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ASYMPTOTIC SOLUTIONS OF RESONANT NONLINEAR SINGULARLY
PERTURBED PROBLEMS IN THE CASE OF INTERSECTING
EIGENVALUES OF THE LIMIT OPERATOR

A. A. Bobodzhanov and V. F. Safonov UDC 517.928

Abstract. Lomov’s regularization method is generalized to resonant, weakly nonlinear, singularly per-
turbed systems in the case of intersecting roots of the characteristic equation of the limit operator. For
constructing asymptotic solutions, the regularization of the original problem by using normal forms
developed by the authors is performed. In the absence of resonance, the regularizing normal form is
linear, whereas in the presence of resonances, it is nonlinear. In this paper, the resonant case of a weakly
nonlinear problem is considered. By using an algorithm of normal forms, we construct an asymptotic
solution of any order (with respect to a parameter) and justify this algorithm.
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1. Introduction. As was proposed by V. F. Safonov and A. A. Bobodzhsnov (see, e.g., [9]), Lo-
mov’s regularization method (see [5, 6]) can be generalized to resonant, weakly nonlinear, singularly
perturbed systems in the case of intersecting roots of the characteristic equation of the limit opera-
tor A(t) by regularizing the original problem based on normal forms. It is well known that if all points
of the spectrum σ(A(t)) =

{
λj(t), j = 1, n

}
are distinct for all values of the independent variable t

(i.e., in the case of stable spectrum of the limit operator), the problem can be regularized by integrals
of points of the spectrum (see [5, p. 39-40]). In the case of intersecting roots of the characteristic
equation of the operator A(t), singularities of new types appear that cannot be described in terms
of spectra. To examine such singularities, one must revise approaches to regularization. In the case
of stable spectrum σ(A(t)) of weakly nonlinear systems, so-called identity and nonidentity resonances
can be regularized by normal forms (see [9, Chap. 3]). The corresponding algorithm of constructing
asymptotic solutions is called the algorithm of normal forms. This algorithm is a generalization of
Lomov’s regularization algorithm; it is based on regularization of singularly perturbed problems by a
vector of regularizing variables satisfying a certain normal differential form. It turned out that this
approach can also be applied to nonlinear, singularly perturbed problems in the case of intersecting
roots of the characteristic equation of the operator A(t). If resonances are absent, the regularizing
normal form is linear (see [1]); in the presence of resonances it is nonlinear. In this paper, we consider
the resonance case of the weakly nonlinear original problem. Using the algorithm of normal forms, we
construct and justify an asymptotic solution of an arbitrary order with respect to the parameter ε.

2. Notation and the statement of the problem. Throughout the paper, we use the following
notation. Row vectors are denoted by parentheses (e.g, b =

(
b1, . . . , br

)
) and column vectors by curly

braces (e.g., a =
{
a1, . . . , ar

}
), so that aT =

(
a1, . . . , ar

)
). The asterisk means simultaneous trans-

position and conjugation: b∗ =
(
b̄T
)
. For a multi-index k = (k1, . . . , kn), we set |k| = k1 + · · · + kn.

We denote by λ(t) the row vector λ(t) =
(
λ1(t), . . . , λn(t)

)
and by ej the jth ort in the space C

n of
complex-valued n-dimensional columns. Further, introduce the notation

(m,λ(t)) ≡ m1λ1(t) + · · ·+mnλn(t), (m,u) ≡ m1u1 + · · ·+mnun.
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The scalar product in the complex space C
n of n-dimensional column vectors (or row vectors) is

introduced as usually: for any vectors y =
{
y1, . . . , yn

}
and z =

{
z1, . . . , zn

}
of the space C

n, we set,
by definition,

(y, z)Cn =

n∑

j=1

yj z̄j ;

in the sequel, we omit the subscript Cn. Finally, we denote a λj(t)-eigenvector of the matrix A(t) by
ϕj(t) (recall that A(t)ϕj(t) ≡ λj(t)ϕj(t))) and the ith column of the matrix [Φ∗(t)]−1 by χi(t); here
Φ(t) ≡ (

ϕ1(t), . . . , ϕn(t)
)
. Then χi(t) is a λ̄i(t)-eigenvector of the matrix A∗(t) and

(
ϕj(t), χi(t)

)
= δji,

where δji, i, j = 1, n, is the Kronecker delta.
We consider the following nonlinear, singulary perturbed problem:

ε
dy

dt
= A(t)y + εf(t, y) + h(t), y(0, ε) = y0, t ∈ [0, T ], (1)

where y = {y1, . . . , yn} is an unknown vector-valued function, A(t) is a given (n×n)-matrix, f(t, y) =
{f1, . . . , fn} and h(t) = {h1, . . . , hn} are given vector-valued functions, y0 = {y01, . . . , y0n} ∈ C

n is a
given constant vector, and ε is a small positive parameter. We assume that the following conditions
are fulfilled:

(I) h(t) ∈ C∞(
[0, T ],Cn

)
, A(t) ∈ C∞(

[0, T ],Cn×n
)
, and f(y, t) is a polynomial with respect to y,

i.e.,

f(y, t) =
∑

0≤|m|≤N

f (m)(t)ym ≡
N∑

m1+···+mn=0

f (m1,...,mn)(t)ym1
1 . . . ymn

n ,

with the coefficients f (m)(t) ∈ C∞(
[0, T ],Cn

)
, |m| = 0, N , N < ∞;

(II) for all t ∈ [0, T ], the spectrum {λj(t)} of the matrix A(t) satisfies the following conditions:
(a) λ1(t)− λ2(t) ≡ tk(t), k(t) �= 0, λj(t) �= 0, j = 1, n;
(b) λi(t) �= λj(t), i �= j, i, j = 3, n; λj(t) �= λ1(t), λj(t) �= λ2(t), j = 3, n;
(c) there exists a matrix Φ(t) ∈ C∞(

