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Abstract Here we present a way of computation of

asymptotic expansions of solutions to algebraic and dif-

ferential equations and present a survey of some of its

applications. The way is based on ideas and algorithms of

Power Geometry. Power Geometry has applications in Alge-

braic Geometry, Differential Algebra, Nonstandard Analysis,

Microlocal Analysis, Group Analysis, Tropical/Idempotent

Mathematics and so on. We also discuss a connection of

Power Geometry with Idempotent Mathematics.

Keywords Singularity, Newton Polyhedron, Painlevé

Equation, Boundary Layer, Idempotent Analysis

1 Introduction

We develop a new Calculus based on Power Geometry

[1–4]. At present, it allows to compute local and asymp-

totic expansions of solutions to nonlinear equations of three

classes:

1. algebraic,

2. ordinary differential,

3. partial differential,

as well as to systems of such equations. However, it can also

be extended to other classes of nonlinear equations: func-

tional, integral, integro-differential etc.

Principal ideas and algorithms are common for all classes

of equations. Computation of asymptotic expansions of solu-

tions consists of 3 following steps (we describe them for one

equation f = 0).

1. Calculation of truncated equations f̂
(d)
j = 0 by means of

generalized faces of the convex polyhedron Γ(f) which

is a generalization of the Newton polyhedron. The first

term of the expansion of a solution to the initial equa-

tion f = 0 is a solution to the corresponding truncated

equation f̂
(d)
j = 0.

2. Finding solutions to a truncated equation f̂
(d)
j = 0,

which is quasihomogenous. Using power and logarith-

mic transformations of coordinates we can reduce the

equation f̂
(d)
j = 0 to such simple form that can be

solved. Among the solutions found we should select ap-

propriate ones which yield the first terms of asymptotic

expansions.

3. Computation of the tail of the asymptotic expansion.

Each term in the expansion is a solution of a linear equa-

tion which can be written down and solved.

Indeed Power Geometry (as a basis of Nonlinear Analysis)

can be considered as the third level of Differential Calculus

(after Classical Analysis and Functional Analysis). Elements

of Plane Power Geometry were proposed by Newton for alge-

braic equation (1670) [5]; and by Briot and Bouquet for ordi-

nary differential equation of the first order (1856) [6]. Space

Power Geometry for a nonlinear autonomous system of Ordi-

nary differential equations (ODEs) was proposed by the au-

thor (1962) [1], and for a linear partial differential equation

(PDE), by Mikhailov (1963) [7]. Thus, in 2012 we could cel-

ebrate 50 years of the first publication on the Newton polyhe-

dron.

Back in the autumn of 1959, I was a third-year stu-

dent of Department of Mechanics and Mathematics of the

Lomonosov Moscow State University, and invented a poly-

hedron to study asymptotic behavior of solutions to an au-

tonomous system of ODEs near a degenerated stationary

point. The polyhedron was described in my work, which

was presented at a students’ works competition in 1961. In

that year Arnold was a postgraduate student, and he became

a referee of my work. He estimated my works as not very

good, for the mere reason that “geometry of power exponents

is useless”. In 1962-1970, Arnold wrote reports on some

of my articles with the same (rather negative) evaluation of

Power Geometry. See details in Section 6 of Chapter 8 of

English Edition of my book [3]. However, in 1973 Arnold

re-introduced my polyhedron as “Newton polyhedron” and

that looked as if he was the inventor of the polyhedron. In

fact, he invented only the name [8]. V.P. Maslov was very

surprised when I told him (in 1990) that the Newton polyhe-

dron was my invention (he thought that it was Arnold’s).

In this paper we intend to explain basic notions of Power

Geometry, present some of its algorithms, results, and appli-

cations. It is clear that this calculus cannot be mastered using

the present paper alone. Power Geometry was the subject of

a one-year lecture course “Nonlinear Analysis”, taught by the

author at the Lomonosov Moscow State University.
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Figure 1. Set of power exponents k, l in expansion of Type 2

2 Algebraic Equations [2, 3]

We consider a polynomial depending on three variables

near its singular point where the polynomial vanishes with

all the first partial derivatives. We propose a method of com-

putation of asymptotic expansions of all branches of the set

of roots of the polynomial near the above mentioned singular

point. There are three types of expansions. The method of

computation is based on the spatial Power Geometry. Most

of our examples are for polynomials in two variables.

2.1 The Problem Statement

Let X = (x, y, z) ∈ R
3 or C3 and g(X) be a polynomial.

Definition 1 A point X0 is called singular for the set G =
{X : g(X) = 0} if all the partial derivatives of the first order

of the polynomial g vanish in the point X0 and g(X0) = 0.

Problem 1 Near the singular point X0 = 0 for each branch

of the set G, find a parameter expansion of one of the follow-

ing three types.

Type 1

x =
∞∑

k=1

bkv
k, y =

∞∑

k=1

ckv
k, z =

∞∑

k=1

dkv
k,

where bk, ck, dk are constants.

Type 2

x =
∑

bklu
kvl, y =

∑
cklu

kvl, z =
∑

dklu
kvl,

where bkl, ckl, dkl are constants and integer points (k, l)
are in a sector with the angle less than π (see Fig. 1).

Type 3

x =

∞∑

k=0

βk(u)v
k, y =

∞∑

k=0

γk(u)v
k, z =

∞∑

k=0

δk(u)v
k,

where βk(u), γk(u), δk(u) are rational functions of u
and

√
ψ(u), and ψ(u) is a polynomial in u.

2.2 Objects and algorithms of Power Geometry

Consider a finite sum (for example, a polynomial)

g(X) =
∑

gQX
Q over Q ∈ S(g), (1)

where X = (x, y, z) ∈ C
3, Q = (q1, q2, q3) ∈ R

3 and

XQ = xq1yq2zq3 , gQ = const ∈ C\{0}. To each of the

terms of sum (1), we assign its vector power exponent Q, and

to the whole sum (1), we assign the set of all vector power ex-

ponents of its terms, which is called the support of sum (1) or

of the polynomial g(X), and it is denoted by S(g). The con-

vex hull of the support S(g) is called the Newton polyhedron

of the sum g(X), and it is denoted by Γ(g). The boundary ∂Γ

of the polyhedron Γ(g) consists of generalized faces1 Γ
(d)
j of

various dimensions d = 0, 1, 2. Here j is the number of a

face. To each generalized face Γ
(d)
j , we assign the truncated

sum ĝ
(d)
j (X) =

∑
gQX

Q over Q ∈ Γ
(d)
j ∩ S(g).

