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Abstract. In this paper we consider the complexification of the Arnold standard family of
circle maps given by F̃α,ε(u) = ueiαe(ε/2)(u−1/u), with α = α(ε) chosen so that F̃α(ε),ε
restricted to the unit circle has a prefixed rotation number θ belonging to the set of Brjuno
numbers. In this case, it is known that F̃α(ε),ε is analytically linearizable if ε is small
enough and so it has a Herman ring Ũε around the unit circle. Using Yoccoz’s estimates,
one has that the size R̃ε of Ũε (so that Ũε is conformally equivalent to {u ∈ C : 1/R̃ε <
|u| < R̃ε}) goes to infinity as ε → 0, but one may ask for its asymptotic behavior.

We prove that R̃ε = (2/ε)(R0 + O(ε log ε)), where R0 is the conformal radius of the
Siegel disk of the complex semistandard map G(z) = zeiωez, where ω = 2πθ . In the
proof we use a very explicit quasiconformal surgery construction to relate F̃α(ε),ε and G,
and hyperbolic geometry to obtain the quantitative result.

1. Introduction
The complex standard family of self maps of C∗ = C \ {0} is given by the two-parameter
family

F̃α,ε(u) = ueiαe(ε/2)(u−1/u),

where α ∈ [0, 2π) and ε ∈ [0, 1). These maps are holomorphic in C∗ and the points at 0
and infinity are essential singularities (see [Ba, Ko1, Mak, Ke, Ko2, F]). For small ε,
these functions are perturbations of the rotation of angle α with respect to the origin.
The interest in this family relies on the fact that it is the extension to the complex plane of
the well-known Arnold family of circle maps (see [Ar, dMvS]). Indeed, the unit circle C1
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FIGURE 1. Rational Arnold tongues in the parameter space of the standard family up to denominator 5 (note that
these are sets with interior). The curves correspond to the irrational tongues for γ = (

√
5 − 1)/2 and θ = 5√2−1.

is invariant under F̃α,ε , and using the homeomorphism e2πix between T1 = R/Z and C1,
the map F̃α,ε|C1 becomes the Arnold family:

f̃α,ε : T1 −→ T1

x −→ x + α

2π
+ ε

2π
sin(2πx). (1)

It is clear that if ε ∈ [0, 1), f̃α,ε is an orientation-preserving diffeomorphism of T1,
and, thus, for each pair of parameters (α, ε) the rotation number of f̃α,ε is well defined
(see §2.1 for the definition of the rotation number). The rotation number measures the
asymptotic rate of rotation of points of the circle. For instance, a rigid rotation of T1 of the
form Tθ (x) = x + θ has rotation number θ . All throughout this paper we fix an irrational
rotation number θ and always choose the parameters α and ε such that the rotation number
of f̃α,ε is θ . More precisely, we choose our rotation number θ among the Brjuno set
of irrational numbers, which contains all Diophantine numbers (see [PM] for a precise
definition of these sets). In the (α, ε)-parameter space, the set of parameters with a given
rotation number θ is called the Arnold tongue Tθ . If θ is rational, its Arnold tongue is a set
with interior, while if the rotation number is an irrational number θ , then Tθ corresponds
to a curve connecting ε = 0 and ε = 1, which is in fact the graph of a function ε �→ α(ε)

with α(0) = 2πθ (see Figure 1). If θ is a Brjuno number, the curve α(ε) is known to be
analytic for ε small enough [Ri, FG].

Moreover, if the rotation number θ is a Brjuno number we have that for ε small enough,
the map f̃α(ε),ε is analytically linearizable (see [Y2, PM, Ri]). That is, there is an analytic
map η̃ε : T1 → T1 that conjugates f̃α(ε),ε to Tθ , i.e.

f̃α(ε),ε ◦ η̃ε = η̃ε ◦ Tθ . (2)

Equivalently, to say that F̃α(ε),ε restricted to C1 is analytically linearizable means that there
is an analytic map ϕ̃ε : C1 → C1, such that

F̃α(ε),ε ◦ ϕ̃ε = ϕ̃ε ◦ Rω, (3)
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where Rω(u) = eiωu and ω = 2πθ . Since the linearization ϕ̃ε is analytic, it can be
extended to a neighborhood of the unit circle of the form A(1/r, r), where we define

A(r1, r2) = {u ∈ C : r1 < |u| < r2} (4)

as the straight ring of radii r1 and r2. We denote by Ãε = A(1/R̃ε, R̃ε) the maximal ring
for which ϕ̃ε can be analytically continued. Then, it is easy to check that being F̃α(ε),ε|C1

analytically linearizable is equivalent to the existence of a Herman ring Ũε for F̃α(ε),ε,
which is given by Ũε := ϕ̃ε(Ãε). In Ũε, every orbit under F̃α(ε),ε lies on an invariant
closed curve which has rotation number θ . Since ϕ̃ε is unique (up to composition with
rotations), the constant R̃ε is univocally defined and we call it the size of the Herman ring.

The main goal of this paper is to give an asymptotic estimate for the size R̃ε of the
Herman ring Ũε as ε → 0.

The sharpest results concerning the size of Herman rings for univalent maps on a given
ring are due to Yoccoz (see Theorems 2.1 and 2.3), who gives an estimate that can be
applied to any analytic map F that leaves the unit circle C1 invariant and has rotation
number θ (i.e. a lift on R of F|C1 has rotation number θ ), and which depends only on θ and
on the size of the domain where the map is univalent. In §3 we will see that this general
result applied to the complex standard family leads to

R̃ε ≥ K
σ(ε)

ε
,

where K = exp(−
(θ) − 2πC0), 
 is the Brjuno function [MMY], C0 is a universal
constant and σ(ε) = 1 + √

1 − ε2 is defined in such a way that F̃α(ε),ε is univalent in
A(ε/σ(ε), σ (ε)/ε).

The fact that this estimate holds for any analytic diffeomorphism having C1 invariant
with rotation number θ and univalent at least in A(ε/σ(ε), σ (ε)/ε), suggests that a better
estimate can be found for the complex standard family. We shall return to this problem
in a moment, but first let us consider what is known as the complex semistandard map of
parameter eiω

G(z) = zeiωez.

Observe that z = 0 is a fixed point of G with derivative eiω. Since ω = 2πθ , and θ is a
Brjuno number, it is known [Br1, Br2] that G has a Siegel disk around the origin, which
we denote by U . This means that if we call Dr the open disk of center 0 and radius r , there
exists a unique maximal number R0 > 0 and a unique conformal isomorphism

ϕ : DR0 −→ U, ϕ(0) = 0, ϕ′(0) = 1 (5)

that conjugates G to the rotation Rω, i.e. G ◦ ϕ = ϕ ◦ Rω. The number R0 is known as
the conformal radius of the Siegel disk. Standard arguments show that R0 is always finite.
Lower bounds forR0 (as a function of ω) could be obtained applying Yoccoz’s results [Y1]
to the semistandard map.

We now return to the problem of estimating the size of the Herman ring Ũε. Our main
result is the following theorem.

THEOREM A. Let θ be a Brjuno number and consider the standard map F̃α,ε(u) =
ueiαe(ε/2)(u−1/u), with α = α(ε) such that F̃α(ε),ε restricted to C1 has rotation number θ .
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Let R̃ε be the size of its Herman ring and let R0 be the conformal radius of the Siegel disk
of the semistandard map G(z) = zeiωez, where ω = 2πθ . Then,

R̃ε = 2

ε
(R0 + O(ε log ε)).

Remark 1.1. We believe that this is the best estimate that can be obtained with our methods.
However, some recent developments (work in progress) seem to indicate that a more
optimal estimate could be R̃ε = (2/ε)(R0 + O(ε2)) (with R̃ε analytic on ε). As a
vague indication, this could follow from knowing that the complexification of the Arnold
tongue Tθ , with θ a Brjuno number, can be parametrized holomorphically by a complex
parameter strongly related with the modulus of the ring.

An analogue of Theorem A, for Chirikov’s standard and semistandard maps of R2,
was proved in [SV] using KAM methods and complex matching, and therefore restricting
the result to Diophantine rotation numbers. In the present paper, we prove Theorem A
using quasiconformal surgery, inspired by a qualitative construction of Geyer in [G]
which relates the standard and the semistandard maps. We modify this construction by
introducing the dependence on the parameter ε and by making most of its ingredients
completely explicit. These additions will give us the possibility of obtaining quantitative
estimates from the geometric construction.

From all the partial results involved in the proof of Theorem A we choose the following
to be remarked on here, because of its interest in itself and its possible use in other surgery
constructions. Part (a) is known from a theorem of Teichmüller, and relates the hyperbolic
distance between the Morrey–Bojarski–Ahlfors–Bers map (see Theorem 2.12) and the
identity with the dilatation ‖µ‖. From this result, in part (b) we obtain an estimate for
how close this map is from the identity.

Throughout the paper, δU indicates the hyperbolic distance inside U , where U is a
hyperbolic set (see §2.3). The notation ‖ · ‖ denotes the infinity norm and D = D1.

PROPOSITION B. Let µ be a Beltrami coefficient on C (see §2.2) and h : C → C be
the unique quasiconformal solution of the Beltrami equation ∂h/∂z = µ(∂h/∂z) fixing 0
and 1 (see Theorem 2.12).

(a) For any z ∈ C \ {0, 1}, we have δC\{0,1}(z, h(z)) ≤ δD(0, ‖µ‖).
(b) There exists a universal constant 0 < ρ < 1 such that if ‖µ‖ ≤ ρ, then for any

z ∈ D∗
ρ = Dρ \ {0} verifying ‖µ‖|log |z|| ≤ ρ, one has

|h(z)− z| ≤ C‖µ‖|z||log |z||,

where C > 0 only depends on ρ.

