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Asymptotic Solutions of nonlinear difference
equations(∗)

I.P. van den Berg(1)

ABSTRACT. — We study the asymptotics of first-order nonlinear differ-
ence equations. In particular we present an asymptotic functional equa-
tion for potential asymptotic behaviour, and a theorem stating sufficient
conditions for the existence of an actual solution with such asymptotic
behaviour.

RÉSUMÉ. — We study the asymptotics of first-order nonlinear difference
equations. In particular we present an asymptotic functional equation for
potential asymptotic behaviour, and a theorem stating sufficient condi-
tions for the existence of an actual solution with such asymptotic be-
haviour.

1. Introduction

We study first-order difference equations of the type

Y (X + 1) = F (X,Y (X)), (1.1)

where F is supposed to be continuously partially differentiable in Y . The
main theorem of this article (Theorem 2.2) gives sufficient conditions in
terms of F and F ′

2 to determine whether (1.1) possesses solutions with
asymptotic behaviour Ŷ (X); such a sequence Ŷ , that we call the approxi-
mate solution, should satisfy the so-called asymptotic functional equation

lim
X→∞

F
(
X, Ŷ (X)

)
− Ŷ (X)

Ŷ (X)
(∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ − 1
) = 0. (1.2)
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So Ŷ (X) is a kind of weak, asymptotic, fixed point for F . The other
conditions express that the solutions of (1.1) in a neighbourhood of Ŷ (X)
contract (attract or repel each other), faster than Ŷ (X) moves itself. Under
some additional regularity conditions there will be an actual solution Ỹ of
(1.1) such that Ỹ (X) ∼ Ŷ (X) for X → ∞.

The main theorem appears to be more general than other existence
theorems in the study of the asymptotics of first-order difference equations.
Firstly, the class of equations under consideration is larger than the classes
which are usually studied, which are the class of linear equations [20][18][19],
sometimes allowing for certain types of perturbations [3][16][11], and the
class of analytic equations [14][13][15].

Secondly, in almost all cases the study of the asymptotic directions
of interest – the asymptotic fixed points for the function F defining the
equation – is well separated from the study of sufficient conditions for
the existence of an actual solution in such asymptotic directions. In fact
it is often taken for granted that the equation is rewritten in such a way
that one has to prove the existence of a solution tending to 0. In contrast,
Theorem 2.2 indicates to which extent the exact equation for fixed points
F

(
X, Ŷ (X)

)
− Ŷ (X) = 0 may be relaxed, i.e. to (1.2) or alternatively

F
(
X, Ŷ (X)

)
− Ŷ (X) = o

(
Ŷ (X)

(∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣ − 1
))

, and gives at the

same time an asymptotic condition on Ŷ (X) and on F ′
2

(
X, Ŷ (X)

)
, such

that there exists a solution Ỹ of (1.1) asymptotic to Ŷ . In a sense, these con-
ditions allow for a convenient transformation (see Section 4.1) such that Ŷ
becomes exactly 0. A definite subclass of our equations is thus transformed
in singular perturbations, and we mention here some relation to [12].

Our approach is confined to first-order difference equations in one real
variable. As such it is less developed than most of the theories encountered
in the literature mentioned above. These theories consider mainly equations
of higher order and/or in more variables, which may be complex. Notably
the analytic theory gives more precision. For instance, in the case of analytic
equations one may look for a formal solution Y0 in terms of a power series,
for which one may show that it acts as the asymptotic expansion of an actual
solution [14], [13], [15], or else for expansions in terms of factorial series
[18]. Still, an approach only based on first-order approximations, both in
its conditions and in its proofs is of some interest. Depending on additional
properties of F , such an approximation may or may not be extended to give
full expansions.
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Because we consider approximations of first order and impose few regu-
larity on F , our results are somewhat similar to some results on perturbation
of linear equations like in [11] and [3]. There in principle no regularity is
required with respect to differentiation. However the general perturbation
result of [11, Section 7.6] needs a strong condition on the boundedness of the
perturbation. In our setting this would mean that

∑
X�A

∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣
is bounded for some integer A, while we consider uncertainties of the form
o
(
Ŷ (X)

(∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣ − 1
))

, which may be unbounded. The article [3]
considers essentially perturbations of linear homogeneous equations and
their non-zero eigenvalues, while in our setting F ′

2

(
X, Ŷ (X)

)
may be asymp-

totically zero, or infinite. Still, we need that always
∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ < 1,

or always
∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ > 1. In a sense this means that Ŷ lies in an
attractive tube, or in an repulsive tube.

Our work is inspired by the so-called river-phenomenon for differential
equations Y ′(X) = F (X,Y ). Computer graphics of the phase-portrait of
several types of differential equations show contractions of trajectories, an
optical phenomenon similar to rivers and their confluents on a map. The
phenomenon, often so strong as to seem to contradict the property of unique-
ness of solutions – a property shared by all the equations in question – ,
is observed for such familiar equations as linear equations with constant
coefficients, Riccati equations and the Van der Pol equation. Attempts to
modelling were made in among others [10][1][5]. As shown in [5] (see also
[4]) a large class of rivers satisfies an asymptotic functional equation similar
to (1.2), i.e.

lim
X→∞

F
(
X, Ŷ (X)

)
Ŷ (X)F ′

2

(
X, Ŷ (X)

) = 0. (1.3)

There are similarities between the asymptotics of differential equations
and of difference equations, but also some differences. This is already seen
comparing the associated asymptotic functional equations (1.2) and (1.3).
A notable difference appears in the proofs of the existence of an actual
solution Ỹ asymptotic to Ŷ . In the continuous case one may use rescalings
at liberty and has a priori possibility to go back and forth in time. On the
contrary, in the discrete case the fixed time-step puts a bound on the factor
of rescaling (it makes no sense to reduce the scale to such an extent as to
observe only one time-moment) and going back in time must be carefully
prepared (see Propositions 4.12, and 4.14, and the proof of the nonstandard
existence theorem 4.1 in Section 5).
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The conditions of Theorem 2.2 for the existence of solutions in the
asymptotic directions given by the equation (1.2) are actually more gen-
eral than for corresponding existence theorems in the articles on rivers of
differential equations. In fact weaker forms of contraction are allowed, up to
almost parallelness. In a second paper [7] we present necessary and sufficient
criteria to verify whether such forms of contraction occur in a well-defined
region around a solution obtained through Theorem 2.2.

The article is written in the context of Nonstandard Analysis. To our
opinion the use of infinitesimal and infinitely large numbers facilitates asymp-
totic calculations and reasoning. For an introduction to the axiomatic form
IST of nonstandard analysis we use, and for terminology and notations, we
refer to [17][8]. We denote by ∅ the external set of all infinitesimal num-
bers, £ the external set of all limited numbers and @ the set of all positive
appreciable (i.e. limited, but not infinitesimal) numbers. These symbols will
be used just as o(·) and O(·) in classical asymptotics; for example we may
write x = ∅ instead of x � 0.

