QUARTERLY OF APPLIED MATHEMATICS 93
APRIL, 1973

ASYMPTOTIC SOLUTIONS FOR SHELLS WITH GENERAL BOUNDARY CURVES*
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Abstract. The influence of arbitrary edge loads on the stresses and deformations
of thin, elastic shells with general boundaries is studied by means of asymptotic expan-
sions of a general tensor equation. Expansions are made in terms of an exponential or
an Airy function and a series in powers of a small-thickness parameter. Most of the
steps in the procedure are effected by using the dyadic form of the tensors. Solutions
are obtained that are valid in the large, with no restrictions on the loading or on the
boundary geometry.

Results indicate that the behavior of shells with arbitrary boundary geometry can
be quite different from that in the ordinary case. Specific results show the presence of
an interior caustic which is the envelope of the characteristics of an eiconal equation.
The exponential expansion becomes singular at the caustic, which would generally be
expected to be a local region of stress concentration.

The results have a close identity with asymptotic solutions obtained in geometric
optics. Following some new techniques used for solution of the reduced wave equation,
a solution of the shell equation is obtained using an asymptotic expansion in terms of
Airy functions which provides a solution that is uniformly valid in the neighborhood
of the caustic.

Introduction. The primary purpose of this study is to investigate the influence
of general edge loads on the stresses and deformations of thin elastic shells. The shell
equations were cast into a single, compact dyadic form by Steele [1] that will be used
here without development. Some details of that derivation and additional algebraic
details of equations developed in this paper are given in [2]. The type of solution sought
is a generalization of the well-known solution, with a decaying behavior from the shell
boundary into the shell interior, commonly referred to as an edge-effect solution.

Analytic solutions available in the literature are applicable only to shells with re-
stricted boundaries and loading conditions, or are valid only close to the boundary.
Certainly the most widely used edge-effect solution is that for the axisymmetrically-
loaded circular cylinder with a boundary on a circumferential line of curvature, and
that result may be obtained as a special case of our general solution.

Perhaps the best known solution for a shell with an arbitrary boundary is that of
Goldenveizer [3]. However, that solution involves a basic assumption that restricts
the region of applicability of the solution to a small boundary layer near the shell edge.
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In particular, for the “simple edge-effect solution,” it is assumed that the state of stress
increases by an order of the reciprocal of the square-root of the thickness when dif-
ferentiated along directions normal to the boundary, but has negligible change when
differentiated along the boundary. In addition, it is assumed that the geometric properties
are essentially constant in directions normal to the boundary. These basic assumptions
yield a simple solution that resembles the usual solution for cylinders, but in terms of
a local normal curvature. The assumptions necessarily limit the range of validity of
the solution to a region near the edge, and to loading that has a slow variation along
the edge.

The problem of a circular cylinder with an oblique edge cut-off is solved by van der
Neut [4] by approximating the edge with a helix, and assuming slow variations in loading
and geometry. More recently, Kitching and Bond [3] have solved the problem of the
intersection of pipes at oblique angles. Their edge-effect solution corresponds to the
one described above, due to Goldenveizer, and uses a solution in terms of a local normal
curvature. The problem of the oblique intersection of a sphere with a circular cylinder
is solved by Johnson [6]. That solution uses the assumption, among some others, of
the applicability of the edge-cffect solution for a cylinder with the boundary on a cir-
cumferential line of curvature.

In addition to problems of the type discussed above, the problem of a shell with a
boundary that is tangent at discrete points to asymptotic lines of the shell surface is
of particular interest. The problem is typified by a cylinder with a cutout, since in a
cylinder the generators are asymptotic lincs. Naghdi and Eringen [7] solve the problem
by assuming flat plate behavior in the region of interest, so that the solution is restricted
to small openings. A similar restriction also limits the applicability of solutions of Savin
and Guz [8], Lure [9], and, more recently, Van Dyke [10]. Recently, an extensive series
solution for an elliptical hole in a cylindrical shell has been used by Rao and Ariman
[11]. All of these solutions have important practical value, but involve assumptions
that limit the results to spacial circumstances.

In this study we consider arbitrary shells and scek solutions that are uniformly
valid in the large, without restriction to specific loading or boundary shape. However,
the difficulty in this analysis is the solution of a first-order, nonlinear differential equa-
tion in the large, and to date closed-form solutions have been obtained only for special
cases.

In Sec. I the differential equations are summarized, and in Sec. II an exponential
cxpansion is detailed. In Sec. 111, the details of an Airy function expansion are presented
and the results are compared to those obtained from the exponential expansion. Sec. IV
presents some elementary cases and illustrates the application of our solutions.

I. Governiag differential equation. In this section the governing differential equa-
tion is summarized. The historical background and a careful development of the founda-
tions of thin shell theory is given by Naghdi [12]. For solving problems, there are many
advantages in using the fourth-order system of partial differential equations in terms
of complex dependent variables. Using the dyadic representation of tensors, rather
than the component form, this system of complex equations was written as a single
equation by Steele [1]. In general, we consider tensors of rank two, and repeated indices
are summed over the values 1, 2, unless otherwise noted. A tensor of rank two is indicated
by the notation T = T%"a, X as , where a, are the base vectors at the point and &
indicates the tensor product.
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The homogeneous form of the governing differential equation is written as
V[P + ic(VP) ® a;] = 0. (1.1)

The tensor P is a symmetric form whose components contain equilibrium stress resultants
and couples as the real parts and strains and curvatures as the imaginary parts. The
variable P is the trace of P and this correspondence in notation is used throughout
the paper. The unit normal vector to the surface is a; and ¢ is a reduced thickness given
by ¢ = h/[12(1 — »*)]'/% Finally, the operator V is the usual gradient operator.

