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AVNER FRIEDMAN AND MARK A. PINSKY

ABSTRACT. We consider a system of ItSequations in a domain in R . The
boundary consists of points and closed surfaces.  The coefficients are such that,
starting for the exterior of the domain, the process stays in the exterior. We give
sufficient conditions to ensure that the process converges to the boundary when
i—oo. In the case of plane domains, we give conditions to ensure that the process
"spirals"; the angle obeys the strong law of large numbers.

Introduction. In a previous work [4] we have investigated the behavior of
solutions of linear stochastic differential equations when £—»«>. The purpose of
the present work is to extend the results of [4] to nonlinear equations. Specifically
we shall consider a Markov process on 7?' defined by the stochastic equations

n
ax. = Y a. ix)dws + b.ix)dt      (1< i < I, K s < n),

l *•*       IS I —      — —       —
s=l

x.(0) = x.
I I

J

together with a "stable manifold" dG.  The set G will consist of a finite number
of points together with a finite number of closed domains. The coefficients a- »
b. ate such that if the process starts on dG then it stays forever on dG.

Our first result (Theorem 1.1) gives a set of sufficient conditions for the non-
attainability of G, starting from the exterior. If G consists of points and convex
bodies, it suffices that the normal components of the diffusion and the drift vanish
on dG; in general we need to impose an additional "convexity" relation between
dG, the drift and the diffusion coefficients to ensure the nonattainability of dG.

The next result (Theorem 2.1) gives sufficient conditions that xit) —» dG
when t —» o«. This theorem contains local stability conditions (near dG and near
oo) reminiscent of the linear case [4], as well as a certain nondegeneracy condi-
tion. None of these conditions can be relaxed.
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332 A. FRIEDMAN AND M. A. PINSKY

The techniques used to prove both the nonattainability and the stability
theorems involve construction of certain comparison functions which generalize,
respectively, r~e and log r, used in the linear case.

In §§3—5 we construct "exact" comparison functions to prove that when
1 = 2, xit) "spirals" at a linear rate when t —» «>. (In the linear case we were
able to prove this result more directly by probabilistic methods.) Our method of
proof differentiates strongly between the cases of degenerate and nondegenerate
tangential diffusion. In §§ 3,4 we deal with the special case where G is a point;
the nondegenerate case is treated in §3, and the degenerate case is treated in §4.
Finally, the general case is treated in §5.

1. Nonattainability of the boundary. Consider a system of / stochastic dif-
ferential equations

n
(1.1) dx. m £ o.six)dws + b.ix)dt      (1 < i < l)

s

where w it), • • • » wnit) are independent Brownian motions. We shall assume
(A) The functions oisix), bkx) (!<'<'*» 1 <s <n) are uniformly Lipschitz

continuous on R   and

(1.2) \o.s(x)\ + |&.(x)| < Kil + |x|)      (x £ Rl)

for some constant K.
Let G.,•'•, Gk be mutually disjoint sets in R ; for 1 </ <kQ, G   consists

of one point z., and, for kQ + 1 < / < k, G. is a bounded closed domain with C}
boundary dG.. If G. consists of one point z., we set dG. = \z.{. Let pÁx) be
the distance function p.(x)= dist(x, G.) defined for x¿ int G., and let

G.   =íx;x i int G.,p.(x)<€?       (e > O),

If G. is a closed domain, then p.(x) is a C2 function in G.    provided e isJ 1 7 it
sufficiently small. If G. is a point z., then pix) is a C°° function for x ¿z.

Set (a..) = wo-*, o = (a. )» o*= transpose of a, and let 6 = (fc t» • • • » b¡). Let
1/ = (v.»« • •. v.) be the outward normal to dGh if G^ is a closed domain. We

assume
(B) If 1 < h < kQ then bizj = 0, oisizh) = 0 for 1 < i < /, 1 < s < «.  If

/fe. + 1 <h <k then
/

(1.3) Ç   aijvtyj=0   on 5G*'
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 333

I d2-
(1.4) (*,v)+i £ a        ' > 0   on dGu.h

Note that (1.3) means that S"  , il1. , o-v)2 = 0. Hence IS. a. v\ = 0.
Since vi = dph/dxj on r3Gfc, it follows that

I dp.ix)
£ a. —2— = 0(p.(x))   as p Ax) -> 0   (l< 5 < n).
i-l   ts   dx.