The article has the following structure. In Section 2 we give a formal def-
inition for approximate solutions, state the existence theorem and present
some geometric motivation, finishing with some examples. In Section 3 we
state some general lemmas which enable to deduce in a sense global asymp-
totic behaviour from behaviour known locally. In Section 4 we formulate
nonstandard equivalents for the existence theorem and for the definition of
an approximate solution and carry out an approximate rescaling. Within
this rescaling, we show that the set of solutions within an appropriate tube
exhibits a sort of uniform behaviour, which may be of repulsive or attrac-
tive nature; in the latter case we distinguish between very weak attraction,
leading to a sort of almost-parallelness of solutions and a stronger form of
attraction. In Section 5 we derive from these behaviours the existence of a
solution asymptotic to the approximate solution. We adapt the proof to the
various types of behaviour observed in Section 4.

2. Approximate solutions and the existence theorem

Conventions. —

1. Unless it is said explicitly to be otherwise, we always consider differ-
ence equations (1.1) of the form

Y (X + 1) = F (X,Y (X)),

where F is a real-valued function defined and of class C1 in the sec-
ond variable on some set U ⊂ N × R such that the projection on N
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contains a set of the from {X ∈ N |X � A0 } with A0 ∈ N. We say
that a sequence Y is a solution if Y (X) is defined and satisfies (1.1)
on some set {X ∈ N |X � A1 } with A1 ∈ N, or Y (X) is defined on
some set {X ∈ N |A2 � X � A3 }, with A2, A3 ∈ N, A2 < A3 and sat-
isfies (1.1) on {X ∈ N |A2 � X � A3 − 1}; it is supposed that such
an interval is maximal.

2. The symbol ∼ is used in the sense of classical asymptotics. Indeed,
let Y and Z be two sequences. Then Y (X) ∼ Z(X) for X → ∞ if
and only if limX→∞ Y (X)/Z(X) = 1.

Definition 2.1. — A sequence Ŷ is called an approximate solution of
(1.1) if

1. There exist A ∈ N, B = 0 such that

(a) Either (∀X � A)
(
Ŷ (X) < 0

)
or (∀X � A)

(
Ŷ (X) > 0

)
.

(b) In case (∀X � A)
(
Ŷ (X) < 0

)
one has (X,Y ) ∈ U for all X �

A and all Y such that (1+B)Ŷ (X)) � Y � (1−B)Ŷ (X), and in
case (∀X � A)

(
Ŷ (X) > 0

)
one has (X,Y ) ∈ U for all X � A

and all Y such that (1 −B)Ŷ (X)) � Y � (1 +B)Ŷ (X).

(c) Either (∀X � A)
(∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ < 1
)

or (∀X � A)(∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ > 1
)
.

2.
F
(
X,Ŷ (X)

)
−Ŷ (X)

Ŷ (X)
= o

(∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣ − 1
)

for X → ∞.

3. Ŷ (X+1)−Ŷ (X)

Ŷ (X)
= o

(∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣ − 1
)

for X → ∞.

4. Y (X) ∼ Ŷ (X) for X → ∞ implies (|F ′
2 (X,Y (X))| − 1) ∼(∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ − 1
)

for X → ∞.

Theorem 2.2 (Existence theorem). — Let Ŷ be an approximate solu-
tion of (1.1). Then (1.1) has a solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for
X → ∞.

Comments. —

1. The condition of Definition 2.1.2 is equivalent to the asymptotic
functional equation (1.2) and can be used to determine approximate so-
lutions. Observe that (1.2) is satisfied if Ŷ satisfies the simpler equation
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F
(
X, Ŷ (X)

)
− Ŷ (X) = 0. However, it may be impossible to find an exact

solution of F
(
X, Ŷ (X)

)
= Ŷ (X) in practice. In fact (1.2) expresses that

there is no need for an exact fixed point of F , and that a tolerance is allowed
of the form

F
(
X, Ŷ (X)

)
− Ŷ (X) = o

(
Ŷ (X)

(∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣ − 1
))

forX → ∞.

2. The condition 2 of Definition 2.1 has a clear geometric interpretation.
Applied to a true solution Ỹ we obtain

F
(
X, Ỹ (X)

)
− Ỹ (X)

Ỹ (X)
= o

(∣∣∣F ′
2

(
X, Ỹ (X)

)∣∣∣ − 1
)

(2.1)

for X → ∞. To get a more precise description of the configuration of the
set of solutions, we will use the terminology of nonstandard analysis. We
suppose F,U and Ŷ to be standard. We use the nonstandard characteri-
zation of a standard approximate solution presented in Proposition 4.2 of
Section 4. We consider the behaviour of the solutions on the external set

H ≡
{

(ω, Y )
∣∣∣ω � ∞, Y = (1 + ∅)Ŷ (ω)

}
.

The set H is sometimes called the asymptotic halo of Ŷ . It is a subset of U
by Proposition 4.2. Using Proposition 4.2 we may rewrite (2.1) for unlimited
ω to

Ỹ (ω + 1) − Ỹ (ω)

Ỹ (ω)
= ∅ ·

(∣∣∣F ′
2

(
ω, Ỹ (ω)

)∣∣∣ − 1
)
. (2.2)

The left-hand side of (2.2) measures the relative growth of the solution
at ω. Now under the regularity condition given by Proposition 4.2 (cor-
responding to the regularity condition given by definition 2.1.4 the term∣∣∣F ′

2

(
ω, Ỹ (ω)

)∣∣∣− 1 measures the relative growth of the difference of two so-
lutions, say Φ and Ψ, such that (ω,Φ(ω)), (ω,Ψ(ω)) ∈ H. Indeed, we have
for some Y lying between Φ(ω) and Ψ(ω)

|Ψ(ω + 1) − Φ(ω + 1)| − |Ψ(ω) − Φ(ω)|
|Ψ(ω) − Φ(ω)|

=
∣∣∣∣F (ω,Ψ(ω)) − F (ω,Φ(ω))

Ψ(ω) − Φ(ω)

∣∣∣∣ − 1

= |F ′
2(ω, Y )| − 1,

whereas

|F ′
2(ω, Y )|−1=(1+∅)

(∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ − 1
)

= (1+∅)
(∣∣∣F ′

2

(
ω, Ỹ (ω)

)∣∣∣ − 1
)
.
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So if (2.1) is satisfied, the relative growth of the true solution Ỹ at ω is in-
finitely small with respect to the relative growth of the difference of two solu-
tions which at ω are contained in the asymptotic halo of Ỹ . This behaviour of
strong contraction of solutions around a moderately growing solution is also
typical of slow-fast systems. Notice that, for all unlimited arguments, this
contraction is always of the same nature, attraction if

∣∣∣F ′
2

(
ω, Ỹ (ω)

)∣∣∣ < 1

and repulsion if
∣∣∣F ′

2

(
ω, Ỹ (ω)

)∣∣∣ > 1. In the first case we speak of an attrac-
tive solution and in the second case we speak of a repulsive solution. The
regularity condition 4.2.3, corresponding to the regularity condition given
by definition 2.1.3, thus expresses that an approximate solution should have
infinitely small relative growth with respect to the relative growth of the
difference of two true solutions contained in its asymptotic halo.

