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Abstract. We carry out an asymptotic analysis as t → ∞ for the nonlinear advection-

diffusion equation, ∂tu = 2αu∂xu + ∂x(u∂xu), where α is a constant. This equation de-

scribes the movement of a buoyancy-driven plume in an inclined porous medium, with α

having a specific physical significance related to the bed inclination. For compactly sup-

ported initial data, the solution is characterized by two moving boundaries propagating

with finite speed and spanning a distance of O(
√
t). We construct an exact outer solution

to the PDE that satisfies the right boundary condition. The vanishing condition at the

left boundary is enforced by introducing a moving boundary layer, for which we obtain

a closed-form expression. The leading-order composite solution is uniformly correct to

O(1/
√
t). A higher-order correction to the inner and the composite solutions is also

derived analytically. As a result, we obtain late-time asymptotic expansions for the two

moving boundaries, correct to O(1), as well as a composite solution correct to O(1/t).

The findings of this paper are illustrated and verified by numerical computations.

1. Introduction. We consider the initial value problem (IVP) defined by

∂u

∂t
= 2αu

∂u

∂x
+

∂

∂x

(
u
∂u

∂x

)
, (1.1)

u(x, 0) = uI(x) , (1.2)

where α is a constant. The initial condition uI is nonnegative, with unit mass, and has

a compact support.

The degenerate parabolic PDE (1.1) has multiple applications in porous media flow,

e.g. in water infiltration theory [3, 11]. More recently, it has been shown to govern the

interface shape evolution of a gravity tongue propagating up an inclined porous layer [9]

with respect to a moving frame. Here u is the thickness of the gravity tongue, and α > 0

is a parameter proportional to the up-dip slope and the mobility ratio of the lighter to
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390 R. DE LOUBENS AND T. S. RAMAKRISHNAN

the heavier fluid. By reversing x, the analysis applies to the opposite case of a plume

migrating down-dip.

Theoretical proofs of existence, uniqueness and regularity of the solution to the Cauchy

problem (1.1)–(1.2) are provided in [2]. It was also shown by Gilding [3] that the solution

u(x, t) conserves mass, i.e., ∫
R

u(x, t) dx = 1 , t ≥ 0 . (1.3)

Except in the special case α = 0, where a self-similar analytical solution can be

constructed for an instantaneous fluid release [1], (1.1) generally does not admit an exact

solution. In [5, 7, 8], late-time solutions have been explored for a more general form of

(1.1), given by

∂u

∂t
=

∂(uq)

∂x
+

∂2(um)

∂x2
, (1.4)

where q and m are fixed exponents. For 1 < m < 2q − 1, Gilding [3] showed that there

exists a unique weak solution of (1.4), and that it is characterized by a finite speed of

propagation of a left moving boundary and a right moving boundary, defined as

x�(t) = inf {x ∈ R : u(x, t) > 0} , (1.5)

xr(t) = sup {x ∈ R : u(x, t) > 0} . (1.6)

Gilding [4] proved the existence of frontal solutions for an even more general form than

(1.4). When his results are applied to the special case (1.4), we obtain the existence

of (1.5) and (1.6) for m > 1 and q ≥ 1. The evolution of the support of solutions to

multi-dimensional convection-diffusion problems has also been studied, an example of

which is the work of Sapronov and Shishkov [10].

Based on asymptotic expansions, Grundy [5] derived closed-form expressions for the

leading-order outer solution of (1.4). For q − 1 < m ≤ q and m > 1, he proposed a

boundary layer on both edges of the solution. For late-time convection dominated flow

(m > 1 and q ∈ (1,m + 1) or m ≥ 1 and q ∈ (0, 1)), Laurençot [7, 8] showed that

with an appropriate Lp-norm, p < ∞, the true solution asymptotically converges to the

hyperbolic limit.

