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ASYMPTOTIC SOLUTIONS OF LINEAR VOLTERRA INTEGRAL
EQUATIONS WITH SINGULAR KERNELS
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ABSTRACT. Volterra integral equations of the form t/(t) - - JJ a(t - r)u{r)dr, k(0)

= 1, are considered, where a(t) e C(0, oo) D L,(0,1). Explicit asymptotic forms are

obtained for the solutions, when the kernels a(t) have a specific asymptotic representation.

1. Introduction. In this paper, we study the asymptotic behavior of the solution

of the linear Volterra integral equation

(1.1) t/(t) - - J0' a(t - tMtVt,       «(0) = 1,

where a(t) E C(0, oo) f~l L^O, 1). By standard results on Volterra equations, we

know that equation (1.1) has a unique solution in C'[0,oo). We are here

concerned with the problem of asymptotic stability of the zero solution of (1.1),

i.e. when the solution u(t) of (1.1) satisfies

(1.2) lim «(/) = 0.
t-* 00

Equation (1.1) is a special case of a more general nonlinear equation studied by

Levin [7] and Levin and Nohel [8]; they obtain sufficient conditions so that (1.2)

will hold. For the linear equation (1.1), Hannsgen [5] has employed Laplace

transform methods to improve Levin's result for this special case. Specifically, it

is shown in [5] that if a(t) satisfies

(1.3) (-l)*a<*>(0 > 0,      k = 0, 1, 2,

and a(t) # a(0+), then the solution u(t) of (1.1) satisfies (1.2). In this paper, we

are not concerned with sufficient conditions for the asymptotic stability of (1.1)

but rather with the rate of decay of solutions of (1.1) when it is known that the

equation is asymptotically stable. Thus, when the kernel a(t) is known to have a

specific asymptotic representation, one seeks for asymptotic representation of the

solution of (1.1). This approach has been investigated in a recent paper of
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186 J. S. W. WONG AND R. WONG

Hannsgen [6]. A typical result is the following: suppose that a(t) = Ct" + b(t),

t -» oo, where C> 0, b(t) is completely monotonie (i.e. (- l)kb^(t) >0,k = 0,

1, 2, ... ) and b(t) = o(ts), -1 < S < a < 0; then the solution u(t) admits the

following asymptotic representation:

u(t) = (T(a + l)/CT(-a - l))»-""2 + 0(tc),       t -* oo,

where e > -2a + 5-2. The method of his study is based upon Bernstein's

representation for completely monotonie functions [11, p. 161] and indirect

abelian theorems. Here we shall adopt a different approach whereby we assume

that a(t) possesses certain asymptotic behavior on a sector containing the positive

reals R+ and obtain asymptotic representation of solutions of (1.1). This

approach does not require that a(t) is completely monotonie as a function of the

real variable t but demands more information on a(t) as a function of the

complex variable » in a sector containing R+. In contrast, our method of study is

based upon tauberian theorems, inversion formulae for Laplace transforms and

asymptotic evaluation of contour integrals. It should be pointed out that some

more or less standard tauberian theorems have been used to obtain asymptotic

expansions of solutions of specific Volterra equations of the form (1.1) as t -* oo;

see, for example, Levin and Nohel [9] and Bronikowski [1]. However, none of

these results are applicable to the situations to be considered in the present paper.

This is due to the fact that the Laplace transform of the solution of (1.1) often

behaves like the logarithmic function near the origin. In the next section we shall

prove a tauberian theorem which is quite different from the existing ones and

hence is of independent interest.

2. Preliminary considerations. Let Ta denote the subset of the complex »-plane

given by

(2.1) Ta - {»: |arg t\ < a,t * 0),      0 < a < v/2.

Let A(s) denote the Laplace transform of the function a(t) given by

(2-2) A(s) = f" e-»a(t)dt.

We shall assume throughout this paper that the kernel function a(t) satisfies the

following conditions:

(A^ a(t) is defined and analytic in Ta;

(A2) a(t) = 0(tv) as |f | -» 0 in Ta for some n > -1, and a(t) = 0(1) as

\t\ -* oo in Ta;

(A3) A(s) is analytic and Re A(s) positive on the right half-plane Re í > 0,

with the exception of a possible singularity at 5 = 0.