As regards to the standard conditions expressed by Definition 2.1, one
may remark the following, still in the case of a standard equation and
a standard approximate solution. The (standard) set U is to be inter-
preted as a tube around Ŷ , which contains the asymptotic halo. Apply-
ing appropriate permanence principles, one may show that the above ob-
servations hold in a weakened sense on U . Indeed, a solution Ỹ which
is staying within the tube is attractive for solutions within the tube if
(∀X � A)

(∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ < 1
)

and repulsive for solutions within the tube

if (∀X � A)
(∣∣∣F ′

2

(
X, Ŷ (X)

)∣∣∣ > 1
)
. This observation may also be reversed.

The asymptotic functional equation (1.1), together with the regularity con-
ditions of Definition 2.1.3 and 2.1.4 imply that the tube U is either attractive
or repulsive, which is sufficient for some solution to slip through. However
it is our opinion that the asymptotic estimations, already rather delicate in
the case of the nonstandard proof, may turn out to be still more difficult.

Well-known simple special cases of attractiveness and repulsiveness are
linear difference equations with constant coefficients of type Y (X + 1) =
AY (X)+R(X). Here F

′

2 (X,Y ) = A is constant, and may also be seen as the
eigenvalue of the corresponding homogeneous equation Y (X+1) = AY (X).
If |A| < 1 the particular solution is asymptotically stable and if |A| > 1 the
particular solution is asymptotically unstable.

Not every (standard) solution asymptotic to a (standard) approximate
solution satisfies the equations (2.1) and (2.2). This is due to the fact that
solutions of first-order difference equations may have oscillatory behaviour.
Still, in such cases the reasoning above remains valid taking two steps in-
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stead of one. Indeed, in [7] it is proved that

Ỹ (ω + 2) − Ỹ (ω)

Ỹ (ω)
= ∅ ·

(∣∣∣F ′
2

(
ω, Ỹ (ω)

)∣∣∣ − 1
)
.

The article [7] addresses also the property of uniqueness of solutions in the
asymptotic directions given by the asymptotic functional equation (1.2),
which appears to be satisfied in the repulsive case, but clearly not in the
attractive case.

3. We point out some analogy with the rivers of differential equations
Y ′ = F (X,Y ), as mentioned in the introduction. There the approximate
solutions satisfy the asymptotic functional equation (1.3). This equation
rewritten to

F
(
X, Ŷ (X)

)
= o

(
Ŷ (X)F ′

2

(
X, Ŷ (X)

))
forX → ∞

allows a tolerance of the form o
(
Ŷ (X)F ′

2

(
X, Ŷ (X)

))
in the determination

of approximate zeroes of F . It may be shown that a true river solution Ỹ
also verifies (1.3). Then one finds

Ỹ ′(X)

Ỹ (X)
= o

(
F ′

2

(
X, Ỹ (X)

))
forX → ∞.

This again expresses slow growth of the river with respect to the growth of
the difference of two solutions, say Φ and Ψ, on the asymptotic halo Ỹ , for
assuming some regularity on F ′

2 we find in a similar way as above for ω � ∞

Ψ′(ω) − Φ′(ω)
Ψ(ω) − Φ(ω)

=
F (ω,Ψ(ω)) − F (ω,Φ(ω))

Ψ(ω) − Φ(ω)
= (1 + ∅)F ′

2

(
ω, Ỹ (ω)

)
,

whereas Ỹ ′(ω)/Ỹ (ω) = ∅ ·
(
F ′

2

(
ω, Ỹ (ω)

))
.

Examples 2.3. — We give some examples which show how the existence
theorem can be used to solve difference equations asymptotically. The first
example shows that the usual formula of exact polynomial solutions of lin-
ear difference equations with constant coefficients may be extended to the
asymptotics of such equations. This example serves only to illustrate that
linear equations, that may be solved by other methods, belong also to the
class of equations covered by the existence theorem. A second class of rele-
vance is formed by the polynomial equations. For simplicity we present two
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classes of quadratic equations. However, one might develop a general ap-
proach with the help of Newton polygons. Indeed, if F (X,Y ) is polynomial,
then F (X,Y ) − Y is also polynomial and thus one disposes of a general
method to search for approximate zeroes. Still one needs to verify whether
the approximate zeroes correspond to approximate solutions in the sense
of Definition 2.1. It is not excluded that such a verification can be substi-
tuted by a simpler, algebraic verification on the basis of inequalities, as can
be found in [9] for the case of polynomial differential equations. One may
expect that a sort of generalized Newton-polygon method still is effective
if some coefficients of the polynomial are bounded C1 functions instead of
constants. We will not develop this point here, but we present a quadratic
equation with coefficients of the like, which is C1 in the second variable,
but not C2. As such, it constitutes an example of an equation, outside the
realm of methods based on analytic functions, but within the reach of The-
orem 2.2.

2.1. Difference equations with constant coefficients

Proposition 2.4. — Consider

Y (X + 1) = AY (X) +R(X) (2.3)

with |A| = 1 and R(X) ∼ BXr for X → ∞ with B = 0 and r ∈ R. Then
(2.3) has a solution Ỹ (X) ∼ B

1−AX
r for X → ∞.

It is easy to verify that Ŷ (X) = B
1−AX

r is an approximate solution.
We omit further details. Of course, if R is a polynomial we obtained the
principal term given by the exact solution of the usual resolution method.

2.2. Some quadratic equations

Proposition 2.5. — Consider

Y (X + 1) = Y (X)2 −Xa (2.4)

1. If a > 0 the equation (2.4) has a solution Ỹ1(X) ∼ Xa/2 for X → ∞
and a solution Ỹ2(X) ∼ −Xa/2 for X → ∞. Both solutions are
repulsive.

2. If a < 0 the equation (2.4) has a repulsive solution Ỹ1(X) → 1
for X → ∞ and several attractive solutions asymptotic to −Xa for
X → ∞.

– 643 –



I.P. van den Berg

To prove Proposition 2.5, note that the sequences Ŷ1(X) = Xa/2 for
X → ∞ and Ŷ2(X) = −Xa/2 are solutions of the associated asymptotic
functional equation (1.2). The verification of the remaining conditions of
the existence theorem is straightforward. The repulsion follows from the
equality F ′

2

(
X, Ŷ1(X)

)
=

∣∣∣F ′
2

(
X, Ŷ2(X)

)∣∣∣ = 2Xa/2.

In Proposition 2.5 the sequences Ŷ1(X) = 1 for X → ∞ and
Ŷ2(X) = −Xa/2 are solutions of the associated asymptotic functional equa-
tion. The verification of the remaining conditions of the existence theorem
is again straightforward. The repulsiveness of Ỹ1 follows from the equality
F ′

2

(
X, Ŷ1(X)

)
= 2. The attractiveness of the standard solutions asymptotic

to Ŷ2 follows from
∣∣∣F ′

2

(
X, Ŷ2(X)

)∣∣∣ = 2Xa.

Proposition 2.6. — Consider

Y (X + 1) = Y (X)2 + Y (X) −Xa (2.5)

1. If −2 < a < 0 the equation (2.5) has a repulsive solution Ỹ1(X) ∼
Xa/2 for X → ∞ and several attractive solutions asymptotic to
−Xa/2 for X → ∞.

