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Abstract
The aim of the present paper is to investigate the steady-state distribution of response and
waiting time in a finite-source M/M/1 retrial queuing system with collision of customers
where the server is subjects to random breakdowns and repairs depending on whether it
is idle or busy. An asymptotic method is applied under the condition that the number of
sources tends to infinity, the primary request generation rate, retrial rate tend to zero while
service rate, failure rates, repair rate are fixed. As the result of the analysis it is shown that
the steady-state probability distribution of the number of transitions/retrials of the customer
into the orbit is geometric with a given parameter, and the normalized sojourn time of the
customer in the system follows a generalized exponential distribution. It is also proved that
the limiting distributions of the normalized sojourn time of the customer in the system and
the normalized sojourn/waiting time of the customer in the orbit coincide. The novelty of
this investigation is the introduction of failure and repair of the server. Approximations of
prelimit distributions obtained with the help of stochastic simulation by asymptotic one are
considered and several illustrative examples show the accuracy and range of applicability of
the proposed asymptotic method.
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1 Introduction

Retrial queues, that is queues with repeated attempts have been effectively used to model
many problems arising in telephone switching systems, telecommunication networks, com-
puter networks and computer systems, call centers, wireless communication systems, etc.
For a systematic account of the fundamental methods and the latest results, furthermore
an accessible classified bibliography on this topic the interested reader is referred to, for
example Artalejo and Gómez-Corral (2008), Falin and Templeton (1997), Gómez-Corral
and Phung-Duc (2016), Kim and Kim (2016), and references therein.

In many practical cases it is essential to take into account that the rate of generation of
new primary calls decreases as the number of customers in the system increases. This can
be done by means of finite-source, or quasi-random input models. Retrial queues with quasi-
random input are recent interest in modeling magnetic disk memory systems, cellular mobile
networks, computer networks, and local-area networks with non-persistent CSMA/CD pro-
tocols, with star topology, with random access protocols, and with multiple-access protocols,
see, for example Alfa and Isotupa (2004), Ali and Wei (2015), Almási et al. (2016), Do et al.
(2014), Dragieva (2016), Ikhlef et al. (2016) and Wüchner et al. (2010).

Since in real life some components of the systems are subject to random breakdowns it is
important to study reliability of retrial queues with server breakdowns and repairs because of
limited ability of repairs and heavy influence of the breakdowns on the performancemeasures
of the system. Finite-source retrial queues with an unreliable server have been investigated
in several recent papers, for example Almási et al. (2005), Dragieva (2014), Gharbi and
Dutheillet (2011), Gharbi and Ioualalen (2006), Sztrik (2005), Sztrik et al. (2006), Wang
et al. (2010, 2011) and Zhang and Wang (2013).

In many communications involving data transmission from diverse sources there can be
conflict for a limited number of channels or other facilities. Recent results on retrial queues
with collisions can be found in, for example Ali and Wei (2015), Balsamo et al. (2013),
Choi et al. (1992), Gómez-Corral (2010), Kim (2010), Kumar et al. (2010a, b), Nazarov et al.
(2018) and Peng et al. (2014).

It is well-known that the analysis of waiting/response time and the number of retrials of
a customer is much more complicated than the distribution of number of customers in the
system. There exist analytic, numerical, and asymptotic methods to help this research, see
for example Amador (2010), Artalejo (1998), Artalejo and Gómez-Corral (2008), Dragieva
(2013, 2014, 2016), Falin and Artalejo (1998), Falin and Templeton (1997), Falin (1977,
1984, 1986, 1988), Wang et al. (2011) and Zhang and Wang (2013).

The aim of the present paper is to investigate such systems which has the above mention
properties, that is finite-source, retrial, collisions, and non-reliability of the server. The present
model is a generalization of the systems treated in Kvach and Nazarov (2015), Nazarov et al.
(2014), Nazarov and Sudyko (2010), Nazarov andMoiseeva (2006) and Sudyko et al. (2018)
and it is the natural continuation of the paper (Nazarov et al. 2018) in which the asymptotic
distribution of the number of customers in the system has been investigated.

The rest of the paper is organized as follows. In Sects. 2 and 3 the full description of
the model is given by the help of the corresponding two-dimensional Markov chain and the
corresponding Kolmogorov equations are derived. Sections 4 and 5 are devoted to sojourn
time analysis in the systems and the distribution of number of transitions the tagged customer
carries until the successful completion of its service. In Sect. 6 the limiting distributions of
the normed sojourn time of a request spends in the systems and in the orbit is treated,
respectively. Section 7 deals with several numerical examples and comparisons to simulation
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results showing the advantage of the asymptotic methods, and some comments are made.
Finally, the paper ends with a Conclusion.