The components of Eq. (1.1) give the equations obtained by Naghdi {13], which
for lines-of-curvature coordinates, reduce to the form of the equations of Novozhilov
[14], but with the modified stress resultants and the curvature measure due to Sanders
[15] and Koiter [16]. Eq. (1.1) is a vector equation which when expanded gives a system
of partial differential equations containing two first-order equations and one second-
order equation. The system is equivalent to a single eighth-order equation, and contains
equilibrium equations as real parts and compatibility conditions as imaginary parts,
but connected by constitutive relations.

II. Exponential solutions. In this section we consider a solution of Eq. (1.1) that
exhibits exponential behavior. Generally, this results in the “edge-effect” or “boundary-
layer” type of solution that decays exponentially from the shell boundary into the
interior. However, the influence of self-equilibrating edge loads can often be significant
far into the shell interior, for example in shells of negative and zero curvature. Here
we seek a solution that is uniformly valid in the large, without a prior: assumptions
regarding behavior. One way that the solution has been obtained in the literature,
for the special case of boundaries that are lines-of-curvature, is by the use of an asymp-
totic expansion in terms of the small thickness parameter. Motivated by these known
solutions, the procedure for the case of arbitrary boundaries will be to seek a formal
asymptotic solution for P in terms of an exponential and a series of tensors in powers
of the small-thickness parameter.

Asymptotic expansion. It is convenient to write Eq. (1.1) in the form

VP + 2*(APa; — VPb) =0 (2.1)
where we have introduced the notation N = (ic)™/%. The components of the tensor b

are the coefficients of the second fundamental form and (A) is the Laplacian operator.
We assume solutions of Eq. (1.1) of the form

P = exp (2!, 2°)]P (2.2)
where
P = > \P, 2.3)
k=0

in which each P, is independent of \. Substituting Eq. (2.2) into Eq. (2.1) and equating
the coefficient of each power of A to zero, we obtain the general equation

VEPy + V-Pu-y + VEVEP_ha; + 2VE VP s a,
+ AEP-na; — Pu-oyVED + APyga; — VPu_gb =0 (2.4)

where P;, = 0 for all j < 0. Eq. (2.4) may now be systematically solved for sequential
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values of the index. For further solution, it is convenient to separate the equation into
normal and tengential parts which are, respectively,

a)"Pa—n'b'ax + VE-VEP G 1y + 2VE-VP s
+ AtPus + APus = 0, (2.5)

VE'P(k) + P?;f_l) 1& ag — P(k—2)v‘§'b - vP(k-—a)‘b = 0. (2-6)
Eiconal function. The first equation to be considered is obtained from Eq. (2.6) as
VE'P((]) = 0. (2.7)

A solution of Eq. (2.7) may be written in the form Py, = fe- Vi & Vi-¢, where f is
an undetermined scalar function. The permutation tensor £ operates with the scalar
product on the intrinsic part of a vector in the prefactor position to produce a right-
angle counter-clockwise rotation, and in the postfactor position to produce a right-angle
clockwise rotation, both rotations without change of length.

The tensor P was defined to be symmetric and we therefore seek those P, which
are themselves symmetric. To determine f, both sides of the equation above are con-
tracted by replacing the tensor product with the scalar product to yield the solution

Py = —Pn\Y. (2.8)
We have defined P, = trace P, , and
_eVEQ VEe
= TRV (2.9

The solution of Eq. (2.8) is now substituted into Eq. (2.5) with an index value of 1.
Thus we obtain the governing equation for £ as
Vi-e-b-eVE — (VE-VE? = 0. (2.10)

As the solutions are developed, certain analogies with well-known asymptotic solutions
of the reduced wave equation will appear; see, for example, Lewis and Keller [17]. Since
it is convenient to have names for some of the equations being used, we adopt the
terminology of geometric optics, so that Eq. (2.10) will be referred to as the eiconal
equation, with £(z', %) the eiconal or phase function.

Transport equations. The remaining normal equations can be cast into the general
form

VE-Poy + uny = 0. (2.11)

Eq. (2.11) is linear and the solution may be represented as the sum of a homogeneous
part and a particular part. The homogeneous solution is obtained as above in the form

Pouw = —Py¥. (2.12)
A symmetric particular solution is obtained as
Por = —L® [un), (2.13)

where we have defined the linear operator L such that

VERQV+ v VE— (VEV)S

L®N = STV (2.14)
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The identity tensor & is defined by the relation 8 = a,za” X a°, where the functions a.s
are the coefficients of the first fundamental form. The scalar product of & with a vector
in the prefactor or postfactor position gives the intrinsic part of the vector.

The governing differential equation for P, is now obtained by substituting Egs.
(2.8) and (2.10) into Eq. (2.5) for an index value of 1. The equation in its final form be-
comes

VP -A+ Pyl =0, (2.15)
where the following definitions have been used:
A = 2VE+ w-X, (2.16)
' =At+ VvV-wX, (2.17)
X = Xz, (2.18)

The components of X are given by X; = a*-L & [as]-b-a, . Following the previous
remark, we will refer to Eq. (2.15) as the first transport equation, and to P, as the
first transport or amplitude function.