This paper is organized as follows. Section 2 contains basic introductions to some of
the tools and preliminary results that will be used during the proofs of Theorem A and
Proposition B. The expert reader can go directly to §3, where the problem is scaled and
restated more precisely. Sections 4 and 5 contain the actual proofs of Theorem A and
Proposition B, respectively.
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2. Preliminaries
In this section, we state the basic results that we need to prove Theorem A and
Proposition B. In §2.1 we review previous results about the linearization of analytic
circle maps and their translation to maps of the complex plane having an invariant circle.
Section 2.2 is devoted to quasiconformal mappings and measurable Riemann mapping
theorem. Finally, in §2.3 we give some definitions and results in hyperbolic geometry.

2.1. Analytic linearization. Let f : T1 → T1 be an orientation-preserving
homeomorphism of the circle T1 = R/Z, and f0 its lift to R with the normalization
f0(0) ∈ [0, 1). To such a map one can assign a rotation number defined as

ρ(f ) = lim
n→∞

f n0 (x)− x

n
,

where x is any point in R. It is well known (see e.g. [dMvS]) that f being a
homeomorphism guarantees that this limit exists and is independent of the point x.
With this definition, ρ(f ) is a rational number if and only if f has a periodic orbit. We are
interested in maps with an irrational rotation number.

If the rotation number of f is an irrational number θ and f ∈ C2(T1), Denjoy’s theorem
(see [dMvS]) ensures that f is topologically conjugate to the rigid rotation of angle θ ,
Tθ (x) = x+θ . That is, there exists a homeomorphismη : T1 → T1 such that η◦Tθ = f ◦η,
making the following diagram commute:

T1

η

��

Tθ �� T1

η

��
T1

f ��
T1

If we require η(0) = 0, then the conjugacy is unique.
From now on we restrict ourselves to the case where f is an analytic diffeomorphism

of T1, and therefore it can be extended to a complex annulus, of certain width � > 0,
around T1:

A� = {z ∈ C/Z : |Im(z)| < �}. (6)

Abusing notation, we again denote this extension by f . If the conjugacy η is also analytic,
the map f is said to be analytically linearizable. Then again, η can be extended to a
neighborhood of the circle, and it is easy to check (by the principle of analytic continuation)
that its extension also conjugates f to Tθ wherever η is defined.

We are particularly interested in the case where F : U ⊂ C → C is an analytic map
having the unit circle C1 invariant, and f is the map on T1 induced by F|C1 . In this
case, we say that F|C1 is analytically linearizable if there exists an analytic diffeomorphism
ϕ : C1 → C1, such that ϕ ◦ Rω = F ◦ ϕ, where Rω(u) = eiωu and ω = 2πθ . If we ask
ϕ(1) = 1, ϕ is univocally defined and the relation between η and ϕ is given by

ϕ(e2πix) = e2πiη(x), x ∈ T1.

The image by ϕ of the maximal ring where ϕ can be analytically continued is called the
Herman ring of F . If R is the outer radius of this ring (in the understanding that this ring is
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symmetric with respect to the unit circle, and then it is of the form A(1/R,R)), the width
of the annulus of analyticity of f around T1 is (1/2π) logR. The quantity (1/π) logR is
called the modulus of the ring and we call R the size of the ring.

Arnold showed in [Ar] that if θ is a Diophantine number and f is close enough to the
rigid rotation Tθ , then f is analytically linearizable. This result was later improved by
Rüssmann [Ru1, Ru2], Herman [Her1, Her2] and Yoccoz [Y2, PM]. The sharpest results
are due to Yoccoz and we state them below. In the statement, 
 : R \ Q → R+ ∪ {∞}
denotes the Brjuno function, a purely arithmetic Z-periodic function. Its most important
property is that 
(α) is finite if and only if α is a Brjuno number (see [MMY] for details
on 
).

The local conjugacy theorem, due to Yoccoz, states that any analytic circle map with a
Brjuno rotation number and which is univalent in a sufficiently large annulus (where ‘large’
is defined only in terms of the rotation number) is analytically linearizable. Moreover, it
gives a lower bound for the linearization domain which, again, only depends on the initial
domain of univalency and the rotation number.

THEOREM 2.1. (Local conjugacy theorem) Let θ be a Brjuno number and � > 0 such
that � > (1/2π)
(θ) + C0, where C0 is a universal constant. Let f : T1 → T1 be
an analytic circle diffeomorphism, orientation preserving and with rotation number θ .
We assume that f is holomorphic and univalent in the annulus A� (see (6)). Then, f
is analytically linearizable and the linearization η : T1 → T1 is analytic in the complex
annulus Ad , with

d ≥ �− 1

2π

(θ)− C0,

and verifies η(Ad) ⊂ A�.

Remark 2.2. For the Arnold standard family (1) a sort of reciprocal is also true. Indeed,
it was shown in [G] that if a member of the Arnold standard family is analytically
linearizable, then its rotation number must be Brjuno.

If F is a holomorphic map leaving the unit circle invariant, then by applying
Theorem 2.1 to the map f induced by F|C1 , we can state an analogous result about the
analytic linearization of F .

THEOREM 2.3. Let θ be a Brjuno number and R > 1 such that R > e
(θ)+2πC0.
Let F : C1 → C1 be an analytic diffeomorphism with rotation number θ . We assume that
F is holomorphic and univalent in the ringA(1/R,R). Then, F is analytically linearizable
and the linearization ϕ : C1 → C1 is analytic in the ring A(1/r, r), with

r ≥ Re−
(θ)−2πC0,

and verifies ϕ(A(1/r, r)) ⊂ A(1/R,R).

2.2. Quasiconformal mappings and the Beltrami equation. In this section we briefly
recall the relevant definitions and results to be used in the quasiconformal surgery
procedure, which is going to be one of the main tools to prove the results of this paper.
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The standard reference for quasiconformal mappings is [Ah]. In this section, U,V ⊂ C

are open sets.

Definition 2.4. Given a measurable function µ : U → C, we say that µ is a k-Beltrami
coefficient of U if |µ(z)| ≤ k < 1 almost everywhere in U . Two Beltrami coefficients
of U are equivalent if they coincide almost everywhere in U .

Equivalently, a Beltrami coefficient of U gives an almost complex structure σ , which
means a measurable field of ellipses in the tangent space of U , centered at 0 and defined
up to multiplication by a non-zero real constant. The argument of the major axis of these
infinitesimal ellipses, at the point z ∈ U , is π/2 + arg(µ(z))/2, and the ratio of minor and
major axes equals (1 − |µ(z)|)/(1 + |µ(z)|).
Definition 2.5. A homeomorphism f : U → V is said to be k-quasiconformal if it has
locally square integrable weak derivatives and

µf (z) = (∂f /∂z)(z)

(∂f /∂z)(z)

is a k-Beltrami coefficient. In this case, we say that µf is the complex dilatation or the
Beltrami coefficient of f .

Remark 2.6. With the same definition, but skipping the hypothesis on f to be a
homeomorphism,f is called a k-quasiregular map. It is easy to check that a k-quasiregular
map is locally the composition g◦h of a holomorphic map g and a k-quasiconformal map h.

Definition 2.7. Given a Beltrami coefficient µ of V and a quasiregular map h : U → V ,
we define the pull-back of µ by h as the Beltrami coefficient of U defined by:

h∗µ = (∂h/∂z)+ (µ ◦ h)(∂h/∂z)
(∂h/∂z)+ (µ ◦ h)(∂h/∂z) .

Remark 2.8. Note that if in the previous definitionµ = µf for certain quasiregular map f ,
then h∗µf = µf ◦h.

Remark 2.9. Pulling-back by holomorphic functions does not increase the maximal
dilatation, k, of a k-Beltrami coefficient.

Remark 2.10. The standard complex structure corresponds to µ0 ≡ 0, which is a field of
circles. A quasiregular mapping f is holomorphic if and only if f ∗µ0 = µ0.

Definition 2.11. Given a Beltrami coefficient µ, the partial differential equation

∂f

∂z
= µ(z)

∂f

∂z
(7)

is called the Beltrami equation. By the integration of µ we mean the construction of a
quasiconformal map f solving this equation almost everywhere or, equivalently, such that
µf = µ almost everywhere.

The famous measurable Riemann mapping theorem by Morrey, Bojarski, Ahlfors and Bers
states that every almost complex structure is integrable. As we are going to use this result
for Beltrami coefficients with U = V = C, we give a statement adapted to this context.
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THEOREM 2.12. (Measurable Riemann mapping theorem [Ah, BD]) Let µ be a Beltrami
coefficient of C. Then, there exists a unique quasiconformal map h : C → C such that
h(0) = 0, h(1) = 1 and µh = µ. Furthermore, if µt is a family of Beltrami coefficients
such that µt(z) depends analytically on t , for any z ∈ C, then ht depends analytically on t .

Remark 2.13. The application of the measurable Riemann mapping theorem to complex
dynamics is the following. Let f and µ be, respectively, a quasiregular mapping of C and
a Beltrami coefficient of C, such that f ∗µ = µ. If we apply Theorem 2.12 to integrate µ
and we construct a quasiconformal mapping h such that µh = µ, then g = h ◦ f ◦ h−1

verifies g∗µ0 = µ0, and hence g is a holomorphic map of C. Moreover, f and g are
quasiconformally conjugate, i.e. they have the same dynamics.

2.3. Hyperbolic geometry. In this paper, besides quasiconformal surgery we will use
some results of hyperbolic geometry (see [Be2] for a survey). Briefly, quasiconformal
surgery will be the key for the geometrical constructions we do and hyperbolic geometry
will provide some of the quantitative estimates.

Definition 2.14. Given U ⊆ C a domain (open and connected set) and given a continuous
function λ : U → [0,+∞), with at most isolated zeros, we define the conformal metric
λ on U as the metric having λ(z)|dz| as a line element. More precisely, given a piecewise
differentiable arc γ : [a, b] → U , the length of γ with respect to the metric λ is defined by

lλ(γ ) =
∫
γ

λ(z)|dz| =
∫ b

a

λ(γ (t))|γ ′(t)| dt.