Example 1: support and the Newton polygon

We consider the polynomial g(x, y) = x3 + y3 − 3xy.

Support S(g) consists of points Q1 = (3, 0), Q2 = (0, 3),
Q3 = (1, 1). The Newton polygon Γ(g) is the triangle

Q1Q2Q3 (Fig. 2). Its edges and corresponding truncated

polynomials are

Γ
(1)
1 : ĝ

(1)
1 = x3 − 3xy, Γ

(1)
2 : ĝ

(1)
2 = y3 − 3xy,

Γ
(1)
3 : ĝ

(1)
3 = x3 + y3. �

Let R
3
∗ be a space dual to the space R

3 and P =
(p1, p2, p3) be points of this dual space. The scalar product

⟨Q,P ⟩ = q1p1 + q2p2 + q3p3 (2)

is defined for the points Q ∈ R
3 and P ∈ R

3
∗. In particular,

the external normal Nk to the generalized face Γ
(d)
k is a point

(vector) in R
3
∗.

The scalar product ⟨Q,Nk⟩ reaches the maximum value at

the points Q ∈ Γ
(d)
k ∩ S(g), i. e. at the points of the gen-

eralized face Γ
(d)
k . The set of all points P ∈ R

3
∗, at which

the scalar product (2) reaches the maximum over Q ∈ S(g)

exactly at points Q ∈ Γ
(d)
k , is called normal cone of the gen-

eralized face Γ
(d)
k and is denoted by U

(d)
k .

Example 2: Normal Cones (cont. of Example 1)

For faces Γ
(d)
j of the Newton polygon Γ(g) of Fig. 2, nor-

mal cones are shown in Fig. 3.

Γ
(1)
2

Γ
(1)
1

1

2

3

q2

1 2 3

q1

0

Q1

Q2

Q3

Γ
(1)
3

Figure 2. The Newton polygon of polynomial x3 + y3 = 3xy.

For edge Γ
(1)
j , j = 1, 2, 3, normal cone U

(1)
j is the ex-

ternal ray orthogonal to this edge. For vertex Γ
(0)
j = Qj ,

j = 1, 2, 3, normal cone is open sector between external rays

orthogonal to edges Γ
(1)
k adjacent to vertex Qj . �

1in other terms, facets
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Figure 3. Normal cones U
(d)
j for polygon of Fig. 2

Theorem 1 ( [3]) If for t→ ∞ the curve

x = btp1(1+ o(1)), y = ctp2(1+ o(1)), z = dtp3(1+ o(1)),
(3)

where b, c, d and pi are constants, belongs to the set G =
{X : g(X) = 0}, and the vector P = (p1, p2, p3) belongs to

U
(d)
k , then the first approximation x = btp1 , y = ctp2 , z =

dtp3 of curve (3) satisfies the truncated equation ĝ
(d)
k (X) =

0.

The truncated sum ĝ
(0)
j corresponding to the vertex Γ

(0)
j is

a monomial. Such truncations are of no interest and will not

be considered. We will consider truncated sums correspond-

ing to edges Γ
(1)
j and faces Γ

(2)
j only.

Power transformations are mappings of the form

logX = B logX1, (4)

where logX = (log x, log y, log z)
T

, logX1 =

(log x1, log y1, log z1)
T

, B is a non-degenerate square

3 × 3 matrix (bij) with rational elements bij (they are often

integer).

The monomial XQ is transformed to the monomial XQ1

1

by power transformation (4), where QT
1 = BTQT. Power

transformations and multiplications of polynomial by mono-

mial generate the affine geometry in space R
3 of vector

power exponents of polynomial monomials. The matrix B
with integer elements and detB = ±1 is called unimodular.

Theorem 2 ( [3]) For the face Γ
(d)
j , there exists a power

transformation (4) with an unimodular matrixB which trans-

forms the truncated sum ĝ
(d)
j (X) into the sum in d coordi-

nates, i. e. ĝ
(d)
j (X) = XQ

1 h(X1), where h(X1) = h(x1)
if d = 1, and h(X1) = h(x1, y1) if d = 2. Here Q =
(q1, q2, q3) ∈ R

3 and other coordinates y1, z1 for d = 1 and

z1 for d = 2 are small. If ĝ
(d)
j (X) is a polynomial, then the

sum h(X1) is a polynomial as well.

2.3 Cone of the problem

The cone of the problem L is a convex cone of such vectors

P = (p1, p2, p3) ∈ R
3
∗

that curves of form (3) fill those part of the space (x, y, z)
which is under consideration, i. e. must be studied.

So, our initial Problem 1 corresponds to the cone of the

problem

L = {P = (p1, p2, p3) : P < 0}
in R

3
∗, since x, y, z → 0 (and x, y, z as in (3)).

If x→ ∞ then p1 > 0 in the cone of the problem L.

Example 3: Cont. of Examples 1 and 2

For variables x, y near origin x = y = 0 cone of the

problem is the quadrant III: L3 = {p1, p2 < 0}, near in-

finity x = y = ∞ cone of the problem is the quadrant I:

L1 = {p1, p2 > 0}, near point x = 0, y = ∞ cone of the

problem is the quadrant II: L2 = {p1 < 0, p2 > 0} (Fig. 4).

In Fig. 3 some cones of the problem Li intersects several

normal cones U
(2)
j . E.g. L3 intersects U

(1)
1 , U

(1)
2 and U

(0)
1 ,

U
(0)
2 , U

(0)
3 . L1 intersects U

(1)
3 , U

(0)
1 , U

(0)
2 . �

p2

p1

IVIII

II I

Figure 4. Cones of the problem.

2.4 Steps for Problem solving

Step 1. We compute the support S(g), the Newton polyhe-

dron Γ(g), its two-dimensional faces Γ
(2)
j and their ex-

ternal normals Nj . Using normals Nj we compute the

normal cones U
(1)
k to edges Γ

(1)
k .

Step 2. We find all the edges Γ
(1)
k and faces Γ

(2)
j , whose nor-

mal cones intersect the cone of the problem L. It is

enough to select all the faces Γ
(2)
j , whose external nor-

mals Nj intersect the cone of the problem L, and then

add all the edges Γ
(1)
k of these faces.

Step 3.

• For each of the selected edges Γ
(1)
k , we perform a

power transformation X → X1 of Theorem 2 and

we get the truncated equation in a form h(x1) = 0.

• We find the roots of this equation. Let x01 be one

of its roots.