Using the same procedures as above, we may now obtain all of the remaining trans-
port equations in the same form as the first equation. The only modification needed is
to account for the inhomogeneous part of the solution for the transport tensors with
an index of two or more. The general transport equation may finally be obtained as

VPuy A+ PuI'+ V- V4 - X+ APu.yy — Py, VED-X
— VPu_s-b-X =0. (2.19)
In addition to Eqgs. (2.16) through (2.18) we have defined the tensor
V=V, ag, (2.20)
where
Vel = a" L ® [un]-a
and
Ug, = P, |aag — Pu_oyVEb — VP -b. (2.21)

Eq. (2.19) is actually valid for all & if terms with negative index in (2.21) are set
equal to zero. All terms in the equation are known, theoretically, in terms of previous
transport functions and the eiconal function. The solutions of the eiconal and transport
equations will then give the complete asymptotic solution. From practical considera-
tions, however, if satisfactory results are not obtained with the first few terms, then
some approach other than this asymptotic expansion would be necessary.

Solution of the eiconal equation. Equation 2.10 is a first-order nonlinear partial
differential equation for the eiconal function. For detailed solution, it is convenient to
reduce the equations to their component form. We consider surface coordinate systems
that are orthogonal, so that a;, = a,, = 0. Using the notation p = 9¢/dz' and ¢ =
9¢/9x”, Eq. (2.10) is written as

2 2\2
p'*’h_*_q?h_’_(p__}_ﬁ_) =0, (2.22)

ay Q22

a a
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where a = la,s| and the functions b,s are the coefficients of the second fundamental
form.

Eq. (2.22) is solved for particular shell configurations using the method of char-
acteristics so that along characteristics solutions of the eiconal equation are obtained
as solutions of ordinary differential equations. It is of particular interest to note that
the characteristics are in general not parallel and so intersect at what will be termed
focal points. The locus of these focal points is the envelope of the characteristics, and
defines a caustic which is a line of singularities of solutions of the transport equations.
Thus, at a caustic, the coefficient of P, in the first transport equation becomes un-
bounded so that a solution of the form of Eq. (2.1) is no longer valid. A demonstration
of this singularity is given by Steele [18] and by Lewis et al. {19] for the reduced wave
equation. We only note here that the Lamé parameter which measures the separation
of the characteristics becomes zero at the caustic and since it appears in the denominator
of the Laplacian of the eiconal function, P becomes unbounded. In general, however,
the eiconal function itself is not singular at the caustic.

For the shell problem, we interpret the caustic as an area of stress intensification.
At interior points, the solution of the shell equation is ordinarily influenced by data
specified on the point of the boundary that is intersected by the characteristic that
passes through the interior point. However, points on the caustic are intersections of
adjacent characteristics so that the solution will be influenced by data in a neighborhood
of a boundary point. This increase in the normally expected value of the solution is
obtained in Sec. IV for a special case.

A convenient specification of initial data is given by a parametric representation
of the boundary edge in the form of functions z'(f) and x*(f), with ¢ the boundary pa-
rameter. To obtain the proper condition on the eiconal function, however, further
considerations are necessary. For a periodic variation of continuous boundary data,
the eiconal function may be written as ¢ = { 4 i(n/u)s, where ¢ is arc length along the
edge, { is a function of the shell coordinates which is zero at the boundary, and the data
have a wave length of 27u/n. For axisymmetric deformations of shells of revolution,
n = ¢ = 0 at the edge, and in the interior, £ = O(kR). Now, in the development of the
governing equation and its solution, terms of O(h/R) compared to unity were neglected.
It is then consistent to neglect contributions due to the variation of the boundary data
that are of the same order of smallness when compared to {. Expecting the same order-
of-magnitude behavior for the general shell as for the shell of revolution, we define
“slowly-varying’’ loads as those for which u = O(R) and specify ¢ = 0 at the boundary.
We define “rapidly-varying” loads as those for which u < O(R) and specify ¢ = i(n/u)c
at the boundary. There is an upper limit on n, however, due to the neglect of transverse
shear effects in the equation development; it is given by Steele [20] as n < R/h.

Solution of transport equations. First the solution of Eq. (2.15) will be considered.
Steele [1] shows that A at each point is in the direction of the characteristics of the
eiconal function. We introduce the parameter ¢, as the coordinate parameter of the
orthogonal trajectories of the characteristics. Then, using these coordinates, the first
transport equation may be written as the ordinary differential equation

(dP 0 /doy) + P, {(T/A) = 0, (2.23)

where A = Au, and u, is the base vector that corresponds to o, .
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Setting
Y= %dal ) (224)
we write the solution of (2.23) as
Py, = P, (2.25)

where P is the arbitrary integration factor. The solution for the first transport tensor
is then

Py, = —Pe W (2.26)

and is now determined in terms of the eiconal function. Although, as previously noted,
transport functions after the first few are generally of little use for computations, it
is of interest to develop their equations. Along characteristics, Eq. (2.19) becomes

(dP(k)/dal) + P(k)(P/A) =Qu , (2~27)
where
Quy = — (V'V(k)‘x + AP(k—l) - P(k—z)vf'b‘x - vP(k-s)'b‘X)~ (2-28)

The homogeneous solution is already included in the solution of the first transport
equation, and so an additional integration factor would only change the arbitrary P.
Then, the solution of Eq. (2.27) may be taken as

T
—_— oY Y
Py, =e f Qpe’ doy ,

go that
P(k) = —P(k)‘I" - L ® [U(k)]. (2.29)

Eq. (2.29) is the solution of the general transport tensor. This solution may be written
in terms of previous solutions by defining the operator M such that Q, = M[Pu-y],
where

MPun] =(V-Vo,- X+ APu.yy — PayVED-X — VP45 -b-X)/A (2.30)

Finally we obtain the general result
Py = [ MPuJe do (k2 D), (2.31)

The complete solution is now determined, in theory, as a sequence of integrals involving
the eiconal function. Apparently the integrations will in general have to be performed
numerically. However, the solution can be obtained in closed form for the special case
of axisymmetric deformations of shells of revolution, for which the solution by other
methods is known. The reduction of the eiconal equation for this special case is shown
in See. IV.

