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Abstract: Tn this paper, stability and disturbance attenuation issues for a class of Networked Control Systems (NCSs)

under uncertain access delay and packet dropout cffects are considered. Our aim is to find conditions on the delay and

packet dropout rate, under which the system stability and Ho disturbance attenuation properties are prescrved to a desired

level. The basic idea in this paper is to formulate such Networked Control Sysiem as a discrete-lime swilched system. Then

the NCSs' stability and performance problems can be reduced to the corresponding problems for switched systems, which

have been studied for decades and for which a number of resulis are available in the literature. The techniques in this paper

are based on recent progress in the discrete-time switched systems and piccewise Lyapunov functions.
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1 Introduction

By Networked Control Systems (NCSs), we mean feed-
back control systems where networks, typically digital
band-limited serial communication channels, are used for
the connections between spatially distributed system com-
ponents like sensors and actuators to controllers, see Fig.
1 for illustration. These channels may be shared by other
feedback control loops. In traditional feedback control sys-
tems, these connections are established by point-to-point
cables. Compared with point-to-point cables, the introduc-
tion of serial communication networks has several advan-
tages, such as high system testability and resource utiliza-
tion, as well as low weight, space, power and wiring require-
ments [1,2]. These advantages have made the networks con-
necting sensors/actuators to controllers increasingly popu-
lar in many applications, including traffic control, satellite
clusters, mobile robotics, etc. However, the connection by
digital serial communication channels also brings several
new challenges for our control community. For example,
the network link is band-limited, so one needs to quantize
the signals and send digital bits. In addition, the network

could be noisy and collisions between packets could occur,
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then one needs to concern the packet dropouts and delays
etc. Recently, modeling, analysis and control of networked
control systems with limited communication capability has
emerged as 4 topic of significant interest to control commu-
nity, see for example | 1~5], and recent special issue [6].
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Fig. | The block diagram for a lypical Networked Control System.
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Time delays typically have negative ¢ffects on the NCSs’
stability and performance. There are several situations
where time delays may arise. First. transmission delays
may occur through the data rate limited communication
channels. Secondly. channels in NCSs are usually shared
by multiple sources of data, and multiplexed by a time-
division method. Therefore, there are delays caused by a

node waiting Lo send out a message through a busy channel.
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which are usually called accessing delays and serve as the
main source of delays in NCSs. There are also some delays
caused by processing and propagation, which are usually
negligible in NCSs. Another interesting problem in NCSs
is the packet dropout phenomenon. Because of the uncer-
tainties and noise in the communication channel, there may
exist unavoidable errors or losses in the transmitted packet
even when an error control coding and/or Automatic Repeat
reQuest (ARQ) mechanisms are employed. If this happens,
the corrupted packets are dropped and the receivers (con-
troller or actuator) instead use the most recently received
packets. Packet dropouts may also occur when one packet,
say sampled values from the sensor, reaches the destina-
tion later than its successors. In this situation. the old packet
is dropped, and its successor packet is used instead, There
is another important issue in NCSs, namely the quantiza-
tion effect. With the finite bit-rate constraints, quantiza-
tion has to be taken into consideration in NCSs. There-
fore, quantization and limited bit rate issues have attracted
many researchers’ attention with the aim to identify the min-
imum bit rate required to stabilize a NCS, see for example
[3, 5, 7~9]. In this paper, we will focus on packet exchange
networks, in which the minimum unit of data transmission is
the packet which typically consists of several hundred bits.
Therefore. sending a single bit or several hundred bits do
not result in a significant difference in the network resource
usage. Hence, we will omit the quantization effects here and
focus our attention on the effects of network induced delays
and packet dropouts on NCSs' stability and performance.
The eftects of network induced delay on the NCS's stabil-
ity have been studied in the literature. In [10], the delay was
assumed to be constant and hence the NCS could be trans-
formed into a time-invariant discrete-time system. There-
fore. the NCS’s stability could be checked by verifying
whether or not an augmented matrix is a Schur matrix or
not. Since most network protocols introduce delays that
can vary from packet to packet, the authors extended the
results to non-constant delay case in [2]. They employed
Lyapunov methods. in particular 2 common guadratic Lya-
punov function. to study bounds on the maximum delay