In this paper, we derive both outer and inner expansions to the problem stated in

(1.1) and (1.2). A composite leading-order solution valid for x�(t) ≤ x ≤ xr(t), correct

to O(1/
√
t), is also obtained. The leading-order inner and outer solutions are consistent

with those of Grundy [5], but our results do not indicate a right boundary layer. One has

to account for the movement of the boundary through an appropriate expansion, without

which a matched solution cannot be obtained. We show that with q = m = 2, there

exists an exact solution to (1.1). This solution satisfies the right boundary condition,

which also confirms that no boundary layer is required at the leading edge. Higher-order

boundary layer solutions at the trailing edge are given along with the results for the

composite solution, valid to O(1/t). At this order, an unknown constant appears in the

solution. Numerical computations that support these conclusions are presented.
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2. Zeroth-order solution. We first seek a late-time similarity solution of the form

uo(x, t) = taf(η) , η = xtb , (2.1)

where a and b are unknown exponents and f is a nonnegative O(1) function. From

Gilding’s theorem [2], we have to satisfy the condition that u = 0 at x = x�(t) and

x = xr(t), where x�(t) → −∞ and xr(t) → +∞ as t → ∞. Substitution of (2.1) for u

into (1.1) leads to the second-order ODE

af + bηf ′ =
1

2
ta+2b+1(f2)′′ + αta+b+1(f2)′ . (2.2)

From the mass conservation condition,
∫∞
−∞ u(x, t) dx = 1. Since (2.1) is a late-time

similarity solution, the integral condition is to be applied asymptotically. Hence, with η�
and ηr as the left and right η corresponding to x� and xr, respectively, we impose that

1 =

∫ ∞

−∞
taf(xtb) dx+ · · · = ta−b

∫ ηr(t)

η�(t)

f(η) dη + · · · . (2.3)

With η = O(1) and f(η) = O(1), we see that

a = b , (2.4)

a result also obtained by Grundy [5]. Thus (2.2) becomes

af + aηf ′ =
1

2
t3a+1(f2)′′ + αt2a+1(f2)′ . (2.5)

The above left-hand side is O(1). Regardless of which term from the right-hand side is

dominant, a < 0. For a distinguished limit it is then obvious that

2a+ 1 = 0 ⇒ a = −1

2
. (2.6)

2.1. Outer solution. We now seek an expansion of the form

uo(x, t) =
1√
t
(f0(η) + o(1)) , η =

x√
t
, (2.7)

where f0 is the leading-order representation of f . We also denote by η�0 and ηr0 the

unknown zeroth-order left and right boundary positions. Keeping only the O(1) terms in

the differential equation (2.5), i.e., dropping the second derivative term on the right-hand

side, we obtain

2α(f2
0 )

′ + ηf ′
0 + f0 = 0 . (2.8)

Integration of this ODE yields

2αf2
0 + ηf0 = C1 , (2.9)

where C1 is a constant. To satisfy the boundary condition at the left or the right edge,

we need C1 to be zero. Therefore,

f0(η) = − η

2α
∨ 0 . (2.10)

Since f0 ≥ 0, the first solution is valid for η ≤ 0. It follows that

ηr0 = 0 . (2.11)
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Using the mass conservation to zeroth-order,∫ 0

η�0

f0(η) dη = 1 , (2.12)

we obtain η�0 = −2
√
α, and conclude that

f0(η) =

{
− η

2α , −2
√
α ≤ η ≤ 0 ,

0 , η ≥ 0, η ≤ −2
√
α .

(2.13)

This solution conforms to the result of [5] for α = 1. We note that uo
0(x, t) = f0(x/

√
t)/

√
t

is the exact solution to the hyperbolic limit of (1.1) for the initial condition uI(x) =

δ(x), where δ(x) is the Dirac distribution centered at zero. We refer to Laurençot and

Simondon [7] for a proof of asymptotic convergence to the hyperbolic limit solution for

a scaled Lp-norm with p ∈ [1,∞).

A discontinuity at η = −2
√
α implies a boundary layer at the left where the second-

order derivative in (2.5) becomes important.

