Bayes procedure, for
which this number is minimal. As we may restrict ourselves to procedures based
on the sufficient statistic (n, S.), the procedures can be defined by partitioning
the (n, S.)-plane into three sets: a sampling region, and two stopping regions.
Given such a partition, the corresponding procedure consists of sampling until
the point (n, S.) lies for the first time in one of the stopping regions, and de-
ciding “Hy” or “H,” according to which stopping region it is. Once a Bayes
sampling region is known, the division of its complement to obtain the Bayes
stopping regions is relatively simple; we therefore formulate our problem as that
of finding the Bayes sampling regions in the (n, S,) plane. Accordingly, the same
symbol will be used to denote a procedure and its sampling region.

An implicit characterization of the Bayes sampling region was given by Wald
and Wolfowitz in Theorem 3.7 of [18]. An important role in that characterization
is played by the “stopping risk” R(n, S.), which in our case can be defined by

7 R(n, 8.) = min f 5O dW(0) / f 5@ gy gy,
i=0,1 YH, o

For every n and S, the number R(n, S,) measures the expected loss due to
wrong decisions; given that sampling was stopped when the point (n, S,) was
reached, and the terminal decision for which the integral in (7) is smaller was
taken. In terms of the function R(n, S.) a family of regions can be defined by
putting for positive r, C(r) = {(n, S.) | R(n, 8,) = r}.

These regions will be used with appropriate choices of r as bounds for the
Bayes region ®.
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TuroreM 1. For sufficiently small cost of sampling c,
(8) C(c) D ® D C(3ca™logec™.

Proor. To prove the left-hand side, we observe that if (n, S.) &€ ®, the Bayes
procedure leads to taking at least one more observation, at a cost of ¢; this could
not be the case if stopping at that stage and taking one of the terminal actions
would lead to an expected loss smaller than ¢. Therefore R(n, S,) is at least c,
and (n, S,) & C(c) follows. The other inclusion will be proved if we show that
whenever (n, S,) € C(38A % log ¢ "), there exists a procedure that leads to taking
at least one more observation, and whose expected loss due to error and due to
sampling add up to a number less than 3¢cA™" log ¢*. This can be shown to hold
for an appropriately defined fixed sample size procedure.

Let us now consider the fixed sample size procedure Fy which consists of
taking N observations where N is the smallest integer larger than (2/A) log ¢t
and deciding as follows: Let f; » denote the density exp (m:Sy — Nb(m,)) and
let 8 = 0 or 1 according as Lofo,v — Lifi.x > 0 or £ 0. Then in procedure F» we
decide “H,” if 8 = 0 and “H,” if 8 = 1. If 6 = m, or m,, the probability of
an error is E(3| 8 = mo) or E(1 — 8|6 = m,) respectively.

(9) Lefox + (1 — 8)Lofiw = min (Lofov, Lifiw) S (LofoxLafin)t.
Hence

Lo [ tfowdF* + L [ (1 = 8)fun dF" < (Lo Ln)*
(10) ~
[f (fO,lfl.l)*dF:I = (LiL)e™” e

This bound for the expected loss due to error when the true parameter value is
one of the end points of the indifference region holds for all parameter values, as
can easily be seen from the monotonicity of Koopman-Darmois distributions: the
derivative of the cumulative distribution function of a Koopman-Darmois varia-
ble with respect to the parameter is

(11) (%L exp (62 — b(6)) dF = L (2 — u(6)) exp (6z — b(6)) dF

Prob {X <a} [E(X|X <a) — E(X)] £0.
With X, the sum S, has a distribution of the Koopman-Darmois type, and ac-
cordingly the error probabilities can only decrease when 6 moves away from the
indifference region.

As the cost of taking N observations is Nc the total expected loss incurred by
Fy is bounded from above by ¢ + Ne¢, which in turn is bounded by
c(2 + 247 log ¢ ). Now, for sufficiently small ¢, log ¢! will exceed 24, and we
have
(12) Alloge™ > 2
and therefore
(13) 307 log ¢ > 2 4 2a log ¢
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Thus continuing according to Fx leads to a smaller expected loss than stopping
when the risk of stopping is greater than 3cA™ log ¢, and the theorem is proved.