In this section we have obtained an asymptotic solution of the thin-shell equations
that is valid in the large except in a region near “caustics”. Due to the existence of these
causties, the shell will exhibit behavior different from that usually obtained using the
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axisymmetric edge-effect solution. Some elementary examples in Sec. IV make -this
behavior more clear.

III. Airy function solutions. In this section we seek an asyvmptotic solution of
the shell equation that will be valid for a region of the shell including the caustic. The
motivation for the exponential expansion form was a straightforward extension of the
usual expansion used for shells with boundaries that are on lines of curvature. It was
necessary only to extend the expansion to a tensor form to suit our equation. The motiva-
tion for an expansion form that will give a uniformly valid solution through the caustic
region is not quite so clear.

Considering the analogy to geomctric optics, the Airy functions [21], developed to
describe light intensity at caustics, appear as a natural choice. The proper combination
of terms can be developed from physical arguments, but a more compelling mathematical
argument was developed by Ludwig [22]. He used an argument based on a superposition
of planc-wave solutions as a solution of the reduced wave equation, and then used an
extended steepest-descent method to develop an Airy-function expansion form that
gave the desired results. We use the same expansion, making modifications only for
the tensor notation and the fact that our expansion is in terms of a complex parameter.
It remains to be shown in what follows that the phase angle of the Airy function argu-
ment is of the proper magnitude so that our asymptotic reductions will be valid. As
will be seen, with the proper definition of variables, the Airy function solution may be
handled in the same way as the exponential function solution, the only essential com-
plication being an inerease in the number of equations.

Asymptotic expansion. Solutions of Eq. (2.1) are assumed in the form

P = ™A (=N"0)Q 4 i PA(—NNR], (3.1)

where
Q = :; )\—kQ(m y 3.2
R = kZ; }\_kRm ’ (3.3)

and where 6 and { are functions of the shell coordinates. Each Q, and Ry, is inde-
pendent of A.

To obtain a formal solution, we substitute Eq. (3.1) into Eq. (1.1) and collect terms
by powers of A for the Airy function and its derivative separately. The general equations
are thus obtained as

(V0:-Qu + VR + V-Quoyy ~ a3(24V0-ViRu-y
+ ¢VEVIQuoy + V-V Qu_1y) + 1a3(A60Q 2
+ 2V0-VQi-2y + V- VR 2y + VR sy
+ 24V VRu-2) ~ MR-V 0-b + Ry 58V {+b)

+ AQu-38:; — VQu-3b =0, (3.9
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(VOoRu + Vi-Quy) + V- Ry — a2V ViQuo,
4+ (Ve VER G-y + V8-V OR 1)) + 183(AOR-s)
+ 2V 0-VRu-2) + AtQu-2 + 2V VQii-2)
= 1Qu-»V{b + By VE-b)
+ ARG-38; — VRuoay'b = 0, (3.5)

where Q(;; = R(;; = 0 for all j < 0. This system of equations may now be solved se-
quentially following the same techniques used for the exponential expansion.
Preliminary solution. 1t is convenient to introduce the notations

Vi ="V (3.6)

and
Ry = "R , 3.7)
so that for an index value of zero Egs. (3.4) and (3.5) acquire the symmetric form
ViQuw + V8-Re =0, (3.8)
V0-Qu + ViR, = 0. (3.9)

A solution is obtained by adding and subtracting the equations, and collecting terms
to yield the result

(V6 V8) Qu = Rip) = 0. (3.10)
Introducing the notation

@ = Qu, =Ry , (3.11)
Vé* = Vo £ 6\5‘, 3.12)

we may write Eq. (3.10) as
Vo' @, = 0. (3.13)
This equation now has a form identical with that of Eq. (2.7) and has the solution
@, = —d,,H, (3.14)

where
H=F% Vo & Ve
Vé-Vo
We have dropped the (&) for convenience since there is no confusion at this point.

It will be seen in a following development that the (&) signs have a simple physical
interpretation. From Eqs. (3.11) and (3.14), the first transport tensors are now written as

(3.15)

Quw = —QwH, (3.16)
R(o) = “R(O)H, (3.17)
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Eiconal equalion. Here we establish two coupled equations which together play
the role of the eiconal equation of the exponential expansion. It is again convenient to
separate the equations into normal and tangential parts and to treat each part separately.