Definition 2.15. Given a conformal metric λ on U and given two points z1, z2 ∈ U , we
define the distance dλ(z1, z2) by

dλ(z1, z2) = inf{lλ(γ ) | γ ⊂ U arc from z1 to z2}.
In the case when this infimum is achieved by an arc γ ∗ from z1 to z2, this arc γ ∗ is called
a geodesic between z1 and z2.

Any holomorphic map between two domains U and V can be used to transport a
conformal metric on V to a conformal metric on U .

Definition 2.16. Given a holomorphic map f : U → V and a conformal metric λ on V , we
define the pull-back of λ by f as the conformal metric on U given by

f ∗λ = (λ ◦ f )|f ′|.
With this definition f is a local isometry between (U, f ∗λ) and (V, λ), i.e. it preserves
arc-lengths. If f is biholomorphic, then it is a global isometry.

The example that concerns us is the hyperbolic metric, which is a conformal metric
defined on domains U that have the unit disk D := D1 as a covering space, and which
is preserved under conformal self-mappings of U . On D, the hyperbolic metric takes the
following form.
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Definition 2.17. The hyperbolic or Poincaré metric on D is the metric defined by

λD(z) = 2

1 − |z|2 .

The Poincaré metric λD is the unique metric on D (up to multiplication by positive
constants) invariant under conformal automorphisms of D.

We will need an explicit expression for the distance in D defined by the Poincaré metric.

PROPOSITION 2.18. Given w1, w2 ∈ D, we have the following formula for the hyperbolic
distance δD in D:

sinh2
[
δD(w1, w2)

2

]
= 4|w1 −w2|2
(1 − |w1|2)(1 − |w2|2) .

In particular, if 0 ≤ r < 1,

δD(0, r) = log

(
1 + r

1 − r

)
.

The pull-back process allows us to transport the Poincaré metric to any domain U that is
conformally equivalent to D. Indeed, if ψ : U → D is a Riemann map, then the hyperbolic
metric on U is given by

λU (z) = (ψ∗λD)(z) = λD(ψ(z))|ψ ′(z)|,
or equivalently, if ϕ : D → U is a conformal map, then

λU (ϕ(z)) = λD(z)

|ϕ′(z)| . (8)

An important example of this is the upper half plane, H, for which we can take ψ(z) =
(z− i)/(z+ i), obtaining the following result.

PROPOSITION 2.19. The hyperbolic metric in H is given by λH(z) = 1/Im(z). In this
case, the λH-geodesics are vertical segments or arcs of circles orthogonal to the real axis.

The hyperbolic metric can also be transported to non-simply connected domains, by
means of any universal covering map.

Definition 2.20. A domain U of the Riemann sphere C is called hyperbolic if it has at least
three boundary points.

THEOREM 2.21. If U is a hyperbolic domain, there exists a holomorphic covering map
ϕ : D → U (i.e. ϕ is a local homeomorphism at every point). Each such map is called
a universal covering map and it is uniquely determined if we prefix ϕ(0) and require
ϕ′(0) > 0.

Then, if U is a hyperbolic domain and ϕ is a universal covering for U , the hyperbolic
metric λU |dz| is given as above by (8).

Using that ϕ(z) = exp((z− 1)/(z+ 1)) is a universal covering for the punctured disk
D∗ = D \ {0}, we obtain the following properties for the hyperbolic metric in D∗.
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PROPOSITION 2.22. The hyperbolic metric in D∗ has the form

λD∗(z) = 1

|z| log(1/|z|).
The hyperbolic distance δD∗ satisfies

sinh2
[
δD∗(z1, z2)

2

]
= |log z1 − log z2|2

log |z1| log |z2| , z1, z2 ∈ D∗,

where we have chosen appropriate determinations for log z1 and log z2 (with the arguments
of z1 and z2 differing at most by π). Moreover, the geodesics in D∗ are obtained by
mapping the geodesics of H by the covering ϕ̂ : H → D∗ given by ϕ̂(z) = eiz.

The main reason why hyperbolic geometry is very useful in complex dynamics is the
fact that all holomorphic maps are contractive, when we look at them under the hyperbolic
metric. This is known as the Schwarz–Pick lemma which reads as follows.

THEOREM 2.23. (Schwarz–Pick lemma) If U and V are hyperbolic domains and f :
U → V is holomorphic, then

δV (f (z1), f (z2)) ≤ δU (z1, z2)

for all z1, z2 ∈ U . Moreover, for all z ∈ U ,

λV (f (z))
λU (z)

|f ′(z)| ≤ 1.

In this paper, we need to compare (locally) different hyperbolic distances. The following
result, known as Ahlfors’ lemma, gives a comparison between hyperbolic metrics. Since we
are unable to provide a standard reference, we include its proof, taken from [Pet].
The analogous comparison for hyperbolic distances (which is in fact what we really need in
the proof of Proposition B) requires some work and it is therefore given in Proposition 5.1
(see §5.2).

PROPOSITION 2.24. (Ahlfors’ lemma) Let U ⊆ V ⊂ C be hyperbolic domains. Then for
any point z ∈ U ,

1 ≤ λU (z)
λV (z)

≤ coth

(
1

2
δV (z, ∂U)

)
.

Proof. The left-hand inequality is quite immediate if we consider the identity map Id :
U → V . By the Schwarz–Pick lemma, λV (z)/λU (z) ≤ 1 and we are done.

For the right-hand inequality, let ϕ : D → V be a universal covering of V such that
ϕ(0) = z and let 0 ∈ U ′ ⊂ D be such that ϕ : U ′ → U is conformal (see Figure 2).

Since ϕ is a (local) isometry between the hyperbolic metrics, we may work with D, U ′
and 0 instead of V , U and z. In particular, we have

λU (z)
λV (z)

= λU ′(0)

λD(0)
.

Let r = min{|z| : z ∈ ∂U ′}. If r = 1 then U ′ = D and there is nothing to prove. Hence we
suppose r < 1. We now apply the left-hand inequality to Dr ⊆ U ′ to obtain

1 ≤ λDr (0)

λU ′(0)
= 1

r

λD(0)

λU ′(0)
,
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FIGURE 2. Sketch for the proof of Ahlfors’ lemma.

and hence,
λU (z)
λV (z)

≤ 1

r
.

It remains to show that 1/r = coth(d/2) where d = δV (z, ∂U). To see this, we use
Proposition 2.18. In particular, we observe that δD(0, ·) has radial symmetry, and thus we
have

d = δV (z, ∂U) = δD(0, ∂U ′) = δD(0, r) = log

(
1 + r

1 − r

)
.

Therefore ed = (1 + r)/(1 − r) and

1

r
= ed + 1

ed − 1
= ed/2 + e−d/2

ed/2 − e−d/2
= cosh(d/2)

sinh(d/2)
= coth

(
d

2

)
. �

3. The complex standard family and the semistandard map
The complex standard family

F̃α,ε(u) = ueiαe(ε/2)(u−1/u),

with α ∈ [0, 2π) and ε ∈ [0, 1), is a family of holomorphic maps of C∗ onto itself,
with essential singularities at 0 and infinity. The maps of the family are symmetric with
respect to the unit circle, which is invariant under F̃α,ε . The singularities of the inverse
map consist exclusively of the images of the two critical points of F̃α,ε (as F̃α,ε has no
asymptotic values) which are located at

c̃±(ε) = 1

ε
(−1 ±

√
1 − ε2) < 0.
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Moreover, one can see that the standard map is univalent on a symmetric ring A(1/rε, rε),
where

rε = −c̃−(ε) = 1

ε
(1 +

√
1 − ε2).

Note that rε � 2/ε as ε → 0, and so rε tends to infinity as ε tends to zero.
From now on, we fix a rotation number θ in the Brjuno set and consider the analytic

curve α = α(ε) such that the rotation number of F̃α(ε),ε|C1 is θ . Thus, for ε small enough
(depending only on θ ), the standard map is under the hypothesis of the local conjugacy
theorem of Yoccoz (Theorem 2.3) which assures the existence of a Herman ring of size

R̃ε ≥ 1 + √
1 − ε2

ε
K := σ(ε)

ε
K, (9)

whereK = exp(−
(θ)− 2πC0), 
 is the Brjuno function and C0 is a universal constant.
To asymptotically estimate the value of R̃ε , we start by scaling the problem hoping that

the scaled value of R̃ε has a finite limit as ε tends to zero. We perform the change of
variables

z = ε

2
u,

and we obtain a new map

Fα(ε),ε(z) = zeiα(ε)ez−ε2/4z.

This map shows the complex standard family as a perturbation of the semistandard map
G(z) = zeiωez, with ω = 2πθ , as long as z is far away from zero (recall that α(0) = ω).
Note that the limit is a singular limit at z = 0, since an essential singularity is converted
into a fixed point. The new scaled map Fα(ε),ε leaves Cε/2 invariant and its critical points
are now located at

c±(ε) = 1
2 (−1 ±

√
1 − ε2) < 0, (10)

which approach 0 and −1 as ε tends to 0.
We also change variables on the conjugation plane so that the map

ϕε(z) = ε

2
ϕ̃ε

(
2

ε
z

)
, (11)

where ϕ̃ε is given in (3), is now the linearizing map of Fα(ε),ε|C ε
2

. The map ϕε is

defined from the ring A(ε2/4Rε,Rε), with Rε := (ε/2)R̃ε, to the scaled Herman ring
Uε := ε/2 · Ũε (see Figure 3).

We will actually compare the scaled standard family, Fα(ε),ε(z), with the semistandard
map, G(z). The qualitative and quantitative relationship between these maps will be
explained by the surgery construction in the next section.

Remark 3.1. At this point, after scaling, Theorem A is equivalent to proving that

Rε = R0 + O(ε log ε), (12)

where R0 is the conformal radius of the Siegel disk U of the semistandard map G(z) =
zeiωez (see (5)). In particular, this result implies that Rε is a continuous function at ε = 0.