2. If a > 0 the equation (2.5) has a solution Ỹ1(X) ∼ Xa/2 for X → ∞
and a solution Ỹ2(X) ∼ −Xa/2 for X → ∞. Both solutions are
repulsive.

For a proof of Proposition 2.6, notice that the sequences Ŷ1(X) = Xa/2

for X → ∞ and Ŷ2(X) = −Xa/2 are obvious solutions of the associ-
ated asymptotic functional equation (1.2). The verification of the remaining
conditions of the existence theorem is straightforward. The repulsiveness
of Ỹ1(X) follows from the equality F ′

2

(
X, Ŷ1(X)

)
= 2Xa/2 + 1 and the

attractiveness of the solutions asymptotic to Ŷ2 from the equality∣∣∣F ′
2

(
X, Ŷ2(X)

)∣∣∣ = −2Xa/2 + 1. Note that, if i = 1, 2,

Ŷi(X + 1) − Ŷi(X)

Ŷi(X)
∼ a

2X
= o

(∣∣∣F ′
2

(
X, Ŷi(X)

)∣∣∣ − 1
)

forX → ∞

only for a > −2, so the existence theorem cannot be applied for a � −2. In
the latter case there are no solutions asymptotic to ±Xa/2. To show this,
let b = −2a be standard. Suppose Ỹ is a (standard) solution asymptotic
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to ±Xa/2. Let ω � ∞. Put x = X/ω and ỹ(x) = ωbỸ (ωx). Then equa-
tion (2.5) becomes

ỹ(x+ 1/ω) − ỹ(x)
1/ω

=
ỹ(x)2 − 1/xb

ωb−1
.

If Ỹ were asymptotic to ±1/Xb, one would have ỹ2(x) � 1/xb for all ap-
preciable x. Because b � 1, this would imply

ỹ(x+ 1/ω) − ỹ(x)
1/ω

� 0

for all appreciable x. But then ỹ(x) � ỹ(1) for all appreciable x, a contra-
diction. By Transfer, the result holds for all b � 1, i.e. a � −2.

Part (2) of Proposition 2.6 follows from the above considerations, where
the repulsiveness of Ỹ2 is a consequence of the equality

∣∣∣F ′
2

(
X, Ŷ2(X)

)∣∣∣ =

2Xa/2 − 1.

2.3. An equation of class C1

The function F (X,Y ) = Y 2 + sinY · |sinY | − Xa is C1 in the second
variable, but not C2. In the same way as in Proposition 2.5 (1) one shows
that, if a > 0, the equation Y (X + 1) = F (X,Y (X)) has two repulsive
solutions asymptotic to ±Xa/2.

3. General lemmas on asymptotic behaviour

The next lemma “presses” a solution of a difference equation which is in-
finitely close to zero on some initial part of the infinitely large numbers onto
a standard solution tending to zero. The lemma is formulated for difference
equations (1.1), defined by a function F that needs only to be continu-
ous in the second variable. Its proof uses several fundamental principles of
nonstandard reasoning. One of these is the Monadic Transfer Principle [6]
which, though being more general, implies that a halic, absolute external
property (a property of the form ∀stxI(x), with I an internal property with
x as its only free parameter) valid for all unlimited numbers smaller than
some given unlimited number ω, or valid for all numbers larger than some
given unlimited number ω, is in fact valid for all unlimited numbers. Such
a property is for instance “y � 0”, i.e. ”(∀stn)(n ∈ N →y < 1/n)”. The
case of a sequence Y for which it can be proved that Y (X) � 0 for all
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unlimited X, if it is only known that there exists an unlimited number ω
such that Y (X) � 0 for all unlimited X � ω, had already been considered
by Robinson in [21, p. 79].

Lemma 3.1. — Let U = ( [A0,∞)∩N)× [−B0, B0] with A0 ∈ N, B0 > 0
standard. Let F : U −→ R be a function which is standard and contin-
uous in the second variable. Consider the difference equation Y (X + 1) =
F (X,Y (X)). Assume there exist ω � ∞ and a solution Y such that Y (X) �
0 for all X � ∞ with X � ω. Then there exists a standard solution Ỹ such
that limX→∞ Ỹ (X) = 0.

Proof. — Besause a solution is an internal sequence, it is defined at least
on some interval {A1, ··, ω} with A1 standard. By the Cauchy Principle
it satisfies |Y (X)| � B0 on some interval {A2, ··, ω} with A2 � A1, A2

standard. Then Y has a shadow Ỹ , which is a standard sequence such that
Ỹ (X) � Y (X) for all standard X � A2. For such a standard X one has,
applying the nonstandard characterization of continuity

Ỹ (X + 1) � Y (X + 1) = F (X,Y (X)) � F (X, Ỹ (X)).

By the Carnot Principle (standard numbers which are infinitely close are
equal) Ỹ (X + 1) = F (X, Ỹ (X)). By the Transfer Principle this equality
holds for every X � A2, so Ỹ is a solution of the difference equation.
Because Ỹ (X) � Y (X) for all standard X � A2, by Robinson’s Lemma (or
the more general Fehrele Principle) there is ν � ∞ such that Ỹ (X) � Y (X)
for all X with A2 � X � ν. We may assume that ν � ω. Then Ỹ (X) � 0
for all X � ∞ such that X � ν. By the Monadic Transfer Principle [6] the
property Ỹ (X) � 0 holds for all X � ∞. Then limX→∞ Ỹ (X) = 0 by the
nonstandard characterization of the limit. �

Comments. — The lemma holds for other families of sequences or func-
tions, for example continuous curves. Essential is that the family is closed
under uniform convergence on compact intervals.

As a corollary we obtain the following existence theorem on the asymp-
totics of difference equations (1.1) satisfying the convention mentioned at
the beginning of Section 2.

Corollary 3.2. — Let (1.1) be standard and Ŷ be a standard approx-
imate solution. Assume there exist ω � ∞ and a solution Y such that
Y (X) = (1 + ∅)Ŷ (X) for all X � ∞ with X � ω. Then (1.1) has a
standard solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞.
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The type of reasoning within “tubes” of standard thickness of the next
lemma is very common in nonstandard singular perturbation theory, see
for instance [2]. The lemma gives a stepwise criterion on sequences which
is sometimes helpful in proving that the solutions of difference equations
satisfy the condition of Lemma 3.1. However we stress the point that the
criterion alone is not sufficient.

Lemma 3.3. — Let B0 > 0 be standard. Let ξ, ω � ∞, ξ < ω. Let Y be
a sequence. Assume that Y (ξ) � 0 and that for all X with ξ � X � ω we
have the property that |Y (X)| � B0 implies that{

Y (X + 1) is defined and |Y (X + 1)| < |Y (X)| if Y (X) � 0
Y (X + 1) is defined and Y (X + 1) � 0 if Y (X) � 0.

Then Y (X) is defined for all X with ξ � X � ω and satisfies Y (X) � 0.

Proof. — Clearly |Y (X + 1)| � B0 if |Y (X)| � B0. Because |Y (ξ)| � B0

is defined, by induction Y (X) is defined for all X with ξ � X � ω and
satisfies |Y (X)| � B0. Define

Z(X) = max
ξ�N�X

|Y (N)|

M(X) = min {N |ξ � N, |Y (N)| = Z(X)} .