• We perform the power transformation X → X1 in

the whole polynomial g(X) and we get the poly-

nomial g1(X1) = g(X).

• We make the shift of variables x2 = x1−x01, y2 =
y1, z2 = z1 in the polynomial g1(X) and get the

polynomial g2(X2) = g1(X1).

• If x01 is a simple root of the equation h(x1) = 0
then, according to the Implicit Function Theorem,

it corresponds to an expansion of the form x2 =∑
akly

k
1z

l
1, where akl are constants. It gives an

expansion of type 2 in coordinates X .

• If x01 is a multiple root of the equation h(x1) = 0
then we compute the Newton polyhedron of the

polynomial g2(X2), compute the new cone of the

problem L2 as the convex cone generated by vec-

tor (−1, 0, 0) and two external normals of faces

adjacent the edge, and we continue as above and

as follows.
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Step 4.

• For each of the selected faces Γ
(2)
j , we perform

a power transformation X → X1 of Theorem 2

and we get a truncated equation in the form

h(x1, y1) = 0.

• We factorize h(x1, y1) into prime factors. Let

h̃(x1, y1) be one of such factors and its algebraic

curve has genus ρ.

• If ρ = 0 then there exists birational uniformiza-

tion x1 = ξ(y2), y1 = η(y2) of this curve. We

change variables x1 = ξ(y2) + x2, y1 = η(y2)
and then h̃ is divided by x2. We change variables

in the whole polynomial g(X) and get the polyno-

mial g2(X2)
def
= g1(X1) = g(X).

• If h̃(x1, y1) is simple factor of h(x1, y1) then roots

of the polynomial g2(X2) are expanded into series

of the form

x2 =

∞∑

k=1

αk(y2)z
k
2 , (5)

where αk(y2) are rational functions of y2. It gives

an expansion of type 3 in original coordinates X .

• If h̃(x1, y1) is a multiple factor of h(x1, y1) then

we compute the Newton polyhedron of the poly-

nomial g2(X2), compute the cone of the problem

L2 = {P : p2, p3 < 0} and continue computa-

tions.

• If ρ = 1 (elliptic curve), there exists the birational

change of variables x1, y1 → x2, y2 transforming

h̃(x1, y1) into the normal form x22 − ψ(y2), where

ψ is a polynomial of order 3 or 4.

• If ρ > 1, we distinguish hyper-elliptic and non

hyper-elliptic curves. The hyper-elliptic curve is

birationally equivalent x1, y1 → x2, y2 to its nor-

mal form x22 − ψ(y2), where ψ is a polynomial of

order 2ρ+ 1 or 2ρ+ 2.

• If ρ > 1 and we have the (hyper)elliptic curve and

factor h̃ of h is simple we get expansions of solu-

tions of equation g2(X2) = 0 into series (5), where

αk are rational functions of y2 and
√
ψ(y2). We

get the expansion of type 3 in original coordinates

X .

• If ρ > 1 and we have the (hyper)elliptic curve and

h̃(x1, y1) is a multiple factor of h(x1, y1) then we

continue for g2(X2) as above.

In this procedure we distinguish two cases:

Case 1. Truncated polynomial contains linear part of one of

the variables or x01 is a simple root of h(x1) or h̃(x1, y1)
is simple factor of h(x1, y1). Then a generalization of

Implicit Function Theorem is applicable and it is possi-

ble to compute parametric expansion of set of roots of

full polynomial.

Case 2. Truncated polynomial does not contain linear part

of any variable and x01 is a multiple root of h(x1) or

h̃(x1, y1) is a multiple factor of h(x1, y1). Then the

Newton polyhedron for full polynomial must be built

and we must consider new truncated polynomials tak-

ing into account the new cone of the problem L.

Example 4 (cont. of Examples 1–3)

• For edge Γ
(1)
1 , we get truncated equation x2 − 3y = 0,

i. e. y = x2/3. It is the case 1, and this asymptotic

form is continued into power expansion of branch y =
x2/3 +

∑∞

k=2 bkx
2k near the origin x = y = 0.

• For edge Γ
(1)
2 , we get truncated equation y2 − 3x = 0,

i. e. y = ±
√
3x. It is the case 1, and these asymptotic

forms are continued into power expansions of branches

y = ±
√
3x+

∑∞

k=2 bkx
k/2 near the origin x = y = 0.

• For edge Γ
(1)
3 , we get truncated equation x3 + y3 = 0.

It has the simple factor x + y = 0, i. e. y = −x. It is

again case 1 of simple root, and the power expansion at

infinity y = −x−1+
∑∞

k=1 bkx
−k gives the asymptote

x + y = −1 for the curve g(x, y) = 0 called folium of

Descartes (Fig. 5). �

−1

1

2y

−1 1 2

x

Figure 5. Folium of Descartes

Asymptotic description of a subset of singular points of G
can be obtained by the same procedure, but we have to select

only singular points in each truncated equation. As result we

obtain expansions of type 1.

2.5 Results

Theorem 3 ( [4]) The algorithm of Subsection 2.4, in the

case when all curves formed by roots of corresponding two-

dimensional truncated equations with positive genus are el-

liptic or hyper-elliptic, yields a local description of all com-

ponents of the set G, adjacent to the starting point X0, in

form of expansions of types 1–3.

2.6 Implementation and Application

Implementation of the described algorithm see in [9]. Its

application to computation of a set of stability of a certain

ODE system depending on several parameters see in [10].
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Example 5 [9]

g(X) = 512z6 − 4352z5y − 768z5x+ 14848z4y2

+5376z4yx+512z4x2−25408z3y3−14656z3y2x

− 2752z3yx2 − 192z3x3 + 21800z2y4

+19168z2y3x+5360z2y2x2+736z2yx3+40z2x4

− 7500zy5− 11700zy4x− 4376zy3x2− 904zy2x3

− 92zyx4 − 4zx5 + 2500y5x+ 1200y4x2

+ 344y3x3 + 48y2x4 + 4yx5 − 256z5 + 2880z4y

+ 1344z4x− 14976z3y2 − 6720z3yx− 1344z3x2

+ 37928z2y3 + 13816z2y2x+ 5144z2yx2

+456z2x3− 45120zy4− 14464zy3x− 6784zy2x2

− 1152zyx3 − 64zx4 + 20250y5 + 6490y4x

+ 3156y3x2 + 740y2x3 + 82yx4 + 2x5 + 1872z4

+ 2016z3y − 5088z3x− 35496z2y2 + 15888z2yx

+2200z2x2+67608zy3− 12936zy2x− 5176zyx2

− 344zx3 − 37827y4 + 828y3x+ 2782y2x2

+ 412yx3 + 13x4 − 13824z3 + 62208z2y

+ 6912z2x− 93312zy2 − 20736zyx− 1152zx2

+ 46656y3 + 15552y2x+ 1728yx2 + 64x3.