Assumption (A, ) is markedly the major difference in our approach. Here we

assume the kernel function a(t) defined as a function of a complex variable over
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LINEAR VOLTERRA INTEGRAL EQUATIONS 187

a sector containing the positive real axis. The first part of assumption (A2) implies

that a(t) E L,(0,1). These two assumptions are stronger than that imposed by

Hannsgen [6]. The second part of assumption (A2) and assumption (A3),

however, are weaker than those imposed in [6]. In fact, if assumption (1.3) holds

then these two assumptions are clearly satisfied (see e.g. [10]). It should perhaps

be pointed out that assumption (A3) alone is sufficient for the asymptotic stability

of (1.1). On the other hand, if a(t) is completely monotonie then it has an analytic

continuation from R+ to the whole right half-plane.

By rotating the ray of integration in (2.2), A(s) can be analytically continued

in view of (A,), (A2) from the right half-plane Re s > 0 to the larger sector

(2.3) S% = {s: |arg s\ <ir/2 + a,s* 0},       a > 0.

(See §2, Chapter VI and §5, Chapter VII of [4].) In the half-plane Ht defined by

(2.4) H„ = {s: Re(*>'») > 0, \9\ < a],

the function A(s) is represented by the integral

(2.5) A(s) = fo°°"' a(t)e-"dt,      s E Ht.

By the principle of analytic continuation, the function A(s) does not depend on

the ray chosen for the integration. In what follows it is therefore understood that

A(s) is an analytic function in the sector S¡> and is represented by (2.5) in the half-

plane H9 for every \9\ < a.

Returning to (1.1) and taking Laplace transforms, we obtain

(2.6) U (s) = (s + A(s))~x,       Re s > 0,

where U (s) denotes the Laplace transform of the solution u(t). Since A(s) is

analytic in S°, U (s) is analytic in 5° except at the zeros of i + A(s). In fact, we

shall now show that there exists a 0 < 8 < a such that U (s) is analytic in

(2.7) Ss = {s: |arg s\ < m/2 + 8,s # 0}.

From assumption (A3) it follows that s + A(s) has no zero in the right half-plane

[s: Re i > 0}. (Note that A(s) may have a singularity at j = 0.) By (A2), we

know from the representation (2.5) that

(2.8) A(s) = 0(s~'),      s -► oo in H„,

where e = min(l + r/, 1). The estimate (2.8) shows that i + A(s) cannot have

zeros in 5° for large absolute values of s. Since an analytic function (not

identically zero) can have only a finite number of zeros in any compact subset of

the plane, there must exist 5 > 0 such that 5-1-/1(5) has no zeros in Ss.
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188 J. S. W. WONG AND R. WONG

(2.9)

The complex inversion formula for Laplace transforms gives

1*)-siiru^* '>o'
for some c > 0, the integral above is taken as a principal value. (For a

justification of (2.9), see [5].) Since U (s) is analytic in Ss and U (s) — 0(s~x ) as

j -» oo in Ss, the Cauchy's theorem then yields

1
(2.10) »(') = ¿ifcU{s)e"ds,      f>0,

where the contour C (Figure 1) is described as follows: for any r > 0, C consists

of the radial lines 9 = (m/2 + 8), \s\ > r, 0 < 8 < a and the portion of the

semicircle of radius r shown. The integral in (2.10) is again taken as a principal

value.

«-plane

Figure 1. Contour C

The principal tool for our subsequent analysis is the following Tauberian

result.

Theorem 1. Assume that

(i) F(s) is analytic in S¡¡,

(ii) F(s) -* 0 uniformly as s -» oo »tj Ss,

(iii) the inverse transform of F(s)

(2.11)
rc+ioo
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LINEAR VOLTERRA INTEGRAL EQUATIONS 189

exists for t > 0, at least as a principal value for some c > 0,

(iv) F\s) has the following limiting behavior

(2.12) F(s) = s*~x (log s)"{C0 + 0(s')},      e > 0,

as s —» 0 in Ss where a ¥= 0 and X ¥= 1, 2, ...   .