Note that (12) means that Yoccoz’s estimate (9) can be improved for the standard
family by observing that R̃ε = (σ (ε)/ε)K(ε), with K(ε) = R0 + O(ε log ε) and, hence,
K(ε) → R0 as ε → 0.
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FIGURE 3. Scaling the dynamical plane and the linearizing plane.

4. Proof of Theorem A
The proof of Theorem A is based on an explicit (quantitative) version of the (qualitative)
surgery construction [G] that relates a member of the (non-scaled) complex standard family
F̃α(ε),ε, with the semistandard map G. First, in §4.1 we explain Geyer’s construction,
slightly modified and adapted to the scaled map Fα(ε),ε. In §4.2 we re-formulate
Theorem A in terms of the previous surgery construction. Section 4.3 gives an explicit
version of Geyer’s construction, which allows us to obtain the quantitative results. In §4.4
we obtain Theorem A as an easy consequence of Proposition B and the results of §4.3.
Finally, §5 contains the proof of Proposition B.

4.1. Surgery construction. The idea of Geyer’s construction to relate Fα(ε),ε to G is
basically to ‘fill up the hole’ of the Herman ring Uε in order to transform the Herman ring
into a ‘Siegel disk’. For our purposes, ‘the hole’ is the disk of radius ε/2 (denoted by Dε/2),
given the fact that its boundary is simpler than the boundary of Uε and that it is invariant
under the map. This can be accomplished by defining a new map Hε which consists of the
old one Fα(ε),ε everywhere outside Dε/2, and a suitable quasiconformal map conjugate to
a rotation of angle ω inside this disk.

Due to the fact that the behaviour of the scaled standard map and the semistandard
map at ∞ are the same, the map Hε thus obtained is then ‘morally’ equivalent (in the
dynamical sense) to the semistandard map. However, the map Hε constructed in this way
will be quasiregular, but not holomorphic. We shall make it holomorphic by means of the
measurable Riemann mapping theorem (see Theorem 2.12), as explained in Remark 2.13.
So, we construct a Beltrami coefficient µε, invariant by Hε, and by the integration of µε
we will obtain a quasiconformal map hε such that hε ◦Hε ◦h−1

ε is holomorphic and has the
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same dynamics as Hε (holomorphic smoothing). By choosing Hε appropriately, we prove
that this new map is the semistandard mapG.

We now proceed to make this construction precise. To define a rotation inside the small
disk Dε/2, we first choose a ‘gluing’ mapψε . Letψε : Dε/2 → Dε/2 be any quasiconformal
map that agrees with ϕε on the boundary (i.e. ψε|Cε/2 = ϕε) and sends 0 to 0. Since ϕε is a
real analytic map, the existence of ψε is guaranteed (see [Pom]). Then we define the new
map Hε as

Hε =
{
Fα(ε),ε on C \ Dε/2

ψε ◦ Rω ◦ ψ−1
ε on Dε/2

(see Figure 4).
By the choice of ψε , the map Hε is continuous and quasiregular. By construction,

it has a fixed point at z = 0, and it is conjugate to a rotation of angle ω on the set
(topological disk) Dε/2 ∪ Uε by means of the conjugacy maps ϕε and ψε , which match
up continuously. Last, we note thatHε has only one critical point: the former critical point
c−(ε) of Fα(ε),ε (given in (10)) which was outside Dε/2, since the symmetric one c+(ε)
has been annihilated.

To start the second part of the surgery construction (holomorphic smoothing) we define
the Beltrami coefficient µε on C as follows. First we define it on the surgery region by
pulling back µ0 = 0 to Dε/2 by means of ψ−1

ε . We extend this almost complex structure
to every preimage of Dε/2 usingHε (or equivalently Fα(ε),ε, as both maps coincide outside
of Dε/2); and finally we set µε = 0 at the remaining points. That is,

µε =


(ψ−1

ε )∗(0) on Dε/2

(Hn
ε )

∗(µε) on H−n
ε (Dε/2), if n ≥ 1

0 on C

∖⋃
n≥0

H−n
ε (Dε/2),

whereH−n
ε (Dε/2) should be understood as the set of points whose nth iterate falls (for the

first time) in Dε/2. Note that with this definition and using thatHε(Uε \Dε/2) = Uε \Dε/2,
we have that the points in Uε \ Dε/2 (and all their preimages) satisfy µε(z) = 0.
By construction, we have that µε is measurable and invariant under the pull-back by Hε,
for it is spread out by the dynamics.

Remark 4.1. Since ψε is kε-quasiconformal in Dε/2, for some 0 < kε < 1, then µε has
maximal dilatation ‖µε‖Dε/2 = ‖µ

ψ−1
ε

‖Dε/2 = ‖µψε‖Dε/2 ≤ kε < 1, and also in the
remainder of the plane since it is pulled-back by a holomorphic map (see Remark 2.9).

Therefore, we may apply the measurable Riemann mapping theorem (see
Theorem 2.12) to µ̃ε(z) := µε(c−(ε)z), obtaining a (unique) quasiconformal mapping
h̃ε : C → C which integrates µ̃ε , that is µh̃ε = µ̃ε , and such that h̃ε(0) = 0 and

h̃ε(1) = 1. Now, we define hε(z) = −h̃ε(z/c−(ε)). We note that hε integrates µε and
verifies hε(0) = 0 and hε(c−(ε)) = −1.

Remark 4.2. As µε = 0 in Uε \ Dε/2, we have from the Beltrami equation (7) that hε is
holomorphic in this region.
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FIGURE 4. Commutative diagram showing all maps involved in the surgery construction.
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As explained in Remark 2.13, the composition map

Gε := hε ◦Hε ◦ h−1
ε

is not only quasiconformally conjugate to Hε but also holomorphic in C. Moreover, if
‖µε‖ < 1

3 , then we have that this map does not depend on the parameter ε as shown in the
following proposition.

PROPOSITION 4.3. With the previous notations, if ‖µε‖ < 1
3 , then for all z ∈ C

Gε(z) = G(z) = zeiωez.

The proof of this proposition is similar to an analogous result for Geyer’s construction
in [G]. However, for the sake of completeness, we include here a proof adapted to our
context. The key tool in the proof is an estimate on the growth of a quasiconformal map
at ∞. This estimate is a consequence of the following basic property of quasiconformal
maps.

THEOREM 4.4. [Ah, p. 71] A k-quasiconformal mapping in a domain U ⊂ C is uniformly
Hölder continuous with exponent (1 − k)/(1 + k) in every compact subset of U .

This result implies the desired bound for a quasiconformal map at ∞.

LEMMA 4.5. Let φ be a k-quasiconformal mapping of C, fixing 0 and ∞. Then there
exists C > 0 such that for any |z| � 1 we have |φ(z)| ≤ C|z|(1+k)/(1−k).

Proof. We set h = φ−1 and g(z) = 1/h(1/z). It is easy to check that g is
k-quasiconformal, with g(0) = 0 and g(∞) = ∞. Applying Theorem 4.4 we have
that there exists a constantm > 0 such that

|g(z1)− g(z2)| ≤ m|z1 − z2|(1−k)/(1+k), if |z1|, |z2| ≤ 1.

We take z1 = z and z2 = 0, and we replace z = 1/φ(w) to obtain the desired bound:

|φ(w)| ≤ C|w|(1+k)/(1−k),

with C = m(1+k)/(1−k). However, this estimate holds provided that |φ(w)| ≥ 1.
As {w ∈ C : |φ(w)| ≤ 1} is a compact set, we can assure that |φ(w)| ≥ 1 if |w| � 1. �

Proof of Proposition 4.3. By construction, we know the following properties of Gε:
(a) Gε is entire;
(b) Gε(z) = 0 if and only if z = 0;
(c) Gε has a Siegel disk hε(Dε/2 ∪Uε) around z = 0, with rotation number θ , and hence

G′
ε(0) = eiω; and

(d) G′
ε(−1) = 0 becauseGε is not univalent (it has degree two) around −1.

Combining the first two properties of Gε , we have that

Gε(z) = zgε(z),

with gε entire and without zeros. Now, we can estimate the growth order of gε . To this
end, we use that if z ∈ C \ Dε/2, then

Hε(z) = Fα(ε),ε(z) = zeiα(ε)ez−ε2/4z.
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So, we have that if |z| � 1, then

Gε(z) = hε(h
−1
ε (z)eiα(ε)eh

−1
ε (z)−ε2/4h−1

ε (z)).

From Lemma 4.5 we have that if |z| � 1 there exists some constant C > 0 such that
|hε(z)| ≤ C|z|Kε , where Kε = (1 + ‖µε‖)/(1 − ‖µε‖). For the other values of z the map
hε is bounded. This is also true for h−1

ε , and both facts can be summarized by saying that
there exists M > 0, which depends only on ε, such that

|hε(z)| ≤ M max{|z|Kε, 1}, |h−1
ε (z)| ≤ M max{|z|Kε, 1}.

Moreover, we may also ask that |h−1
ε (z)| ≥ 1 if |z| � 1, obtaining

|Gε(z)| ≤ m1|z|K2
ε em2|z|Kε ,

where m1 and m2 may depend on ε (of course, the condition |z| � 1 is not necessarily
uniform on ε). As we are assuming ‖µε‖ < 1/3, we have that 1 ≤ Kε < 2, and so we
deduce that gε has growth order controlled by

|gε(z)| ≤ e|z|p , if |z| � 1,

with 1 ≤ p < 2. The known properties of gε(z) (entire function without zeros and with
exponential growth of order 1 ≤ p < 2) imply that it is of the form

gε(z) = ePε(z),

(see [D]) with Pε(z) a polynomial of degree not greater than 1. Now, the proposition
follows from the remaining properties. �

Remark 4.6. Assuming that ‖µε‖ < 1
3 , we have just proved thatG = hε ◦Hε ◦h−1

ε , and so
Hε andG are conjugated by hε . Then, as the invariant curves are preserved by conjugation,
we have that the rotation domain Dε/2 ∪Uε ofHε is mapped by hε to the Siegel disk U of
G (see (5)). That is

U = hε(Dε/2 ∪ Uε).
This concludes the surgery construction relating the (scaled) standard map Fα(ε),ε and

the semistandard map G. In the following section we see which quantities we need to
estimate in order to obtain quantitative information from the surgery we just performed.