Suppose Y (X) � 0 for some X with ξ � X � ω. Then Y (M(X)) = Z(X) �
0. Because |Y (M(X) − 1)| � B0, we have Y (M(X)) � 0 if Y (M(X)−1) � 0
and |Y (M(X))| < |Y (M(X) − 1)| if Y (M(X) − 1)) � 0. In both cases we
have a contradiction. Hence Y (X) � 0 for all X with ξ � X � ω. �

4. Translation into nonstandard terms and rescaling

To prove the existence theorem it suffices to consider standard equations
and standard approximate solutions. To be precise, one has the following
equivalent version of the existence theorem.

Theorem 4.1. — (Nonstandard existence theorem) Let (1.1) be stan-
dard and Ŷ be a standard approximate solution. Then (1.1) has a standard
solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞.

Proof. — Assume Theorem 2.2 holds. Let (1.1) be standard and Ŷ be
a standard approximate solution. Then (1.1) has a solution Y such that
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Y (X) ∼ Ŷ (X) for X → ∞. By the Transfer Principle (1.1) has a standard
solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞. Conversely, by weakening
the nonstandard existence theorem, we obtain that for every standard dif-
ference equation (1.1) and standard approximate solution Ŷ there exists a
solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞. The latter, weakened prop-
erty being stated in classical terms, Theorem 2.2 follows from the Transfer
Principle. �

The asymptotic properties of the solutions of a standard difference equa-
tion close to a standard approximate solution depend essentially on their
behaviour for infinitely large values of X. For these values we will apply a
rescaling, enabling convenient estimates and near-equalities.

To be able to work only with infinitely large values of X, we must give a
nonstandard characterization for standard approximate solutions in terms
of unlimited X. This will be done in the next proposition, the proof of which
also relies on the Transfer Principle.

Proposition 4.2. — Let (1.1) be standard. Then Ŷ (X) is an approxi-
mate solution of (1.1) if and only if

1. (∀ω � ∞)
(
Ŷ (ω) < 0

)
or (∀ω � ∞)

(
Ŷ (ω) > 0

)
,{

(ω, Y )
∣∣∣ω � ∞, Y = (1 + ∅)Ŷ (ω)

}
⊂ U ,

and (∀ω � ∞)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ < 1
)

or (∀ω � ∞)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ > 1
)
.

2. (∀ω � ∞)
(

F
(
ω,Ŷ (ω)

)
−Ŷ (ω)

Ŷ (ω)
= ∅ ·

(∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ − 1
))

.

3. (∀ω � ∞)
(

Ŷ (ω+1)−Ŷ (ω)

Ŷ (ω)
= ∅ ·

(∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ − 1
))

.

4. (∀ω � ∞)(∣∣∣F ′
2

(
ω, (1 + ∅)Ŷ (ω)

)∣∣∣ − 1 = (1 + ∅)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ − 1
))
.

Proof. — The equivalence between Definition 2.1.1 and Proposition 4.2.3
follows directly from the Cauchy Principle. The equivalences between Def-
inition 2.1.2 and Proposition 4.2.2, and of Definition 2.1.3 and Proposition
4.2.3 follow simply from the nonstandard characterization of the limit. The
equivalence of Definition 2.1.4 and Proposition 4.2.4 follows directly from
the External Function Criterion [6], see also Proposition A2 of [5]. �
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4.1. Rescaling around an approximate solution

We start by rescaling the equation around the approximate solution. We
introduce some convenient notation and derive some useful estimates. Then
we study the solutions of the rescaled equation within an appropriate tube.
We distinguish between repulsive behaviour within the tube, very weak
attractive, almost parallel behaviour, and attractive, not almost parallel
behaviour. We prove the existence theorem separately for the latter case,
where a joint proof of the remaining cases can be given using the general
lemma 3.1.

Remark 4.3. — If the difference equation (1.1) and the approximate so-
lution Ŷ are standard, we always assume that the natural number A of
Definition 2.1.1 is standard.

Notation 4.4. — Let (1.1) be standard. Let ω ∈ N, ω � A and Ŷ be a
standard approximate solution.

1. Let Y be a sequence. We write for x ∈ N

yω(x) =
Y (ω + x) − Ŷ (ω)

Ŷ (ω)
yω = yω(0).

2. We write

εω =
F

(
ω, Ŷ (ω)

)
− Ŷ (ω)

Ŷ (ω)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ − 1
)

δω(u) =


F
(
ω,(1+u)Ŷ (ω)

)
−F

(
ω,Ŷ (ω)

)
uŶ (ω)

if u = 0

F ′
2

(
ω, Ŷ (ω)

)
if u = 0

gω =
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ − 1

γω = |gω| .

Proposition 4.5. — Let (1.1) be standard. Let ω � A, and Ŷ be a
standard approximate solution. Let Y be a solution such that (ω, Y (ω)) ∈ U .
Then yω+1 = f(ω, yω), where

f(ω, yω) =
δω(yω)

1 + ŷω(1)
yω +

εωgω − ŷω(1)
1 + ŷω(1)

. (4.1)
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Proof. — Observe that ŷω(1) =
(
Ŷ (ω + 1) − Ŷ (ω)

)
/Ŷ (ω), so 1+ŷω(1) =

Ŷ (ω + 1)/Ŷ (ω) = 0. One has

yω+1 =
Y (ω + 1) − Ŷ (ω + 1)

Ŷ (ω + 1)

=
F (ω, Y (ω)) − F

(
ω, Ŷ (ω)

)
+ F

(
ω, Ŷ (ω)

)
− Ŷ (ω) + Ŷ (ω) − Ŷ (ω + 1)

Ŷ (ω + 1)

=
F

(
ω, Ŷ (ω) + Y (ω)−Ŷ (ω)

Ŷ (ω)
Ŷ (ω)

)
− F

(
ω, Ŷ (ω)

)
Y (ω)−Ŷ (ω)

Ŷ (ω)
Ŷ (ω)

Y (ω) − Ŷ (ω)

Ŷ (ω)

Ŷ (ω)

Ŷ (ω + 1)

+

 F
(
ω, Ŷ (ω)

)
− Ŷ (ω)

Ŷ (ω)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ − 1
) (∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ − 1
)

− Ŷ (ω + 1) − Ŷ (ω)

Ŷ (ω)

)
Ŷ (ω)

Ŷ (ω + 1)

=
δω(yω)

1 + ŷω(1)
yω +

εωgω − ŷω(1)
1 + ŷω(1)

= f(ω, yω). �

We derive some estimates for the introduced quantities, which imply that
equation (1.1) is asymptotically linear close to the approximate solution.

Proposition 4.6. — Let (1.1) be standard. Let ω � ∞, and Ŷ be a
standard approximate solution. Then the following estimates hold:

u � 0 implies |δω(u)| = 1 + (1 + ∅)gω (4.2)

ŷω(1) = ∅ · γω (4.3)

εω � 0. (4.4)

The estimate (4.2) follows simply from the mean value theorem and
Proposition 4.2. The remaining estimates follow directly from Proposition
4.2(3) and 4.2(2).