[0, T ],Cn×n
)
such that

Φ−1(t)A(t)Φ(t) = Λ(t) ≡ diag
(
λ1(t), . . . , λn(t)

)
;

(d) Reλj(t) ≤ 0, j = 1, n;
(III) the spectrum σ(A(t)) ≡ {

λj(t)
}
is such that the equations

(m,λ(t)) ≡ m1λ1(t) + . . .+mnλn(t) = λj(t), |m| ≥ 2, (∗)
for the unknown multi-index m have solutions for all t ∈ [0, T ] and only for j ∈ {3, . . . , n};
moreover, the solutions m of Eq. (∗) are independent of t and have the following form:

{m} ≡
{(

m1, . . . ,mn

)
=
(
0, 0,m3, . . . ,mn

)}
, |m| = m3 + . . .+mn ≥ 2;

this means that the eigenvalues λ1(t) and λ2(t) do not involve in the resonance relations (∗).
The conditions (IIa) and (IIb) imply that only two points of the spectrum, namely, λ1(t) and λ2(t),

mutually intersect at t = 0 and remain distinct for t ∈ (0, T ]. Other points of the spectrum {λj(t)} do
not intersect anywhere. Under the conditions specified, one must construct a regularized asymptotic
solution (see [5, 6]) of the problem (1) as ε → +0.

For this problem, we develop an algorithm based on regularizing the system (1) by normal forms.
In the case of stable spectrum σ(A(t)) ≡ {

λj(t)
}
, the regularized normal form is linear and diagonal

(see [9]). However, in the case where roots of the characteristic equation intersect (this case is de-
termined by the conditions (II)), the normal form is not diagonal even in the case where resonances
are absent (see [1]): it consists of two cells that form a quasi-diagonal matrix

{
A1(ε),Λ0

}
, where

Λ0 = diag
(
λ3(t), . . . , λn(t)

)
and A1(ε) is a second-order matrix polynomial with respect to ε. In the

case of a resonance determined by the conditions (III), the normal form, in addition to a linear part,

2



contains also a nonlinear part, which significantly complicates the development and justification of
the algorithm. Note that in the linear case (i.e., for f(t, y) ≡ 0), the problem (1) was solved in [3] by
a method that slightly differs from the method of normal forms (see also [4]).

3. Regularization of the problem (1). Solvability of the first iterative problem. Assume
that the conditions (I)–(III) are fulfilled. Since the spectrum σ(A(t)) of the matrix A(t) is resonant (see
the condition (III)), we regularize the problem (1) by using the vector u =

{
u1, . . . , un

}
of regularizing

variables satisfying the nonlinear normal form

ε
du

dt
= Λ(t)u+

r+1∑

k=1

εk
(
μ
(k)
2 e1u2 + μ

(k)
1 e2u1

)
+

r+1∑

k=1

εk
n∑

i=3

∑

mi∈Γi

g
(mi)
k (t)eiu

mi
, u(0, ε) = 1̄, (2)

where Λ(t) = diag
(
λ1(t), . . . , λn(t)

)
, 1 = {1, . . . , 1}, ej =

{
0, . . . 0, 1

(j)
, 0, . . . , 0

}
is the jth ort in C

n,

Γi =
{
mi ≡ (

mi
1, . . . ,m

i
n

)
:
(
mi, λ(t)

) ≡ λi(t), |mi| ≥ 2 ∀t ∈ [0, T ]
}
, i = 3, n,

and the constants μ
(k)
j and the functions g

(mi)
k (t) will be specified in the process of constructing an

asymptotic solution of the problem (1). Note that the regularizing normal form (2) (of order r + 1) is
not diagonal even in the linear case (f(y, t) ≡ 0) due to the instability of the spectrum {λj(t)} (see
the condition (IIa)) and the presence of resonances (the condition (III)). Instead of the problem (1),
we consider the “extended problem”

ε
∂ỹ

∂t
+

∂ỹ

∂u

[

Λ(t)u+

r+1∑

k=1

εk
(
μ
(k)
2 e1u2 + μ

(k)
1 e2u1

)
+

r+1∑

k=1

εk
n∑

i=3

∑

mi∈Γi

g
(mi)
k (t)eiu

mi

]

−A(t)ỹ − εf(y, t) = h(t), ỹ(t, u, ε)
∣∣
t=0, u=1

= y0 (3)

for the function ỹ = ỹ(t, u, ε) of the variables t, u =
(
u1, . . . , un

)
, and ε. Clearly, if ỹ = ỹ(t, u, ε) is a

solution of the problem (3), then its restriction y(t, ε) = ỹ
(
t, u(t, ε), ε

)
to the solution u = u(t, ε) of

the regularizing normal form (2) is an exact solution of the original problem (1). Since the order of
the system of differential equations (3) does not decrease for ε = 0, we can write its solution as the
series

ỹ(t, u, ε) =

∞∑

k=0

εkyk(t, u) (4)

with respect to nonnegative powers of the parameter ε. Substituting the series (4) into (3) and equating
the coefficients of the same powers of ε, we obtain the following iterative problems:

⎧
⎨

⎩
L y0(t, u) ≡ ∂y0

∂u
Λ(t)u−A(t)y0 = h(t),

y0(0, 1̄) = y0;
(40)

⎧
⎪⎪⎨

⎪⎪⎩

L y1(t, u) = −∂y0
∂t

− ∂y0
∂u

(
μ
(1)
2 e1u2 + μ

(1)
1 e2u1

)
+

∂y0
∂u

n∑

i=3

∑

mi∈Γi

g
(mi)
1 (t)eiu

mi
+ f(y0, t),

y(0, 1̄) = 0;