Then the function f(t) given in (2.11) has the following asymptotic formula

ft») /(.) - ^{^ - «r-.(. - x))r£ + «(¡¡L.)}

as f -» +00, wAeT*? Z) = ¿/¿¿A.

Proof. Assumption (ii) implies by the Cauchy theorem that

(2.14) f(t) = ±-.fcF(s)e«ds,

where C is the contour shown in Figure 1. For fixed r > 0, the semicircle |s| = r,

|arg s| < i/2 + 5 and the two radial lines arg s = ±(ir/2 + 8), \s\ > r form such

a contour C. We refer to the first part of this contour as A and the second part

as A
On B, F(s) is bounded, say by M, therefore we have

(2.15)

2^ JB F(s)e"ds  <—Jr   exp (ut cos (ir/2 + 8))du

M r<*> M e~'rsinS
= -/    e-«™*du = -e-^-z = o(e-a),

IT Jr IT   t Sin 8 V        '

as / -» +00, where e = r sin 8 > 0. Using (2.12), we can estimate the integral on

contour A as follows

(2.16) ¿JT F(5y<fc = |j £ s*-'(logs)ae>'ds + R(t),

where R(t) satisfies the inequality

(2.17) \R(t)\ <^fA |5x+-'(log sfe'-dsl

A simple estimate yields

(2.18) R(t) = CX(log í)°Ax+e),   as í -* oo.

Combining estimates (2.15) and (2.18), we obtain the following,

(2.19) fit) = ^.jA S*-'(log s)ae»ds + o{^f),   as t -* oo.
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190 J. S. W. WONG AND R. WONG

The integral in (2.19) has been studied by Wyman and Wong [13] and has the

asymptotic representation

¿jV-Oog^V'^

(2'20) = Hogirr_L_ _    _«■_   0(_L_)1
tx     lT(l-X) + D{l   U     ^)logt + °\(\0gt)2)j'

as í -» oo. Thus, (2.19) and (2.20) together give the desired result (2.13).

We note that the asymptotic representation given by (2.13) is independent of

X. Therefore, we may let X -* m, m = 1, 2, 3, ..., and deduce the following

Corollary 1. Under the hypothesis of Theorem 1, we have

(2.21) f(t) = (CoA*)(-log »r'[(-l)*r(A)a + 0(l/log »)]

for X = 1, 2, 3,_

As an immediate application of our corollary, we obtain the following result

concerning solutions of equation (1.1).

Theorem 2. Let a(t) = (t + l)~x in equation (1.1). Then the solution u(t) 0/(1.1)

has the asymptotic representation

(2.22) u(t) = (f log2(t/d)Tx + 0{rx(\og-\t/d))),

as t -* oo, where d = ey and y is the Euler constant.

Proof. It is well known that the Laplace transform of a(t) = (t + 1)_1 is given

by

(2.23) A(s) = f" f^dt = *(l,l,s),

Re s > 0, where ^ is the confluent hypogeometric function [3, §6.5]. It is also

known that the function ¥(1, l,s) is analytic in the complex s-plane cut along the

negative real axis and has the following behavior near s = 0:

(2.24) A(s) = t0, U) = -log s-y + 0(s(log s)~x),

s -> 0 (sec [3, §6.8] and note that the constant y is missing there). Thus, from (2.6)

we have

(2.25) U(s) = -(logsd)-x(l + Gis)),

as s -» 0 in the sector |arg s\ < it — A < it. Applying Corollary 1 to (2.25), we

obtain the desired result (2.22).
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LINEAR VOLTERRA INTEGRAL EQUATIONS 191

We note that the asymptotic representation (2.22) concerning solution u(t) of

(1.1) is an improvement over an earlier result reported by Hannsgen [6] who

proved

u(t) = (t\og2(t/d)Yx + 0{t-x(log(,/d))-^},

where 0 < e < 1 and the constant d is also not specified.

3. The case when a(t) ~ ty, y < 0. We present here in detail our analysis for

the case when a(t) satisfies the asymptotic form

(3.1) a(t) ~ f\       / ^ oo in Ttt,

where y < 0. The results are given by the following four theorems treating (i)

-1 < y < 0, (ii) y = -1, (iii) Y < -1 and y # -2, -3, ..., and (iv) y = -2,
-3,... respectively.