aliowed by the NCSs. However. the choice of a common

quadratic Lyapunov function could make the conclusion for
maximum allowed delay conservative in some cases. The
packet dropouts have also been studied, and there are two
typical ways to model packet dropouts in the literature. The
first approach assumes that the packet dropouts follow cer-
tain probability distributions. which is difficult to verify,
and describes NCSs with packet dropouts via stochastic
modeis, such as Markovian jump linear systems. The sec-
ond approach is deterministic, and specifies the dropouts in
the time average sense or in terms of bounds on maximum
allowed consecutive dropouts. For example, [11] modeled
a class of NCSs with package dropouts as asynchronous
dynamical systems, and derived a sufficient condition on
packet dropouts in the time-average sense for NCSs’ stabil-
ity based on common Lyapunov function approach. Notice
that most of the results obtained so far are for the NCS$’s sta-
bility problem, and the delay and packet dropouts are usu-
ally dealt with separately. )

In this paper, we will consider both network induced
delay and packet dropouts in a unified swiiched system
model. In addition, the disturbance attenuation issues for
NCSs are investigated as well as stability problems. The
strength of this approach comes from the solid theoretic
results existing in the literature for stability, robust perfor-
mance eic. for switched systems. By a switched system,
we mean a hybrid dynamical system consisting of a finite
number of subsystems described by differential or differ-
ence equations and a logical rule that orchestrates switch-
ing between these subsystems. Properties of this type of
model have been studied for the past fifty years to con-
sider engineering systems that contain relays and/or hys-
teresis. Recently, there has been a dramatic increase of
interest in the stability analysis and switching control design
of switched systems (see, for example, the survey papers
[12~15]. recent books [16, 17] and the references cited
therein).

In this paper, we investigate the asymptotic stability and
disturbance attenuation properties for a class of Networked
Control Systems (NCSs) under uncertain access delay and
packet dropout effects. Our aim is to find conditions con-

cerning the delay and packet dropout rate, under which the
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system stability and H; disturbance attenuation properties
are preserved to a desired level. We first analyze the nature
of the uncertain access delay and packet dropout effects on
NCSs in Section 2. Then in Section 3, we model the NCS
as a discrete-time switched system. Therefore the NCSs’
asymptotic stability and robust performance problems can
be boiled down to the stability analysis and disturbance
attenuation problems of switched systems. In Section 4, the
asymptotic stability for such NCSs with uncertain access
delay and packet dropout effects is studied, and disturbance
attenuation properties for such NCS8s are studied in Sec-
tion 5. The techniques employed in this paper are based
on recent progress in the continuous-time and discrete-time
switched systems [18~20], i.e. multiple Lyapunov func-
tions and average dwell time methods in particular. Finally,

concluding remarks are presented.

2 The access delay and packet dropout

For the network link layer, we assume that the delays
caused by processing and propagation are ignored. and we
only consider the access delay which serves as the main
source of delays in NCSs. Dependent on the data traffic,
the communication bus is either busy or idle (available). If
the link is available, the communication between sender and
receiver is assumed to be instantaneous. Errors may occur
during the communication and destroy the packet, and this
is considered as a packet dropout.

The model of the NCS used in this paper is shown in
Fig. 2. For simplicity, but without loss of generality, we may
combine all the time delay and packet dropout effects into
the sensor to controller path and assume that the controlier
and the actuator communicate ideally.

We assume that the plant can be modeled as a continuous-
time linear time-invariant system described by

£{t) = A%e(t) + Bu(t) + E“d(t),

{ z(L) = C"x(t).

teR* ()

where R stands for nonnegative real numbers. x(t) € R®
is the state variable, wit}) € R™ is control input, and

z(t] © R” is the controlled output. The disturbance input

d(t) is contained in D C R". A € R**", B¢ ¢ R**™
and E° € R™>" are constant matrices related to the system

state, and C* € RP*" is the output matrix.
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R

Fig. 2 The networked control systems’ model.