4.2. Restatement of the problem. Using the same notation as §4.1 and assuming ‖µε‖
< 1

3 , we observe (see Figure 4) that the map defined as

φε(z) =
{
(hε ◦ ϕε)(z) if z ∈ DRε \ Dε/2

(hε ◦ ψε)(z) if z ∈ Dε/2

is holomorphic in DRε . From Remark 4.2, this assertion is obviously true in DRε \ Dε/2.
To prove the analyticity of φε in Dε/2, we can check that φ∗

εµ0 = µ0 (see Remark 2.10),
which follows from the fact that µε = (ψ−1)∗µ0 in Dε/2.

By construction, φε conjugates the semistandard map G on the Siegel disk U =
hε(Dε/2 ∪ Uε) to the rotation Rω on DRε .
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However, we cannot be sure that the map φε is the normalized linearizing map ϕ of G
(see (5)), since, among other reasons, we expect the radius Rε to move with ε while G,
U and R0 do not. This is equivalent to saying that φ′

ε(0) �= 1. Then, to recuperate the
(normalized) linearizing map ϕ, let us define

b(ε) = φ′
ε(0),

and so by the preceding argument,

ϕ(z) = φε

(
z

b(ε)

)
,

given that φε(z/b(ε)) satisfies both normalization conditions (ϕ(0) = 0, ϕ′(0) = 1)
(see Figure 4).

From here, it is clear that Rε = R0/|b(ε)|, so that to relate R0 and Rε we need to have
control over b(ε), i.e. over (hε ◦ ψε)′(0).
Remark 4.7. Let us observe that (hε ◦ ψε)

′(0) does not depend on the particular
quasiconformal map ψε used in the surgery construction (which is of course not unique).
This allows us to compute this derivative by explicitly constructing a convenientψε .

From the previous observations, Theorem A follows immediately from the next
proposition.

PROPOSITION 4.8. With the previous notation, we have

b(ε) = (hε ◦ ψε)′(0) = 1 + O(ε log ε).

To prove Proposition 4.8, we study the quantity

d

dz
(hε ◦ ψε(z)− z)|z=0

by means of the Cauchy integral formula. This will be done in §4.4. The estimates we use
come from studying the quantities |ψε(z)− z| and |hε(z)− z| or, equivalently, how far the
maps ψε and hε are from the identity map in a neighborhood of zero.

To obtain such an estimate for ψε we construct ψε explicitly in §4.3. The estimate for
hε is a direct application of Proposition B.

4.3. Explicit surgery construction. The main purpose of this section is to explicitly
construct the quasiconformal extension ψε used in the surgery construction of §4.1, and to
give the explicit estimates that measure how far ψε is from the identity map.

Let us recall that we have a circle of radius ε/2 on which the real analytic (scaled)
conjugacy ϕε is defined. Our goal is to find a quasi-conformal map ψε : Dε/2 → Dε/2 that
extends ϕε.

We define the ‘gluing map’ ψε to be the most natural extension: the radial one.
More explicitly, given z ∈ Dε/2 we define

ψε(z) = 2

ε
|z|ϕε

(
ε

2

z

|z|
)
. (13)
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This map is clearly continuous, it agrees with ϕε on the boundary of Dε/2 and sends 0 to 0.
We also observe that it leaves all circles in Dε/2 invariant. In Proposition 4.9 below, we
prove that ψε is a quasiconformal mapping if ε is small enough (even more, it is C∞ at
all points except at z = 0). Moreover, this result shows that for small values of ε we have
‖µε‖ < 1

3 (this condition is needed to show thatGε = G, as stated in Proposition 4.3), and
so all the results derived from the quasiconformal construction (see §§4.1 and 4.2) hold.

Our goal in the remainder of this section is to prove the following result.

PROPOSITION 4.9. There exists a constant C1 > 0, independent of ε, such that for any ε
small enough, ψε is a (C1ε)-quasiconformal mapping in Dε/2, and it verifies

|ψε(z)− z| ≤ C1ε|z|. (14)

Remark 4.10. One could also use an alternative, more dynamically meaningful, quasi-
conformal extension of ϕε given by ψε(z) = ϕ2|z|(z). In this case, the map Hε would
be explicitly given by Hε(z) = Fα(2|z|),2|z|(z) = zeiα(2|z|)ez−z on Dε/2. This extension
also preserves circles in Dε/2 and, on each of these circles, it is the linearizing map of a
scaled standard map. In this case, one can show that |ψε(z)− z| ≤ C1|z|2.

The proof of this proposition will be an easy consequence of the following lemma.

LEMMA 4.11. The linearization ϕε (see (11)) of the scaled standard map Fα(ε),ε(z) =
zeiα(ε)ez−ε2/4z, verifies the following bounds if ε is small enough and |z| = ε/2:

|ϕε(z)− z| ≤ C2ε
2, |ϕ′

ε(z)− 1| ≤ C2ε, (15)

where C2 is a constant independent of ε.

The proof of Lemma 4.11 is deferred to the end of the section.

Proof of Proposition 4.9. First of all, we stress that the estimates given by Lemma 4.11 are
only valid if we evaluate ϕε(z) for |z| = ε/2. From the definition of ψε(z) (see (13)) this
is precisely the case which we are interested in.

Let us see that ψε is a quasiconformal mapping, and obtain a bound for its distortion.
In Dε/2 we have

∂ψε

∂z
(z) = 1

2
ϕ′
ε

(
ε

2

z

|z|
)

+ 1

ε

z̄

|z|ϕε
(
ε

2

z

|z|
)
,

and
∂ψε

∂z̄
(z) = −1

2

z2

|z|2ϕ
′
ε

(
ε

2

z

|z|
)

+ 1

ε

z

|z|ϕε
(
ε

2

z

|z|
)
.

Then, applying Lemma 4.11, we can bound∣∣∣∣∂ψε∂z (z)− 1

∣∣∣∣ =
∣∣∣∣12
(
ϕ′
ε

(
ε

2

z

|z|
)

− 1

)
+ 1

ε

z̄

|z|
(
ϕε

(
ε

2

z

|z|
)

− ε

2

z

|z|
)∣∣∣∣

≤ 1

2
C2ε + 1

ε
C2ε

2 ≤ 3

2
C2ε,
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and ∣∣∣∣∂ψε∂z̄ (z)
∣∣∣∣ =

∣∣∣∣∣−1

2

z2

|z|2
(
ϕ′
ε

(
ε

2

z

|z|
)

− 1

)
+ 1

ε

z

|z|
(
ϕε

(
ε

2

z

|z|
)

− ε

2

z

|z|
)∣∣∣∣∣

≤ 1

2
C2ε + 1

ε
C2ε

2 ≤ 3

2
C2ε.

So, if we assume ε to be small enough in order to have that 3
2C2ε ≤ 1

2 , we can bound the
distortion of ψε by ∣∣∣∣ (∂ψε/∂z̄)(z)(∂ψε)/(∂z)(z)

∣∣∣∣ ≤ (3/2)C2ε

1 − (3/2)C2ε
≤ 3C2ε.

Hence, ψε is a (C1ε)-quasiconformal mapping with C1 = 3C2.
In order to estimate how far ψε is from the identity map, we apply the first inequality

of (15) (see Lemma 4.11), obtaining

|ψε(z)− z| =
∣∣∣∣2ε |z|

(
ϕε

(
ε

2

z

|z|
)

− ε

2

z

|z|
)∣∣∣∣ ≤ 2

ε
|z|C2ε

2 ≤ C1ε|z|
which concludes the proof. �

The rest of the section is dedicated to proving Lemma 4.11. For this purpose, we
will need a diophantine-like bound for Brjuno numbers that is weaker than the Brjuno
condition. More precisely, if θ is a Brjuno number, there exist constants c1, c2, depending
only on θ , such that for any k ∈ Z \ {0}, the following inequality is satisfied (see [Br1,
p. 140]):

|e2πikθ − 1|−1 ≤ c1e
2πc2|k| (16)

this inequality leads to the following lemma.

LEMMA 4.12. Let m(x) be a 1-periodic function with zero average, and θ ∈ R be a
Brjuno number, hence verifying (16). We assume thatm is analytic in the complex annulus
Ac3 = {x ∈ C/Z : |Im(x)| < c3}, being c3 > c2, and that B = supx∈Ac3

|m(x)| < +∞.
Consider the 1-periodic solution ξ(x) of the difference equation:

ξ(x + θ)− ξ(x) = m(x), ξ(0) = 0. (17)

Then, ξ is analytic in Ac3−c2 , and verifies

|ξ(x)| ≤ 4Bc1
e−2π(c3−c2−|Im(x)|)

1 − e−2π(c3−c2−|Im(x)|) , x ∈ Ac3−c2 .

Proof. First, we expandm in Fourier series:

m(x) =
∑
k∈Z

mke
2πikx.

Then, using the bound of |m| in the annulus Ac3 , and that it has zero average, one has
that its Fourier coefficients verify m0 = 0 and |mk| ≤ Be−2πc3|k| if k �= 0. On the other
hand, writing ξ also in Fourier series, we can solve (17) for the coefficients of ξ , obtaining

ξk = mk

e2πikθ − 1
, if k �= 0.