Using the previous notation we may combine the normal parts of Eqs. (3.4) and (3.5)
for an index value of 1 as

—a)\'d)(o)'b‘ax + (V{'Vﬂ' + VG'VG)‘PW :l: V@'Vf“b(o) = 0. (3.18)

This equation can be considered as two equations in &, and solved to yield
Ve-Vi = 0. (3.19)

Using Eq. (3.19), we note the reduction given by V¢ - Vi + V68-Vo = V- Ve. Com-
bining this result with Eq. (3.18) and using Eq. (3.14), the eiconal equation of our Airy
function expansion is obtained as
Vé-ebe Vo + (Vo-Ve¢)’ =0 (3.20)
First transport equation. The tangential parts of Eqs. (3.4) and (3.5) for an index
value of 1 are now combined to yield the result
Vo @y, — vy, = 0, (3.21)

where
Va, = (Q(Zf la == .(l/zR(aéf la)as . (3.22)

Noting the identity of form with Eq. (2.11), the solution of Eq. (3.21) may be obtained
in the same manner as beforc to yield

@, = —dH + M vy (3.23)
We have defined the operator M such that
_ Ve QW +w® Ve — (VéW)b
M w] = Vo Vo (3.24)

Using Eq. (3.23) and the normal parts of Eqgs. (3.4) and (3.5) for an index value of
1, we may now develop the first transport equation. We note the following relations:

Ad = AO £ FPAE £ LTV VE,
Vé- V¢ = £ {VPVe-VE (3.25)
Vdwo = VQu £ {*VR« =+ 7R, V¢.

Furthermore, we define the vector X with components X, given by

X, = a-M® [ag]'b-a. (3.26)
From Egs. (3.16) and (3.17), the components of Q, and R, are obtained as
?0’3) = _Qw)Haﬁ, Zxoﬂ) = ~‘R(O)HW- (3-27)

Combining these results and using the eiconal equation, we obtain the final result that
2VfI>(o, 'Vd’ + @(o)A¢ - V<I>(0) HX e @(O)V HX
F 1/27 2@, VE-VE = 0. (3.28)
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Eq. (3.28) is the first transport equation for the Airy function expansion. The equa-
tion is identical in form to the first transport equation of the exponential expansion
except for the last term. As in Ludwig’s equation, it is this term which makes the co-
efficients of the transport function bounded at the caustic. Solving this equation for
® o) , we then have the solution for the first terms of the expansion, since &3, = Q, +
R . Thus, the traces of the first transport tensors are given by the relations

Q(o> = 1/2(4’:0) + ‘I’(—O)); R(o) = 1/2(‘1’&) - ‘I’(—O)) (3-29)

Since &, is solved in terms of ¢*, the association of the (<) is direct.

General transport equation. The general transport equation is obtained using a
technique similar to that used for the exponential expansion. Thus, the tangential parts
of Egs. (3.4) and (3.5) may be combined to give the resuit

Vo @y, — vy, = 0 (3.30)
where we have defined
Vio = (@0 |o = P°RE, [ag — @00 VéD — Vdu_sb.  (3.31)
We define the auxiliary tensor W, such that
Wo = Wiha. ® as, (3.32)

where W58 = a*-M ® [vq,]-2°. The components of W, in general include all of the
previous transport functions. Then, by solving Eq. (3.30) as before and using the above
definitions, the general transport equation of the Airy function expansion becomes

zvq’(k)'vﬁo + Ao — Q(k,V-H-X - Vq’(k)'H'X + 1/2’i§'-1/2v§"v§"b(k)
+ VW, X+ AQuy) = ARGy
- i‘I)(k_z)Vgo'b-X - v‘b()‘_;;)'b'x = O. (3.33)

As before, this equation is valid for all k if terms with a negative index are dropped.
The complete solution may now be written in terms of the solution of the eiconal equa-
tion.

Solution of transport equations. By defining functions in a similar fashion to the
previous solutions for the exponential expansion, we can obtain solutions for the trans-
port equations in terms of integrals involving the eiconal function. The solution for the
first transport function follows from Eq. (3.28) by noting that the characteristics of
the eiconal equation have directions given by the vector

A =2V¢ —H-X (3.34)
By defining
I'= (A¢ + V-H-X F 1/2i¢7*V¢- V)
the first transport equation can be written as
V& A + &ol = 0. (3.35)

By using the characteristic lines and their orthogonal trajectories as coordinates,
Eq. (3.35) reduces to the ordinary differential equation

(dq’w)/d&l) + ‘I’(O)(f‘/j\) = 0: (3-36)
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where &, is the characteristic coordinate parameter. We now define the function

&xf\
‘?=f Kdé'l.

The solution for the trace of the first transport tensor is then given by
By = Pe 7, (3.37)
where @ is an arbitrary integration factor.

We proceed as before to develop the solution of the general transport equation.
Thus, along the characteristics, the solution of Eq. (3.33) is obtained as

¢(k) = C;'; / Q(k)e‘; d&l y (3.38)

where
Q(k) = ‘“(v'w(k)'x -+ AQ(k—l) =+ AH(A-—H
— P Ve b-X — UV, 5 -b-X)/A  (3.39)

The equation
P = —PpH + MO [vew] (3.40)

is obtained finally as the solution for the general transport tensor of the Airy function
expansion. The homogeneous solution of I8q. (3.33) is contained in Eq. (3.37) and so
is not included in Eq. (3.38).

The solution can be written in terms of previous transport functions by defining
the operator M so that O, = M[®,], where

M[®n)] = (V-Wao X+ AQuyy &= ARy, — i®n oy Vé-b-X)/A.

We then obtain the solution
Puy =e’ f M[®y)e’ doy k= 1). (3.41)

The entire solution of the problem is now determined a series of integrals involving the
eiconal function. This solution may be completely related to the solution of our previous
exponential expansion by use of appropriate asymptotic expansions of the Airy functions.