Theorem 3. Let

(3-2) a(t) = f^-T)r + b(t),       tETa,

where C> 0, b(t) — 0(f) as t -> oo in Ta and -\ < p < y < 0. Then the

solution u(t) o/(l.l) satisfies

(3.3) u(t) = r2-yCT(-l -y) + 0(f),       t - oo,

where e = -2 — 2y + p.

Proof. Taking the Laplace transforms of (3.2) we have

(3.4) A(s) = Cs-y~x + Jo°° b(t)e-"dt,

Re j > 0. Denote by B(s) the Laplace transform of b(t). Since b(t) E 1^ (0,1)

and b(t) = 0(f) as t -» oo, it is easy to see that

(3.5) B(s) = 0(5-"-'),   as s -► 0,

in |arg s\ < ir/2 - A < it/2. Hence, it follows from (3.4) and (3.5) that

(3.6) A(s) = Cs->~x(l + 0(jy-p)),

as s -» 0 in |arg s\ < w/2 - A. Substituting (3.6) into (2.6), we find

(3.7) U(j) = C-'j*+1[1 + Gis"-")],

as s -» 0 in |arg s\ < ir/2 - A.

In view of the analyticity of a(t) in Ta, we can write A(s) and B(s) in terms of

a contour integral on a ray with arg / = 9 where 9 E [-a, a]. Such a representa-
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192 J. S. W. WONG AND R. WONG

tion, as given by (2.5), is valid for 5 e He. Following a similar argument as that

given above, we conclude that the formula (3.7) for U(j) is also valid in

|arg(se*)| < tt/2 - A. Since 9 is an arbitrary number in [-a, a], (3.7) holds for

s e St, 0 < 8 < a. Substituting (3.7) into (2.10), the desired result (3.3) now
follows by a simple complex integration.

Remark 3.1. Hannsgen [6] obtained the conclusion (3.3) by an entirely different

technique. His condition on e > -2 - 2y + p is more restrictive.

Theorem 4. Let

(3.8) a(t) = Crx + b(t),      t E Ç,

where b(t) = 0(1'") as t -» 00 »ti Ta and p > 1. Then the solution u(t) of (1.1)

satisfies

<39> ^cTiogWnoW)' as'^°°-

Proof. Since t~x & 1^(0,1), we must consider the Laplace transform of a(t) in

two parts, namely,

(3.10) A(s) = fo a(t)e-"dt + f™ a(t)e-"dt.

As a(t) E Li(0,1), the first integral in (3.10) is an entire function of s which we

denote by <p(y). The second integral in (3.10) can be estimated by using the

limiting behavior of a(t) given in (3.8). Observe first that for Re s > 0,

(3.11) J" rxe-"dt = •"•*0, M)-

The above integral has an analytic continuation into the angle |arg s| < m — A

and in the neighborhood of j = 0 it has the same asymptotic behavior as

t(l, 1,5), as can be seen by a change of variable and comparison with (2.24).

By hypothesis, b(t) = 0(1'") as t -* 00 and p > 1. Hence

(3.12) f b(t)e-«dt = 0(1),

as s -* 0 in |arg j| < tt/2 — A. Combining (3.11) and (3.12) in (3.10), we obtain

(3.13) s + A(s) = C log(l/s) + Constant +0(5")

as s -* 0 in |arg ¿| < ir/2 — A, where 0 < e < 1.

By an argument similar to that used in the proof of Theorem 3 we argue along

any ray arg t = 9, 9 E [—a, a] instead of the nonnegative real axis so that (3.13)

is valid for largue*)! < m/2 — A. By varying 9, it follows that (3.13) holds for

s E Ss. A simple calculation then yields
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LINEAR VOLTERRA INTEGRAL EQUATIONS 193

If,     Constant       /   1   \ï

<3-14> U^ = -Clo^{,+nogT- + 0(io^)}

as s -» 0 in Sj. For each term above in (3.14), we appeal to our main Corollary

1, and obtain

1 /     1    \     Constant       /    1    \
u(t) = - ,   2  + 0[ -¡-4- ) +     ,    .     + 01 —3- ) + R(t),
w     Cflog2/       \flog3f/       rlog3f \flog4f/       v

where

l*UI < |/>g-'^l = o^}

Grouping the appropriate 0-terms above, we obtain the desired conclusion (3.9).