(41)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

3



⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L yk+1(t, u) = −∂yk
∂t

− ∂y0
∂u

(
μ
(k+1)
2 e1u2 + μ

(k+1)
1 e2u1

)
− ∂y0

∂u

n∑

i=1

∑

mi∈Γi

g
(mi)
k+1 (t)eiu

mi

−
k∑

s=1

∂ys
∂u

(
μ
(k+1−s)
2 e1u2 + μ

(k+1−s)
1 e2u1

)
−

k∑

s=1

∂ys
∂u

n∑

i=1

∑

mi∈Γi

g
(mi)
k+1−s(t)eiu

mi

+ Pk

(
t, y0, . . . , yk−1

)
,

yk+1(0, 1̄) = 0, k ≥ 1,

(4k)

where Pk

(
t, y0, . . . , yk

)
is a certain polynomial of y1, . . . , yk−1 with coefficients depending on partial

derivatives of the function f(t, y) at the point y = y0(t, u); moreover, Pk(t, y0, . . . , yk) is linear with
respect to the last argument yk.

For description of the solvability theory of iterative problems, we introduce the following notation.

Definition. A monomial z(m
j)(t)um

j ≡ z(m
j
1,...,m

j
n)(t)u

mj
1

1 · · · umj
n

n is called the λj-resonant monomial
if |mj | ≥ 2 and the equality (mj , λ(t)) = λj(t) holds for all t ∈ [0, T ]. This monomial is said to be
orthogonalized if for all t ∈ [0, T ], the following identity holds:

(
z(m

j )(t), χj(t)
)
≡ 0;

here χj(t) is a λ̄j-eigenvector of the matrix A∗(t).

We define a solution of the problem (4k) in the class U of vector-valued functions of the form

z(t, u) = z0(t) +
n∑

j=0

zj(t)uj +
∑

2≤|m|≤Nz

z(m)(t)um,

z0(t), zj(t), z
(m)(t) ∈ C∞(

[0, T ],Cn
)
, 2 ≤ |m| ≤ Nz < ∞,

(5)

with orthogonalized resonant monomials z(m
i)(t)um

i
, i = 1, n; note that the degree Nz of the polyno-

mial z(t, u) is not fixed; it depends on this polynomial. First, we examine its solvability in the class U
of the first iterative problem (40). The following assertion holds.

Theorem 1. Let the conditions (I), (IIa)–(IIc), and (III) be fulfilled. Then the system (40) has a
solution in the class U , which can be represented in the form

y0(t, u) = Φ(t)A(t)u+ y
(0)
0 (t) ≡

n∑

j=1

αj(t)ϕj(t)uj + y
(0)
0 (t), (6)

where A(t) = diag
(
α1(t), . . . , αn(t)

)
, Φ(t) ≡ (

ϕ1(t), . . . , ϕn(t)
)
is the matrix constructed from the

eigenvectors ϕj(t) of the operator A(t), y
(0)
0 (t) ≡ −A−1(t)h(t), and αi(t) ∈ C∞(

[0, T ],C1
)
are arbitrary

scalar functions.

Proof. We search for a solution of the system (40) in the form

y0(t, u) = y
(0)
0 (t) +

n∑

j=1

y
ej
0 (t)ui +

∑

2≤|m|≤Ny0

y
(m)
0 (t)um; (60)

then we obtain the following equations for the coefficients of this sum :

−A(t)y
(0)
0 (t) = h(t), (70)

[
λi(t)I −A(t)

]
yeii (t) = 0, i = 3, n, (7i)

[
λ1(t)I −A(t)

]
ye11 (t) = 0, (71)
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[
λ2(t)I −A(t)

]
ye22 (t) = 0, (72)

[(
mi, λ(t)

)
I −A(t)

]
y
(mi)
0 (t) = 0 ∀mi ∈ Γi, 2 ≤ |m| ≤ Ny0 , i = 3, n, (7mi)

[
b
(
m,λ(t)

)
I −A(t)

]
y
(m)
0 (t) = 0 ∀m /∈

n⋃

i=1

Γi, 2 ≤ |m| ≤ Ny0 . (7m)

Since detA(t) �= 0 and det
[
(m,λ(t))I −A(t)

] �= 0 for all t ∈ [0, T ], m /∈
n⋃

i=1
Γi, 2 ≤ |m| ≤ Ny0 , each of

the systems (70) and (7m) possesses a unique solution y
(0)
0 (t) = −A−1(t)h(t) (respectively, y

(m)
0 (t) ≡ 0)

of the class C∞(
[0, T ],Cn

)
. Consider the system (7mi) for fixed i. Since mi ∈ Γi, we conclude that

(mi, λ(t)) − λi(t) ≡ 0 for all t ∈ [0, T ]. Therefore, the system (7mi) has a solution in the form of a
vector-valued function βi(t)ϕi(t), where β

i(t) ∈ C∞(
[0, T ],C1

)
are arbitrary scalar functions, i = 1, n.

However, all resonant monomials in the solution (60) must be orthogonalized, hence
(
βi(t)ϕi(t), χi(t)

) ≡ 0 ⇐⇒ βi(t)
(
ϕi(t), χi(t)

) ≡ 0 ⇐⇒ βi(t) ≡ 0

(since the systems {ϕj(t)} and {χi(t)} are bi-orthonormed). Therefore, for all t ∈ [0, T ] we have

βi(t)ϕi(t) ≡ 0 and hence y
(mi)
0 (t) ≡ 0. Thus, the sum (60) does not contain nonlinear terms, i.e., the

solution of the system (60) has the form

y0(t, u) = y
(0)
0 (t) +

n∑

j=1

y
ej
0 (t)ui,

where y
(0)
0 (t) = −A−1(t)h(t) and the function y

ej
0 (t) have not been found. Now we calculate these

functions.
For fixed i ∈ {3, . . . , n}, the systems (7i) have (see [8, p. 84-85]) infinite set of solutions that can

be represented in the form y
(0)
i (t) = αi(t)ϕi(t), where αi(t) ∈ C∞(

[0, T ],C1
)
are arbitrary scalar

functions, i = 3, n. Now we consider the system (71). We search for its solution in the form y
(0)
1 (t) =