For the above NCS, it is assumed that the plant output
node (sensor) is time driven. In other words, after each clock
cycle (sampling time T5), the output node attempts to send
a packet containing the most recent state (output) samples.
If the communication bus is idle, then the packet wilt be
transmitted to the controller. Otherwise, if the bus is busy,
then the output node will wait for some time, say w < T,
and try again. After several attempts or when newer sam-
pled data become available, if the transmission still can not
be completed, then the packet is discarded, which is also
considered as a packet dropout. On the other hand, the con-
troller and actuator are event driven and work in a simpler
way. The controller, as a receiver, has a receiving buffer
which contains the most recently received data packet from
the sensors (the overflow of the buffer may be dealt with
as packet dropouts). The controller reads the buffer periodi-
cally at a higher frequency than the sampling frequency. say
every T,/N for some integer NV large enough, Whenever
there are new data in the buffer, the controller will calculate
the new control signal and transmit it to the actuator. Upon
the arrival of the new control signal, the actuator updates the

output of the Zero-Order-Hold (ZOH) to the new value.

Based on the above assumptions, & typical time delay and
packet dropout pattern is shown in Fig. 3. In this figure, the
small bullet. o, stands for the packet being transmitted suc

cessfully from the sensor to the controller’s receiving buffer,
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maybe with some delay. and being read by the controller,
at some time ¢ = kT, + h(T./N) (k and & are integers).
The new control signal is sent to the actuator and the actua-
tor holds this new value until the next update control signal
comes. The symbol, o, denotes the packet being dropped,

due to error, bus being busy, conflict or buffer overflow etc.

O Dropout
g @ Success
E: o
E|,°® 0o 2 o p 0
L L . L ‘_.
0 T. .

Fig. 3 The illustration of uncertain time delay and packet dropout of Net-

worked Control Systems.

3 Switched system models
In this section, we will consider the sampled-data model
of the plant. Because we do not assume the synchroniza-
tion between the sampler and the digital controller, the con-
trol signal is no longer of constant value within a sampling
period. Therefore the control signal within a sampling pe-
riod has to be divided into subintervals corresponding to the
controller’s reading buffer period, T = T, /N. Within each
subinterval, the control signal is constant under the assump-
tions of the previous section. Hence the continuous-time
plant may be discretized into the following sampled-data
systems:
'] ]

uz[k]
wlk + 1= Arlk] + [B ArB --- AY 7' B)

i Tl [k]‘

+Ed[k) (2)

where A AT Ay =

= O

G o
AT B = ]:) e Bdn
l" ” + ' - . -
and F = J o' E7dly). Note that for linear time-invariant
Lt
plant and constant-periodic sampling, the matrices 4, Ay,

{3 and E are constant. In addition, if the sampling period

79

T, is small enough and/or N is large enough then one could
approximate Ap as an identity mairix and simplify the rep-

resentation.

3.1 Modeling uncertain access delay

During each sampling period, there are several ditferent
cases that may arise.

First, if there is no delay, namely 7 = 0, u![k] = u?[k| =
++- = ul¥[k] = u[k], then the state transition equation (2)

for this case can be written as:

-u[k]-
ulk]
zlk + 1) = Az[k] + [B ArB --- A} ' B]
[ ulk]]
+Ed[k]
N-1 |
= Azl + 'S ALBulk) + Ed[K].
i=0
Secondly, if the delay 7 = A x T, where T = T, /N, and
h=1,2, - ,dmax *, then ul[k] = v?[k] = --- = ub[k] =

ulk — 1], uh*!k] = u"*?k] = .- = uV[k] = u[k], and
(2) can be written as:
[ufk - 1]]

ulk — 1j

zlk + 1) = Ax[k] + (B ArB .- A¥~'DBj
ulk]

ulk] |
+Ed(k)

= Azlk] + 'S AbBulk 1)+ S A%Bulk]
CEdW. .
Note that i = 0 implies 7 = 0, which corresponds to the
previous “no delay” case.
Let us assume that the controller uses just the time-
invariant linear feedback control faw, u[k] = Kz[k|. which

may be obtained as the solution of a LQR problem with-

" The value of dya is determined as the feast integer greater than the positive scalur 7y,. /T, where 7nax stands for the maximum

access delay.
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out considering the network induced effects. Then, we may
plug in the «[k] = K x[k] and obtain
ho1
wlk+ 1) = Aslk] + 5 AYBRelk - 1]
=0
N-1
+ 3 ArBKu[k] + Ed[k]

i=h

—(A+ S ALBK)olk]
i=h

h— ;
+'5° ALBKzlk - 1] + Ed[k).