2.2. Inner solution. A boundary layer is constructed by seeking an inner expansion

about η�0 = −2
√
α. We introduce the “stretched” coordinate

ξ0 = (η − η�0)t
d , (2.14)

where d is a positive exponent yet to be determined. With ξ0 = O(1), the scale of u(x, t)

being 1√
t
as in the outer solution, we write

ui(x, t) =
1√
t
g0(ξ0) + · · · , (2.15)

where g0 is an O(1) function in the boundary layer. It is important to reemphasize that

at this stage, η� is known only to leading order η�0 = −2
√
α.

After substitution into (1.1), we obtain

−
(
(1− 2d)ξ0 + η�0t

d
)
g′0 − g0 = 2αtd(g20)

′ + t2d−
1
2 (g20)

′′ + · · · . (2.16)

In the boundary layer, we satisfy the second boundary condition of u = 0. Unlike the

outer solution formulation, the second derivative must be accounted for. Therefore, the

distinguished limit is obtained by necessitating the presence of second-order derivatives

on the right-hand side of (2.16), or

d = 2d− 1

2
⇒ d =

1

2
. (2.17)

The leading-order inner solution then satisfies

(g20)
′′ + 2α(g20)

′ − 2
√
αg′0 = 0 , (2.18)

implying that

(g20)
′ + 2αg20 − 2

√
αg0 = C2 , (2.19)

where C2 is a constant. Noting that (g20)
′ = 2g0g

′
0 also vanishes at the left boundary, it

follows that C2 = 0 and

g′0 + αg0 =
√
α . (2.20)
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Imposing the left side boundary condition that g0(0) = 0, the solution of this first-order

ODE is given by

g0(ξ0) =
1√
α

(
1− e−αξ0

)
. (2.21)

2.3. Composite solution. We now generate the composite solution by matching the

outer limit of the inner expansion with the inner limit of the outer expansion [6]. The

superscript ol on g0 denotes the outer limit of the zeroth-order inner expansion. Similarly,

the superscript il on f0 stands for the inner limit of the zeroth-order outer expansion.

For the outer expansion,

f il
0 (ξ0) = lim

t→∞
ξ0 fixed

f0(η�0 + t−
1
2 ξ0) . (2.22)

With η > η�0, the outer limit of the inner expansion is

gol0 (η) = lim
t→∞
η fixed

g0((η − η�0)t
1
2 ) . (2.23)

The expansion is consistent since

f il
0 (ξ0) = gol0 (η) =

1√
α
. (2.24)

Hence we can construct the leading-order composite solution as

u0(x, t) =
1√
t

(
f0(η) + g0(ξ0)−

1√
α

)
. (2.25)

Reexpressed in terms of the original variables, we have

u0(x, t) = − x

2αt
− 1√

αt
e−α(x+2

√
αt) , (2.26)

which is valid only for the range of x values for which u0(x, t) ≥ 0. As an addendum, we

note that

u0(−2
√
αt, t) = 0 (2.27)

and

u0(0, t) = − 1√
αt

e−2α
√
αt . (2.28)

For the leading-order x� and xr, the left boundary condition is satisfied exactly, and the

right boundary condition is satisfied to exponentially small terms. But the solution itself

is valid only to O( 1√
t
). The left and the right boundaries in x are correct to O(

√
t). Thus,

the support of the solution is consistent with the leading-order left and right boundaries.

3. Higher-order solution. As an extension of the above results, we wish to con-

struct high-order approximations of the late-time outer and inner solutions. These are

respectively

uo(x, t) =
1√
t
f(η) , η =

x√
t
, (3.1)

and

ui(x, t) =
1√
t
g(ξ) , ξ = (η − η�(t))

√
t . (3.2)
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Here f and g are two bounded O(1) functions and η� denotes the left boundary. Similarly

ηr is the position of the right boundary.