Φ(t)ξ, where ξ = {ξ1, . . . , ξn}; then for the components of the vector ξ, we obtain the following
equations:

0 · ξ1 = 0,
(
λ1(t)− λ2(t)

)
ξ2 = 0,

(
λ1(t)− λj(t)

)
ξj = 0, j = 3, n. (8)

The first equation in (8) has a solution in the form of an arbitrary function ξ1 = α1(t) ∈ C∞(
[0, T ],C1

)
;

the last equations in (8) have unique trivial solutions ξj ≡ 0, j = 3, n. Since λ1(0) − λ2(0) = 0 and
λ1(t)− λ2(t) �= 0 for all t ∈ (0, T ], the second equation in (8) has solutions that can be represented in
the form

ξ2 = ξ2(t) =

{
γ, t = 0,

0, t ∈ (0, T ],

where γ is an arbitrary constant. Thus, the formal solution of the system (71) has the form

y
(0)
1 (t) = α1(t)ϕ1(t) + ξ2(t)ϕ2(t).

Since we search for a solution of the system (40) in the space U , we have

y
(0)
1 (t) = α1(t)ϕ1(t) + ξ2(t)ϕ2(t) ∈ C∞(

[0, T ],Cn
)
.

Multiplying this equality scalarly by the vector χ2(t), we obtain ξ2(t) =
(
y
(0)
1 (t), χ2(t)

)
; therefore,

ξ2(t) ∈ C∞(
[0, T ],C1

)
. In particular, the function ξ2(t) must be continuous at the point t = 0, i.e.,

lim
t→+0

ξ2(t) = ξ2(0). This implies γ = 0 and hence ξ2(t) ≡ 0 for all t ∈ [0, T ] and the solution of
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the system (71) has the from y
(0)
1 (t) = α1(t)ϕ1(t). Similarly we can prove that y

(0)
2 (t) = α2(t)ϕ2(t).

Therefore, the solution of the system (40) has the form (6). The theorem is proved. �
Now we introduce the following notation: if w(t, u) is a polynomial

w(t, u) =

Nw∑

|m|=0

w(m)(t)um,

then we denote by w(k)(t, u) the sum of its terms such that |m| = k, i.e.,

w(k)(t, u) =
∑

|m|=k

w(m)(t)um, k = 0, 1, 2, . . . , Nw,

and by U (k) ⊂ U the subspace of the class U consisting of all such sums (we assume that the element
0 ≡ ∑

|m|=k

0 · um belongs to the space U (k)). For each t ∈ [0, T ], we introduce the scalar product

〈
w(k)(t, u), z(k)(t, u)

〉
≡
〈

∑

|m|=k

w(k)(t)um, z(k)(t)um

〉

def
=

∑

|m|=k

(
w(k)(t), z(k)(t)

)
=

∑

|m|=k

(
w(k)(t)

)T · z(k)(t)

in the space U (k), where (·, ·) is the ordinary scalar product (for each t ∈ [0, T ]) in the complex

space C
n. In U (1), consider the operator

L ≡ ∂

∂u
Λ(t)u−A(t).

The conjugate operator has the form

L ∗ ≡ ∂

∂u
Λ̄(t)u−A∗(t);

the vector-valued functions νj(t, u) = χj(t)uj , j = 1, n, form a basis of its kernel. We assume that the
solution (6) of the system (40) satisfy the initial condition y0(0, 1̄) = y0; then

α1(0)ϕ1(0) + . . . + αn(0)ϕn(0) = A−1(0)h(0) + y0,

which allows one to find αj(0):

αj(0) = (A−1(0)h(0) + y0, χj(0)), j = 1, n.

Substituting the function (6) into f(t, y0), we obtain the polynomial (with respect to u)

f
(
t, y0(t, u)

)
= f

(
t, y

(0)
0 (t)

)
+

∂f(t, y
(0)
0 (t))

∂y
Φ(t) diag

(
α1(t), . . . , αn(t)

)
u+ . . . ,

where the dots mean terms with |m| ≥ 2 with respect to u; therefore,

f (1)
(
t, y0(t, u)

)
=

∂f
(
t, y

(0)
0 (t)

)

∂y
Φ(t) diag

(
α1(t), . . . , αn(t)

)
u ≡

n∑

j=1

∂f
(
t, y

(0)
0 (t)

)

∂y
ϕj(t)αj(t)uj .

We prove below (see Theorem 3, in which H(t, u) ≡ h(t)) that the system (41) is solvable in the
space U if and only if the following identities hold:

〈

−∂y
(1)
0

∂t
+ f (1)

(
t, y0(t, u)

)
, χj(t)uj

〉

≡ 0 ∀t ∈ [0, T ], j = 1, n.
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This is an additional restriction for the solution of the problem (40). Substituting the functions (6)

and f (1)
(
t, y0(t, u)

)
into this formula, we arrive at the identity

〈

−
n∑

j=1

[
d

dt

(
αj(t)ϕj(t)

)
uj +

∂f
(
t, y

(0)
0 (t)

)

∂y
ϕj(t)αj(t)uj

]

, χj(t)uj

〉

≡ 0,

or

−α̇j(t) +

(
∂f

(
t, y

(0)
0 (t)

)

∂y
ϕj(t)− ϕ̇j(t), χj(t)

)

αj(t) ≡ 0, j = 1, n.