Solution in terms of exponential solution. The similarity of form of the equations
obtained from the exponential expansion and those obtained from the Airy function
expansion leads to a consideration of the reduction of the one solution to the other.
If we set iVE* = V¢, the eiconal equations of the exponential and Airy expansions
are identical. Thus, we have the relation

i =0 x5

so that

6 =d¢ +£)/2, 7 =4E —£)/2 (3.42)

At the caustic, £* = ¢ so that { = 0 and the proper behavior for the Airy function
is assured.
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Considering Eq. (3.1), we have for sufficiently large values of the Airy function
argument

=

P~ P2 @ o (0 + B ep OF +im/2), (349

where
(Q £ R) = {*P* = o@f (3.44)

Eq. (3.43) is valid at sufficiently large distances from the caustic. For solution of the
wave equation, the additional factor 7/2 in the last term is interpreted as a phase shift
as light passes through the caustic. In our case, it is absorbed into the arbitrary integra-
tion factor.

We now have the complete solution of the Airy function expansion in terms of the
previous exponential expansion. I'or caustics of the type shown in Fig. 1, Eq. (3.43)
is interpreted in the usual sense of the exponential solution along two different char-
acteristics. Thus, each point on the convex side of the caustic is intersected by two
characteristics, onc of which is incoming to the point from the caustic, the other of
which is outgoing from the point to the caustic. The signs of the eiconal function may
be identified as illustrated, and will give corresponding signs to the transport function.
For the Airy function solution, we first solve the eiconal and transport equations for
the exponential expansion and then make the identifications above to yield the complete
asymptotic solution.

Near the caustic, the contribution of the term involving the derivative of the Airy
function becomes small, and the solution may be simplified. Thus, near the caustic we

CAUSTIC

&

CAUSTIC
CHARACTERISTIC

AN

Fig. 1. Solution at a convex caustic.
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have the relations |4:(t)|/|4:()| = O(1) and \™'*| = O(c""). For sufficiently small ¢,
we may then approximate the solution Eq. (3.43) by the result

P ~ exp (IN)A:(—N"7)Q. (3.45)

At sufficiently large distances away from the caustic we have that |4.(f)|/|A:@¢)| =
O(t™'"*). If the argument of the Airy function satisfies the requirement { ~ A /%, the
contribution of the term containing the derivative of the Airy function is as large as
that due to the Airy function itself, leading to Eq. 3.43 on the convex side of the caustic.
Thus, Eq. 3.45 is valid inside a boundary layer of width O(¢'’®) about the caustic, il-
lustrated in Fig. 2. Eq. 3.43 is valid outside the layer on the convex side of the caustie.

BOUNDARY LAYER

CAUSTIC

Fi1a. 2. Boundary layer at a caustic.

Considering the asymptotic form of the Airy functions used to obtain this result,
we note that Jarg (—)\*°t)| < 2#/3, so that our expansion in terms of the complex
argument is valid.

Complex characteristics. We now consider the concave side of the caustic and
introduce complex characteristics, following Keller [23]. Then, considering the asymp-
totic expansion of the Airy functions for positive argument, we obtain the result

a

1 R
P~ PENY] exp (IAp) @. (3.46)

We have defined a complex eiconal function § = 8 + 4y, where ¢y = 2(—¢)** and a
complex amplitude tensor

@ = (—)7Q — i(—)'R]

The functions corresponding to § = 8 — 7y yeild a solution that increases exponentially
with increasing (—¢), and has been deleted to satisfy the physical requirements of
our problem.

To establish the validity of the asymptotic expansion of the Airy function, we note
that |arg (\*°¢)| < m, so that our expansion is valid.

There remains the case where a third characteristic can intersect points on the convex
side of the caustic, as illustrated in Tig. 2. This ease is covered directly by the previous
exponential expansion since the caustic shown does not influence the solution on this
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third characteristic. Thus, the complete solution will be a linear superposition of the
previous solutions and this third solution.

IV. Solution of special cases. In this section we consider explicit solutions of the
previous equations. Although it is unlikely that the general integrals developed in the
previous sections can be evaluated in closed form for the arbitrary shell, useful insight
can be obtained by consideration of elementary cases.

Eiconal function for circular cylinders. Using as coordinates the generators and
the parallel circles of the cylinder, denoted by s and 8 respectively, the eiconal equation
for the exponential expansion becomes

2

B+ (’p2 + ;%—) = 0. (4.1)

The initial conditions are given by the relations
£O0) = &), s(0) = so(t), 6(0) = 6,(2), (4.2)

where we use the initial circumferential angle as the boundary parameter, t. In addition,
we require the usual strip conditions. The subseript (0) is used to indicate the initial
value.

Eq. (4.1) is of a special form and has the solution

£ = Do(s — 80) + @@ — ) +&. (4.3)

For this special case, the characteristics are straight lines and hence are geodesics of
the shell surface. The functions p, and ¢, are parametric in the boundary parameter ¢,
and are obtained by combining the initial and strip conditions. Further solution of the
equations requires a specific boundary configuration.

For the case of slowly varying data, the boundary curve is a level line on the eiconal
surface. Therefore, the gradients of the eiconal function are normal to the boundary,
but are not straight lines. In the geometric optics solution of the wave equation for
the case of an isotropic medium with a constant refractive index, the characteristics
and gradients are coincident straight lines, and define the rays. In our case, however,
the characteristics are not in general coincident with the gradient lines and this lack
of coincidence is a principal difficulty in solving the equations in the large.