The structure of solutions of the algebraic equation

g(X) = 0 near its singular points (including infinity). The

Newton polyhedron of this equation is shown on Fig. 6.

Figure 6. The Newton polyhedron for polynomial g(X).

Near origin X = 0 we obtain

x =
∞∑

k=0

βk(u)v
k, y =

∞∑

k=0

γk(u)v
k, z =

∞∑

k=0

δk(u)v
k,

where βk(u), γk(u), δk(u) are rational functions of u. More

precisely, we have:

x = Ω1(u)

(
12v3 + 18Ω2(u)

27u2 + 10u− 5

u+ 1
v4
)
+ o(v4),

y = Ω1(u)
(
2v2 + 12Ω2(u)(5u− 1)v3

)
+ o(v3),

z = Ω1(u)

(
3v2 + 4Ω2(u)

71u2 + 13u− 4

3u+ 1
v3
)
+ o(v3)

here Ω1(u) =
54(3u+ 1)3

(7u+ 1)(u+ 1)2
, Ω2(u) =

3u+ 1

(7u+ 1)(u+ 1)
. �

3 Ordinary Differential Equations.

Algebraic Approach

3.1 Plane Power Geometry [11]

First, consider one differential equation and power expan-

sions of its solutions (later we consider more complicated ex-

pansions).

Let x be independent and y be dependent variables, x, y ∈
C. A differential monomial a(x, y) is a product of an ordinary

monomial cxq1yq2 , where c = const ∈ C, (q1, q2) ∈ R
2, and

a finite number of derivatives of the form dly/dxl, l ∈ N. A

sum of differential monomials

f(x, y) =
∑

ai(x, y) (6)

is called the differential sum.

Problem 2 Let a differential equation be given

f(x, y) = 0, (7)

where f(x, y) is a differential sum. As x→ 0, or as x→ ∞,

for solutions y = ϕ(x) to equation (7), find all expansions of

the form

y = crx
r +

∑
csx

s, cr = const ∈ C, cr ̸= 0, (8)

where cs are polynomials in log x, and power exponents

r, s ∈ R, ωr > ωs, and ω = −1, if x→ 0, or ω = 1, if x→
∞.

The procedure to compute expansions (8) consists of two

steps: computation of the first approximations y = crx
r,

cr ̸= 0 and computation of further expansion terms in (8).

To each differential monomial a(x, y), we assign its (vec-

tor) power exponent Q(a) = (q1, q2) ∈ R
2 by the following

rules:

Q(cxq1yq2) = (q1, q2); Q(dly/dxl) = (−l, 1);

when differential monomials are multiplied, their power ex-

ponents must be added as vectorsQ(a1a2) = Q(a1)+Q(a2).
The set S(f) of power exponents Q(ai) of all differential

monomials ai(x, y) presented in differential sum (6) is called

the support of the sum f(x, y).
Obviously, S(f) ∈ R

2. The convex hull Γ(f) of the sup-

port S(f) is called the polygon of the sum f(x, y). The

boundary ∂Γ(f) of the polygon Γ(f) consists of the vertices

Γ
(0)
j and the edges Γ

(1)
j . They are called (generalized) faces

Γ
(d)
j , where the upper index indicates the dimension of the

face, and the lower one is its number. Each face Γ
(d)
j corre-

sponds to the truncated sum

f̂
(d)
j (x, y) =

∑
ai(x, y) over i : Q(ai) ∈ Γ

(d)
j ∩ S(f) (9)

and to truncated equation f̂
(d)
j (x, y) = 0 of equation (7).

Example 6

Consider the third Painlevé equation

f(x, y)
def
= −xyy′′+xy′2−yy′+ay3+by+cxy4+dx = 0,

(10)
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Γ
(1)
1

Γ
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2

Γ
(1)
3

Figure 7. The Newton polygon of equation (10)

assuming the complex parameters a, b, c, d ̸= 0. Here the

first three differential monomials have the same power ex-

ponent Q1 = (−1, 2), then Q2 = (0, 3), Q3 = (0, 1),
Q4 = (1, 4), Q5 = (1, 0). They are shown in Fig. 7 in

coordinates q1, q2.

Their convex hull Γ(f) is the triangle with three vertices

Γ
(0)
1 = Q1, Γ

(0)
2 = Q4, Γ

(0)
3 = Q5, and with three edges

Γ
(1)
1 , Γ

(1)
2 , Γ

(1)
3 . The vertex Γ

(0)
1 = Q1 corresponds to the

truncation

f̂
(0)
1 (x, y) = −xyy′′ + xy′

2 − yy′,

and the edge Γ
(1)
1 corresponds to the truncation

f̂
(1)
1 (x, y) = f̂

(0)
1 (x, y) + by + dx. � (11)

Let the plane R2
∗ be dual to the plane R2 such that for P =

(p1, p2) ∈ R
2
∗ and Q = (q1, q2) ∈ R

2, the scalar product

⟨P,Q⟩ def
= p1q1 + p2q2

is defined. Each face Γ
(d)
j corresponds to its own normal

cone U
(d)
j ⊂ R

2
∗ formed by the external normal vectors P

to the face Γ
(d)
j . For the edge Γ

(1)
j , the normal cone U

(1)
j is

the ray orthogonal to the edge Γ
(1)
j and directed outward the

polygon Γ(f). For the vertex Γ
(0)
j , the normal cone U

(0)
j is

the open sector (angle) in the plane R
2
∗ with the vertex at the

origin P = 0 and limited by the rays which are the normal

cones of the edges adjacent to the vertex Γ
(0)
j .

Example 7 (cont. of Example 6)

For equation (10), the normal cones U
(d)
j of the faces Γ

(d)
j

are shown in Fig. 8. �

p2

p1

U
(0)
2

U
(0)
3

U
(0)
1

U
(1)
1

U
(1)
2

U
(1)
3

Figure 8. The normal cones U
(d)
j for polygon of Fig. 7

Thus, each face Γ
(d)
j corresponds to the normal cone U

(d)
j

in the plane R
2
∗ and to the truncated equation f̂

(d)
j (x, y) = 0.

Theorem 4 ( [11]) If expansion (8) satisfies equation (7),

and ω(1, r) ∈ U
(d)
j , then the truncation y = crx

r of so-

lution (8) is the solution to truncated equation (9).