3. Asymptotic shapes. In view of Theorem I, the region C(c) can be used as
an approximation to the Bayes sampling region when ¢ is small compared to
unity. In fact, using C(c) would yield an operating characteristic uniformly
better or at least as good as that of the Bayes region, provided that after stop-
ping, the best action is always taken. On the other hand, using C(c) leads to
oversampling. For practical applications, the use of C(c) has a more serious dis-
advantage. In order to plot the boundary of C(c) in the (n, S,) plane, the a prior:
distribution W has to be given, and moreover, there is no explicit formula for
the boundary, and the computational labour involved is immense. The use of
C(c) can therefore not be suggested as a solution to the problem of finding an
explicit, easily applicable procedure.

It is here that the concept of “asymptotic shape” comes to our aid. As the
region C(c) approximates the Bayes sampling region for ¢ approaching zero, the
problem would be solved if C(c) could in turn be approximated for ¢ approaching
zero by some explicitly given region. If, for instance, C(c) would tend to a finite
limiting region, the limiting region could be used as an approximation. However,
considering the unboundedly increasing sample sizes that one expects heuristi-
cally when the cost of sampling approaches zero, one cannot hope for C(c) to
have such a finite limit. On the other hand, we shall see that C(c) grows with
diminishing ¢ in a particular way, namely, its shape approaches a definite limit.
By “shape” we mean all that is invariant under homothetic transformations,
and as a formal definition of the shape of a bounded region we can define that
homothetic transform of the region whose boundary intersects the horizontal
axis at its unit point, and at no point to the right of the unit point. By ‘“‘con-
vergence”’ of shapes we mean pointwise convergence of their boundaries. If the
shapes of a parametrized family of regions converge to a limiting shape when
the parameter approaches a limit, that limiting shape is called ‘“the asymptotic
shape of the family.”

Before we state and prove a theorem about the existence of an explicitly de-
scribable asymptotic shape for the family C{(c), we define two functions in the
(n, S.)-plane, in terms of which the asymptotic shapes will be given. Those
functions are the likelihood ratio statistics Ao(n, S,) and A(n, S,) whose oceur-
rence in large sample sequential theory dates back to Wald [19].

In the fixed sample size theory of testing hypotheses there is usually only one
likelihood ratio statistic defined. The fact that in our case the parameter space
includes, in addition to Ho and H;, also the indifference region, enables us to
define two such statistics, as follows

sups.x, (mod W) (&%)
05,,—1;?)(0)) )

i=0,1,
sups.a(mod W) {e

(14) Xi(n, Sn) =

where sup (mod W) denotes the essential supremum relative to W.
Unlike R(n, S.), the \; do not depend on the a prior: distribution W except
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through its null sets. In analogy to the definition of C(r) by R(n, S.) we now
define a family of regions A(r), as follows:
(15) A(r) = {(n, 8x) [M(m, Sa) 27,  7=1,2}.

From the definition of the A, it is easily seen that their logarithms are homoge-
neous of order one, that is, for arbitrary « > 0
(16) log Mi(am, aS,) = alog\in, S,).

In view of this equation, A(r) for arbitrary r is a homothetic transform of
A(r) for any fixed ro . Choosing 7y = 1/¢ and denoting the operation of trans-
forming homothetically simply by multiplication by the factor involved, we have

17 A(r) = ®ologr ™,
where
(18) ® = A(l/e) = {(n, 8.) |logAi(n, S,) = —1, 1 =0, 1}.

Clearly all the regions A(r) have the same shape, which is therefore also their
asymptotic shape for r approaching zero.

We are going to show that the same asymptotic shape is also that of the family
C(r), and finally, that of the Bayes regions ®&(c).

First, to study ®o geometrically, we observe that it is the intersection of two
sets Ao and A, defined by

(19) Ay ={(n, Sa) |logh; = — 13, =0, 1.
Substituting the definition of A; for, say, ¢ = 0, we obtain
(20) A, =

{(n, 82) | supsa(mod W) (88, — 7b(6)) < 1 + Supses,(mod W) (88, — nb(6))}

This can be simplified further, if we take into account the special form of the
function under the supremum signs. First we divide the inequality in (20) by =,
and introducing the sample mean X = S,/n, we obtain

(21) Ay =
{(n, S.) | supsa(mod W) (6X — b(6)) < n* + sups.x, (mod W) (6X — b(6))}.

Let us now fix X. Geometrically, this amounts to regarding the intersection of
Ao with a line of slope X through the origin. Now X — b(6) is a downward-
convex function of 4, and for a value X in the range of u(8) = b’(6) it attains
a single maximum at 6(X), the solution of X — b(8) = 0. As (z) is monotone
increasing, the location of the maximum moves to the left or to the right with X.
For values of X such that 6(X) ¢ H, , the maximum is obtained in H, , and con-
sequently the essential suprema on both sides of (21) agree. For such an X, any
positive n will make the inequality hold, and the entire ray of slope X will be
contained in Ao . If we now move X to the right, the essential supremum in H,
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can only decrease, and the essential supremum in the complement @ — H, can
only increase. For some ko = m, the supremum in @ will exceed the supremum
in H, whenever X > k.