Remark 3.2. It should perhaps be noted that Theorem 2 can be considered as

a special case of Theorem 4.

Theorem 5. Let

(3.15) a(t) = Cf + b(t),      t E Ta,

where y < -1 and y # -2, -3, ... and b(i) = 0(f~x) as t -» oo in Ta. Then the

solution u(t) o/(l.l) satisfies

(3.16) u(t) = -Cf/al + 0(1/*N+x ),

where -(N+l)<y<-N and a0 = J£° a(t)dt.

Proof. For fixed y, there exists N > 0 such that -(¿V + 1) < y < -AT. Using

integration by parts, we find

f '«-* - {y + l).sN.iy + N)f <^<-"* + *«

= {y+l):y.(y+N);^ - I **v*+* w

= í:^rÜ + ^)      (Re5>0),

where ff|(s), ̂ (s) are appropriate entire functions. Thus, we may write A(s) in the

following form:

(3.17) A{s) = ÇïlL+J) + J^00 ¿(/)e-*¿, + ̂       Re , > 0,

where ̂ (s) is again some entire function. Since b(t) = O^1) as / -* 00, we can

easily prove the following relation

(3.18) ¿°° ¿fle-a = 5 fc^ + 0{ssX      s _ o,
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where n„ are constants depending only on b(t). Note that (3.18) is valid for

|arg j| < it/2 - A, A > 0. Combining (3.17) and (3.18) we find

JV-l

(3.19) s + A(s) = 2 anj" + CT(y + Dj-i-1 + 0(sN),

as s -» 0 in |arg i| < m/2 — A, A > 0, where a„, n = 0, 1,..., N — 1, are again

constants. Letting s -» 0 in (3.19), we find a0 - /0°° a(t)dt. From (3.19) and (2.6),

we obtain

(3.20) u (s) - --2 ^-^ + 2 bns" + 0(i"),      Re 5 > 0,

as j -» 0. The validity of (3.20) can be extended in the usual way to Ss for some

5 > 0. Finally a simple inversion using formula (2.10) yields the desired result

(3.16).

Theorem 6. Let

(3.21) a(t) = Crn + ¿(f),       t E Ta,

where n = 2,3, ... and b(t) = 0(rv) as t -» co »t» Ta, t¡> n+ I. Then the

solution u(t) of (1.1) satisfies

(3.22) u(t) = -CC/al + 0(\/t" log t),   t -+ oo,

where a0 = JJ)00 a(t)dt.

Proof. The argument parallels the proof of Theorem 5. First, we note that

J,   *   '   «     *   \ti-1 +   (ti - 1)!   / + (t. - 1)! J>        '   *''

Thus, on account of (3.11) and (2.24), we have from (3.21)

(3.23) A(s) = <pA(s) + C^^- log I + f" b(t)e-"dt,       Re 5 > 0.

Estimate (3.18) is also valid here for the last term in (3.23). Hence, we deduce

from (3.23) the following

(3.24) , + A{s) = V akSk + C-M^ log J + 0(*").
*=0 (71 -  1)! 5

The validity of (3.24) can be extended in the same way as before to Ss. From (2.6)

and (3.24) above, we obtain

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LINEAR VOLTERRA INTEGRAL EQUATIONS 195

from which the desired result (3.22) follows readily from Corollary 1.

4. Kernels involving logarithms. In this section, we shall consider an extension

of Theorems 3 and 4 to those kernels a(t) which involve logarithms in the

following form:

(4.1) a(t) ~ C/*(log t)°,      t -* oo in Ta,

where -1 < y < 0 and a is some real number. Before proceeding to these

results, we need the following lemma.