These identities are satisfied by a unique collection of functions αj(t) with the initial conditions

αj(0) =
(
A−1(0)h(0) + y0, χj(0)

)
, j = 1, n,

namely,

αj(t) =
(
A−1(0)h(0) + y0, χj(0)

)

× exp

⎧
⎨

⎩

t∫

0

(
∂f

(
θ, y

(0)
0 (θ)

)

∂y
ϕj(θ)− ϕ̇j(θ), χj(θ)

)

dθ

⎫
⎬

⎭
, j = 1, n. (9)

Therefore, the solution (6) of the problem (40) with the additional restriction is uniquely defined in
the space U . We arrive at the following assertion.

Theorem 2. Let the condition (I), (IIa)–(IIc), and (III) be fulfilled. Then the system (40) with the
additional conditions

y0(0, 1̄) = y0,

〈

−∂y
(1)
0

∂t
+ f (1)

(
t, y0(t, u)

)
, νj(t, u)

〉

≡ 0 ∀t ∈ [0, T ], j = 1, n, (10)

has a unique solution in the class U , which can be represented in the form (6), where the scalar
functions αj(t) have the form (9).

4. Solvability of the iterative problems (4k) for k ≥ 1. We solve the iterative systems (4k)
consecutively. Each of them can be represented in the form

L y(t, u) = −∂y0
∂u

(
μ2e1u2 + μ1e2u1

)
− ∂y0

∂u

n∑

i=3

∑

mi∈Γi

g(m
i)(t)eiu

mi
+H(t, u), (11)

where y0 = y0(t, u) is the solution of the first iterative problem (40), μ1 and μ2 are unknown numbers,
and

H(t, u) = H0(t) +
n∑

j=1

Hj(t)uj +

NH∑

|m|=2

H(m)(t)

is a vector-valued function, which may involve nonorthogonalized resonant monomials (for this reason,
in general, the right-hand side of the system (11) does not belong to U). The first thing to do is to
answer the question: Can the right-hand side of the system (11) be included into the space U by an

appropriate choice of the function g(m
i)(t)?

Lemma. Let the conditions (I), (IIa)–(IIc), and (III) and the conditions (10) of Theorem 2 be fulfilled.

Moreover, let αj(0) =
(
y0 − y

(0)
0 (0), χj(0)

) �= 0, j = 1, n. Then there exists a unique collection of the

g(m
i)(t) ∈ C∞(

[0, T ],C1
)
satisfying the condition

h(t, u) ≡ −∂y0
∂u

n∑

i=3

∑

mi∈Γi

g(m
i)(t)eiu

mi
+H(t, u) ∈ U. (11a)
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Proof. Taking into account the formula (6), we write the vector-valued function h(t, u) from the right-
hand side of the system (11), explicitly extracting resonant monomials:

h(t, u) = −Φ(t)A(t)
n∑

i=3

∑

mi∈Γi

g(m
i)(t)eiu

mi
+

∑

|m|≥0

H(m)(t)um

≡
n∑

i=3

∑

mi∈Γi

[
− g(m

i)(t)αi(t)ϕi(t) +H(mi)(t)
]
um

i
+

∑

|m|≥0:

m/∈
n⋃

i=3
Γi

H(m)(t)um.

The condition (11a) means that all resonant multi-indexes mi ∈ Γi satisfy the identities
(
−g(m

i)(t)αi(t)ϕi(t) +H(mi)(t), χj(t)
)
≡ 0 ∀t ∈ [0, T ],

which allow one to find the functions

g(m
i)(t) = α−1

i (t)
(
H(mi)(t), χj(t)

)
, mi ∈ Γi, i = 3, n. (11b)

Thus, choosing the functions g(m
i)(t) in the form (11b), we embed the vector-valued function h(t, u)

(and hence the right-hand side of the system (11)) into the space U . The lemma is proved. �

Theorem 3. Let the conditions (I), (IIa)–(IIc), and (III), and also the condition (10) of Theorem 2

be fulfilled. Moreover, let αj(0) =
(
y0 − y

(0)
0 (0), χj(0)

) �= 0, j = 1, n, and the scalar functions

g(m
i)(t) ∈ C∞(

[0, T ],C1
)
have the form (11b). Then there exist unique constants μ1 and μ2 such

that the system (11) is solvable in the space U if and only if

〈H(t, u), νj(t, u)〉 ≡ 0 ∀t ∈ [0, T ], j = 1, n. (11∗)

Proof. We write the right-hand side of the system (11) as follows:

− ∂y0
∂u

(
μ2e1u2 + μ1e2u1

)− ∂y0
∂u

n∑

i=3

∑

mi∈Γi

g(m
i)(t)eiu

mi
+H(t, u)

≡ −Φ(t)A(t)
(
μ2e1u2 + μ1e2u1

)
+

n∑

i=3

∑

mi∈Γi

[
− g(m

i)(t)αi(t)ϕi(t) +H(mi)(t)
]
um

i

+H0(t) +

n∑

j=1

Hj(t)uj +
∑

|m|≥2: m/∈Γi,
i=3,n

H(m)(t)um = −α1(t)μ2ϕ1(t)u2 − α2(t)μ1ϕ2(t)u1

+

n∑

i=3

∑

mi∈Γi

[
− g(m

i)(t)αi(t)ϕi(t) +H(mi)(t)
]
um

i
+H0(t) +

n∑

j=1

Hj(t)uj
∑

|m|≥2: m/∈Γi,
i=3,n

H(m)(t)um.