2 Model description and notations

Let us consider a retrial queuing system of type M/M/1//N with collision of the customers
and an unreliable server. The number of sources is N and each of them can generate a primary
request with rate λ/N . A source cannot generate a new call until end of the successful service
of this customer. If a primary customerfinds the server idle, he enters into service immediately,
in which the required service time is assumed to be exponentially distributed random variable
with parameterμ. Otherwise, if the server is busy, an arriving (primary or repeated) customer
involves into collision with customer under service and they both move into the orbit. The
retrial time of requests are assumed to be exponentially distributedwith rateσ/N .We suppose
that the server is unreliable and the lifetime is exponentially distributed random variable with
failure rate γ0 if the server is idle and with rate γ1 if it is busy. When the server breaks
down, it is immediately sent for repair and the recovery time is assumed to be exponentially
distributed with rate γ2. We deal with the case when the server is down all sources continue
generation of customers and send it to the server, similarly customers may retry from the
orbit to the server but all arriving customers immediately go into the orbit. Furthermore, in
this unreliable model we suppose the interrupted request enters into the orbit immediately
and its next service is independent of the interrupted one. All random variables involved in
the model construction are assumed to be independent of each other.

Assuming that the systems is operating in steady-state the aim of the present paper is to find
the limiting probability distribution of the sojourn time of the tagged customer in the system
under conditions of N → ∞. Furthermore, we can obtain the limiting probability distribution
of the number of transitions of the tagged customer into the orbit, and, subsequently, the
limiting probability distribution of the sojourn time/waiting time of the customer in the orbit.
With the help of a simulation program developed to these purposes we can determine the
accuracy and range of applicability of the asymptotic results in prelimit situation.

3 First order asymptotics for the number of customers in the system

Let i(t) be the number of customers in the system at time t , that is, the total number of
customers in orbit and in service, and similarly let us denote by k(t) the server state as
follows

k(t) =
⎧
⎨

⎩

0, if the server is free,
1, if the server is busy,
2, if the server is down (under repair).

We can state the following theorem which has been published and proved in our recent paper
(Nazarov et al. 2018). We need this Theorem for the investigation of the waiting time.

Theorem 1 Let i(∞) be the number of customers in the system in steady state, then

lim
N→∞ E exp

{

jw
i(∞)

N

}

= exp { jwκ1} , (1)

where the value of parameter κ1 is the positive solution of equation

(1 − κ1) λ − μR1(κ1) = 0, (2)

123



420 Annals of Operations Research (2020) 288:417–434

and the stationary distributions of probabilities Rk(κ1) of the service state k are defined as
follows

R0(κ1) =
{

γ0 + γ2

γ2
+ γ1 + γ2

γ2
· a (κ1)

a (κ1) + γ1 + μ

}−1

,

R1(κ1) = a (κ1)

a (κ1) + γ1 + μ
· R0(κ1),

R2(κ1) = 1

γ2

[
γ0R0(κ1) + γ1R1(κ1)

]
,

(3)

here a (κ1) is
a (κ1) = (1 − κ1) λ + σκ1. (4)

The limiting mean value κ1 allows us to execute further research of the sojourn time of the
customer in system, number of transitions of the tagged customer into the orbit, and also the
sojourn/waiting time of the customer in the orbit.

4 Sojourn time of the customer in the system

Let us denote by T the steady-state sojourn time of the customer in the system, i.e. T is
interval length from the moment of the end of generation of the customer by a source until
completion of its successful service.

First of all, we will find limiting mean sojourn time of the customer in the system with
the help of Little’s formula.

Since

(1 − κ1) λ E
(
1

N
T

)

= κ1 ,

therefore

E
(
1

N
T

)

= κ1

(1 − κ1) λ
, (5)

where κ1 is asymptotic average value of number of customers in the system, and (1 − κ1) λ

is the mean arrival intensity of the incoming flow.
However, we should underline that the above equality (5) defines only mean sojourn time

of the customer in the system. We would like to carry a more detailed investigation for T of
the tagged customer.

The total sojourn time T is simply expressed through residual or virtual sojourn time
Tres(t). Here Tres(t) is interval length from the moment t until the end of the successful
service of the tagged customer.

To study the sojourn time we will define the server states as follows:

s(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, server is free,
1, server is busy, but not by the tagged customer,
2, server is down (under repair),
3, server is busy by the tagged customer.