We now expand the solution and its two moving boundaries in terms of gauge functions

νn(t) as

f(η) = f0(η) + ν1(t)f1(η) + ν2(t)f2(η) + · · · , (3.3)

g(ξ) = g0(ξ) + ν1(t)g1(ξ) + ν2(t)g2(ξ) + · · · , (3.4)

η�(t) = η�0 + ν1(t)η�1 + ν2(t)η�2 + · · · , (3.5)

ηr(t) = ηr0 + ν1(t)ηr1 + ν2(t)ηr2 + · · · , (3.6)

where ν1(t) → 0 and ν2(t)/ν1(t) → 0 as t → ∞. The leading-order terms of these

expansions have been presented in the previous section. We are now interested in deriving

the next-order corrections of these expansions. In a subtle way, we regard g to be

dependent on ξ, defined in terms of η� as opposed to η�0. We know that this is true if

the expansion is truncated to the first term. For the order of asymptotics of interest,

denoted by N , it is implied that ξ will be regarded as ξ0N , where

ξ0N =
(
η − η�0 −

N∑
1

η�iνi(t)
)√

t . (3.7)

3.1. Higher-order outer solution. Substituting (3.1) and (3.3) into the original PDE

and keeping all the known terms up to O( 1
t2 ), we obtain

ν1
2t

ηf ′
1 +

(
ν′1 +

ν1
2t

)
f1 =

1

4α2t3/2
. (3.8)

For a distinguished limit, since f1 = O(1), we impose

ν′1 +
ν1
2t

=
1

4α2t3/2
. (3.9)

The solution of this first-order ODE is given by

ν1(t) =
ln t

4α2
√
t
+

C3√
t
, (3.10)

where C3 is an arbitrary constant.

This expression suggests that the next-order gauge function consists of two parts,

namely

ν1,1(t) =
ln t√
t

(3.11)

and

ν1,2(t) =
1√
t
. (3.12)

Note that, alternatively, if we were to balance the right-hand side of (3.8) with the first

term on the left-hand side, we would get ν1(t) =
1

2α2
√
t
, a term that is already captured

by ν1,2(t). This observation confirms that the appropriate distinguished limit is indeed

given by (3.9).

As per (3.11) and (3.12), we now rewrite (3.3) as

f(η) = f0(η) +
ln t√
t
f1,1(η) +

1√
t
f1,2(η) + · · · , (3.13)
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where f1,1 and f1,2 are two O(1) functions to be determined. Substituting (3.13) into the

original PDE, while matching the O( ln t
t2 ) terms only, we arrive at the first-order ODE

2α(f0f1,1)
′ +

η

2
f ′
1,1 + f1,1 = 0 . (3.14)

Substituting −η/(2α) for f0, we get

η

2
f ′
1,1 = 0 , (3.15)

which amounts to

f1,1(η) = C4 , (3.16)

where C4 is a constant. The ODE for f1,2 is obtained by balancing terms up to O( 1
t2 ).

This gives

2α(f0f1,2)
′ +

η

2
f ′
1,2 + f1,2 − f1,1 +

1

2
(f2

0 )
′′ = 0 . (3.17)

Substituting the expressions for f0 and f1,1 into the above equation, the latter simplifies

to
η

2
f ′
1,2 =

1

4α2
− C4 , (3.18)

so that

f1,2(η) = 2

(
1

4α2
− C4

)
ln η + C5 , (3.19)

where C5 is a constant. Since η = 0 is within the domain of the solution,

C4 =
1

4α2
. (3.20)

It follows that

f1,2(η) = C5 . (3.21)

Hence we have shown that

f(η) = − η

2α
+

ln t

4α2
√
t
+

C5√
t
+ · · · , (3.22)

and solving for the η value where the above expression vanishes, we obtain

ηr(t) =
ln t

2α
√
t
+

2αC5√
t

+ · · · . (3.23)