Moreover, condition ξ(0) = 0 gives ξ0 = −∑k∈Z\{0} ξk .
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Using (16) we obtain that

|ξk| ≤ c1|mk|e2πc2|k| ≤ Bc1e
−2π(c3−c2)|k|, if k �= 0,

and, for ξ0,

|ξ0| ≤
∑

k∈Z\{0}
|ξk| ≤ 2Bc1

e−2π(c3−c2)

1 − e−2π(c3−c2)
.

Joining these bounds, the estimate for |ξ(x)| in Ac3−c2 follows immediately. �

Now, we have all the ingredients to prove Lemma 4.11.

Proof of Lemma 4.11. To obtain the estimates for this lemma, it will be more convenient
for us to work with the map on the circle induced by the scaled standard map, that is
the Arnold standard family (1). To this end, we make the transformations we have done
backwards in order to go from f̃α(ε),ε(x) = x + α(ε)/2π + (ε/2π) sin(2πx) to Fα(ε),ε(z).
Then, if we make the change z = (ε/2)u, we have ϕ̃ε(u) = (2/ε)ϕε((ε/2)u), where ϕ̃ε
is the linearization of the standard map F̃α(ε),ε given in (3). On the other hand, writing
u = e2πix we have ϕ̃ε(e2πix) = e2πiη̃ε(x), η̃ε being a conjugation of f̃α(ε),ε to the rotation
Tθ in T1 (see (2)).

Then, we obtain that

ϕε(z)− z = ε

2
(ϕ̃ε(u)− u) = ε

2
(e2πiη̃ε(x) − e2πix) = z(e2πi(̃ηε(x)−x) − 1). (18)

Our purpose is to bound η̃ε(x) − x using the local conjugacy Theorem 2.1, and to derive
from these bounds those for ϕε(z)− z and its derivative.

First of all, we observe that f̃α(ε),ε(x) is univalent in the annulus A(1/2π) log(σ (ε)/ε),
where σ(ε) = 1 + √

1 − ε2 is defined in (9).
In order to apply Theorem 2.1, let us observe that, if ε is small enough, we have that

(1/2π) log(σ (ε)/ε) > (1/2π)
(θ)+C0. Thus, Theorem 2.1 ensures that η̃ε(x) is analytic
if

|Im(x)| < 1

2π
log(σ (ε)/ε)− 1

2π

(θ)− C0.

In particular, if we take any constant 0 < c4 ≤ σ(ε)/e
(θ)+2πC0, the linearization η̃ is
defined in A(1/2π) log(c4/ε) and its range is contained in A(1/2π) log(σ (ε)/ε). Moreover, in
this domain it verifies f̃α(ε),ε ◦ η̃ε = η̃ε ◦ Tθ .

Now, calling ξ(x) = η̃ε(x)− x, it is straightforward to check that

ξ(x + θ)− ξ(x) = m(x),

where m(x) = f̃α(ε),ε(̃ηε(x)) − η̃ε(x) − θ . Then, ξ(x) verifies the hypotheses of
Lemma 4.12 if we define c3 ≡ c3(ε) = (1/2π) log(c4/ε) and we take B a bound of
|f̃α(ε),ε(x) − x| in the domain A(1/2π) log(σ (ε)/ε), which can be taken independent of ε.
We remark that as c3 = (1/2π) log(c4/ε), the hypothesis c3 > c2 of Lemma 4.12 always
holds if we assume ε < c4e

−2πc2 .
Applying the conclusions of Lemma 4.12, we obtain the following bound for the

function ξ(x) when |Im(x)| ≤ c3 − c2 = (1/2π) log(c4/ε)− c2,

|ξ(x)| ≤ 4Bc1
e−(log(c4/ε)−2π(c2+|Im(x)|))

1 − e−(log(c4/ε)−2π(c2+|Im(x)|)) = 4Bc1ε

c4e−2π(c2+|Im(x)|) − ε
.
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Let us now take c5 any constant, independent of ε, verifying 0 < c5 <

(1/2π) log(c4/2ε) − c2. We observe that c5 can be taken arbitrarily large, provided that
ε is sufficiently small and that, with this definition of c5, we always have the inequality
ε ≤ (c4/2)e−2π(c2+c5).

Then, the previous considerations imply that the function η̃ε(x)− x = ξ(x) is defined
in Ac5 and verifies, in this domain, the bound

|̃ηε(x)− x| ≤ 4Bc1ε

c4e−2π(c2+c5) − ε
≤ 8Bc1e

2π(c2+c5)

c4
ε. (19)

Using the changes u = e2πix and z = (ε/2)u, we have that if x ∈ Ac5 then u ∈
A(e−2πc5, e2πc5) and z ∈ A((ε/2)e−2πc5, (ε/2)e2πc5) (see (4)). Now, we assume ε small
enough such that (8Bc1e

2π(c2+c5)/c4)ε ≤ 1. So, Equation (19) implies |̃ηε(x) − x| ≤ 1.
Then, for these values of z, inequality (18) leads to

|ϕε(z)− z| ≤ |z|e2π |̃ηε(x)−x||̃ηε(x)− x| ≤ 16πBc1e
2π(c2+c5+1)

c4
ε|z|. (20)

So, the first bound in (15) follows from (20) as a particular case when |z| = ε/2, taking
C2 ≥ 8πBc1e

2π(c2+c5+1)/c4.

Using the bound of the function ϕε(z) − z in the ring A((ε/2)e−2πc5, (ε/2)e2πc5), we
proceed to bound its derivative for |z| = ε/2. To this end, we pick a particular value
of z and we consider the disk of center z and radius r = (ε/2)(1 − e−2πc5), which we
denote by Cr (z). One can easily check that if we take a point t ∈ Cr (z), then t belongs to
A((ε/2)e−2πc5, (ε/2)e2πc5) and then |ϕε(t)− t| verifies (20) with z ≡ t .

Then, we can bound the derivative of ϕε(z) − z using the Cauchy integral formula.
We have

ϕ′
ε(z)− 1 = d

dt
(ϕε(t)− t)|t=z = 1

2πi

∫
Cr (z)

ϕε(t)− t

(t − z)2
dt.

In order to bound the integral above, we may apply inequality (20) to any t ∈ Cr (z),
obtaining

|ϕ′
ε(z)− 1| ≤ 1

r
max
t∈Cr (z)

|ϕε(t)− t| ≤ 1

r
max
t∈Cr (z)

{
16πBc1e

2π(c2+c5+1)

c4
ε|t|

}

≤ 2 − e−2πc5

1 − e−2πc5

16πBc1e
2π(c2+c5+1)

c4
ε,

which gives the second part of (15) taking C2 ≥ (2 − e−2πc5)/(1 − e−2πc5)

(16πBc1e
2π(c2+c5+1)/c4). �

4.4. Proof of Theorem A. From the restatement of the problem in §4.1, we only need to
prove Proposition 4.8 in order to prove Theorem A.
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Proof of Proposition 4.8. As we know that hε ◦ψε is holomorphic, we can express b(ε)−1
in terms of the Cauchy integral formula:

b(ε)− 1 = d

dz
(hε ◦ ψε(z)− z)|z=0

= 1

2πi

∫
Cr

hε ◦ ψε(z)− z

z2 dz

= 1

2πi

∫
Cr

hε ◦ ψε(z)− ψε(z)

z2
dz+ 1

2πi

∫
Cr

ψε(z)− z

z2
dz,

where Cr is any circle contained in Dε/2. From now on we take r = ε/2.
We can bound the second integral by using inequality (14) of Proposition 4.9, obtaining∣∣∣∣∣ 1

2πi

∫
Cε/2

ψε(z)− z

z2 dz

∣∣∣∣∣ ≤ 2

ε
sup
z∈Cε/2

{|ψε(z)− z|} ≤ C1ε.

For the first integral, we use that |ψε(z)| = |z| if |z| ≤ ε/2 (see (13)), and so∣∣∣∣∣ 1

2πi

∫
Cε/2

hε ◦ ψε(z)− ψε(z)

z2
dz

∣∣∣∣∣ ≤ 2

ε
sup
z∈Cε/2

{|hε(z)− z|}.

In order to bound hε(z) − z, we first recall that ψε(z) is (C1ε)-quasiconformal (see
Proposition 4.9). Hence, the maximal dilatation ofµε is bounded by the same constant, that
is ‖µε‖ ≤ C1ε. Now, we want to apply Proposition B. However, we cannot do it directly
because hε has been constructed in such a way that hε(0) = 0 and hε(c−(ε)) = −1, where
c−(ε) = (−1−√

1 − ε2)/2 is the critical point of Fα(ε),ε given in (10). We can arrange hε
to apply Proposition B simply by defining h̃ε(z) = −hε(c−(ε)z). We observe that h̃ε is a
quasiconformal map of C, solving the Beltrami equation (7) with the Beltrami coefficient
µ̃ε(z) = µh̃ε (z) = µε(c−(ε)z) and verifies h̃ε(0) = 0 and h̃ε(1) = 1. Then, if we assume
that ε is small enough such that ‖µ̃ε‖ = ‖µε‖ ≤ C1ε ≤ ρ, we can apply Proposition B to
µ̃ε, obtaining that if |z| ≤ ρ and ‖µ̃ε‖|log |z|| ≤ C1ε|log |z|| ≤ ρ, then

|̃hε(z)− z| ≤ C‖µ̃ε‖|z||log |z|| ≤ CC1ε|z||log |z||. (21)

Taking into account that |1/c−(ε)+ 1| ≤ ε2, we have that if |z| = ε/2 with ε small, then∣∣∣∣ z

c−(ε)

∣∣∣∣ ≤ ε

2
(1 + ε2) ≤ ρ, ‖µε‖

∣∣∣∣log

∣∣∣∣ z

c−(ε)

∣∣∣∣∣∣∣∣ ≤ C1ε

∣∣∣log
(ε

2
(1 + ε2)

)∣∣∣ ≤ ρ.