Let us introduce the following conditional characteristic functions

Gk(u, i) = E
{
e juTres (t)|s(t) = k, i(t) = i

}
, (6)
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and assuming that system is operating in steady state, it is not difficult to write the following
system of Kolmogorov equations

[

ju − N − i

N
λ − i

N
σ − γ0

]

G0(u, i) + N − i

N
λG1(u, i + 1) + γ0G2(u, i)

+ i − 1

N
σG1(u, i) + σ

N
G3(u, i) = 0 ,

[

ju − N − i

N
λ − i − 1

N
σ − γ1 − μ

]

G1(u, i) + N − i

N
λG0(u, i + 1)

+ i − 1

N
σG0(u, i) + γ1G2(u, i) + +μG0(u, i − 1) = 0 ,

[

ju − N − i

N
λ − γ2

]

G2(u, i) + N − i

N
λG2(u, i + 1) + γ2G0(u, i) = 0

[

ju − N − i

N
λ − i − 1

N
σ − γ1 − μ

]

G3(u, i)

+N − i

N
λG0(u, i + 1) + i − 1

N
σG0(u, i) + γ1G2(u, i) + μ = 0 . (7)

The solution of system (7) for finite values N causes difficulties therefore we will find their
solution under condition of unlimited growing number of sources, that is as N → ∞.

For the asymptotic analysis of the sojourn time of the customers in the system we have
the following statement

Theorem 2

lim
N→∞ E exp

{

jw
T

N

}

= q + (1 − q)
σq

σq − jw
, (8)

where the value of parameter q is defined by expression

q = (1 − κ1)λ

(1 − κ1)λ + σκ1
. (9)

Proof Denoting
1

N
= ε, in the system (7) let us execute the following substitutions

u = εw, εi = x, Gk(u, i) = gk(w, x, ε) , (10)

then (7) can be rewritten as

[
jεw − (1 − x)λ − xσ − γ0

]
g0(w, x, ε) + (1 − x)λg1(w, x + ε, ε) + γ0g2(w, x, ε)

+(x − ε)σ g1(w, x, ε) + εσ g3(w, x, ε) = 0 ,
[
jεw − (1 − x)λ − xσ − γ1 − μ + εσ

]
g1(w, x, ε) + (1 − x)λg0(w, x + ε, ε)

+(x − ε)σ g0(w, x, ε) + γ1g2(w, x, ε) + μg0(w, x − ε, ε) = 0 ,
[
jεw − (1 − x)λ − γ2

]
g2(w, x, ε) + (1 − x)λg2(w, x + ε, ε) + γ2g0(w, x, ε) = 0

[
jεw − (1 − x)λ − xσ − γ1 − μ + εσ

]
g3(w, x, ε) + (1 − x)λg0(w, x + ε, ε)

+(x − ε)σ g0(w, x, ε) + γ1g2(w, x, ε) + μ = 0. (11)
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Denoting limε→0 gk(w, x, ε) = gk(w, x) and (1 − x)λ + xσ = a(x), carrying out the
specified limiting transition in system (11), we obtain

− [
a(x) + γ0

]
g0(w, x) + a(x)g1(w, x) + γ0g2(w, x) = 0,

− [
a(x) + γ1 + μ

]
g1(w, x) + [a(x) + μ] g0(w, x) + γ1g2(w, x) = 0,

−γ2g2(w, x) + γ2g0(w, x) = 0 ,

− [
a(x) + γ1 + μ

]
g3(w, x) + a(x)g0(w, x) + γ1g2(w, x) + μ = 0.

From the first three equations of this system it follows that the functions g0(w, x), g1(w, x)
and g2(w, x) coincide, and let us denote by g(w, x) their common value, that is equalities
are carried out

g0(w, x) = g1(w, x) = g2(w, x) = g(w, x), (12)

and from the last equation it is possible to write down

g3(w, x) = μ + (a(x) + γ1) g(w, x)

a(x) + γ1 + μ
. (13)

The solution gk(w, x, ε) of the system (11) can be obtained in the form of decomposition

gk(w, x, ε) = g(w, x) + ε fk(w, x) + o(ε), k = 0, 2 ,

g3(w, x, ε) = g3(w, x) + ε f3(w, x) + o(ε),
(14)

where g3(w, x) was expressed above through function g(w, x) by (13). Substituting this
decompositions into the first three equations of the system (11), we get the following equal-
ities

[
jεw − a(x) − γ0

]
g(w, x) − ε

[
a(x) + γ0

]
f0(w, x)

+ (1 − x)λ

{

g(w, x) + ε
∂g(w, x)

∂x
+ ε f1(w, x)