We search for a solution of the system (11) in the following form:

y(t, u) = y0(t) +
n∑

j=0

yj(t)uj +
∑

2≤|m|≤Ny

y(m)(t)um. (12)

Substituting this sum into the system (11) and equating the coefficients of the same um, we obtain
the following systems:

−A(t)y0(t) = H0(t), (120)
[
λi(t)I −A(t)

]
yi(t) = Hi(t), i = 3, n, (12i)
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[
λ1(t)I −A(t)

]
y1(t) = −α2(t)μ1ϕ2(t) +H1(t), (121)

[
λ2(t)I −A(t)

]
y2(t) = −α1(t)μ2ϕ1(t) +H2(t), (122)

[(
mi, λ(t)

)
I −A(t)

]
z(m

i)(t) = −g(m
i)(t)αi(t)ϕi(t) +H(mi)(t) ∀mi ∈ Γi, i = 3, n, (12mi )

[(
m,λ(t)

)
I −A(t)

]
z(m)(t) = H(m)(t) ∀m /∈

n⋃

i=3

Γi, |m| ≥ 2. (12m)

The system (120) has a unique solution y0(t) = −A−1(t)H0(t) ∈ C∞
(
[0, T ],Cn

)
. Due to the

condition (III), this is also valid for the system (12m). The solutions have the form y(m)(t) =[
(m,λ(t))I −A(t)

]−1
H(m)(t), 2 ≤ |m| ≤ Ny. The system (12i) is solvable in the space C∞(

[0, T ],Cn
)

if and only if the following identities hold:
(
Hi(t), χi(t)

) ≡ 0 ⇐⇒ 〈H(t, u), νi(t, u)〉 ≡ 0, i = 3, n. (12∗)

The solutions of the system (12i) (see [8, p. 84-85]) can we written as follows:

yi(t) = βi(t)ϕi(t) +

n∑

s=1,
s �=i

(
Hi(t), χs(t)

)

λi(t)− λs(t)
ϕs(t), i = 3, n, (13)

where βi(t) ∈ C∞(
[0, T ],C1

)
are arbitrary functions, i = 3, n. Now we consider the system (12mi). It

is solvable in the space C∞(
[0, T ],Cn

)
if and only if the following identities hold:

(
− g(m

i)(t)αi(t)ϕi(t) +H(mi)(t), χi(t)
)
≡ 0, i = 3, n.

These conditions are fulfilled automatically due to the choice of the functions g(m
i)(t) in the form (11b).

To obtain solutions of the system (12mi) (an index i ∈ {3, . . . , n} is fixed), we perform the transforma-

tion y(m
i)(t) = Φ(t)ξ(m

i)(t). For the components ξ
(mi)
s (t) of the vector ξ(m

i)(t), we obtain the following
equations:

[
b
(
mi, λ(t)

) − λi(t)
]
ξ
(mi)
i (t) = 0, (13a)

[(
mi, λ(t)

)− λs(t)
]
ξ(m

i)
s (t) =

(
H(mi)(t), χs(t)

)
, s �= i, s = 1, n. (13b)

Since mi /∈ Γs for s �= i, we conclude that
(
mi, λ(t) − λs(t)

) �= 0 for all t ∈ [0, T ], and Eqs. (13b) are

uniquely solvable in the class C∞(
[0, T ],C1

)
and their solutions have the form

ξ(m
i)

s (t) =

(
H(mi)(t), χs(t)

)
(
mi, λ(t)

) − λs(t)
ϕs(t), s �= i, s = 1, n, ∀t ∈ [0, T ].

We have
(
mi, λ(t) − λi(t)

) ≡ 0 for all t ∈ [0, T ] since mi ∈ Γi; therefore, an arbitrary function

ξ
(mi)
i (t) ∈ C∞(

[0, T ],C1
)
is a solution of Eq. (13a). Finally, the solution of the system (12mi) can be

written in the form

y(m
i)(t) = ξ

(mi)
i (t)ϕi(t) +

n∑

s �=i,
s=1

(
H(mi)(t), χs(t)

)
(
mi, λ(t)

) − λs(t)
ϕs(t).

It must be orthogonalized, i.e.,
(
y(m

i)(t), χi(t)
) ≡ 0 for all t ∈ [0, T ]. Taking into account the fact that

the systems of vectors {ϕi(t)} and {χj(t)} are bi-orthonormed, we have

(
y(m

i)(t), χi(t)
)
= ξ

(mi)
i (t) ≡ 0 ∀t ∈ [0, T ],
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which implies

y(m
i)(t) =

n∑

s �=i,
s=1

(
H(mi)(t), χs(t)

)
(
mi, λ(t)

) − λs(t)
ϕs(t),

i.e., a solution of the system (12mi) is defined in the class C∞(
[0, T ],Cn

)
uniquely.

Now we consider the system (121). We search for its solution in the form y1(t) = Φ(t)η. For the
components of the vector η = {η1, . . . , ηn}, we obtain the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
λ1(t)− λ1(t)

)
η1 =

(− α2(t)μ1ϕ2(t) +H1(t), χ1(t)
)
,

(
λ1(t)− λ2(t)

)
η2 =

(− α2(t)μ1ϕ2(t) +H1(t), χ2(t)
)
,

(
λ1(t)− λ3(t)

)
η3 =

(− α2(t)μ1ϕ2(t) +H1(t), χ3(t)
)
,

· · · · · · · · · · · · · · · · · · · · ·
(
λ1(t)− λn(t)

)
η3 =

(− α2(t)μ1ϕ2(t) +H1(t), χn(t)
)
.

Here we used the fact that

Φ−1(t)g(t) ≡
{(

g(t), χ1(t)
)
, . . . ,

(
g(t), χn(t)

)}
.

Since the systems of vectors {ϕj(t)} and {χi(t)} are bi-orthonormed, we can rewrite the previous
equations in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 · η1 =
(
H1(t), χ1(t)

)
,

(
λ1(t)− λ2(t)

)
η2 = −α2(t)μ1 +

(
H1(t), χ2(t)

)
,

(
λ1(t)− λ3(t)

)
η3 =

(
H1(t), χ3(t)

)
,

· · · · · · · · · · · · · · · · · · · · ·
(
λ1(t)− λn(t)

)
η3 =

(
H1(t), χn(t)

)
.