Proposition 4.7. — Let (1.1) be standard. Let Ŷ be an approximate
solution.

1. If
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ < 1 for all ω � ∞, there exists standard b > 0
such that for all ω � ∞ and u with |u| � b

1 − 2γω � |δω(u)| � 1 − 1
2
γω.
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2. If
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ > 1 for all ω � ∞, there exists standard b > 0
such that for all ω � ∞ and u with |u| � b

1 +
1
2
γω � |δω(u)| � 1 + 2γω.

Proof. —

1. Let ω � +∞. Remark that −1 � gω < 0, so 0 < γω � 1. It follows
from (4.2) that for all u � 0 it holds that |δω(u)| = 1 − (1 + ∅)γω,
hence clearly 1 − 2γω � |δω(u)| � 1 − 1

2γω. By the Cauchy Principle
there exists β � 0 such that 1 − 2γω � |δω(u)| � 1 − 1

2γω for all
|u| � β. Define

bω = max
{
β � 1

∣∣∣∣(∀ |u| � β)
(

1 − 2γω � |δω(u)| � 1 − 1
2
γω

)}
.

By the Cauchy Principle there exists standard A0 such that bω is
defined for ω � A0; because bω � 0 for all ω � ∞, we may as-
sume by the Fehrele Principle that bω � 0 for all ω � A0. Then
b ≡◦ inf {bω |ω � A0 } /2 > 0. This implies the affirmation.

2. Analogous, observing that for all ω � ∞ and u � 0 one has |δω(u)| =
1 + (1 + ∅)γω, hence certainly 1 + 1

2γω � |δω(u)| � 1 + 2γω. �

We note that the lower bound in Proposition 4.7 is trivially satisfied if∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ � 1
2 . However we will use this lower bound only in the case

that
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ � 1 for all ω � ∞.

4.2. General properties of attractive behaviour

We present some upper bounds and approximations valid in the attrac-
tive case. In the next paragraph on nearly parallel attractive behaviour we
will also consider some lower bounds.

Lemma 4.8. — Let (1.1) be standard. Let Ŷ be a standard approximate
solution. Assume

∣∣∣F ′
2(ω, Ŷ (ω)

∣∣∣ < 1 for all ω � ∞. Then there exists stan-
dard b > 0 such that for all ω � ∞ and all solutions Y defined at ω with
|yω| � b, yω � 0 it holds that Y (ω + 1) is defined and

|yω+1| <
(

1 − 1
4
γω

)
|yω| .
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Proof. — From (4.1) and Proposition 4.7 we conclude that there exists
standard b > 0 such that for all ω � ∞ and for solutions Y with |yω| � b

|yω+1| �
1 − 1

2γω

1 + ŷω(1)
|yω| +

|εω| γω
1 + ŷω(1)

+
|ŷω(1)|

1 + ŷω(1)
.

If yω � 0 we may rewrite this to

|yω+1| �
1 − 1

2γω +
|εω|γω+|ŷω(1)|

|yω|

1 + ŷω(1)
|yω| .

Using (4.3) and (4.4) we find

1 − 1
2γω +

|εω|γω+|ŷω(1)|
|yω|

1 + ŷω(1)
=

1 − 1
2γω + ∅γω

1 + ∅γω
.

Hence certainly

|yω+1| <
(

1 − 1
4
γω

)
|yω| . �

Proposition 4.9. — Let (1.1) be standard. Let Ŷ be a standard approx-
imate solution. Assume

∣∣∣F ′
2(ω, Ŷ (ω)

∣∣∣ < 1 for all ω � ∞. Then there exists
standard b > 0 such that for all ω � ∞ and all solutions Y defined at ω
with |yω| � b it holds that Y (ω + 1) is defined and{

yω+1 � 0 if yω � 0
|yω+1| < |yω| if yω � 0.

Proof. — If yω � 0 it follows from (4.1), using the estimates (4.2)(4.4)(4.3)
and the fact that gω is limited, that Y (ω + 1) is defined and

yω+1 =
£

1 + ∅
· ∅ +

∅ · £ + ∅
1 + ∅

= ∅.

The case yω � 0 follows from Lemma 4.8. �

Proposition 4.10. — Let (1.1) be standard. Let Ŷ be a standard ap-
proximate solution. Assume

∣∣∣F ′
2(ω, Ŷ (ω)

∣∣∣ < 1 for all ω � ∞. Then there
exists standard b > 0 such that for all ξ � ∞ and all solutions Y defined at
ξ with |yξ| � b it holds that Y (X) is defined for all X � ξ and{

yX+1 � 0 if yX � 0
|yX+1| < |yX | if yX � 0. (4.5)
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Proof. — Let b be as in Proposition 4.9 and ξ � ∞. By this proposition
and Lemma 3.3 the property (4.5) holds on any interval {ξ, ··, ω} with ω �
∞. Then it holds for all X � ξ. �

4.3. Almost parallel attractive behaviour

Let (1.1) be standard. Let Ŷ be a standard approximate solution. It was
already mentioned that the value of γX , i.e.

∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣− 1, in a sense

determines the behaviour of the set of solutions close to Ŷ , distinguishing
between attractiveness if γX < 0 and repulsiveness if γX > 0. As is to be
expected, one observes a sort of intermediate, “nearly parallel” behaviour
for values of γX very close to 0. It appears that such a near parallelness
occurs when the series

∑
X�A γX is convergent. Then

∑
X�ω γX � 0 for

all ω � ∞, hence in particular γω � 0, i.e.
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ � 1, for all
ω � ∞. For the purpose of proving the existence theorem it is sufficient to
study the phenomenon of near parallelness only in the attractive case (of
course, it is not necessary that always

∣∣∣F ′
2

(
X, Ŷ (X)

)∣∣∣ < 1 for the series∑
X�A γX to be convergent). Proposition 4.13 implies that the solutions

are nearly parallel to the approximate solution in a precise sense. Indeed,
in the rescaling of Proposition 4.5, there exists a tube of standard width
around the approximate solution such that within this tube, the distance
between two solutions remains unchanged, up to an infinitesimal. Such a
near-parallelness will express stability, but not asymptotic stability of the
solution Ỹ of Theorem 4.1, once its existence is proved. Notice that the
condition that

∑
X�A γX is convergent reduces in the case of linear equations

with constant coefficients to γX = 0, and then we obtain the two types of
equations with only stability Y (X + 1) = Y (X) + R(X) and Y (X + 1) =
−Y (X)+R(X). For general linear equations Y (X+1) = G(X)Y (X)+R(X)
the condition that

∑
X�A γX is convergent corresponds to the well-known

criterion for non-asymptotic stability that
∏

X�A |G(X)| converges to a non-
zero limit [11].

In order to prove Proposition 4.13, we present first some lower bounds
and estimations in relation to the “near parallelness”.

Lemma 4.11. — Let (1.1) be standard. Let Ŷ be a standard approximate
solution. Assume

∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ < 1,
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ � 1 for all ω � ∞.
Then there exists standard b > 0 such that for all ω � ∞ and for all u with
0 � |u| � b

|f(ω, (1 + 4γω)u|) > |u| ,
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with
sgnf(ω, (1 + 4γω)u) = sgnyω · sgnF ′

2

(
ω, Ŷ (ω)

)
.