}

+(x − ε)σ g(w, x) + γ0 {g(w, x)

+ ε f2(w, x)} + εxσ f1(w, x) + εσ g3(w, x) = o(ε),
[
jεw − a(x) − γ1 − μ

]
g(w, x) − ε

[
a(x) + γ1 + μ

]
f1(w, x)

+ (1 − x)λ

{

g(w, x) + ε
∂g(w, x)

∂x
+ ε f0(w, x)

}

+ (x − ε)σ g(w, x)

+ γ1 {g(w, x) + ε f2(w, x)} + εxσ f0(w, x)

+μ

{

g(w, x) + ε
∂g(w, x)

∂x
− ε f0(w, x)

}

= o(ε),

[
jεw − (1 − x)λ − γ2

]
g(w, x) − ε

[
(1 − x)λ + γ2

]
f2(w, x)

+ (1 − x)λ

{

g(w, x) + ε
∂g(w, x)

∂x
+ ε f2(w, x)

}

+ γ2 {g(w, x) + ε f0(w, x)} = o(ε).

Equating here coefficients at identical degrees of ε, we receive

− [
a(x) + γ0

]
f0(w, x) + (1 − x)λ f1(w, x) + γ0 f2(w, x)
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= (σ − jw)g(w, x) − (1 − x)λ
∂g(w, x)

∂x
− σ g3(w, x),

− [
a(x) + γ1 + μ

]
f1(w, x) + [a(x) + μ] f0(w, x) + γ1 f2(w, x)

= [μ − (1 − x)λ]
∂g(w, x)

∂x
− jwg(w, x),

− γ2 f2(w, x) + γ2 f0(w, x) = − jwg(w, x) − (1 − x)λ
∂g(w, x)

∂x
.

Multiplying the first equality by R0(x), second by R1(x), third by R2(x) and adding them,
we obtain equation

[μR1(x) − (1 − x)λ]
∂g(w, x)

∂x
+ [σ R0(x) − jw] g(w, x) − σ R0(x)g3(w, x) = 0.

In this equation let us set x = κ1 and denote

g(w, κ1) = g(w), g3(w, κ1) = g3(w), a(κ1) = a, Rk(κ1) = Rk,

then we can write it in the form

(σ R0 − jw) g(w) = σ R0g3(w).

Then using (13) we get
(

σ R0
μ

a + γ1 + μ
− jw

)

g(w) = σ R0
μ

a + γ1 + μ
. (15)

Here carry out the equality

R0
μ

a + γ1 + μ
= μ

a
R0

a

a + γ1 + μ
= μR1

a
= λ(1 − κ1)

λ(1 − κ1) + σκ1
= q,

which coincides with (9), therefore from equalities (15) and (13) we obtain

g(w) = σq

σq − jw
, g3(w) = μ

a + γ1 + μ
+ γ1 + μ

a + γ1 + μ
g(w). (16)

Since R0 is the probability that an arriving customer finds the server idle, hence 1 − R0 is
the probability that it goes into the orbit. For the limiting characteristic function of the total
sojourn time T by using the law of total probability we have

lim
N→∞ E exp

{

jw
T

N

}

= R0g3(w) + (1 − R0)g(w) = q + (1 − q)
σq

σq − jw
,

which coincides with (8).
The theorem is proved. ��

Definition 1 The probability distribution, whose characteristic function has the form

h(w) = q + (1 − q)
α

α − jw
,

is called a Generalized Exponential (GE) distribution with parameters q and α. Here α is the
parameter of an exponential distribution. It easy to see that it is a mixed-type distribution,
the random variable takes a zero value with probability q and exponentially distributed with
parameter α with probability 1 − q . More information about GE distribution can be found
in, for example Kouvatsos (1994) and Wüchner et al. (2010).
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Corollary 1 Characteristic function of the sojourn time of the customer in the system in a
prelimiting situation of finite N can be approximated by a function of the form

E e juT ≈ q + (1 − q)
σq

σq − juN
, (17)

which follows obviously from Eq. (8).
Let us note that the form of the function (17) is determined by a single parameter (9)

q = (1 − κ1)λ

(1 − κ1)λ + σκ1
, (18)

which depends only on the asymptotic average κ1, defined in Theorem 1. That is for finding
the function (17) it is enough to execute a first-order asymptotics, find value κ1 and applying
equality (18) we obtain value of the parameter q determining the form of the function (17).

In the following let us find the average value of the normalized sojourn time of the tagged
customer in the system which is

υ = E
(
1

N
T

)

= (1 − q)
1

σq
= 1

σ
· 1 − q

q
= 1

σ

σκ1

(1 − κ1)λ
= κ1

(1 − κ1)λ
,

that coincides with the result (5), obtained by the Little’s formula.