Lemma. Let arg c = 9 and \c\ > 1. Then for any y > -1 and a real

(4.2)      jT~ ,.flc ,)V* - <=M£{r(r + ,, + 0(_L) j,

as s -* 0 »7» Hg.

This result is given in [12] for the case 9 = 0, but a slight modification of the

given proof will yield the desired extension.

Theorem 7. Let -1 < y < 0 and a real but arbitrary. Assume that a(t) satisfies

(4.3) a(t) = (C/T(y + l))»'(log t)° + b(t),       t E Ta,

where b(t) = 0(ty(log t)°~s) as t -» oo in Ta and S > 0. 77ié>7! the solution u(t) of

(2.1) satisfies

as t —» oo for some positive number e.

Proof. Let c > 1 and from (4.3) write A(s) in the following form

A(s) = f a(t)e-»dt + ñ^rñC ty(log tfe^dt
(4.5) j0 T(y+l)^c

+ f™ b(t)e-"dt.

The last integral can be estimated as

(4.6) f" b(t)e-s'dt = 0(s-y~x (log ST*),

as j -» 0 in >70. By the above lemma, we have

s+,(s) = M{1 + 0(^)},
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for some e' > 0, and hence

as s -* 0 in Hq. The validity of (4.8) can be extended in the usual way to St. An

application of Theorem 1 to (4.8) then yields the desired result (4.4).

Theorem 8. Let o > -1 and

(4.9) a(t) = Ct~x(log if + b(t),      tETa,

where b(t) — 0(f-'(log f)0-") andi\ > 0. Then the solution u(t) of (2.1) satisfies

*"» *> = A{' + 0((i¿r)}
as t -* oo, for some e > 0.

Proof. As integration by parts gives

(4.11) f" r' (log OV^ = v(í) + ~-r X" (log t)'+x e-"dt,

where <p(y) is an appropriate entire function. To the last integral in (4.11) we can

apply the result of our lemma. Thus

(4.12) jT ,-i(log tfe-«dt = ^s) + t^ÇL + o((\og s)'),

as s -» 0 in Hq. Similarly, we obtain

(4.13) j" b(t)e-«dt = CXHog s)'-*1),

as s -* 0 in Hq. Using (4.9), (4.12) and (4.13), one easily obtains

(4.14) s + A(s) = ^(-log srx{l + 0(j^)}

as s -» 0 in H0 where e is some positive number. Extending the range of validity

in the usual way, we have from (4.14)

(4.15) U(j) = (^i)Hogs)-o-.{1 + 0(_l_)}

as s -» 0 in Ss. An application of Corollary 1 to (4.15) readily yields the desired

result (4.10).

Theorem 9. Let o < -1 and assume that

(4.16) à® = Ci-'(log /)* + b(t),       t S Ttt,
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where b(t) = 0(f_I (log f)"-") andt\ > 0. 77»t?7», the solution u(t) o/(2.1) satisfies

where e > 0 otjí/ Oq = /0°° a(0^-

Proof. Let arg c = 0 and |c| > 1. Write

(4.18) ,4(5) = foC a(t)e-"dt + C¡^"" /"'(log iff"dt + ¡^" b(t)e-«dt.

It is clear that (4.12) and (4.13) remain valid if the integration is performed on a

ray arg t = 9 rather than on the real axis. Hence, (4.18) together with (4.12) and

(4.13) yield

(4.19) A(s) = <*) + ^(-log srx{l + O(^)}

as s -» 0 in Ss for some e > 0. Since a + 1 < 0, so by letting s -* 0 in (4.19) we

have tp(0) = Oq. Therefore, we find

(4.20) u (*) - (s + A(s)Tx - ¿ - ^£_(-tog sr1 + 0((-log *rW)

for some e' > 0, as 5 -» 0 in S4. By Corollary 1 again, we readily have the desired

result (4.17).

5. Examples. In this final section, we shall present some specific asymptotic

solutions to equation (2.1) when the kernel a(t) is explicitly given. These examples

serve to verify the general results presented in §§3 and 4 and, at the same time,

mark the boundary of our results.