In terms of the original variables, we have

uo(x, t) = − x

2αt
+

ln t

4α2t
+

C5

t
+ · · · (3.24)

and

xr(t) =
ln t

2α
+ 2αC5 + · · · . (3.25)
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3.2. Exact solution. It is worth noting that the truncated outer solution of (3.24) is

in fact an exact solution to the original PDE. A simple way to realize this is to seek a

solution of the form

u(x, t) = − x

2αt
+ w(t) , (3.26)

where w is unknown. Substitution of this expression into (1.1) leads to

w′ +
w

t
=

1

4α2t2
. (3.27)

This ODE can be solved explicitly, yielding

w(t) =
ln t

4α2t
+

C6

t
, (3.28)

where C6 is a constant. Combining (3.26) and (3.28), we get the same expression as

(3.24) for the outer solution with C5 replacing C6.

3.3. Inner solution. We now consider the higher-order expansion of the inner solution.

From the results of the higher-order gauge function in (3.11) and (3.12), we construct

g(ξ) = g0(ξ) +
ln t√
t
g1,1(ξ) +

1√
t
g1,2(ξ) + · · · , (3.29)

where ξ = (η − η�(t))
√
t,

η�(t) = −2
√
α+

ln t√
t
η�1,1 +

1√
t
η�1,2 + · · · , (3.30)

and

g1,1(0) = 0 , and g1,2(0) = 0 . (3.31)

Using (3.29) in the PDE of (1.1) and retaining only the O(t−1) terms, we obtain the

solution

g0(ξ) =
1√
α
(1− e−αξ) , (3.32)

where the leading-order solution is represented in terms of ξ rather than ξ0, an important

distinction. We recall that ξ0N is used in lieu of ξ as given in (3.7).

The next order is obtained by matching terms O(t−3/2 ln t) to get the differential

equation √
αg′1,1 = 2α(g0g1,1)

′ + (g0g1,1)
′′ . (3.33)

This ODE can be rearranged as

g0g
′′
1,1 + (2αg0 + 2g′0 −

√
α)g′1,1 + (g′′0 + 2αg′0)g1,1 = 0 . (3.34)

Utilizing the exact form of g0 given by (3.32), and recognizing that g′0 + αg0 =
√
α, the

above equation simplifies to(
1− e−αξ

)
g′′1,1 + αg′1,1 + α2e−αξg1,1 = 0 . (3.35)

This second-order linear ODE can be solved explicitly, by first observing that ξ 
→ e−αξ

is a solution and then, by applying the method of variation of parameters to find a second

independent solution. It follows that

g1,1(ξ) = C7e
−αξ + C8

(
1 + e−αξ ln (eαξ − 1)

)
, (3.36)
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where C7 and C8 are arbitrary constants. Since the second part of the solution diverges

at ξ = 0, C8 = 0. The boundary condition g1,1(0) = 0 implies that C7 = 0. Thus,

g1,1(ξ) = 0 . (3.37)

Before proceeding further for evaluating g1,2, we need to determine η�1,1 and other

constraints if any, by imposing an intermediate matching condition between the outer

and inner solutions that have been obtained so far. We define

f i(ξ) = f(η�(t) + ξ/
√
t) . (3.38)

Using (3.22) and (3.30), we obtain

f i(ξ) =
1√
α
+ (1− 2αη�1,1)

ln t

4α2
√
t
+O(t−1/2) . (3.39)

Similarly, we define

go(η) = g((η − η�(t))
√
t) (3.40)

and get

go(η) =
1√
α

(
1− e−α(η−η�(t))

√
t
)
+O(t−1/2) . (3.41)

For matching as t → ∞, since η > η�(t), we have

go(η) =
1√
α
+O(t−1/2) . (3.42)

Therefore, intermediate matching between inner and outer solutions requires that

1− 2αη�1,1 = 0 ⇒ η�1,1 =
1

2α
. (3.43)