Cylinder with an obligue edge. An elementary boundary curve is given by the inter-
section of a plane with the cylinder, illustrated in Fig. 3. The initial conditions become,
for the case of slowly varying data,

(8 =0, s, = Rtan ¢ cost, 6, =t (4.4)

X _

v

Fic. 3. Cylinder with an oblique edge.
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The eiconal function is obtained as
£ = (1 + tan® ¢ sin® §) '[R7V*(s — s,) — R"* tan ¢ sin t(6 — 1)), (4.5)
and the characteristics are defined by the relation

_2, tan ysin ¢\
-1 = R s sO)(l — tan® ¢ sin® t)

The equation for the caustic is obtained by finding the envelope of the characteristics,
and is given parametrically by

(4.6)

0 =1—tani,
s 1 (1 — sin’ ¢ tan® \l/)
g = cos ltan ¢ 5 cos 1 tan ¢ 4.7)

Fig. 4 illustrates the nature of the characteristics and the caustic near the edge of the
developed cylinder.

CAUSTIC CHARACTERISTICS
N L

DEVELOPED SHELL EDGE

Fia. 4. Caustic for an oblique cdge.

We note that the solution obtained is for stresses and deformations that have a
decaying behavior into the interior, so that the caustic is, in general, in a region of low
stresses and deformations. For example, with ¢ = 50° ¢t = , the ratio of the caustic
stress to the edge stress for an aluminum cylinder with R/h = 212 is exp (—21.6). As
the inclination angle of the edge increases, the caustic moves closer to the edge, as
illustrated in Fig. 5. It may be that the effect of the caustic would be important for
relatively thick shells with large edge inclination angles, but it appears that there is
negligible practical importance.

In addition to the previously discussed stress intensification effect, there is the
possibility of the intersection of non-adjacent characteristics in the region interior to
the caustic, illustrated in Fig. 4. This intersection provides an additional intensification
but the practical significance is negligible in light of the previous comment.

Cylinder with a circular hole cutout. In this section we consider a boundary that is
formed by a circular hole in the developed eylinder, illustrated in Fig. 6, and compare
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v

S
0
¢=30° 45° 60°

Fic. 5. Lffect of ¢ on caustic.

the exponential and Airy function expansions. The special interest iniboundaries of
this type derives from the singular behavior of solutions at points of tangency of the
boundary and asymptotic lines; see, for example, Goldenveizer [3]. For the cylinder,
the generators are asymptotic lines, and our solution shows the existence of a caustic
at that point of tangency.

Fig. 6. Cylinder with a circular hole cutout.

Using the coordinates illustrated in Fig. 6, the initial conditions for slowly varying
data become

EO = 0) So = (7"3 - thz)l/zy 00 = {. (4-8)
The eiconal function is obtained as
£ = (3 — R*)I0 — R)*(s — so))R™"” + R*’1(6 — 1)]/73, (4.9)

and the characteristics are determined by the equation

@ = BOT . (4.10)

(6 — 8 =2t (7’3 R

The caustic is obtained as the envelope of Eq. (4.10) and is illustrated for the de-
veloped hole in Fig. 7. As before, the characteristics are straight lines, but their caustie
now forms in the hole itself. We note that only a portion of the shell is affected by the
boundary layer, as shown in Fig. 8. We expect our solution to be valid everywhere
except perhaps at the point of tangency of the boundary and the asymptotic line. Indeed,
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HOLE EDGE

CHARACTERISTICS
CAUSTIC

CHARACTERISTICS
ARE SHOWN IN FIRST
QUADRANT ONLY

F1a. 7. Caustic for a circular hole cutout.

this is also the point of tangency of the boundary curve and the caustie, and by prior
discussion, the equation for the first transport function becomes singular at that point.
However, it is shown subsequently that at small distances from the edge our exponential
solution is still valid. We note here that the eiconal function is zero at the point of
tangency and so it is a regular function and satisfies the initial conditions

S

CAUSTIC
BOUNDARY
LAYER

SHELL

BOUNDARY
LAYER

Fic. 8. Boundary layer for circular hole cutout.

Steele [1] solves the problem explicitly for the case in which the hole is a rigid insert
with a simply supported boundary. The shell is loaded axially and the boundary con-
ditions for the edge-effect solution are that the mid-surface strain tangent to the bound-
ary is the negative of the membrane strain, and that the bending stresses are zero.




ASYMPTOTIC SOLUTIONS FOR SHELLS 111

For this case, we have that £, = 0. In order to solve for the transport functions, the
coordinates are now taken as the characteristics and the level lines, or contours, of
the eiconal surface, and so represents a non-orthogonal system. Using { as the coordinate
parameter along the characteristics, we obtain the solution of the eiconal equation
in this new system as

£ = cos® g[(s — ro cos 7)° -+ (RO — ry sin n)°]"*/R'>. (4.11)
The first transport function becomes
Py, = Pa™'"?, 4.12)

where P is the arbitrary integration factor. The angle » is the polar angle, measured
from the generator that passes through the hole center. For the cylinder, we obtain
the relation

a'* = (B**/cos n)[1 + (2¢/(R"” cos’ m))].

It is of some interest at this point to digress and consider cutouts with the boundary
curve given by a higher-order curve. For example, cutouts with an aspect ratio of one
can be described by §" 4+ (Rf)" = 1. For very large n, the sides approach straight lines,
and the caustic acquires a higher order of contact with the side that is parallel to the
cylinder generators. In the limit of high #, our solution, as expected, then loses its
exponentially decaying behavior in the circumferential direction, and recovers the
ordinary edge-effect solution for cylinders in the axial direction. However, in the cir-
cumferential direction, the first transport equation would still have singular coefficients
so that our solution is not valid. Goldenveizer {3] solves this problem naming it the
“generalized edge effect,” in which the entire edge is an asymptotic line.