Proof. — By Proposition 4.7 there exists standard b > 0 such that
|δω(yω)| � 1 − 2γω for all ω � ∞ and all |u| � b. Note that γω � 0, so if
|u| � b, one has |(1 + 4γω)u| � b. We consider first the case F ′

2

(
ω, Ŷ (ω)

)
>

0. It follows from (4.1) that

f(ω, (1 + 4γω)u) − u =
δω((1 + 4γω)u)(1 + 4γω)u

1 + ŷω(1)
− u− εωγω + ŷω(1)

1 + ŷω(1)
.

Now if 0 � u � b we have δω((1 + 4γω)u)(1 + 4γω)u � (1− 2γω)(1 + 4γω)u,
from which we derive that

f(ω, (1 + 4γω)u) − u �
2γω − 8γ2ω − ŷω(1) − εωγω+ŷω(1)

u

1 + ŷω(1)
u

=
2γω + ∅γω − ∅γω+∅γω

@

1 + ∅γω
u.

So f(ω, (1 + 4γω)u) > u.

If −b � u � 0 we have δω((1 + 4γω)u)(1 + 4γω)u � (1− 2γω)(1 + 4γω)u,
from which we derive in the same manner that f(ω, (1+4γω)u) < u. The case
F ′

2

(
ω, Ŷ (ω)

)
< 0 is treated similarly, showing that f(ω, (1 + 4γω)u) < −u

if 0 � u � b and f(ω, (1 + 4γω)u) > −u if −b � u � 0. Combining all cases
we obtain the lemma. �

Proposition 4.12. — Let (1.1) be standard. Let Ŷ be a standard ap-
proximate solution. Assume

∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ < 1,
∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ � 1 for all
ω � ∞. Then there exists standard b > 0 such that for all ω � ∞ and for
all u with |u| � b there exists a solution Y of (1.1) such that Y (ω) and
Y (ω + 1) are defined and satisfy |yω| � b and yω+1 = u. Moreover,{

yω � 0 if yω+1 � 0
|yω+1| < |yω| < |yω+1| (1 + 4γω) if yω+1 � 0.

Proof. — Let b be standard as in Proposition 4.7.1. and Lemma 4.11. Let
ω � ∞ and f be given by (4.1). Assume first that 0 � |u| � b. By Lemma
4.11

inf {f(ω, y) | |y| � |u| (1 + 4γω)} < − |u|
< |u| < sup {f(ω, y) | |y| � |u| (1 + 4γω)} .
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By continuity of f in the second variable there exists v with |v| � |u| (1+4γω)
such that f(ω, v) = u. Let Y be a solution such that yω = v. Then Y (ω+1)
is defined and yω+1 = u. Combining Proposition 4.9 and Lemma 4.11 one
obtains that

|yω+1| < |yω| < |yω+1| (1 + 4γω).

Note that in particular |yω| � |yω+1|.

Second, let u � 0. By the previous argument f(ω, ·) is surjective at least
on [−b/2, b/2]. Because |u| < b/2 we find in the same way as above a solution
Y such that |yω| � |b/2| (1 + 4γω), Y (ω + 1) is defined and yω+1 = u. In
fact yω � 0, else |yω+1| � |yω| � 0. �

Proposition 4.13. — Let (1.1) be standard. Let Ŷ be a standard ap-
proximate solution. Assume

∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ < 1 for all ω � ∞ and that∑
X�A γX is convergent. Then there exists standard b > 0 such that for all

ξ, ω � ∞, ξ < ω and |u| � b/2 there is a solution Y defined for ξ � X � ω
such that yω = u and |yX | � b for all X with ξ � X � ω. Moreover, one
has |yX | � |u| for all X with ξ � X � ω.

Proof. — Observe that γω � 0 for all ω � ∞, which implies that∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ � 1 for all ω � ∞. Let b be standard as in Proposition
4.7, Lemma 4.11 and Proposition 4.12. By the latter proposition there
exists a solution Y (ω−1) such that Y (ω−1)(ω − 1) and Y (ω−1)(ω) are de-
fined, with y(ω−1)

ω = u and y(ω−1)
ω−1 � b

2 (1 + 4γω−1). Successively extending
this solution downward, we obtain by finite induction a solution Y (ξ) de-
fined for ξ � X � ω, such that for all X with ξ � X < ω − 1 we have
y
(ξ)
X+1 = y(X)

X+1 = y(X+1)
X+1 and∣∣∣y(X)

X

∣∣∣ � b
2

∏
X�Z<ω

(1 + 4γZ).

By the estimation∏
X�Z<ω

(1 + 4γZ) = exp
∑

X�Z<ω

log (1 + 4γZ)

= exp
∑

X�Z<ω

(1 + ∅)4γZ

= exp(1 + ∅)4
∑

X�Z<ω

γZ

= exp(1 + ∅)4.∅
= 1 + ∅,
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we obtain
∣∣∣y(ξ)X

∣∣∣ <� b
2 for all X with ξ � X < ω, so certainly

∣∣∣y(ξ)X

∣∣∣ � b for all
X with ξ � X � ω.

To prove the remaining part of the proposition, assume first that |u| � 0.
On the one hand

∣∣∣y(ξ)X

∣∣∣ > ∣∣∣y(ξ)ω

∣∣∣ = |u| for all X with ξ � X < ω on behalf of

Proposition 4.9, and on the other hand
∣∣∣y(ξ)X

∣∣∣ <� |u| for all X with ξ � X < ω

by the above estimation. Hence
∣∣∣y(ξ)X

∣∣∣ � |u| for all X with ξ � X � ω.

Finally, consider the case u � 0. Suppose y(ξ)X � 0 for some X with
ξ � X � ω. We deduce from Proposition 4.12 that

∣∣∣y(ξ)X+1

∣∣∣ >
∣∣∣y(ξ)X

∣∣∣
1 + 4γX

.

In a similar way as above we may obtain using finite induction that

∣∣∣y(ξ)ω

∣∣∣ >
∣∣∣y(ξ)X

∣∣∣∏
X�Z<ω

(1 + 4γZ)
�

∣∣∣y(ξ)X

∣∣∣ � 0,

a contradiction. Hence y(ξ)X � 0 � u for all X with ξ � X � ω. �

4.4. Repulsive behaviour

Proposition 4.14. — Let (1.1) be standard. Let Ŷ be a standard ap-
proximate solution. Assume

∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ > 1 for all ω � ∞. Then there
exists standard b > 0 such that for all ω � ∞ and for all |u| � b there exists
a solution Y with |yω−1| � b and yω = u. Moreover, for such a solution Y
it holds that {

yω−1 � 0 if yω � 0
|yω−1| < |yω| if yω � 0.

The proof of the proposition uses two lemmas.