A composite solution may also be constructed at this order, as given by

u01,1(x, t) = − x

2αt
+

ln t

4α2t
− 1√

αt
e−α(x+2

√
αt− 1

2α ln t) , (3.44)

where the subscript 01, 1 implies inclusion from zeroth-order up to ν1,1 terms. As in

the leading-order solution, this expression is exactly zero at x = −2
√
αt + ln t

2α , while it

yields an exponentially decaying term at x = ln t
2α . Essentially, this first-order correction

is a shift applied to the zeroth-order solution. In particular, the evaluation of the mass

balance

I01,1 =

∫ ln t
2α

−2
√
αt+ ln t

2α

u01,1(x, t) dx (3.45)

leads to

I01,1 = 1 +
1

α3/2
√
t

(
e−2α

√
αt − 1

)
= 1 +O(t−1/2) , (3.46)

which shows that mass conservation is verified consistently with the present order of

approximation.

Next, matching the O(t−3/2) terms of the expansion, we arrive at

−1

2
g0 − η�1,1g

′
0 +

√
αg′1,2 = 2α(g0g1,2)

′ + (g0g1,2)
′′ . (3.47)

We can now substitute the value of η�1,1 into (3.47). This reduces the equation to

(
1− e−αξ

)
g′′1,2 + αg′1,2 + α2e−αξg1,2 = −1

2
. (3.48)
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This differential equation is identical to that of g1,1 except for the nonhomogeneous part.

Therefore the homogeneous solution of this ODE is given by (3.36) and, applying the

method of variation of parameters, we obtain a particular solution as

g∗1,2(ξ) =
1

2α2

{
1− αξ + e−αξLi2(1− eαξ)

}
, (3.49)

where Li2 is the dilogarithm function defined by

Li2(z) =

∫ 0

z

ln (1− y)

y
dy . (3.50)

The next-order correction to the inner solution may be expressed as

g1,2(ξ) = C9e
−αξ + C10

(
1 + e−αξ ln

(
eαξ − 1

))
+

1

2α2

{
1− αξ + e−αξ Li2(1− eαξ)

}
,

(3.51)

where C9 and C10 are constants. Recalling that the second term is incompatible with

the left boundary condition and must therefore be zero, and using the condition that

g1,2 = 0 at ξ = 0, we obtain that C10 = 0 and C9 = − 1
2α2 . Therefore

g1,2(ξ) =
1

2α2

{
1− e−αξ − αξ + e−αξ Li2(1− eαξ)

}
. (3.52)

We now apply the higher-order matching condition between the inner and outer ex-

pansions. Using the definitions (3.38) and (3.40) with η�(t) given by (3.30), we write

f i(ξ) =
1√
α
− ξ

2α
√
t
+
(
C5 −

η�1,2
2α

) 1√
t
+ o(t−1/2) (3.53)

and

go(η) =
1√
α

(
1− e−α(η−η�(t))

√
t
)
+

1√
t
g1,2((η − η�(t))

√
t) + · · · . (3.54)

We consider as before the limiting expressions for t → ∞, ξ fixed for f i(ξ) and η

fixed with η > η�(t) for g
o(η). The limit up to O(1/

√
t) is considered. These limits are

denoted as f il for f i and gol for go. It is easy to work out that

f il(ξ) =
1√
α
− ξ

2α
√
t
+
(
C5 −

η�1,2
2α

) 1√
t

(3.55)

and

gol(η) =
1√
α
− η − η�(t)

2α
+

1

2α2
√
t
. (3.56)

The first two terms match automatically. To match the last term we require that

C5 −
η�1,2
2α

=
1

2α2
⇒ η�1,2 = 2αC5 −

1

α
. (3.57)

Finally, we construct the new composite solution by adding f(η) and g(ξ), and then

subtracting f il or gol. In a compact form, we obtain

u(x, t) =
xr(t)− x

2αt
−
[

1√
αt

+
1

2α2t

(
1− Li2(1− eα(x−x�(t)))