Returning to the circular cutout with a rigid insert, we now consider the nature
of the Airy function solution. From Eq. (4.12) and the solution obtained from the Airy
function expansion Eq. (3.44), the trace of the first transport tensor is given by

P = f‘IMPfo) . (4-13)

The choice of the (&) is somewhat arbitrary and the convention has been adopted to
take £* in the direction forward from the caustic when transversing the caustic in the
direction of positive 5, and £ conversely.

For our problem, the solution given by Eq. (4.12) may be written as

P}, = == P/(a cos n)'"”. (4.14)

An arbitrary function of the polar angle has been introduced into the solution in order
to obtain the desired behavior at n = /2. Using Eq. (4.14), we obtain the solution in
the boundary layer, illustrated in Fig. 8, from Eq. (3.45) as

P ~ exp (N)A; (—N"°0)¢ (Pl + Poy)H. (4.15)

Using Eqgs. (4.14) and (4.15), a one-term approximation to the trace of P is obtained as

. . v 1 1
P N P exp (iN6) A.(—\"%F) %ﬁ <COSI/2 " + 005 11_) (4.16)

By assuming that the limit of Eq. (4.16) at the caustic is approached from the left-
hand and right-hand sides at the same rate, P may be shown to be continuous with a
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bounded derivative in the entire boundary layer, including the edge of the hole. Further-
more, we have shown previously that the Airy function solution reduces to the expo-
nential solution outside of the boundary layer. Therefore, the solution represented by Eq.
(3.1) is valid in the large for the entire boundary region.

It should be noted that each characteristic intersects the boundary twice, except
at n = 7/2, as illustrated in Fig. 7. Due to this effect, there will in general be a violation
of the prescribed boundary data. Ior completeness, a series of auxiliary boundary value
problems could then be superimposed to reestablish the correct boundary data. How-
ever, since our solution exhibits an exponential decay along the characteristics, the
contribution of this effect will be small except in the boundary layer itself, where it is
this additional intersection that gives our solution the desired behavior. In addition,
due to the symmetry of the caustic, there are two characteristics from the opposite
side of the hole that will also pass through a given point. Again, however, due to the
exponential nature of the solution, this contribution will be negligible. We note that at
the position v = 0 on the hole edge, the usual edge-cffect solution for the cylinder with
a symmetric boundary is obtained. However, along the circumferential line from 7 = #/2,
we have that £* = —£7, so that from Eq. (3.42) & = 0 and the solution displays the
expected Airy function behavior that was illustrated in Fig. 1.

In this section we have shown formally that the edge-effect solution represented
by Eq. (3.1) is uniformly valid throughout the edge-effect boundary region, including
the point of tangency of the boundary and an asymptotic line. It is expected that this
uniform validity would hold in general, but we have demonstrated only a simple example,
and a general proof has not yet been shown.

Other shells. Tt was possible to consider the solution for the circular cylinder in
some detail due to the simplicity of the eiconal equation. However, for a shell of re-
volution, we find at once that the eiconal equation becomes sufficiently complicated
apparently to preclude a closed-form analytical result, at least at this time. The principal
complication is that the radius is no longer constant so that the eiconal equation involves
a coordinate parameter explicitly. FFor example, even for a right circular cone the char-
acteristics are no longer straight lines but are solutions of a nonlinear ordinary differential
equation. The behavior of the cone is then somewhat different from the cylinder even
though both shells have zero Gaussian curvature.

By considering a shell of revolution with an axisymmetric boundary, we note that
the choice of coordinates for solution of the transport functions appears as a natural
one. For this special case, the ciconal equation reduces to

(dg/ds)* = 1/R, (4.17)

where s is arc length along the characteristics. The eiconal surface is itself a surface
of revolution, and the characteristics thus coincide with the meridians of the shell
surface. The level curves of the eiconal surface are projections of the parallel circles
of the shell, so that the characteristics and projections of the gradient lines of the eiconal
surface also coincide. The complete solution for this case is then easily obtained using
the exponential expansion, and is valid everywhere except near the ‘“‘caustic” which is
the point of intersection of the meridians at the top of a closed shell.

V. Concluding remarks. We have obtained a formal solution to the shell equation
presented in Sec. I by using a slightly modified form of a generally accepted exponential
asymptotic expansion, and the solution is intuitively satisfactory in the sense that it
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yields behavior that may be generally expected. At this point, however, our solution
remains a formal one since we have not yet obtained an error estimate, nor have we
shown that the solution is actually asymptotic.

The recognition of the similarity of our shell solutions and available asymptotic
solutions of the reduced wave equation led to an analogy with geometric opties solutions.
The similarity arises due to the role of the Laplacian in corresponding equations and
the similarity in the forms of the asymptotic expansions used. There is apparently no
advantage in carrying the analogy too far, but it is interesting to note that our shell
equation, for the trivial limiting case of a vanishing-curvature tensor, corresponds to
the reduced wave equation for the case of zero refractive index. Our prineipal interest
in the geometric optics solutions has been the adoption of some key mathematical
details. It should be remarked that our Airy function solution is not expected to be
valid in the region of cusps of a caustic. However, Ludwig [22] uses a generalized Airy
function for the solution of the reduced wave equation near a cusp, and that type of
an expansion should also be successful for our shell equation.
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