The first equation of this system is solvable if and only if
(
H1(t), χ1(t)

) ≡ 0 ⇐⇒ 〈H(t, u), ν1(t, u)〉 ≡ 0 ∀t ∈ [0, T ], (13∗)

where η1 = η1(t) ∈ C∞(
[0, T ],C1

)
is an arbitrary function. The equations for ηi, i = 3, n, have unique

solutions

ηi =

(
H1(t), χi(t)

)

λ1(t)− λi(t)
, i = 3, n. (14)

For t ∈ (0, T ], the equation
(
λ1(t)− λ2(t)

)
η2 = −α2(t)μ1 +

(
H1(t), χ2(t)

)

has the following solution:

η2 = η2(t) =
−α2(t)μ1 +

(
H1(t), χ2(t)

)

λ1(t)− λ2(t)
=

−α2(t)μ1 +
(
H1(t), χ2(t)

)

tk(t)
;

for t = 0 it takes the form

0 · η2(0) = −α2(0)μ1 +
(
H1(0), χ2(0)

)
,

and we obtain

μ1 =

(
H1(0), χ2(0)

)

α2(0)
, (15)

where η2(0) = σ is an arbitrary number and the solution of the equation
(
λ1(t)− λ2(t)

)
η2 = −α2(t)μ1 +

(
H1(t), χ2(t)

)
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takes the form

η2 = η2(t) =

⎧
⎪⎨

⎪⎩

−α2(t)μ1 +
(
H1(t), χ2(t)

)

tk(t)
, t ∈ (0, T ],

σ, t = 0,

=

⎧
⎪⎨

⎪⎩

− α2(t)
α2(0)

(
H1(0), χ2(0)

)
+
(
H1(t), χ2(t)

)

t · k(t) , t ∈ (0, T ],

σ, t = 0.

(16)

The vector-valued function

y1(t) = Φ(t)η(t) = η2(t)ϕ2(t) +

n∑

j=1,
j �=2

ηj(t)ϕj(t)

belongs to the class C∞(
[0, T ],Cn

)
; therefore, η2(t) =

(
y1(t), χ2(t)

) ∈ C∞(
[0, T ],C1

)
. In particular,

we obtain

lim
t→+0

η2(t) = lim
t→+0

− α2(t)
α2(0)

(
H1(0), χ2(0)

)
+
(
H1(t), χ2(t)

)

t · k(t) = σ,

i.e., in (16) σ is defined uniquely. Note that the formula η2(t) can be written as follows:

η2(t) =
− α2(t)

α2(0)

(
H1(0), χ2(0)

)
+
(
H1(t), χ2(t)

)

t · k(t) ∀t ∈ [0, T ],

assuming that this equality at the point t = 0 is meant in the limit sense. Thus, choosing the constant
μ2 in the form (15), we find the solution of the system (121) in the form

y1(t) = Φ(t)η(t)

= η1(t)ϕ1(t) +
− α2(t)

α2(0)

(
H1(0), χ2(0)

)
+
(
H1(t), χ2(t)

)

t · k(t) ϕ2(t) +

n∑

i=3

(
H1(t), χi(t)

)

λ1(t)− λi(t)
ϕi(t), (17)

where η1(t) ∈ C∞(
[0, T

]
,C1

)
is an arbitrary function and all other terms are defined uniquely.

Now we consider the system (122). Arguing similarly, we can prove that if the constant μ2 is chosen
in the form

μ2 =

(
H2(0), χ1(0)

)

α1(0)
, (18)

then the system (122) is solvable in the space C∞(
[0, T ],Cn

)
if and only if the following identities

hold: (
H2(t), χ2(t)

) ≡ 0 ⇐⇒ 〈H(t, u), ν2(t, u)〉 ≡ 0 ∀t ∈ [0, T ]. (18∗)
Then the solution (122) of the system has the form

y2(t) = Φ(t)ς(t)

= ς2(t)ϕ2(t) +
− α1(t)

α1(0)

(
H2(0), χ1(0)

)
+
(
H2(t), χ1(t)

)

−t · k(t) ϕ1(t) +
n∑

i=3

(
H2(t), χi(t)

)

λ2(t)− λi(t)
ϕi(t), (19)

where ς2(t) ∈ C∞(
[0, T ],C1

)
is an arbitrary function and all other terms are defined uniquely. Thus,

there exist a unique collection of numbers μ1 and μ2 and functions g(m
i)(t) of the form (11b) such

that the system (11) is solvable in the space U if and only if the identities (12∗), (13∗), and (18∗) hold
simultaneously, i.e., the conditions (11∗) hold. The theorem is proved. �

11



Now we clarify the condition of unique solvability of the iterative system (11). Consider the sys-
tem (11) under the additional conditions

y(0, 1̄) = y∗,
〈
−∂y

∂t
− ∂y0

∂u

(
μ̂2e1u2 + μ̂1e2u1

)
+G(t, u), νj(t, u)

〉
≡ 0 ∀t ∈ [0, T ], j = 1, n,

(20)

where μ̂2 and μ̂1 are arbitrary constants, G(t, u) ∈ U is a given vector-valued function, and y∗ ∈ C
n

is a given constant vector. The following assertion holds.

Theorem 4. Assume that vector-valued function H(t, u) ∈ U in the system (11) satisfies the or-
thogonality conditions (11∗) and the conditions (I), (IIa)–(IIc), and (III) are fulfilled. Moreover, let

αj(0) =
(
y0 − y

(0)
0 (0), χj(0)

) �= 0, j = 1, 2, the constants μ1 and μ2 are chosen in the form (15)

and (18), respectively, and the scalar functions g(m
i)(t) ∈ C∞(

[0, T ],C1
)
have the form (11b). Then

the system (11) under the additional conditions (20) is uniquely solvable in the space U .