5 Distribution of the number of transitions/retrials of the tagged
customer into the orbit

Sojourn time T of the customer in the system consists of total sojourn/waiting timeW of the
customer in the orbit and the total sojourn time of the customer under service. For systems
with collisions and an unreliable server the sojourn time of the customer at the server has a
rather complex structure, since it contains terms of zero duration when the customer from
the orbit finds the server broken or busy by another customer. It has a non-zero terms of
the services interrupted by collisions and failures of the server and finally a single term of
successfully completed service, after which the customer leaves the system.

The structure of the sojourn/waiting time W of the customer in the orbit is simpler, since
it consists of a random number of transitions to the orbit of the random durations of a single
stay of the customer in the orbit. The probability distribution of this duration is given and

it is exponential with parameter
σ

N
. If the discrete probability distribution of number of

transitions of the customer into the orbit is found, then it is not difficult to find distribution
of the total sojourn time of the tagged customer in the orbit.

Let us denote by ν the number of transitions of the tagged customer into the orbit in
steady-state. We should note that obviously the random variables T , W , ν depend on N but
for the simplification of notations is not shown explicitly. Applying method of the asymptotic
analysis under condition of unlimited growing number of sources, we can find the probability
distribution of ν.

We have the following statement

Theorem 3 Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞ E zν = q

1 − (1 − q)z
, (19)
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where parameter q is defined in Theorem 2 and has the form

q = (1 − κ1)λ

a
, (20)

here
a = (1 − κ1)λ + σκ1.

Proof Denote νres(t) the residual number of transitions of the tagged customer into the orbit,
that is number of transitions into the orbit of the tagged customer from moment t till the end
of its successful service.

Let us introduce the conditional generating functions

Gk(z, i) = E
{
zνres (t)|s(t) = k, i(t) = i

}
, (21)

where k = 0, 3 is the server states, defined in the previous section. Assuming that system
is operating in steady state for the conditional generating functions Gk(z, i) we obtain the
following system of Kolmogorov equations

[
N − i

N
λ + i

N
σ + γ0

]

G0(z, i)

= N − i

N
λG1(z, i + 1) + γ0G2(z, i) + i − 1

N
σG1(z, i) + σ

N
G3(z, i) ,

[
N − i

N
λ + i − 1

N
σ + γ1 + μ

]

G1(z, i)

= N − i

N
λG0(z, i + 1) + i − 2

N
σG0(z, i) + σ

N
zG0(z, i)

+ γ1G2(z, i) + μG0(z, i − 1) ,
[
N − i

N
λ + σ

N
+ γ2

]

G2(z, i) = N − i

N
λG2(z, i + 1)

+ σ

N
zG2(z, i) + γ2G0(z, i) ,

[
N − i

N
λ + i − 1

N
σ + γ1 + μ

]

G3(z, i)

= N − i

N
λzG0(z, i + 1) + i − 1

N
σ zG0(z, i) + γ1zG2(z, i) + μ . (22)

Similarly to the proof of the Theorem 2, denoting
1

N
= ε, introducing the substitutions

iε = x, Gk(z, i) = Fk(z, x, ε), a(x) = (1 − x)λ + σ x, (23)

we obtain the following system of equations

− [
a(x) + γ0

]
F0(z, x, ε) + (1 − x)λF1(z, x + ε, ε) + γ0F2(z, x, ε)

+ (x − ε)σ F1(z, x, ε) + εσ F3(z, x, ε) = 0,

− [
a(x) + γ1 + μ − εσ

]
F1(z, x, ε)

+ (1 − x)λF0(z, x + ε, ε) + γ1F2(z, x, ε)

+ (x − 2ε)σ F0(z, x, ε) + εσ zF0(z, x, ε) + μF0(z, x − ε, ε) = 0,

− [
(1 − x)λ + γ2 + εσ

]
F2(z, x, ε) + (1 − x)λF2(z, x + ε, ε)
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+ γ2F0(z, x, ε) + εσ zF2(z, x, ε) = 0,

− [
a(x) + γ1 + μ − εσ

]
F3(z, x, ε) + (1 − x)λzF0(z, x + ε, ε)

+ (x − ε)σ zF0(z, x, ε) + γ1zF2(z, x, ε) + μ = 0. (24)

Taking the limiting transition under condition ε → 0 and denoting limε→0 Fk(z, x, ε) =
Fk(z, x), system (24) can be rewritten as