Example 1. Consider a(t) = (t(t + 2))~V2. It is well known that

(5.1) A(s) = e'ÄoCs),

where Kq(s) is the modified Bessel function of the third kind,

(5.2) *»-a,JSrijT[«H- »"»«i}
where ¥(a) = T'(X)/T(X). Since ¥(1) = -y (see [3, §1.7]), (5.2) implies

(5.3) Ko(s) = log(lA) + (log 2 - y) + 0(s2 log s),

as j -» 0. Therefore, (5.1) and (5.3) imply

s + A(s) = log(lA) + (log 2 - y) + s log(l/r) + 0(s),
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from which it follows that

m        "»--¿{,+!2£iMie?;)}
as s -» 0 in Ss. An application of Corollary 1 to (5.4) then yields

(5.5) u(t) = 1// log2/ + 0(1// log3/),       / -* oo.

This result agrees well with Theorem 4.

Example 2. Consider a(t) = 7r-1/-1/2(/ + l)"1. The Laplace transform of a(i) is

known to be

(5.6) Ais) = e> Erfc(Vi),

where Erfc is the complementary error function defined by

2
Erf«(5) = vvJ>'2i/'-

It is well known that Erfc 5 has the following series representation valid for all

complex s:

7      oo    (_ 1 \" .2/1+1

5-7 Erfc(i) - 1 --y- 2    ,¿       lV

From (5.7) and (5.6), we obtain s + A(s) = 1 - 2ir~V2sV2 + 0(s), as s -> 0 in S4;

hence

U (j) = 1 + 2tt-'/25'/2 + 0(5),

as s -* 0 in Ss, from which it follows that

(5.8) u(t) = -/-V»/w + 0(1//2),       / -♦ 00.

The asymptotic solution (5.8) readily agrees with Theorem 5, as a simple

integration will show that/" dt/yft(t + 1) = it.

Example 3. Consider a(t) = (t + l)"2. It is well known that

(59) W - £ jgff* - **t-u*
where T(a,s) is the incomplete Gamma function given by T(a,s) = f/° u"-xe~"du

which is analytic in the 5-plane cut along the negative real axis. To find out the

asymptotic representation for A(s), we integrate by parts and obtain

/•oo p~m

(5.10) Ais) =l-e'j(    —du = 1 - s<Ü(\, \,s).
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From (5.10) and the asymptotic representation (2.24) for ¥(1, l,s), we find

(5.11) s + A(s) = 1 + s log s + (1 + y)s + 0(s'),

as i -» 0 in Ss, where 8 > 0 and e > 1. Consequently, (5.11) yields

U (s) = 1 - s log s - (1 + y)s + 0(s<),

as j -* 0 in Ss where e' > 1. From Corollary 1 again, we obtain

u(t) = -l/t2 + 0(\/t2 log t),      t - oo.

This result is also in agreement with Theorem 6 since we can easily verify that

the constant Oq = f™ dt/(t + l)2 = 1.

Example 4. Consider the case when a(t) is given by

K     } ayt)     '     lT2(l/2)    T(1/2)J-

It is easy to verify that its Laplace transform is

(5.13) A(s) = log s/yfs,       Re s > 0.

Although the function a(t) given by (5.12) does not satisfy the convexity

condition, it is easy to see from (5.13) that i + A(s) has no zeros in Ss for some

8 > 0. Hence

U (s) = y/i/is»2 + log s),      sESt,8>0,

and in fact

as s -* 0 in Ss. Thus we have from Theorem 1

<515>      *>-TO){l + 0((i¿?)}   '^

for some positive constant a. (Note: T(l/2) = yV). Estimate (5.15) can be

obtained also directly from Theorem 7.

Example 5. Consider a(t) = C + t~°, 0 < a < 1. The Laplace transform

A(s) = Cs~x + T(l - o)s°~x and the Laplace transform U(i) of the solution is

given by

UW--      — r(' -°^+l
s2 + C + T(l - o)s°     s2 + C    (s2 + C)(s2 + C + T(l - a)s")'
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Taking inverse transform of U (s), one obtains readily

(5.16) u(t) = cos / + 0(/0-2),      / -* oo.

Conclusion (5.16) shows that asymptotic solution to equation (1.1) is available

even when the equation itself is not asymptotically stable.
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