Proof. Since the orthogonality conditions (11∗) are fulfilled, the system (11) has a solution in the

class U , which has the form of a vector-valued function (12) in which all terms y0(t), y(m)(t),
2 ≤ |m| ≤ Ny, are defined uniquely; the coefficients yi(t) have the form (13) for i = 3, n and the
form (17) and (19) for i = 1, 2. Now βi(t), η1(t), and ς2(t) are unknown arbitrary functions of the class
C∞(

[0, T ],C1
)
(all other terms in (17) and (19) are defined uniquely). Assuming that the solution (12)

satisfies the initial condition y(0, 1̄) = y∗, we obtain the equality

η1(0)ϕ1(0) + ς2(0)ϕ2(0) +
n∑

i=1

βi(0)ϕi(0) = z∗,

where z∗ ∈ C
n is a known constant vector. Multiplying scalarly this equality by χ1(0), χ2(0), and

χi(0), i = 3, n, we find

η1(0) =
(
z∗, χ1(0)

)
, ς2(0) =

(
z∗, χ2(0)

)
, βi(0) =

(
z∗, χi(0)

)
, i = 3, n. (21)

Substituting the function (12) into the second condition (20), we obtain (similarly to the proof of The-
orem 2) n scalar independent linear ordinary differential equations for the functions η1(t), ς2(t), βi(t),
i = 3, n (these equations are independent of the constants μ̂2 and μ̂1). Solving these equations with the
initial conditions (21), we uniquely find the functions η1(t), ς2(t), βi(t), i = 3, n, and hence construct
a solution of the system (11) in the space U . The theorem is proved. �

5. Asymptotic convergence of formal solutions of the problem (1) to the exact solution.
Let the conditions (I)–(III) be fulfilled. Then, due to Theorems 1–4, we can uniquely find solutions
y0(t, u), . . . , yr(t, u) in the space U for all iterative problems (40)–(4k) and construct the regularizing
normal form (2) of order r + 1. Under the conditions specified, we can construct the partial sum

Sr(t, u, ε) =
r∑

k=0

εkyk(t, u)

of the series (4), where yk(t, u) ∈ U . Then the regularizing normal form (2)

ε
du1
dt

= λ1(t)u1 +
r+1∑

k=1

εkμ
(k)
2 u2, u1 (0, ε) = 1,

ε
du2
dt

= λ2(t)u2 +
r+1∑

k=1

εkμ
(k)
1 u1, u2 (0, ε) = 1,

ε
dui
dt

= λ1(t)ui +

r+1∑

k=1

εk
∑

mi∈Γi

g
(mi)
k (t)um

i
, ui (0, ε) = 1, i = 3, n

(22)
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splits into two mutually independent differential systems, one of which is linear (i = 1, 2) and the
other is nonlinear (i = 3, n). We impose the following additional condition:

(IV) the normal for (22) is globally solvable on the segment [0, T ] and its solution satisfies the
estimates ∣

∣ui(t, ε)
∣
∣ < 1 + δ ∀(t, ε) ∈ [0, T ] × (0, ε0], i = 1, n, (23)

where ε0 > 0 is sufficiently small and δ > 0 is independent of ε,

Then we can prove that the restriction yεr(t) of the partial sum Sr(t, u, ε) of the series (4) to the
solution u = u(t, ε) of the regularizing form (22) of order r + 1 is a formal asymptotic solution of the
problem (1), i.e., the following identity holds:

ε
dyεr(t)

dt
−A(t)yεr(t)− εF

(
yεr(t), t

) ≡ h(t) + εr+1Rr(t, ε), yεr(0) = y0, (24)

where
∥∥Rr(t, ε)

∥∥
C[0,T ]

≤ R̄r and R̄r > 0 is a constant independent of ε ∈ (0, ε0]. Using the identity (24)

and the results of [8, p. 163–166], one can easily prove the following assertion.

Theorem 5. Assume that the system (1) satisfies the conditions (I), (IIa)–(IId), and (III). Moreover,

let αj(0) =
(
y0−y

(0)
0 (0), χj(0)

) �= 0, j = 1, 2, and the constants μ
(k)
1 and μ

(k)
2 and the functions g

(mi)
k (t)

are chosen according to the solvability of the iterative problems (4k) in the space U . Then, under the
condition (IV), the problem (1) is uniquely solvable in the space C1

(
[0, T ],C∞)

and its solution y(t, ε)
satisfies the estimate ∥∥

∥y(t, ε)− yεr(t)
∥∥
∥
C[0,T ]

≤ Crε
r+1, r = 0, 1, 2, . . . ,

where the constant Cr > 0 is independent of ε ∈ (0, ε0].

Remark. If the spectrum σ(A(t)) = {λj(t)} is such that there exists a straight line (π) independent
of t ∈ [0, T ]), and passing through the zero of the complex plane λ, and such that the spectrum {λj(t)}
lies on one side of (π) and does not intersect with (π), then the nonlinear part of the normal form (22)
is triangular. In this case, one can easily prove that the inequalities (23) always hold.

Example. Consider the system (1) with the matrix

A(t) =

⎛

⎜
⎜
⎝

−√
2

√
2− et

√
2 −√

2 + 2et
√
2− 1 0

0 −et
√
2 −2 + 2et

√
2 0

0 0 −1 0

2−√
2

√
2− 2 2−√

2 −2

⎞

⎟
⎟
⎠ .

Its spectrum σ(A(t)) =
{−√

2, −et
√
2, −1, −2

}
satisfies the conditions (I) and (IIa)–(IId) and lies

to the left of the straight line Reλ < 0. Therefore, we can apply the algorithm proposed.

Also, we note that the method of normal forms can be generalized to more complicated nonlinear
singular perturbed problems (see, e.g., [2, 7]).
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