As truncated equation is quasi–homogeneous it is not dif-

ficult to find its power solutions. Hence, to find all truncated

solutions y = crx
r to equation (7), we need to compute:

the support S(f), the polygon Γ(f), all its faces Γ
(d)
j , and

their normal cones U
(d)
j . Then for each truncated equation

f̂
(d)
j (x, y) = 0, we need to find all its solutions y = crx

r

which have one of the vectors ±(1, r) lying in the normal

cone U
(d)
j .

For each power solution y = crx
r of the truncated equa-

tion f̂
(d)
j = 0, we can compute its characteristic polynomial

ν(k). Roots kj of ν(k) with ωkj < ωr are critical numbers

of the solution crx
r.

Example 8 (cont. of Examples 6, 7)

For the truncated equation f̂
(0)
1 = 0 with ω = −1, we have

solutions y = crx
r with arbitrary constants r and cr. But ac-

cording to Theorem 4, y = crx
r can be a formal asymptotic

form of a solution to full equation (7) if ω(1, r) ⊂ U
(0)
1 ,

i. e. −1 < r < 1. Corresponding characteristic polynomial

ν(k) = −(k− r)2. Hence, here we have no critical numbers.

For the truncated equation f̂
(1)
1 = 0, we have power so-

lution y = −dx/b. Its characteristic polynomial is ν(k) =
(k − 1)2 + b2/d. �.

Using support S(f) of the equation (7) and critical num-

bers k1, . . . , kκ with ωr > ωki, we can find the set

K(k1, . . . , kκ) ⊂ R, support of expansion (8). Its elements

s satisfy the inequality ωr > ωs.

Theorem 5 ( [11]) If y = crx
r, c = const, ω(1, r) ∈ U

(d)
j ,

is a power solution to truncated equation (9), then equa-

tion (7) has an expansion of solutions of the form

z = crx
r +

∑
csx

s over s ∈ K(k1, . . . , kκ), (12)

where k1, . . . , kκ are critical numbers of the truncated so-

lution y = crx
r; cs are polynomials in log x, which are

uniquely determined for s ̸= ki. If all critical numbers

k1, . . . , kκ are simple roots, and each ki does not lie in the set

K(k1, . . . , ki−1, ki+1, . . . , kκ), then all coefficients cs are

constant; for s ̸= ki, they are uniquely determined; and for

s = ki, they are arbitrary.

Example 9 (cont. of Examples 6–8)

For the truncated solution y = cxr to f̂
(0)
1 = 0, arbitrary

c ̸= 0, r ∈ (−1, 1)

K = {s = r+l(1−r)+m(1+r), l,m ∈ N∪{0}, l+m > 0}.
(13)

Since there are no critical numbers, then all cs are constant

and uniquely determined in expansion (12).

For the truncated solution y = −dx/b to f̂
(1)
1 = 0, we

have K = {s = 1 + 2l, integral l > 0}. If ℑ(b/
√
−d) ̸= 0,

then there are no real critical numbers, and all power expo-

nents s are odd integers greater than 1 in expansion (12),

and coefficients cs are constant and uniquely determined. If
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ℑ(b/
√
−d) = 0, then there is a unique real critical number

k1 = 1+ | b/
√
−d |, and

K(k1) = {s = 1+2l+m(k1−1), l,m ∈ N∪{0}, l+m > 0}.
(14)

Hence, if the number k1 is not odd, then all cs are constant

and uniquely determined in expansion (12) for s ̸= k1, and

ck1
is arbitrary. Finally, if k1 is odd, then K(k1) = K, and

in expansion (12) cs is a uniquely determined constant if s <
k1; ck1

is a linear function of log x with an arbitrary constant

term; cs is a uniquely determined polynomial in log x if s >
k1. �

The truncated equation f̂
(d)
j (x, y) = 0 can have non-power

solutions y = ϕ(x) which are the asymptotic forms for so-

lutions to the initial equation f(x, y) = 0. These non-power

solutions y = ϕ(x) may be found using power and loga-

rithmic transformations. Power transformation is linear in

logarithms and defined by

log x = b11 log u+ b12 log v,

log y = b21 log u+ b22 log v,

B =

(
b11 b12
b21 b22

)
, bij ∈ R, detB ̸= 0.

It induces linear dual transformations in spaces R
2 and R

2
∗.

Logarithmic transformation has the forms

ξ = log u or η = log v.

Example 10 (cont. of Examples 6–9)

For the truncated equation (11) corresponding to the edge

Γ
(1)
1 with the normal vector −(1, 1), we make power trans-

formation
log x = log u,

log y = log u+ log v,

B =

(
1 0
1 1

)
,

i. e. x = u, y = uv. Since y′ = xv′+v, y′′ = xv′′+2v′, then,

canceling x and collecting similar terms, the equation (11),

becomes

−x2vv′′ + x2v′
2 − xvv′ + bv + d = 0. (15)

Its support consists of three points Q̃1 = (0, 2), Q̃2 = (0, 1),

Q̃3 = 0 on the axis q̃1 = 0 (see Fig. 9).

q̃2

q̃10

1

2

Figure 9. The support and Newton polygon for the third Painlevé equa-

tion (15)

Now we make the logarithmic transformation ξ = log x.

Since v′ = v̇/x, v′′ = (v̈ − v̇)/x2, where ˙ = d/dξ,

1

2

˜̃q2

−2 −1

˜̃q1

˜Γ
(1)
1

Figure 10. Support and Newton polygon of equation −vv̈+v̇2+bv+d = 0.

then, collecting similar terms, the equation (15) takes the

form −vv̈ + v̇2 + bv + d = 0. Its support and polygon are

shown in Fig. 10. Applying the technique described before

to this equation, we obtain the expansion of its solutions v =
−(b/2)ξ2 + c̃ξ +

∑∞

k=0 ckξ
−k, where c̃ is an arbitrary con-

stant, and the constants ck are uniquely determined. In origi-

nal variables, we obtain the family of non-power asymptotic

forms y ∼ x

[
−(b/2)(log x)2 + c̃ log x+

∞∑
k=0

ck(log x)
−k

]

of solutions to the initial equation (10), when x→ 0. �

3.2 Complex power exponents [11]

Indeed, the described method allows to calculate solutions

with complex power exponents as well.

Thus, by the algebraic approach, expansions of solutions

y = crx
r +

∑

s

csx
s, (16)

with complex power exponents r and s, where ωℜr > ωℜs,
and coefficients cr and cs are power series in log x, log log x
and so on, are found in a similar way.