So, we can apply formula (21) to z/c−(ε), obtaining

|hε(z)− z| =
∣∣∣∣̃hε ( z

c−(ε)

)
+ z

∣∣∣∣ ≤
∣∣∣∣̃hε ( z

c−(ε)

)
− z

c−(ε)

∣∣∣∣+ |z|
∣∣∣∣1 + 1

c−(ε)

∣∣∣∣
≤ CC1ε

∣∣∣∣ z

c−(ε)

∣∣∣∣ log

(∣∣∣∣ z

c−(ε)

∣∣∣∣)+ |z|ε2 ≤ C′ε2|log ε|,
with C′ depending on C and C1. As a consequence of this, we can bound∣∣∣∣∣ 1

2πi

∫
Cε/2

hε ◦ ψε(z)− ψε(z)

z2
dz

∣∣∣∣∣ ≤ 2C′ε|log ε|,

obtaining b(ε) = 1 + O(ε|log ε|), and therefore ending the proof of Proposition 4.8. �

This concludes the proof of Theorem A, up to proving Proposition B.
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5. Proof of Proposition B
Our goal in this section is to prove Proposition B.

5.1. Proof of Proposition B(a). For the sake of completeness, we give here a proof of
this result. A different proof can be found, for instance, in [Mar].

Let us consider the following one-parameter family of Beltrami coefficients

µt = t
µ

‖µ‖ ,
where t ∈ D. As ‖µt‖ = |t| < 1 for all t ∈ D, we can apply Theorem 2.12 and obtain
a one-parameter family of integrating maps ht : C → C fixing 0 and 1, and such that
∂ht/∂z = µt (∂ht/∂z). Moreover, ht (z) depends analytically on t . Observe that, as µt = 0
if t = 0 and µt = µ if t = ‖µ‖, we have that h0 = Id and h‖µ‖ = h.

Now, let z ∈ C \ {0, 1} fixed, and consider the holomorphic map

fz : D −→ C \ {0, 1}
t �−→ ht (z).

Since both D and C\{0, 1} are hyperbolic sets, we conclude from the Schwarz–Pick lemma
(see Theorem 2.23) that fz is a contraction in the Poincaré metrics, that is

δC\{0,1}(ht1(z), ht2(z)) ≤ δD(t1, t2)

for all t1, t2 ∈ D. If we take t1 = 0 and t2 = ‖µ‖, the statement follows.

5.2. Proof of Proposition B(b). The second part of Proposition B will be deduced from
the first one by comparing the Euclidean distance between points close to 0, with the
hyperbolic distance in C \ {0, 1}, and using the explicit formula for δD(0, ‖µ‖) given in
Proposition 2.18. We note that it is not easy to work directly with δC\{0,1}, since there
is no explicit formula for this hyperbolic distance. However, as stated in the following
proposition, δC\{0,1} is comparable—close to the origin—to δD∗ , for which we have an
explicit expression (see Proposition 2.22).

PROPOSITION 5.1. There exist constants 0 < c < 1/2, M > 0 and σ > 0 such that:
(a) for all z1, z2 ∈ D∗

c = Dc \ {0}
1 ≤ δD∗(z1, z2)

δC\{0,1}(z1, z2)
≤ 1 +M;

(b) if z1, z2 ∈ D∗, with |z1| ≤ c/2 and δC\{0,1}(z1, z2) ≤ σ , then |z2| ≤ c.

The comparison between the Euclidean distance and δD∗ is given by the following
lemma.

LEMMA 5.2. Let z1, z2 ∈ D∗ satisfying

|log |z1||δD∗(z1, z2) ≤ 1√
2
, δD∗(z1, z2) ≤ 2 log(1 + √

2),

then:

|z1 − z2| ≤
√

2√
2 − 1

|z1||log |z1||δD∗(z1, z2).
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Remark 5.3. We point out that Proposition B(a) only provides information about
δC\{0,1}(z, h(z)) and thus on δD∗(z, h(z)) (after using Proposition 5.1). This is the reason
for which the hypotheses of Lemma 5.2 are formulated in terms of the hyperbolic distance.
If, for instance, a priori estimates on |z1 − z2|/|z1| were known, then the statement (and
the proof) of the lemma could be simplified.

The proofs of Proposition 5.1 and Lemma 5.2 are postponed to the following section.
Now, we prove the second part of Proposition B.

The key point to proving (b) is the estimate provided by (a):

δC\{0,1}(z, h(z)) ≤ δD(0, ‖µ‖). (22)

Using this inequality, we check that the desired result follows by taking

ρ = min

{
σ

4
,
c

2
,

√
2

8(1 +M)

}
,

where 0 < c < 1
2 , M > 0 and σ > 0 are the constants provided by Proposition 5.1.

First of all, by Proposition 2.18 we have

δD(0, ‖µ‖) = log

(
1 + ‖µ‖
1 − ‖µ‖

)
.

Now, as we are assuming ‖µ‖ ≤ ρ, we have ‖µ‖ ≤ c/2 < 1
2 . So, applying the mean value

theorem to the logarithm, we deduce that δD(0, ‖µ‖) ≤ 4‖µ‖.
As we also suppose ‖µ‖ ≤ σ/4, the previous inequality on δD(0, ‖µ‖) jointly with (22)

implies that δC\{0,1}(z, h(z)) ≤ σ . Then, from Proposition 5.1(b) we deduce that if
|z| ≤ c/2, then |h(z)| ≤ c. This a priori estimate on the size of h(z) allows us to apply
Proposition 5.1(a), obtaining

δD∗(z, h(z)) ≤ (1 +M)δC\{0,1}(z, h(z)) ≤ 4(1 +M)‖µ‖.
Finally, if we combine this last inequality with the hypotheses ‖µ‖ ≤ ρ and ‖µ‖|log |z|| ≤
ρ, we obtain

δD∗(z, h(z))|log |z|| ≤ 4(1 +M)‖µ‖|log |z|| ≤ 4(1 +M)ρ ≤ 1√
2
,

and

δD∗(z, h(z)) ≤ 4(1 +M)‖µ‖ ≤ 4(1 +M)ρ ≤
√

2

2
≤ 2 log(1 + √

2).

Thus, the hypotheses of Lemma 5.2 are verified for z1 = z and z2 = h(z), giving

|h(z)− z| ≤
√

2√
2 − 1

|z||log |z||δD∗(z, h(z))

≤ 4
√

2(1 +M)√
2 − 1

‖µ‖|z||log |z|| ≡ C‖µ‖|z||log |z||.
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FIGURE 5. The graph of coth(d/2) or equivalently (ed + 1)/(ed − 1).

5.3. Proof of Proposition 5.1 and Lemma 5.2. We recall that Ahlfors’ lemma (see
Proposition 2.24) provides a way to compare the line elements corresponding to the
hyperbolic distances when U = D∗ and V = C \ {0, 1}. To prove Proposition 5.1, we
have to obtain a similar comparison result for the hyperbolic distances between two points.
In addition to Ahlfors’ lemma we need the following result, whose proof is postponed to
the end of this section.

LEMMA 5.4. There exists a constant 0 < κ < 1 and a topological closed disk D,
0 ∈ D ⊂ D1−κ , such that if z1, z2 ∈ D∗ = D \ {0}, then the geodesic (with respect
to λC\{0,1}) that joins z1 and z2 is entirely contained in D.

Proof of Proposition 5.1. During the proof, let us set U = D∗ and V = C \ {0, 1}.
(a) The left-hand inequality follows from its analogue in Proposition 2.24. Indeed, let

γ ⊂ U be a path joining z1 and z2. Since U ⊂ V , we have

lU (γ ) =
∫ b

a

λU (γ (t))|γ ′(t)| dt ≥
∫ b

a

λV (γ (t))|γ ′(t)| dt = lV (γ ) ≥ δV (z1, z2).

As this holds for any γ , we obtain δU (z1, z2) ≥ δV(z1, z2).
To prove the right-hand inequality we need to work a little harder. From Proposi-

tion 2.24 we only obtain, for any γ ⊂ U connecting z1 and z2,

lU (γ ) =
∫ b

a

λU (γ (t))|γ ′(t)| dt ≤
∫ b

a

coth

(
d(t)

2

)
λV (γ (t))|γ ′(t)| dt

≤ coth

(
dγ

2

)
lV (γ ) = Kγ lV (γ ), (23)

where we define d(t) = δV (γ (t), ∂U), dγ = mint∈[a,b] d(t) and Kγ = coth(dγ /2).
Note that if γ is a curve that comes very close to ∂U \ ∂V = C1 \ {1}, then dγ is

a constant very close to 0 and, consequently, Kγ is very close to infinity (see Figure 5).
Thus, to assert that Kγ is finite we need to have γ bounded away from the set C1 \ {1}.

Let 0 < c < 1
2 be a constant such that the disc Dc is contained in the topological disk

D, D ⊂ D1−κ , of Lemma 5.4. For any two points z1, z2 ∈ D∗
c it is not difficult to check,

by combining Proposition 2.19 with Proposition 2.22, that the D∗-geodesic path joining z1
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and z2 is entirely contained in a disk whose radius is the maximum of the moduli of z1

and z2, which is at most c. Consequently,

δU (z1, z2) = inf
γ⊂U

lU (γ ) = inf
γ⊂D∗

c

lU (γ ) = inf
γ⊂D∗

1−κ
lU (γ ),

where the infima are always taken on paths γ joining z1 and z2. Since for any γ ⊂ D∗
1−κ ,

the constant dγ is bounded away from zero and thereforeKγ ≤ 1+M for a certain constant
M = M(κ) > 0, Equation (23) reads

inf
γ⊂D∗

1−κ
lU (γ ) ≤ inf

γ⊂D∗
1−κ
Kγ lV (γ ) ≤ (1 +M) inf

γ⊂D∗
1−κ
lV (γ ).