Lemma 4.15. — Let (1.1) be standard. Let Ŷ be a standard approximate
solution. Assume

∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ > 1 for all ω � ∞. Then there exists
standard b > 0 such that for all ω � ∞ and for all solutions Y with |yω| �
b, yω � 0 it holds that |yω+1| > |yω|. Moreover,

sgnyω+1 = sgnyω · sgnF ′
2

(
ω, Ŷ (ω)

)
.
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Proof. — From Proposition 4.7 we derive that there exists standard b > 0
such that for all ω � ∞ and all solutions Y with |yω| � b it holds that
1 + 2γω � |δω(yω)| � 1 + 1

2γω. We consider first the case F ′
2

(
ω, Ŷ (ω)

)
> 0.

We rewrite (4.1) to

yω+1 − yω =
δω(yω) − 1 − ŷω(1) + εωγω−ŷω(1)

yω

1 + ŷω(1)
yω

=
1 + @γω − 1 + ∅γω + ∅γω+∅γω

@

1 + ŷω(1)
sgnyω · @

=
sgnyω · @γω
1 + ŷω(1)

.

So yω+1 > yω if yω � 0 and yω+1 < yω if yω � 0. Secondly, we consider the
case F ′

2

(
ω, Ŷ (ω)

)
< 0. Then (4.1) yields

yω+1 + yω =
δω(yω) + 1 + ŷω(1) + εωγω−ŷω(1)

yω

1 + ŷω(1)
yω

=
−1 − @γω + 1 + ∅γω + ∅γω+∅γω

@

1 + ŷω(1)
sgnyω · @

=
−sgnyω · @γω

1 + ŷω(1)
.

So yω+1 < −yω if yω � 0 and yω+1 > −yω if yω � 0. Combining both cases,
we derive the lemma. �

The next lemma is an immediate corollary.

Lemma 4.16. — Let (1.1) be a standard difference equation. Let Ŷ be a
standard approximate solution. Assume

∣∣∣F ′
2

(
ω, Ŷ (ω)

)∣∣∣ > 1 for all ω � ∞.
Then there exists standard b > 0 such that for all ω � ∞

inf {yω+1 |Y is a solution such that |yω| � b} < −b
< b < sup {yω+1 |Y is a solution such that |yω| � b} .

Proof of Proposition 4.14 . — Let b > 0 be standard as in Lemma 4.15
and Lemma 4.16. Let |u| � b. Let f be given by (4.1). From Lemma 4.16
it follows, due to the continuity of f , that [−b, b] ⊂ f(ω − 1, [−b, b]). Then
there is v with |v| � b and f(ω − 1, v) = u. Let Y be a solution such that
yω−1 = v. Then yω = u. If yω � 0 one has |yω−1| < |yω| by Lemma 4.15.
Finally, assume yω � 0. If yω−1 � 0, one should have |yω−1| < |yω| � 0, a
contradiction. Hence yω−1 � 0.
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5. Proof of the existence theorem

We recall that the existence theorem is proved by Transfer, once we have
proved the nonstandard existence theorem 4.1. As for the latter, we prove
separately the attractive not almost parallel case and give a joint proof of
the attractive almost parallel case and the repulsive case, using Lemma 3.1.

Proof of the nonstandard existence theorem. —

Case I. (∀ω � ∞)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ < 1
)
,

∑
X�A

γX divergent (attractive,

not almost parallel case).

Let b, ξ be such as in Proposition 4.10 and Lemma 4.8. By the principle
of Cauchy there is standard A′ such that for all solutions Y with |yA′ | � b
it holds that |yX | � b for all X with X � A′. By Transfer there exists a
standard solution Ỹ with |ỹA′ | � b. We will show that there exists ω � ∞
such that ỹω � 0. If not, for all ν, ω � ∞, ν < ω we have ỹX � 0 for all X
with ν � X � ω. Then by Lemma 4.8

|ỹω| � |ỹν |
∏

ν�X<ω

(
1 − 1

4
γX

)
� |ỹν | exp

(
−1

4

∑
ν�X<ω

γX

)
.

By divergence there exist ν, ω such that
∑

ν�X<ω γX � ∞, which means
that ỹω � 0, a contradiction. Hence there exists ω � ∞ such that ỹω � 0.
By Proposition 4.10 and Lemma 3.3 we have ỹX � 0 for all X � ω. It
follows from the Monadic Transfer Principle [6] that then ỹX � 0 for all
X � ∞. Hence Ỹ (X) = (1 + ∅)Ŷ (X) for all X � ∞. We conclude that
Ỹ (X) ∼ Ŷ (X) for X → ∞.

Case II. (∀ω � ∞)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ < 1
)
,

∑
X�A

γX convergent (attrac-

tive, almost parallel case), or (∀ω � ∞)
(∣∣∣F ′

2

(
ω, Ŷ (ω)

)∣∣∣ > 1
)
(repulsive

case).

Let ω � ∞. In both cases we prove that there exists a solution Y of
(1.1) such that yX � 0 for all X � ∞, X � ω.

As for the attractive, almost parallel case, let b > 0 be standard, as given
by Proposition 4.13. Let u � 0. By this same proposition for all ξ � ∞, ξ < ω
there is a solution Y defined for all X with ξ � X � ω such that yω = u
and |yX | � b for all X with ξ � X � ω. By the Cauchy principle there
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exists standard S and a solution Y (S)defined for all X with S � X � ω
such that y(S)

ω = u and
∣∣∣y(S)

X

∣∣∣ � b for all X with S � X � ω. Again by

Proposition 4.13 one has y(S)
X � 0 for all X with ξ � X � ω. Because ξ � ∞

is arbitrary, we obtain as a corollary that y(S)
X � 0 for all X � ∞, X � ω.

As for the repulsive case, let b > 0 be standard, as given by Propo-
sition 4.14. Let u � 0. By this same proposition, there exists a solution
Y (ω−1) such that

∣∣∣y(ω−1)
ω−1

∣∣∣ � b and y(ω−1)
ω = u. Let ξ � ∞, ξ < ω be arbi-

trary. With downward induction, we construct as in the proof of Proposition
4.13 a set of successive extensions

{
y(X) |ξ � X � ω

}
such that y(X) is de-

fined on {X, ··, ω},
∣∣∣y(X)

X

∣∣∣ � b and y(ξ)X = y(X)
X for all X with ξ � X < ω.

By the Cauchy principle there exists standard T and a solution Y (T ) such
that y(T ) is defined on {T, ··, ω},

∣∣∣y(T )
T

∣∣∣ � b and y(T )
X = y(X)

X for all X with

T � X < ω. This means that y(T )
ω = u � 0, and again by Proposition 4.14

the remaining conditions of Lemma 3.3 (read backwards) are satisfied on
{ξ, ··, ω}. Hence y(T )

X � 0 for all X with ξ � X � ω. Because in the above
lemma ξ � ∞ is arbitrary, we obtain as a corollary that y(T )

X � 0 for all
X � ∞, X � ω.

So in both cases there exists a solution Y of (1.1) such that yX � 0
for all X � ∞, X � ω. This means that Y (X) = (1 + ∅)Ŷ (X) for all
X � ∞, X � ω. By Corollary 3.2 we conclude that there exists a standard
solution Ỹ such that Ỹ (X) ∼ Ŷ (X) for X → ∞.
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