i=0
afk—1
If we let &[k] = . then the above equations can
xlk]
be written as:
0 I
Ek+1)=| 1 | N-l E[k]
S ARBK A+ 'Y ALBK
i=o i=h
0
+ d[k]
E

where b = 1.2,-++  dyux. The controlled output z[k] is

given by
2[k) = [0 ¢] lk]

where C' = C*.

Finally, if a packet-dropout happens, which may be due to
a corrupted packet or sending it out with delay greater than
Tmaz, then the actuator will implement the previous con-
trol signal, i.e. w![k] = w?[k] = - = «™V[k] = ulk - 1].
Therefore, the state transition equation (2) for this case can

be written as:

‘rt[k‘ - 1]-
ulk - 1j

afk +1)= Arlk] + {B Ar B ---A:?.’_IB]
_u[k l:_

+Ed[k]

No1 o,
Axfb] + 3 AT Bulk - 1] + Ed[k]

=0

N-1
Axk]+ 3 ApBKxlk - 1] + Edk|.

i=(

Using the same variable transformation as in the above case,

e

we have
0 I 0 i
B+l =1 vo1 k) + dk].
T ALBK A E |
i=t |
The controlied cutput z[k} is given by 1
i
2kl = [0 C] k). 1
where ¢ = C*. |
|
3.2 Switched system model i

In the following, we will model the uncertain mu]:iple;
successive packet dropouts and formulate the above NCSs|
as a class of discrete-time switched systems. :

Motivated by the above analysis of NCSs, we introduce ai

family of discrete-time linear systems described by the fol-

B

lowing difference equations.

a[k + 1} = Agx[k] + E,dlk], ke ZT, 3

e

where xfk] € R" is the state variable, and the distur-|
bance input d[k] is contained in D C R". A, € Rrxn
and E, € R™*" are constant matrices indexed by ¢ € Q]
where the finite set Q = {q1.g2.-", qn} is called the set|
of modes.

Combine the family of discrete-time uncertain linear sys-
tems (3) with a class of piecewise constant functions of time
o Zt — (). Then, we can define the following time- |

varying system as a discrete-lime switched lingar system

tlk + 1] = Aqplk] + Eqwpd(k], k€ Z7.  (4)
The sequence o[k] is usually called a switching signal.

Associated with the switched system (4), a controlled
output z[k] is considered.

z[k) = Copyr[k],

where C,y;) € RP*" and z[k] = R”.

For the NCS we considered in this paper, we may formu
late it as a switched system with d,,,.. + 2 different modes,

which can be expressed as follows.
{ b+ 1] = Apilk] + End[k].
z[k] = Cprz[k]

(5)
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0 I

=

where Ay = | 5 Nt RE
> AyBR A+ Y ApBK

=0 1=h

0
and C, = [[l C] forh =0,1.2.--- d.x, N. And

E
the set of modes @ is given by @ = {0, 1.2.- - 0. N}

Note that & = () implies 7 = (), which comresponds to the
“no delay” case, i.e.

0 I
Ay = NoL ;
0 A+ 5 AyBK
while h = N corresponds to the' “‘;Jacket dropout” case.

In cur previous work 211, it was assumed that there is
an upper bound on the maximum number of successive
packet dropouts, e.g., at most four packets dropped in a
row. Under this assumption, NCSs under bounded uncertain
access delay and packet dropout were modeled as switched
linear systems with arbitrary switching. The asymptotic sta-
bility and persistent disturbance attenvation properties of
the NCSs were studied in the switched system framework,
and a necessary and sufficient condition was given for the
NCSs’ asymptotic stability in [21]. However, assuming an
absolute upper bound on the maximum number of packets
dropped in a row could be conservative in certain cases. In
this paper, we provided an alternative way to model NCSs
as switched systems. Instead of incorporating all possible
delay-dropout patterns so as to relax the switching signal
o be arbitrary, we specified a subclass of the switching
signal by restricting the occurring frequency and the num-
ber of dropped and seriously-delayed packets in the time
average sense. In particular, it was shown that there exist
bounds on the delay and packet dropout rate and percent-
age, below which the NCSs™ stability and L, disturbance
attenuation properties may be preserved to a desired level.
These bounds were identified based on multiple Lyapunov

functions incorporated with average dwell lime scheme.