− [
a(x) + γ0

]
F0(z, x) + a(x)F1(z, x) + γ0F2(z, x) = 0,

− [
a(x) + γ1 + μ

]
F1(z, x) + [a(x) + μ] F0(z, x) + γ1F2(z, x) = 0,

− γ2F2(z, x) + γ2F0(z, x) = 0,

− [
a(x) + γ1 + μ

]
F3(z, x) + a(x)zF0(z, x) + γ1zF2(z, x) + μ = 0. (25)

From the first three equations of this system we can observe that the functions

F0(z, x) = F1(z, x) = F2(z, x)

are equal. Designating by F(z, x) their common value, from the fourth equation of the system
(25) let us derive expression for function F3(z, x)

F3(z, x) =
[
a(x) + γ1

]
zF(z, x) + μ

a(x) + γ1 + μ
. (26)

To find the function F(z, x), let us introduce the solution Fk(z, x, ε) of system (24) in the
form of the following decomposition

Fk(z, x, ε) = F(z, x) + ε fk(z, x) + o(ε), k = 0, 2 ,

F3(z, x, ε) = F3(z, x) + ε f3(z, x) + o(ε).

Substituting these decompositions into the first three equations of system (24), we obtain
equalities

− [
a(x) + γ0

] {F(z, x) + ε f0(z, x)} − εσ F(z, x)

+ (1 − x)λ

{

F(z, x) + ε
∂F(z, x)

∂x
+ ε f1(z, x)

}

+ εσ F3(z, x)

+ xσ {F(z, x) + ε f1(z, x)} + γ0 {F(z, x) + ε f2(z, x)} = o(ε),

− [
a(x) + γ1 + μ

] {F(z, x) + ε f1(z, x)} + εσ F(z, x)

+ (1 − x)λ

{

F(z, x) + ε
∂F(z, x)

∂x
+ ε f0(z, x)

}

+ +εσ zF(z, x)

+ xσ {F(z, x) + ε f0(z, x)} + γ1 {F(z, x) + ε f2(z, x)} − 2εσ F(z, x)

+μ

{

F(z, x) − ε
∂F(z, x)

∂x
+ ε f0(z, x)

}

= o(ε),

− [
(1 − x)λ + γ2

] {F(z, x) + ε f2(z, x)} − εσ F(z, x)

+ (1 − x)λ

{

F(z, x) + ε
∂F(z, x)

∂x
+ ε f2(z, x)

}

+ εσ zF(z, x)

+ γ2 {F(z, x) + ε f0(z, x)} = o(ε).

Equating here coefficients at identical degrees ε, for functions fk(z, x) we receive a hetero-
geneous system of linear algebraicequations
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− [
a(x) + γ0

]
f0(z, x) + a(x) f1(z, x) + γ0 f2(z, x)

= σ {F(z, x) − F3(z, x)} − (1 − x)λ
∂F(z, x)

∂x
,

− [
a(x) + γ1 + μ

]
f1(z, x) + [a(x) + μ] f0(z, x) + γ1 f2(z, x)

= (1 − z)σ F(z, x) + [μ − (1 − x)λ]
∂F(z, x)

∂x
,

− γ2 f2(z, x) + γ2 f0(z, x) = (1 − z)σ F(z, x) − (1 − x)λ
∂F(z, x)

∂x
. (27)

Multiplying the first equality by R0(x), second by R1(x), third by R2(x) and adding this
products, we obtain equation

σ R0(x) {F(z, x) − F3(z, x)} + (1 − z)σ F(z, x) {R1(x) + R2(x)}
+ [μR1(x) − (1 − x)λ]

∂F(z, x)

∂x
= 0, (28)

since the sum of the left parts of system (27) multiplied respectively by Rk(x) is equal to
zero. Substituting into (28) x = κ1, denoting Rk(x) = Rk , Fk(z, x) = Fk(z) and taking into
account equality μR1 − (1 − x)λ = 0 from Theorem 1, we have

R0 {F(z) − F3(z)} + (1 − z)F(z) {R1 + R2} = 0,

which, owing to equality (26), can be rewritten as

{R0 + (1 − z)(1 − R0)} F(z) = R0F3(z) = R0
(a + γ1) zF(z)

a + γ1 + μ
+ R0

μ

a + γ1 + μ
. (29)

After performing simple transformations, we obtain
{

1 − z

[

1 − R0
μ

a + γ1 + μ

]}

F(z) = R0
μ

a + γ1 + μ
. (30)

In the proof of Theorem 2 it was shown that

q = R0
μ

a + γ1 + μ
= μR1

a
= (1 − κ1)λ

a
,

coinciding with (20), and from (30) it is possible to obtain

F(z) = q

1 − (1 − q)z
. (31)

Applying the law of total probability to the generating functions of ν we obtain

E zν = R0F3(z) + (1 − R0)zF(z),

which,taking into account (29) can be rewritten as

E zν = {R0 + (1 − z)(1 − R0)} F(z) + (1 − R0)zF(z) = F(z).