In classical analysis, we encounter expansions in fractional

powers and with constant coefficients, but here we obtain

more complicated expansions of solutions.

3.3 Algorithms of Power Geometry

1. Computation of truncated equations and accompanying

objects.

2. Solution of truncated equations.

3. Power transformations.

4. Logarithmic transformations.

5. Introducing independent variable xi instead of x.

6. Computation of the first variation of a sum.

7. Computation of expansions of solutions to the initial

equation, beginning by solutions to a truncated equa-

tion.

All these algorithms, except for 4 and 5, can be applied to

solve algebraic equations.

Similar technique is used for equations having small or big

parameters. The power exponents of these parameters are

accounted in the same way as power exponents of variables

tending to zero or infinity.
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3.4 The sixth Painlevé equation [12]

It has the form

y′′ =
(y′)2

2

(
1

y
+

1

y − 1
+

1

y − x

)

− y′
(
1

x
+

1

x− 1
+

1

y − x

)
+
y(y − 1)(y − x)

x2(x− 1)2

[
a

+ b
x

y2
+ c

x− 1

(y − 1)2
+ d

x(x− 1)

(y − x)2

]
,

(17)

where a, b, c, d are complex parameters, x and y are com-

plex variables, y′ = dy/dx. Equation (17) has three singular

points x = 0, x = 1, and x = ∞. After multiplying by

the common denominator, we obtain the equation as a differ-

ential sum. Its support and its polygon, in the case a ̸= 0,

b ̸= 0, are shown in Fig. 11.

We found all formal asymptotic expansions (16) of solu-

tions to equation (17) near its three singular points. They

comprise 108 families. In particular, for a = 1/2 and c = 0,

there is an expansion of the form

y = − 1

cos[log(C1x)]
+

∑

ℜs>1

csx
s, (18)

where C1 is an arbitrary constant, the coefficients cs are

uniquely determined constants. Here

1/cos[log(x)] = 2/(xi + x−i) =

= 2xi
∞∑

k=0

(
−x2i

)k
= 2x−i

∞∑

k=0

(
−x−2i

)k
.

For C1 = 1 and real x > 0, solution (18) has infinitely many

poles accumulating at the point x = 0. We also found all

expansions of solutions to equation (17) near its nonsingular

points. They comprise 17 families [13].

q2

q10 1

1

Figure 11. Support and Newton polygon for the sixth Painlevé equation (17)

That approach was applied to ODE systems [14–17].

3.5 Applications

1. Asymptotic forms and expansions of solutions to the

Painlevé equations [12, 18, 19].

2. Periodic motions of a satellite around its mass center

moving along an elliptic orbit [20].

3. New properties of motion of a top (rigid body with a

fixed point) [21].

4. Families of periodic solutions of the restricted three-

body problem and distribution of asteroids [22, 23].

5. Integrability of ODE systems [24].

6. Surface waves on water [3, Ch. 5].

4 Ordinary Differential Equations.

Differential Approach

4.1 Orders of solutions and their derivatives

All solutions of the form (16) have the following property:

pω

(
y(k)

)
= pω(y)− k, k = 1, 2, . . . , n,

where n is the maximal order of derivative in the initial ODE,

and

pω(ϕ) = ω lim sup
xω→∞

log|ϕ(x)|
ω log|x|

along fixed arg x ∈ [0, 2π) is the order of the function ϕ(x).

4.2 Differential Approach [25–30]

To each differential monomial a(x, y) we put in correspon-

dence the 3D point Q = (q1, q2, q3), where q1 and q2 as be-

fore, but q3 is the total order of derivatives in the monomial.

We obtain the 3D support S̃(f) of the initial ODE f = 0 and

polyhedron Γ(f) as convex hull of S̃(f). Using truncated

equations, corresponding to its faces and edges, we can find

their solutions in the form of elliptic or hyperelliptic func-

tions ϕ0(x) and continue them into power-(hyper)elliptic ex-

pansion

y = ϕ0(x) +
∞∑

l=1

ϕl(x)x
−ωl, (19)

where all ϕl(x) are elliptic or hyperelliptic functions. This

differential approach allows to find expansions (19) for so-

lutions with property pω
(
y(k)

)
= pω(y) − γωk, k =

1, 2, . . . , n, where γω ̸= 1.

Example 11 (cont. of Examples 6–10) [27]

The 3D support S̃ of the third Painleve equation (10) con-

sists of 6 points:

Q1 = (−1, 2, 2),Q2 = (−1, 2, 1),Q3 = (0, 3, 0),

Q4 = (0, 1, 0),Q5 = (1, 4, 0),Q6 = (1, 0, 0).

Their convex hull Γ is a pentahedron (Fig. 12). It has 2D

upper face Γ
(2)
1 with external normal N1 = (1, 0, 1) contain-

ing 3 points of the support S̃: Q1, Q5, Q6. Corresponding

truncated equation is

f̌
(2)
1

def
= − xyy′′ + xy′

2
+ cxy4 + dx = 0.

It has the first integral

y′
2
= cy4 + C0y

2 − d
def
= P (y), (20)
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Figure 12. 3D support S̃(f) and polyhedron Γ(f) of equation (10) with all

a, b, c, d ̸= 0. The grey face is Γ
(2)
1 . All dotted lines are in the plane q1,

q2, they show projections of Γ(f) on the plane (q1, q2).

where C0 ∈ C is an arbitrary constant. Discriminant of the

polynomial P (y) is ∆(P ) = −cd(cd+ C2
0/4)

2. If ∆(P ) ̸=
0, then solutions y = ϕ0(x) of the equation (20) are elliptic

functions. So we can look for expansions (19), where all

ϕl(x) are regular functions of ϕ0(x). Here ω = 1 and γ1 =
0. �

5 Partial Differential Equations. Al-

gebraic Approach

5.1 Theory [3]

Let X = (x1, . . . , xm) ∈ C
m be independent and Y =

(y1, . . . , yn) ∈ C
n be dependent variables. Suppose Z =

(X,Y ) ∈ C
m+n. A differential monomial a(Z) is the prod-

uct of an ordinary monomial cZR = czr11 · · · zrm+n

m+n , where

c = const ∈ C, R = (r1, . . . , rm+n) ∈ R
m+n, and a finite

number of derivatives of the form

∂lyj

∂xl11 · · · ∂xlmm
def
=

∂lyj
∂XL

,

lj > 0,
m∑

j=1

lj = l, L = (l1, . . . , lm).