4 Stability analysis
Considering the switched system model for NCSs (5).

it 13 reasonable 10 assume that, for the cases of no delay

**The matrix norm is defined as the induced matrix norn from veetor 2-norm, t.e. || =

(= 0) or small delay (b < hy). the corresponding state
matrix Ay, 's are Schur stable, while. for the cases of large
delay (h > hy) or packet dropout (h = N). the 4ys
are not Schur stable. Therefore, in this paper it is assumed
that the first . corresponding to Ay, of all the dy.y + 2
matrices in {Aj,} are Schur stable, while the rest matri-
ces are not Schur stable, where r < dyux + 2 and h €
Q@={01l2- -

notation, we will index the switched NCS model with §, for

+dmax. V). In the sequel, for simplicity of

P€Q={0.1.2, - .d,.x. N} and replace + as . In this
section, we sct k| = 0 in (5) for the purpose to study its
stability.

It is known that for Schur stable systems x|k + 1] =
A;x[k], there always exist positive scalars A\, < 1 and /1, s,
i < rsuch that | A% < h,A% forany & = 1**. Note that
for any Schur unstable system x[k + 1] = A;zlk| G = r),
there always exist a constant () < ¢ < | making the system
&k + 1] = aA;x[k] Schur stable. Hence we may assume
that there exist positive scalars As > 1 and h;’s, i > 7 such
that || A¥|| < /1, A for any & > L. Therefore, we obtain

hid { h,-z\’l". i,
N = (6

hiAs, P>
Following {20], we introduce the notations as below. Denote
h = max;{l;}. For any switching signal o(k) and any
ky > ky > 0, let N, (k. ky) denote the number of switch-
ings of ¢(k) on the interval [k1.kg). Let K (k). ky) denote
the total period that the i-th subsystem is activated during

(k1. k2). Define
K~k k2) = 5 Ri(ky k).

PEr. Q)
which stands for the total activation period of the Schur sta-

ble subsystems. On Lhe other hand.
l\-‘*'(f\fl.kg) = z !\', I:'A';. I\g)

e el
denotes the total activation period of the Schur unstable sub-

systems, We have K7 (k) ko) + K (R by) = ba — By
For given Ny = 0, 7,. let 5,(r,) denote the set of all
switching signals satisfying

h
"\r”(”‘- A) ‘~<- . '[} + — (7)

Tu
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where the constant 7, is called the average dwell time and
Ny the chatter bound. The idea is that there may exist con-
secutive switching separated by less than 7,, but the aver-
age time interval between consecutive switchings is not less
than 7,. Note that the concept of average dwell time be-
tween subsystems was originally proposed for continvous-
time switched systems in [22]. With these assumptions and
notations, we may apply the techniques and results devel-
oped in [20] to the NCSs and get the following theorem for
globally exponential stability. The proof of the theorem is
not difficult by using the technique of Theorem 3 in [20],

and thus is omitted here.

Theorem 1 For any given A € (A;. 1), the NCS (5)
is globally exponentially stable with stability degree A if
there exists a finite constant 7,7 and A* € (A;. A) such that
the /{0, k) and N, (0, &) satisfy the following two condi-

tions:
" il K=(0.k) 5 InAz —In A
>0 KH(0k) 7 InA® = Ink
holds for some scalar A* € (A, A):

2} The average dwell time is not smzller than 7}, i.e.
No(0.k) € No + —.
Ta

where
Inh

Ta = InA—InA*
and Ny may be specified arbitrarily.