Therefore, owing to (31) we get

E zν = F(z) = q

1 − (1 − q)z
,

coinciding with (19).
The theorem is proved. ��
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Corollary 2 The probability distribution P {ν = n} , n = 0,∞ of the number of transitions
of the tagged customer into the orbit is geometric and has the form

P {ν = n} = q(1 − q)n, n = 0,∞. (32)

The proof obviously follows from the form (19) of the generating function of ν.

6 Sojourn/waiting time of the tagged customer in the orbit

Theorem 4 Characteristic function of the sojourn/waiting time W of the tagged customer in
an orbit has the form

Ee juW = q + (1 − q)
σq

σq − juN
. (33)

Proof Since the characteristic function of the time τ , the single retrial time of the tagged
customer in the orbit has the form

Ee juτ = σ

σ − juN
, (34)

then owing to (32) and (34) by using the law of total expectations we have

Ee juW =
∞∑

n=0

(
σ

σ − juN

)n

q(1 − q)n = q

1 − (1 − q)
σ

σ − juN

= q
σ − juN

σq − juN
= q + (1 − q)

σq

σq − juN
. (35)

The theorem is proved. ��
Corollary 3 In the case of N → ∞ the limiting probability distributions of the normalized
sojourn time of the customer in the system T and the normalized sojourn time of the customer
in the orbit W coincide.

Proof In the characteristic function (35) let us execute replacement (10) from Theorem 2

u = εi = i

N
,

then function (35) can be rewritten as

Ee jt
W
N = q + (1 − q)

σq

σq − j t
,

coinciding with (8).
The corollary is proved. ��

It is quite counter intuitive since the sojourn time in the system is the sum of the waiting
time in the orbit and the service time. We should mention that in prelimit situation it is the
case. But in our model we deal with normalized waiting and response times, that is these
times are divided by the number of sources. So the response time is the sum of the waiting
time and the total service time, not the required service time since the service is many times
interrupted due to collisions and failures of the server. If we divide both sides by N and N
tends to infinity their limit is the same as the ratio of total service time and N tends to zero.
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Fig. 1 Mean waiting time in the orbit without collisions by numerical and simulation methods

7 Numerical results and comparative analysis

After the theoretical results we would like to illustrate how close the asymptotic results are
to the simulation results. Since for a finite N the system is rather complicated it is almost
hopeless to find the exact distributions analytically or even numerically. That is why we have
developed a special simulation package written in C++ to get the estimations to the involved
probabilities, means and variances. It is not the aim of the present paper to introduce this
package, the interested reader is referred to Tóth et al. (2017) for details.

In the following comparisons of prelimit distributions obtained with the help of stochastic
simulation and by asymptotic ones are considered and several illustrative examples show the
accuracy and range of applicability of the proposed asymptotic method.

Let us start our analysis with the mean waiting time of a customer in the system without
collision treated in Zhang andWang (2013) by means of a numerical method. Figure 1 shows
the mean waiting time as the function the arrival rate for different values of retrial rate σ .
Of course it is a prelimit situation with corresponding parameters, respectively. Using the
notation of the present paper, which is different from the cited one, we have the following
values

N = 10, μ = 1, γ0 = 0, γ1 = 0.1, γ2 = 1

Using simulation we have reproduced the results for systems without collisions obtained
by a numerical procedure in Zhang andWang (2013). In the next step by means of simulation
we treat systems with collisions under the same parameter setup is in the case of systems
without collisions. Figure 2 illustrates how the mean waiting time changes. Of course, due to
the collisions the values should be higher as it was expected. In both cases there is amaximum
which a special phenomenon in finite-source retrial queues noticed by several authors, see for
example Almási et al. (2005), Artalejo and Gómez-Corral (2008), Falin and Artalejo (1998),
Sztrik (2005), Wang et al. (2011) and Zhang and Wang (2013).
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Fig. 2 Mean waiting time in the orbit with collisions by simulation

Fig. 3 Asymptotic mean waiting time in the orbit

Under the same parameter setup, except for N = 100 in the case of collisions the asymp-
totic and simulation results were coincide. This situation is illustrated in Fig. 3. We can
observe that after a certain value of the arrival rate the the mean waiting time remains almost
unchanged.
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Table 1 The main system
performance measures at various
values of σ