For those values of X, the intersection of A, with the line of slope X through
the origin will consist of those points on that line whose n-coordinates fulfill the
inequality in (21).

The value ko can be obtained when Hy, and W are given. Consider the points
80 = sup(mod W)H, and 6° = inf(mod W)(Q — H,). When X = ko, the maxi-
mum of 6X — b(9) is obtained between 6, and §°, and the essential suprema in
Hoand @ — H, are obtained at 6, and ¢°. They are equal to each other; therefore
ko = [b(6") — b(80)1/[6° — 60l

We can now simplify the description of the boundary of A, by restricting our-
selves to values of X > ko . For those values the essential supremum in H, is at-
tained at 6 = 6, and therefore

(22) BdryAs = {(n, S.) | supsa(mod W) (88, — nb(8)) = 1 + 068, — nb(6n)}.

Replacing the index 0 by 1, similar results for A, are readily obtained. It is
easily seen that k¢ < k,, and the equality sign holds only if W(H,U H,) = 1,
that is, no weight is given to the indifference region. Consequently, the region
®o = Aol A, intersects every line through the origin whose slope lies in the range
of b’(9) at a finite interval, except possibly the line § = km = km. A further
consequence of (23) is that A¢, and hence also A; and ®,, are convex regions.

In the statement of Theorem II we shall use a notation that expresses simulta-
neously the asymptotic shape and the rate of growth of a family of regions. If
Q(r) is a parametrized family of regions such that for a real function ¢(r) the
homothetic transform [1/¢(r)]Q(r) approaches a region Qo, we write Q(r) =
Qug(r) + o(q(r)).

A further remark is necessary if the regions Q(r) consist only of points whose
n-coordinate is an integer. As homothetic transformations do not preserve this
property, such a family of regions must be represented as an intersection at the
set of all points with integral » with a family of regions of the form Qu(r) +
o(g(r).

TuroreM II. Denote by 9 the set of all (n, S,) such that n is a positive integer,
and, by ®o, the set

(24) {(nm, 8,) |1 + min;,1(0:8, — nb(6:)) = sups(mod W) (88, — nb(8))}.
Then
C(r) = (@ologr™ + o(logr™)N 4,

when r approaches zero.
Proor. The a posteriors risk of deciding H; without any further observations

is given by
(25) R= fH exp (88, — nb(6))1(8) dW / fn exp (68, — nb(6)) dW.
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For fixed R = r, (25) represents a curve in the (n, S,) plane, and we can find
the intersection of the curve with a line of slope k through the origin by substi-
tuting 8, = kn. We now obtain for fixed r and k, an equation for the n-coordinate
of the intersection

(26) 1= fH exp [(8k — b(8))ni(6) dW / fn expl (6% — b(6) )n] dW.

The integral in the denominator is simply the nth power of the L,-norm of
exp(0k — b(9)) relative to the measure W, and the numerator is the nth power
of the L,-norm of the same function restricted to H, relative to the measure
[ 1(8)dW. Denoting the two norms by ||g||» and ||A||. , we have

un _ gl

@ T

Now this fraction is bounded away from zero for alln = 1. This is true because
the denominator is bounded from above by max exp(8k — b(8)), which is finite
because b(8) — 6k is convex, and the numerator is bounded away from zero by
min exp(8k — b(6)) over any finite interval, times the [ 1(9)dW measure of that
interval. However, if the right hand side of (27) is bounded away from zero, so
is the left hand side, and #/* > constant implies lim,.c » = «. We now put
n = tlogr ", and obtain an equation for ¢

—1/t _ | g lIn
(28) ¢ = ThL

Now we pass to the limit as r — 0, and make use of the limiting property of
L, norms ([14], p. 160)

(29) limy.e ||gll» = sup(mod W) |g|

to obtain for r = lim,.o ¢

(30) _, SuPm (mod f ldW> exp (6k — b(8))
’ N supa (mod W) exp (6k — b(6)) }

here we can replace [ ldW by just W, which has the same null sets, and solve
for 7:

(31) = = [supa (mod W) (0k — b(8)) — supa, (mod W) (6k — b(8))] ™.

Clearly, this curve is identical to (22), and by interchanging Ho and H, a similar
result is obtained for the region where the expected loss of stopping and decid-
ing H, exceeds r. The intersection of the two regions is by definition C(r), and
Theorem II is proved.