>

Remark 1 The first condition implies that if we expect
the entire system to have decay rate A, we should restrict the
total number of lost packets and large delay packets in the

sense that on average K7 (0, &} has an upper-bound,

InA* —in A

InAz —Ink

That means the percentage of dropped and seriously delayed

KH0,k) €

packets should be below certain bound, given by

lnA* —1In A,

Ay —InAy

Remark 2 The main point of the second condition can

be described as follows. Although the first condition may
be satisfied. which means that on average the packet lost
is limited and the total number of large delayed packet is
bounded, in the worst case the packet dropout and large
access delay happen in a burst fashion. For such worst case,

the NCSs may fail to achieve the decay rate. The second

condition restricts the frequency of the packet dropout und
large delayed packer, and to make sure the above worst case
can not happen.

Remark 3 The above theorem says that the NCSs’ sta-
bility. with most of the packets arriving in a timely fashion,

does not degenerate seriously, which is reasonable.

5 Disturbance attenuation properties

In this section, we will study the disturbance attenuation
property for the NCSs (3). Note that the Ly gain property of
discrete-time switched systems was studied in [20] under
the assumption that all subsystems were Schur stable. In
this section, we will extend the Ly gain property of discrete-
time switched systern to the case that not all subsystems are
Schur stable. The techniques used in this section are similar
to those in [19] for continuous-time switched systems.

Following the assumptions in [20], the initial state is
assumed to be the origin, (0] = 0. And we assume that the
Schur stable subsystcms achieve an L, gain smalier than .
It is known that there exist a positive scalar A_ < land a
set of positive definite matrices P, fori € randi € @,
such that

ATP A, - N P +CIC,

+ATPEiA2 T - EYBE) 'EN P A;
is negative definite [23]. Observing that for Schur unstable
subsystems, there always exist a constant 0 < ¢ < 1, such
that the subsystems (7 A;. E;, oC;) can achieve the Ly gain
level yo. Therefore, we assume that for Schur unstable sub-
systems there exist a positive scalar Ay > 1 and a set of
positive definite matrices £, foré > r and { € @, such that

ATPA, - NP +CfC,

+ATPE(v31 — ETP,E) 'ET PA,
is negative definite. Using the solution F's, we define the
following piecewise Lyapunov function candidate

V(k) = Vi () = & [K] Py K] (&)

for the switched system, where F, . 1s switched among
the solution F%’s in accordance with the piccewise con-
stamt switching signal a[&]. [t can be shown as in [20] that

there always exist constant scalars avy. g > O, for example,
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oy = infieq A (P}, tva = sup, . Axg( 2, such that
arllz])? € Vilx) € aglle]®. Vo e R Vie Q.
Here ’\M(

cigenvalue of P; respectively. There exist a constant scalar

{9

P;) and A,,{F,) denotes the largest and smallest

¢ 2 1 such that
Vi(r) £
A conservative choice is ;= sup

kieQ
Following the steps in [20],

uVi(z), Vo € R, Vi.j € Q. (10)

Aar ()
An(R)”
for each Vi{x) =
«T[k] P;z[k] along the solutions of the corresponding sub-
system, we may obtain that
ViCarfk + 1) — Vialk)
- { —(1 = A2)WVi(xk]) — 2T k]2 (K] + ~odT k)R],
T = (0= A3 ViCelk)) — 2T (K] [K] + vod T (K]d[A].
For a piecewise constant switching signal o[k] and any
given integer k > 0, welet k) < --- < k; (7 2 1) denote
the switching points of ¢[k] over the interval [0, k). Then,

using the above difference inequalilies we obtain

A?(A k)V( z )\2”‘ l-J)F(J)
V) <
R (1) ‘i: NH=1=I ),
where I() = ¥(7J20] 3T Since V(k) <

1V (k) holds on every switching point k;, we obtain by

induction that
2}y 2K T(0k) y 2K 0k
V(k) ‘~<~. #Na (U.L}/\_ ( )/\+ ( )V(U)

k—1 ey T

Ny (k=1) 2R " (ik=1) (2K T (k-1 .

-3 ,uv (4. 12 (i )A+ G )F(J)
j=0

k=l o Fen i,
P
J=0

The last equality is because of the zero initial state assump-
tion (0} = 0.

We assume that on any interval |k).