To conclude the proof we observe that for any z1, z2 ∈ D∗
c , Lemma 5.4 guarantees that the

V-geodesic joining z1 and z2 is entirely contained in D ⊂ D1−κ . Then, this implies that

δU (z1, z2) = inf
γ⊂D∗

1−κ
lU (γ ) ≤ (1 +M) inf

γ⊂D∗
1−κ
lV (γ )

= (1 +M) inf
γ⊂V

lV (γ ) = (1 +M)δV (z1, z2).

(b) The geometrical definition of the Poincaré metric makes this result straightforward.
We just have to define

σ = inf|z1|=c|z2|=c/2
δV (z1, z2).

We stress that this proof is independent of the particular value of 0 < c < 1
2 provided

by (a). �

To conclude the first part of this section, we now prove Lemma 5.4.

Proof of Lemma 5.4. The key to proving this lemma lies on the understanding of how
geodesics in the thrice punctured sphere V = C \ {0, 1} look.

We first observe that the vertical line l going through the point 1
2 is a geodesic since

it is a line of symmetry in V . Two more geodesics can be obtained by considering the
Möbius transformations of C, g(z) = (az+ b)/(cz+ d), that map V onto itself (i.e. those
that permute 1,0 and ∞). These maps are isometries and hence they send geodesics to
geodesics. In particular, some of them map l to the unit circle and the others to the circle
centered at 1 with radius 1 (check this using, for instance, the transformations (z− 1)/z
and 1/(1 − z)) (see Figure 7 below).

This already states that if two points are in D∗, the geodesic path that joins them must
lie entirely in D∗. However, this is not enough for our purposes since we need to have a
domain D strictly contained in D∗ with the same property. Hence we need to understand
more about the other geodesics. This would be easy if we knew an explicit expression for
a universal covering of V , which could be used to transfer the geodesics of the covering
space, D or equivalently H, to the geodesics in V . However, such an expression does not
exist, although a universal coveringϕ : D → V can be obtained from the so-called modular
map, M : H → V . This map has been extensively studied and we refer the reader to [Be1]
or [C] for a detailed investigation of M. Here we only recall the main facts that lead us to
specifically prove Lemma 5.4.
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FIGURE 6. The region �.

Let � denote the modular group, i.e. the group of Möbius transformations such that
a, d ∈ 2Z + 1, b, c ∈ 2Z and ad − bc = 1. Then � is generated by the maps

u(z) = z+ 2, v(z) = z

2z+ 1
.

If we consider the region � in the upper half plane depicted in Figure 6, it can be shown
that u and v pair the sides of � and that the images of � by � tessellate H.

The modular map M : H → V is constructed as follows. Consider the open right-
half piece of �, or more precisely �0 = � ∩ {Re(z) > 0}, and choose a conformal map
M : �0 → H (whose existence follows from the Riemann mapping theorem). Then, M
extends to a homeomorphism between the boundaries of these domains and, by combining
it with an appropriate conformal automorphism of H, we may assume that M fixes 0, 1
and ∞. Hence, the positive imaginary axis is mapped to the interval (−∞, 0). By the
Schwarz reflection principle, we can extend M across this axis so that it maps the left part
of � to the lower half plane. So, we have that M (abusing notation again) conformally
maps� onto C\ [0,+∞). Using the transformations u and v we can analytically continue
M to the whole upper half plane, obtaining a holomorphic covering M : H → V . We can
show that M(z) = M(w) if and only if w = g(z) for some g ∈ �.

Now, let us see which geodesics in H correspond to those we know in V . Recall that
geodesics in H are either vertical lines or half circles perpendicular to the real axis (see
Proposition 2.19). It is not hard to check that the half circle going through −1, i and 1 is
mapped by M to the unit circle, while the vertical segments {± 1

2 + it : 1
2 ≤ t ≤ +∞} are

mapped to l (see Figure 7).

Note that in this setting, if we take γ a piece of H-geodesic joining two symmetric
points on the lower boundary of �, it would be mapped by M to a simple closed curve
inside D surrounding 0, M(γ ), which will be a V-geodesic. We defineD as the topological
disk bounded by the curve M(γ ). Thus, the V-geodesic path joining two points in D lies
entirely in D. Now, if we pick γ , for instance, the H-geodesic connecting 1

2 + i/2 and
− 1

2 + i/2 (see Figure 7), then the lemma is proved. �
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FIGURE 7. The map M : H→ V , some geodesics in V and the topological disk D.

The second part of this section is devoted to proving Lemma 5.2. The proof of this
lemma will need the following auxiliary results.

LEMMA 5.5. Given z1, z2 ∈ D∗, then we have:
(i) |log |z1| − log |z2||2 ≤ log |z1| log |z2| sinh2[δD∗(z1, z2)/2];
(ii) (arg(z1)− arg(z2))

2 ≤ log |z1| log |z2| sinh2[δD∗(z1, z2)/2];
(iii) |z1 − z2|2 ≤ 2(max{|z1|, |z2|})2 log |z1| log |z2| sinh2[δD∗(z1, z2)/2].
Proof. (i) and (ii) are immediate by applying the formula for δD∗(z1, z2) given in
Proposition 2.22, and using that

|log z1 − log z2|2 = |log |z1| − log |z2||2 + (arg(z1)− arg(z2))
2.

On the other hand, from the cosine rule, we can write

|z1 − z2|2 = |z1|2 + |z2|2 − 2 cos(arg(z1)− arg(z2))|z1||z2|
= (|z1| − |z2|)2 + 2(1 − cos(arg(z1)− arg(z2)))|z1||z2|.

Then, (iii) follows by combining this expression with (i) and (ii), the mean value theorem,

|log |z1| − log |z2|| = 1

ξ
||z1| − |z2||, ξ ∈ 〈|z1|, |z2|〉,

and the bound

1 − cos x ≤ x2

2
, x ∈ [−π, π]. �

The third part of Lemma 5.5 is very close to what it is stated in Lemma 5.2, but it is not
exactly what we need: we want a bound for |z1 − z2| depending just on z1 and δD∗(z1, z2).
This requires the following a priori estimate.

COROLLARY 5.6. Given z1, z2 ∈ D∗ such that δD∗(z1, z2) ≤ 2 log(1 + √
2), we have

|log |z2|| ≤ 3 + √
5

2
|log |z1||.
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Proof. If we set x = −log |z2| > 0 and d = δD∗(z1, z2), then from Lemma 5.5(i) we have
that

x2 + log |z1|
(

2 + sinh2
(
d

2

))
x + log2 |z1| ≤ 0. (24)

Thus, x− ≤ − log |z2| ≤ x+, where x± are, respectively, the two (positive) zeros for x of
the left-hand side of (24). This provides lower and upper bounds for − log |z2|, but we are
only interested in the upper one:

x+ = |log |z1||
2

(
2 + sinh2

(
d

2

)
+ sinh

(
d

2

)√
sinh2

(
d

2

)
+ 4

)
≤ 3 + √

5

2
|log |z1||,

where we have used that d ≤ 2 log(1 + √
2) implies sinh(d/2) ≤ 1. �

Proof of Lemma 5.2. In the proof we set d = δD∗(z1, z2). To prove this result we have to
deal with two different cases.

(i) If |z2| ≥ |z1|, then from Lemma 5.5(iii) we have

|z1 − z2| ≤ √
2|z2||log |z1|| sinh

(
d

2

)
.

From here, the expression below follows:

|z1 − z2|
(

1 − √
2|log |z1|| sinh

(
d

2

))
≤ √

2|z1||log |z1|| sinh

(
d

2

)
.

We point out that from the hypotheses on the statement we have that cosh(d/2) ≤ √
2.

Thus, using the mean value theorem we deduce

√
2|log |z1|| sinh

(
d

2

)
≤ √

2|log |z1|| cosh

(
d

2

)
d

2
≤ |log |z1||d ≤ 1√

2
.

From here, we obtain

|z1 − z2| ≤ 2√
2 − 1

|z1||log |z1|| sinh

(
d

2

)
.

(ii) If |z1| ≥ |z2|, again applying Lemma 5.5(iii) and Corollary 5.6, we obtain

|z1 − z2| ≤ √
2|z1||log |z2|| sinh

(
d

2

)
≤ 3 + √

5√
2

|z1||log |z1|| sinh

(
d

2

)
.

The proof ends by again applying the mean value theorem. �
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valuable discussions and suggestions. We also thank the anonymous referee for reading the
manuscript and making helpful comments. The authors have been partially supported by
the Catalan CIRIT grant 2001SGR-00070, Spanish DGES grant BFM2002-01344 (NF),
Spanish MCyT/FEDER grant BFM2003-9504 (NF and TMS), Spanish MCyT/FEDER
grant BFM2003-07521-C02-01 (JV), INTAS grant 2000-221 (TMS and JV), Catalan
grant 2002/XT/00094 and Spanish DGICYT grant BFM2001-5237-E.



Asymptotic size of Herman rings of the complex standard family 765

REFERENCES

[Ah] L. Ahlfors. Lectures on Quasiconformal Mappings (Wadsworth and Brooks/Cole Mathematics
Series). Wadsworth and Brooks/Cole, Advanced Books and Software, Monterey, CA, 1987.

[Ar] V. I. Arnold. Small denominators I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR Ser. Mat.
25 (1961), 21–86. (Engl. transl. Amer. Math. Soc. Trans. 46(2) (1965), 213–284.)

[Ba] I. N. Baker. Wandering domains for maps of the punctured plane. Ann. Acad. Sci. Fenn. Ser. A I
Math. 12 (1987), 191–198.

[Be1] A. F. Beardon. Iteration of rational functions. Complex Analytic Dynamical Systems (Graduate Texts
in Mathematics, 132). Springer, New York, 1991.

[Be2] A. F. Beardon. The Geometry of Discrete Groups (Graduate Texts in Mathematics, 91). Springer,
New York, 1983.

[Br1] A. D. Brjuno. Analytic form of differential equations (I). Trudy Moskov. Mat. Obšč. 25 (1971),
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