σ 0.1 1 10 100 1000

μR1 0.113 0.267 0.399 0.430 0.433

q 0.713 0.455 0.131 0.017 0.002

υ 4.53 1.66 1.10 1.01 1.00

In the following example we consider the limiting distributions showing the effect of the
retrial rates on some performance measures. If for illustrations we take

λ = 1, μ = 1, γ0 = 0.1, γ1 = 0.2, γ2 = 1

then in Table 1 for some σ the values of the following characteristics are given: μR1 is the
system throughput, q is the probability of successful service of the customer for the first
attempt, υ is the average value of the normalized sojourn time of the customer in the system.

Based on the results given in Table 1, it is possible to draw some conclusions, namely,
with increasing intensity σ of repeated calls to the server from orbit we have noticed that

1. Throughput increases which is not natural since an increase of number of the collisions
should decrease of throughput of the system. However, higher retrial rate involves shorter
waiting time, so the customer could leave the system earlier.

2. The probability of successful service of the customer for the first attempt decreases as it
is expected.

3. The average value of the normalized sojourn time of the customer in the system is reduced,
which is associated with a significant decrease of the single sojourn time of the customer
in orbit.

Previously we have obtained that the probability distribution of the number of transitions of
the tagged customer into the orbit is geometric with parameter q , defined in the (20). Let us
find out how close the limiting results are to the simulation results and at what values N this
approximation is admissible.

Let us denote by Pas(ν = n) the asymptotic geometric distribution of probabilities with
parameter q and by Ps(ν = n) the probability distribution of the number of transitions
of the tagged customer into the orbit, obtained with the help of our simulation program.
Furthermore, let us determine the accuracy (error) of approximation of distribution by mean
of Kolmogorov distance Δ which for probability distributions Pas(ν = n) and Ps(ν = n) is
defined as

Δ = max
0≤i<∞

∣
∣
∣
∣
∣

i∑

n=0

(Pas(ν = n) − Ps(ν = n))

∣
∣
∣
∣
∣

.

Realizing the simulation program for

λ = 1, μ = 1, σ = 4, γ2 = 1

and applying the approximation (32), we provide the Kolmogorov distance Δ for various
values N and γ = γ0 = γ1 in Table 2.

We can see, what is expected that by increasing N the Kolmogorov distance should
decrease, but with this parameter setup there is no essential reduction if N > 50.

Let us see the mean number of retrials under the same condition as before (Table 3).
Again we can observe what was expected, as N increases the mean number of retrials

increases since there are more and more customers in the system resulting more and more
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Table 2 Kolmogorov distance between distribution Ps (i) and approximation of the geometric distribution
Pas (i) for various values of the parameters N and γ

N = 20 N = 30 N = 50 N = 100 N = 200

γ = 0.05 0.026 0.016 0.009 0.005 0.003

γ = 0.1 0.024 0.015 0.009 0.004 0.002

γ = 0.5 0.017 0.011 0.006 0.004 0.001

Table 3 Mean number of retrials in prelimit and limiting situations for various values of parameters N and γ

N = 20 N = 30 N = 50 N = 100 N = 200 limiting

γ = 0.05 5.512 5.727 5.842 5.900 5.930 5.977

γ = 0.1 6.090 6.233 6.334 6.415 6.442 6.494

γ = 0.5 10.336 10.501 10.640 10.715 10.777 10.821

collisions. At the same time it can also be seen how the mean number of retrials increases
as the failure rate of the server increases. It should be underlined that each time the limiting
values give very good approximations showing the effectiveness of the asymptotic method.

8 Conclusion

In this paper, the sojourn time analysis of a finite-source retrial queuing systemwith collision
of customers where the server is subjects to random breakdowns and repairs depending on
whether it is idle or busy was presented. The research has been conducted by method of
asymptotic analysis under condition of unlimited growing number of sources. As a result of
our investigation it was shown that the probability distribution of the number of transitions of
the customer into the orbit is geometric, and the normalized sojourn time of the customer in
the system has Generalized Exponential distribution. Parameters of these distributions were
found. In addition, it was proved that the limiting distributions of the normalized sojourn
time of the customer in the system and the normalized sojourn time of the customer in the
orbit at N → ∞ coincide. For this system a simulation program was developed, by the
help of which the distribution of the number of transitions of the customer into the orbit was
obtained. Several illustrative numerical results were discussed in details which showed the
accuracy and range of applicability of the asymptotic results at finite values of N .
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