A differential monomial a(Z) corresponds to its vector

power exponentQ(a) ∈ R
m+n formed by the following rules

Q(cZR) = R, Q(∂lyj/∂X
L) = (−L,Ej),

where Ej is unit vector. A product of monomials a · b
corresponds to the sum of their vector power exponents:

Q(ab) = Q(a) +Q(b).
A differential sum is a sum of differential monomials

f(Z) =
∑
ak(Z). A set S(f) of vector power exponents

Q(ak) is called the support of the sum f(Z). The closure of

the convex hull Γ(f) of the support S(f) is called the poly-

hedron of the sum f(Z).
Consider a system of equations

fi(X,Y ) = 0, i = 1, . . . , n, (21)

where fi are differential sums. Each equation fi = 0 corre-

sponds to: its support S(fi), its polyhedron Γ(fi) with the

set of faces Γ
(di)
ij in the main space R

m+n, the set of normal

cones U
(di)
ij to faces Γ

(di)
ij in the dual space R

m+n
∗ , and the

set of truncated equations

f̂
(di)
ij (X,Y ) = 0.

The set of truncated equations

f̂
(di)
iji

(X,Y ) = 0, i = 1, . . . , n (22)

is the truncated system if the intersection of corresponding

normal cones

U
(d1)
1j1

∩ · · · ∩U
(dn)
njn

(23)

is not empty. A solution yi = ϕi(X), i = 1, . . . , n to sys-

tem (21) is associated to its normal cone u ⊂ R
m+n. If the

normal cone u intersects with cone (23), then the asymptotic

form yi = ϕ̂i(X), i = 1, . . . , n of this solution satisfies trun-

cated system (22), which is quasi-homogeneous.

5.2 Applications. Boundary layer on a needle [31]

The theory of the boundary layer on a plate for a stream

of viscous incompressible fluid was developed by Prandtl

(1904) [32] and Blasius (1908) [33]. However a similar the-

ory for the boundary layer on a needle was not known until

recently, since no-slip conditions on the needle correspond to

a more strong singularity as for the plate. This theory was

developed with the help of Power Geometry (2004).

Let x be an axis in three-dimensional real space, r be the

distance from the axis, and semi-infinite needle be placed on

the half-axis x > 0, r = 0. We studied stationary axisym-

metric flows of viscous fluid which had constant velocity

at x = −∞ parallel to the axis x, and which satisfied no-

slip conditions on the needle (Fig. 13). We considered two

cases: (1) incompressible fluid and (2) compressible heat-

conducting gas.

0

r

x

u
∞

Figure 13. The needle and flow along it.

First case: incompressible fluid. For it, the Navier-

Stokes equations in independent variables x, r are equivalent

to the system of two equations for the stream function ψ and

the pressure p

g1
def
= − 1

r

∂ψ

∂x

∂

∂r

(
1

r

∂ψ

∂r

)
+

1

r

∂ψ

∂r

∂

∂x

(
1

r

∂ψ

∂r

)
+

1

ρ

∂p

∂x
−

− ν

(
1

r

∂

∂r

(
r
∂

∂r

(
1

r

∂ψ

∂r

))
+

∂2

∂x2

(
1

r

∂ψ

∂r

))
= 0,

g2
def
=

1

r

∂ψ

∂x

∂

∂r

(
1

r

∂ψ

∂x

)
− 1

r

∂ψ

∂r

∂

∂x

(
1

r

∂ψ

∂x

)
+

1

ρ

∂p

∂r
+

+ ν

(
∂

∂r

(
1

r

∂2ψ

∂x∂r

)
+

∂2

∂x2

(
1

r

∂ψ

∂x

))
= 0,

(24)
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where ρ, ν = const, with the boundary conditions

ψ = ψ0r
2 for x = −∞, ψ0 = const; (25)

∂ψ/∂x = ∂ψ/∂r = ∂2ψ/∂x∂r = ∂2ψ/∂r2 = 0 (26)

for x > 0, r = 0. Here m = n = 2 and m+ n = 4.

Hence the supports of equations (24) must be considered in

R
4. It turned out that polyhedra Γ(g1) and Γ(g2) of equations

(24) are three-dimensional tetrahedra, which can be moved

by translation in one linear three-dimensional subspace, that

simplified the isolation of the truncated systems. An analysis

of truncated systems and of the results of their matching re-

vealed that system (24) had no solution with p > 0 satisfying

both boundary conditions (25), (26).

Second case: compressible heat-conducting gas. For

this case, the Navier-Stokes equations in independent vari-

ables x, r are equivalent to the system of three equations for

the stream function ψ, the density ρ, and the enthalpy h (an

analog of the temperature)

(27)

f1
def
= − 1

r

∂ψ

∂x

∂

∂r

(
1

ρr

∂ψ

∂x

)

+
1

r

∂ψ

∂r

∂

∂x

(
1

ρr

∂ψ

∂x

)
−A

∂

∂r
(ρh)

+
2

3
CN ∂

∂r

(
hN

r

∂

∂r

(
1

ρ

∂ψ

∂x

))

− 2

3
CN ∂

∂r

(
hN

r

∂

∂x

(
1

ρ

∂ψ

∂r

))

− 2CN

r

∂

∂r

(
hNr

∂

∂r

(
1

ρr

∂ψ

∂x

))

+ CN ∂

∂x

(
hN

∂

∂r

(
1

ρr

∂ψ

∂r

))

− CN ∂

∂x

(
hN

∂

∂x

(
1

ρr

∂ψ

∂x

))

+
2CNhN

ρr3
∂ψ

∂x
= 0,

(28)

f2
def
=

1

r

∂ψ

∂x

∂

∂r

(
1

ρr

∂ψ

∂r

)

− 1

r

∂ψ

∂r

∂

∂x

(
1

ρr

∂ψ

∂r

)
−A

∂

∂x
(ρh)

+
2

3
CN ∂

∂x

(
hN

r

∂

∂r

(
1

ρ

∂ψ

∂x

))

− 2

3
CN ∂

∂x

(
hN

r

∂

∂x

(
1

ρ

∂ψ

∂r

))

+
CN

r

∂

∂r

(
hNr

∂

∂r

(
1

ρr

∂ψ

∂r

))

− CN

r

∂

∂r

(
hNr

∂

∂x

(
1

ρr

∂ψ

∂x

))