The main theorem of the paper can now be proved by applying both Theorems
I and II.
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TaroreM III. Let ® (c, W) be the Bayes sampling region for W as the a priort
distribution and c be the cost of one observation. Then, with ®y defined as in Theorem
II,

®(c, W) = [®olog ¢ + o(log cH]N 3.
Proor. Applying Theorem II to r = ¢ yields

(32) C(c) = [Bolog ¢ + o(logc™HIN 4.
Applying it to r = (3¢c/A) log ¢ yields
C((3c/A) log ¢!

= [® log ((3¢/A) log ¢ )™ + o (log ((3¢/A) log ) ™H]N g

= [ log ¢! — ® log log ¢! + ® log (A/3)

+ o(log ((3¢/4) logc)™H]IN 4,

but as all the terms except the first one are o(log ¢ ), we can collect them into
one term, and write

(34) C((3¢/A) log ¢™) = [Bolog ¢ + o(loge™]N 4

Thus C(¢) and C((3c/A) log ¢*) have the same asymptotic representation. By
Theorem I, this representation is also shared by the Bayes region ®&(c, W).

In view of this result, the family of regions ®, log ¢ is a large sample approxi-
mation to the Bayes regions, and there is an explicit formula for ®, log ¢
Through the essential suprema, ®, log ¢ still depends on W, but this dependence
is of a special nature, and it can be removed by treating various classes of dis-
tributions W. This will be done in the next section.

(33)

4. Completely mixed a priori distributions. As long as we hold up the level of
generality for which Theorems I, II, and IIT were proved, there is no way of
simplifying the definition of the region ®, as given in the statement of Theorem
I1. In this chapter, we treat special cases of the general theory, and study the
geometric nature of the regions arising.

The first possibility of specialization stems from the dependence of the regions
on the a priort distribution W. The definition of the essential supremum involves
only the sets of measure zero. Hence, the region ®y depends only on the ‘“kernel”
of W, that is, on the collection of its sets of measure zero, and we can study the
implications of various assumptions on the kernel.

An important class of a prior: measures is the class of ‘‘completely mixed
measures”. Those are the measures that dominate the Lebesgue measure, that
is, they give positive weight to every set of positive Lebesgue measure. This
property can be expressed in terms of the kernel; it is equivalent to the condi-
tion that the kernel of the Lebesgue measure include the kernels of all the meas-
ures in the class.
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The importance of this class of measures lies in the fact that any procedure
that is Bayes against a measure in that class is essentially admissible, in the
sense that no procedure can have a risk function that is as good for almost all 4,
and better for a set of 8 of positive Lebesgue measure.

As we are concerned here mostly with geometrical properties of the region ®,,
we rename the coordinates in the (n, S,)-plane and denote them by z and y
instead of n and S, respectively.

TaroreM IV. When W is 0 measure that dominaies the Lebesgue measure on the
6-line, the boundary of ®, consists of two curves, whose equations are

xb(0(y/x)) — xb(8) — y8(y/z) + ybo + 1 = 0,
zb(8(y/x)) — xb(6) — yo(y/z) + y6+ 1 = 0.

Proor. The essential supremum of a bounded continuous function modulo the
Lebesgue measure is simply the maximum of the functions.
The function y6 — zb(6) obtains its maximum at the solution of

(36) y — zb'(8) = O,

and that solution is § = 6(y/z), where again 6(k) is the inverse function of
b (8). Now, when sup (mod W)(y8 — zb(8)) is replaced by yo(y/z) —
zb(8(y/x)), (43) is readily obtained.
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Examples of Asymptotic Shapes, when W is completely mixed
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\

Normal Distribution

+— Bernoulli Distribution

» Poisson Distribution

N

» Geometrical Distribution

» Exponential Distribution

Exzample Parameter L1()] Boundary of (3o

Normal (g, 1) 6=u 10° y = 6z + (22)}(—1)*

i = P (z — y) log @ — y)
Bernoulli (p) 6= log 1—» log 1+ e =1+zlog [x/(l +8‘0')] - ylog (y/eg..)‘
Poisson () 6 = log A e? ylog (y/z) = 1 — ze® + y(1l + 65)

; - B _eny| @t log @ t+y) =
Geometrical (u) |6 = log T+ log (1 —e)| = 42 log le/(1 — e*)] +y log (y/e%s)
Exponential () = —1/u —log (—6) z log (—z/et) = 1+ zlogy + Oy
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