{3.h—1 l)\'ih'*(i.k—l)r(j)'

ka} the total

activation periods of the unstable subsystems satisfies

InA* —InA_
(k) ke) € T.(Ag -
AL —InA

ln A
K (k. k)

K (k) k) T InA= = In A
holds for some scalar A™ € (A, 1) and Yk > b, = 0

A&y}, or equivalently

(an

Then, we have
R T A=) 2R A1)
A2 A

< (/\*)2!\"(j.k—|)+2h’"‘ (ik=1) _ (/\«)'.’(A-—:—j)_

Therefore, we obtain

k=1 ., . .
Vk) € = 3w 0RomE=iegy )

;—(}
When p = 1, we have from V{k) 2 0 and (12) that

Z “ Ne {7 k—1) /\ )Q(k-l—_nlr(j) <0
J=u

We sum (13) from k =
+ac k—1

(2 m

E=1 j=0

Z F(_]( E “N (JR-»I)(/\-)2(L' 1 -’;:I
k=j+1

(13)
1 to & = +oc to obtain

;\’,,(j.k—1)(Ax)2(k—l—_j}r(j))

=(1-()H7"
which means

5 =Tleb] < % 2 AT} (14)

Ja-
Therefore, Ly gain g is achlcved for the switched system,

namely the NCS (5).
For the case 2 > 1, multiplying both sides of (12} by

p"N"':O‘k_l:' leads to

Z ”—N 10.4) /\ )Z(k 1-3}., T[J]"f]]

<% Z p N OD PRI f1d]5). - (19)

=0
Now, we choose a positive scalar A larger than 1 to consider
the following average dwell time condition: for any positive
integer j > (),

i . Inp
No(0.4) < S LTSy

Therefore p~™+(®) > A~2/ holds for any § > 0, where
A= plem!

(16)

. Then, from (15) we obtain

kf/\"“fx)z"‘"" 2T )l]
FE]
’)A ! ¥ ‘)'k_l_ § 'l" - -
S 3 (an)H S [
=0
Similarly, summing both sides of the above inequality from

k=1tok=4oc lcads to

(1— (A~ iA’zfz"‘l.ilz[.fl
J=

<= 7)) 3 S ATl

J=1
and thus
{17}

g,\“"’":'rmzlﬂ < i Z d" ()

J=1
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holds for any d|k] € L[t +5c). Following the notation
in [20], we say that a weighted Ly gain ~, is achieved. In
summary, we prove the following theorem.

Theorem 2 The NCS (5) achieves a weighted Lo gain
p if the K (k1. ka) satisfies (11) and N, (0. k) satisfy the

condition of (16).

Remark 4 Similarly, the condition {11) restricts the
number of packets that have been dropped oui or delayed
excessively, while the condition (16) restricts the happening
frequency of them. Both of the conditions are given in the

sense of average over time.

6 Conclusions

In this paper, we modeled a class of NCSs under
uncertain access delay and packet dropout as discrete-time
switched linear systems. The stability and disturbance atten-
vation issues for such NCSs were studied in the framework
of switched systems. It was shown that the asymplotic sta-
bility and disturbance attenuation level might be preserved
for the NCSs under certain bounds on the amount and rate
of the dropped and large delayed packets. Although we only
consider state feedback control laws here, the techniques
and results developed here can be casily cxtended to the
case of static output feedback control laws. It should be
pointed out that the conditions concerning the delay and
packet dropout rate for the preservation of the NCSs' sta-
bility and H. disturbance attenuation propertics were based
on Lyapunov theory. Therefore. the conditions are sufficient
only and maybe conservative for some cases.

We believe that switched system approaches to NCSs
are promising, as many research topics like networked
continuous-controller design, controller and scheduling pol-
icy co-design could be pursued in the swilched system
framework. For example, in {24], a stability und Ly perfor-
mance preserving network bandwidth management policy
was proposed based on switched systems approaches. The
potential of dealing with NCSs as switched systems comes
from the existence of solid theoretic results in the field of
switched systems. jump linear systems etc, Interested read-
ers may refer to |15, 25] for surveys on the most recent

progress on switched linear systems.
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