+ 2CN ∂

∂x

(
hN

∂

∂x

(
1

ρr

∂ψ

∂r

))
= 0,

f3
def
=

1

r

∂ψ

∂x

∂h

∂r
− 1

r

∂ψ

∂r

∂h

∂x
− A

ρr

∂ψ

∂x

∂(ρh)

∂r

+
A

ρr

∂ψ

∂r

∂(ρh)

∂x
+ 2CNhN

(
∂

∂r

(
1

ρr

∂ψ

∂x

))2

+ 2CNhN
(

1

r2ρ

∂ψ

∂x

)2

+ 2CNhN
(
∂

∂x

(
1

ρr

∂ψ

∂r

))2

+ CNhN
(
∂

∂x

(
1

ρr

∂ψ

∂x

))2

− CNhN
∂

∂x

(
1

ρr

∂ψ

∂x

)
∂

∂r

(
1

ρr

∂ψ

∂r

)

+ CNhN
(
∂

∂r

(
1

ρr

∂ψ

∂r

))2

− 2

3
CNhN

(
1

r

∂

∂r

(
1

ρ

∂ψ

∂x

))2

+
4CNhN

3r

∂

∂r

(
1

ρ

∂ψ

∂x

)
∂

∂x

(
1

ρr

∂ψ

∂r

)

− 2

3
CNhN

(
∂

∂x

(
1

ρr

∂ψ

∂r

))2

+
CN

σr

∂

∂r

(
rhN

∂h

∂r

)
+
CN

σ

∂

∂x

(
hN

∂h

∂x

)
= 0,

(29)

where parameters A, C, σ > 0 and N ∈ [0, 1], with the

boundary conditions

ψ =ψ0r
2, ρ = ρ0, h = h0 for

x =−∞, ψ0, ρ0, h0 = const
(30)

and (26). Here m = 2, n = 3, and m + n = 5. In the space

R
5, all polyhedrons Γ(f1), Γ(f2), Γ(f3) of equations (29) are

three-dimensional, and they can be translated into one linear

3D subspace. In coordinates Q̃′ = (q̃′1, q̃
′
2, q̃

′
3) of this three-

dimensional space, the supports and polyhedra are shown in

Figures 14–16.

The supports of sums f1, f2 and f3 are following:

S(f1) = {Q̃′

0 = 0, Q̃′

1 = (1, 0, 0), Q̃′

2 = (0, 1, 0),

Q̃′

3 = (0, 0, 1)},
S(f2) = {Q̃′

0 = 0, Q̃′

1 = (1,−1, 1), Q̃′

2 = (0, 1, 0),

Q̃′

3 = (0, 0, 1)},
S(f3) = {Q̃′

0 = 0, Q̃′

1 = (0, 1, 0), Q̃′

2 = (−1, 2,−1),

Q̃′

3 = (0, 0, 1), Q̃′

4 = (−1, 0, 1), Q̃′

5 = (−1, 1, 0)}.

The truncated system corresponding to the boundary

layer on the needle corresponds to the vertex Q̃′
1, to faces

[Q̃′
0, Q̃

′
1, Q̃

′
2] and [Q̃′

0, Q̃
′
1, Q̃

′
2] of polyhedrons Γ(f1), Γ(f2)

and Γ(f3) respectively. In Figs. 14–16 they are distinguished.
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Figure 14. The Newton polyhedron of f1 in (29)

Figure 15. The Newton polyhedron of f2 in (29)

Thus, the truncated system is

f̂
(0)
12

def
= −A∂(ρh)/∂r = 0,

f̂
(2)
22

def
=

1

r

∂ψ

∂x

∂

∂r

(
1

ρr

∂ψ

∂r

)
− 1

r

∂ψ

∂r

∂

∂x

(
1

ρr

∂ψ

∂r

)
−

−A
∂

∂x
(ρh) +

CN

r

∂

∂r

(
hNr

∂

∂r

(
1

ρr

∂ψ

∂r

))
= 0,

f̂
(2)
32

def
=

1

r

∂ψ

∂x

∂h

∂r
− 1

r

∂ψ

∂r

∂h

∂x
− A

ρr

∂ψ

∂x

∂(ρh)

∂r
+

+
A

ρr

∂ψ

∂r

∂(ρh)

∂x
+ CNhN

(
∂

∂r

(
1

ρr

∂ψ

∂r

))2

+

+
CN

σr

∂

∂r

(
rhN

∂h

∂r

)
= 0,

(31)

with the boundary conditions ψ = ψ0r
2, ρ = ρ0, h = h0;

ψ0, ρ0, h0 = const, for r → ∞.

An analysis of solutions to the latter problem (31) by meth-

ods of Power Geometry revealed that for N ∈ (0, 1) it has

Figure 16. The Newton polyhedron of f3 in (29)

solutions of the form

ψ ∼ c1r
2|log ξ|−1/N , ρ ∼ c2|log ξ|−1/N , h ∼ c3|log ξ|1/N ,

(32)

where ξ = r2/x → 0 and c1, c2, c3 are arbitrary real con-

stants. Thus, for N ∈ (0, 1), in the boundary layer r2/x <
const, as x → +∞ and ξ = r2/x → 0, we obtained the

asymptotic form of the flow (32), i.e. near the needle, the

density ρ tends to zero, and the temperature h increases to in-

finity as the distance x to the initial point of the needle tends

to +∞.

5.3 Other applications of Power Geometry

Evolution of the turbulent flow [34, 35] and Thermody-

namics [36] and power-elliptic expansions of solutions to

Painlevé equations [37].

6 Connection with Idempotent Math-

ematics

For polynomial f(X), let us define the function

f̂(S) = lim
h→+0

h log|f(exp(S/h))|

and its subdifferential

∂f̂ = {Q ∈ R
n : ⟨Q,S⟩ 6 f̂(S) for all S ∈ R

n
∗}.

Theorem 6 ( [38]) If f(X) is a polynomial, then the subdif-

ferential ∂f̂ of f(X) at the origin coincides with the Newton

polyhedron Γ(f).

V. P. Maslov and his colleagues developed Idempotent

Analysis [38, 39]. However, as a method of finding leading

terms in nonlinear problems, it is too complicated. Theo-

rem 6 shows that in algebraic problems Idempotent Analy-

sis gives the Newton polyhedron. This observation can be

generalized to other classes of problems, but if we just be-

gin with appropriate generalization of the Newton polyhe-

dron (or Power Geometry), then we do not really need Idem-

potent Analysis (see Sections 4 and 5). Indeed, Idempotent

Analysis [39] is useful in problems with “bad” solutions (for

instance, discontinuous or non-smooth).
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