)]
eα(x�(t)−x) + · · · , (3.58)

where

x�(t) = −2
√
αt+

1

2α
ln t+ 2αC5 −

1

α
+ · · · (3.59)
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and

xr(t) =
1

2α
ln t+ 2αC5 + · · · . (3.60)

The concise representation of the solution in terms of the two boundaries illustrates that

u(x�(t), t) = 0 and u(xr(t), t) is exponentially small for t → ∞. We point out that

the constant C5 cannot be determined in the general case. However, the value of this

constant may be obtained numerically for a particular choice of initial data. With an

impulse-like initial data our numerical estimates shown below indicate a value close to

unity for 2αC5. Our conjecture is that the above solution converges to the true solution

as t → ∞ for any Lp-norm.

4. Numerical experiments. To verify the validity of our results, we solve (1.1)

numerically for the following initial condition:

uI(x) =

{
1
2ε , |x+ ε| ≤ ε ,

0 , |x+ ε| > ε ,
(4.1)

where ε > 0 is a constant. For good stability properties we apply a fully implicit scheme

with first-order upwind discretization for the convective term and central discretization

for the diffusive term. If a uniform spatial step size and adaptive time stepping are

employed, the discrete form of (1.1) reads

un+1
j = un

j +α
Δtn
Δx

[
(un+1

j+1 )
2 − (un+1

j )2
]
+

Δtn
2Δx2

[
(un+1

j+1 )
2 − 2(un+1

j )2 + (un+1
j−1 )

2
]
. (4.2)

A comparison between the numerical and analytical results is shown in Fig. 1 for

α = 2, and ε = 0.01. In the simulation, Δx = 0.005 and max(Δtn) = 0.01. It is

remarkable that with a pulse initial data, the analytical results are able to generate the

complete solution with a high level of accuracy. In Fig. 2 the inner, outer and composite

solutions are shown for t = 10 and α = 2. The subscript 01, 2 implies inclusion up to

ν1,2 terms. We point out that u01,2 is the same as g01,2.

5. Conclusion. We have derived late-time asymptotic solutions to a nonlinear ad-

vective-diffusion equation that has applications in porous media flow. In our particular

case, it describes the thickness of a buoyancy driven plume in an inclined bed. With a

compactly supported initial condition, the leading-order outer solution also satisfies the

hyperbolic problem with a pulse initial condition. The next-order correction for the outer

solution is purely time dependent, and at this order the partial differential equation is

satisfied exactly. Only a moving left boundary layer is required to generate the composite

solution. We have obtained the composite solution to orders 1/
√
t, (1/t) ln t, and 1/t. It

is shown that an unknown constant appears in the solution at O(1/t).
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Fig. 1. Asymptotic and analytical solutions for t = 1, 10 and 50,
with α = 2. Note that for t = 1, the ν1,1 term is zero and
u01,1(x, 1) = u0(x, 1). For t = 50, the numerical and the higher-
order analytical results with 2αC5 = 1 are almost the same.
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Fig. 2. Asymptotic inner, outer, and composite solutions (α = 2, t = 10).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION 401

References

[1] G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University
Press (1996). MR1426127 (98a:00005)

[2] B. H. Gilding and L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration,
Arch. Rational Mech. Anal., 61 (1976), 127–140. MR0408428 (53:12192)

[3] B. H. Gilding, Properties of Solutions of an Equation in the Theory of Infiltration, Arch. Rational
Mech. Anal., 65 (1977), 203–225. MR0447847 (56:6157)

[4] B.H. Gilding, The occurrence of interfaces in nonlinear diffusion-advection processes, Arch. Ratio-
nal Mech. Anal. 100 (1988), 243–263. MR918796 (89f:35104)

[5] R. E. Grundy, Asymptotic Solution of a Model Nonlinear Convective Diffusion Equation, IMA J.
Appl. Math., 31 (1983), 121–137. MR728117 (85g:76024)

[6] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag (1981).
MR608029 (82g:34082)
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