Taking squares we get

Í dp Ax) dp Ax)
(1.5) V   a..(x) -±-£— < CÁpAx)]2      ixeÔhf).4*.     »7 A- Ar       -     °^e *>.fn•1    *' dx dx 0

for €„ sufficiently small, where C    is a positive constant. The condition (1.4)
implies that

I dp.ix)     ,      I d2p.ix)

0
(1.6)      2 * .Cx) _*— +1  £ a. .(*) —V > -C.pAW      U«c.(

ft   «      &.       2 ,*&   «     ¿x. ax. -     »p* **<
where C    is a positive constant.

Suppose a-.eC1 in G.     . If (1.3) holds then S.a. i/. = 0, i.e., the vectors
T   = (a,  , • • •, a, ) ate tangent to dG,. Since the function 2. a. v. vanishes ons is is ° h j    is j
dG,, it follows that its derivative with respect to T    also vanishes on r3G,, so

that
a dp,

T To.   —y<r.   — = 0   on dG..

This leads to
I dp, I    dx..

T   a..-L. =-  y   —ÍV    on dG..
tfml   «dx.dx.        ¿fa dx.    * »

Hence (1.4) is then equivalent to
I   , ,7    da.71

In what follows we shall take e. so small that G,      O G       =0 if h ¿ r.•v, o o,eo        T*t0  -^
Denote by G the complement of U •_ i G.. Its boundary dG is the union

U}„, »,
Theorem 1.1. Let (A), (B) io/d*, and let x(i) 7je any solution of (1.1) u/z'î/î

x(o) e G. Tfce« PjBr > 0; xii) e dG] = 0.

Proof. Let R(x) be a function defined in the closure of G, C    in G, such

that
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334 A. FRIEDMAN AND M. A. PINSKY

(p.(x)    ifx£G.,      il<j<k),
(1.7) PW=      ' "°

( \x\       if |x| > M,

and fQ < R(x) < M elsewhere; M is chosen so large that G    C {x; |x| < M}. Let
V(x) = l/[Rix)]e for some e > 0. Introducing

Lu = L  ¿  a..(x)-^-+¿e.(x)Ííi
2 ¿,y=l    "     dx.dx.     isl    *     dx.

we have

LV = -fR

(1.8)

KU£èi.^4£Mf(f+i)^-fRiX]i

Using (1.5), (1.6) in Gfc       if Gfc is a closed domain, and the boundedness of
the functions

OR        n   d2R aJ¿        hJ_
(1.9) dx.' dx.dx.'      R2'      R

in G.     , if G,  is a point, we deduce that the coefficient of V on the right-hand
side of (1.8) is bounded above by a constant, say pQ, if x £ G   . For |x| > M,
the functions in (1.9), as well as b/R, are still bounded. Hence the coefficient

Z *\j

of V in (1.8) is bounded above by some constant p, throughout the whole set G.
Thus, we have LVix) < pV(x) in G^ Vix) — oo if dist(x, <?G) -♦ 0.

Introduce the hitting time of dG,

linfif >0; x(r) e dG},
T =

(oo    if no such t exists.

Analogously define hitting times T   with respect to l/p-neighborhoods of dG
ip = 1, 2, • • •)• By the proof of Theorem 1.1 in [3] it follows that

(1.10) Eje"M pyB} — 0   if p — oo,

where B is the set where inf(>0 Rixit)) = 0. It follows that E\e'ß  yß} = 0, i.e.,

T = »o a.s. on B,  This completes the proof.
Remark 1. The condition (1.3) means that the "radial" diffusion vanishes

on dG,. The condition (1.4) is a "convexity" condition on dG, with respect to
the diffusion matrix and the drift. It is elementary to verify that the matrix
id2ph/dxdx.) is a positive matrix on dGfc whenever Gft is a convex body.  [A
matrix ib ■ .) is called positive if 2 b . x x . > 0 for any real numbers x¿.] Since,

on dGh,
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 335

d2Ph d2ph > d\

we conclude that (1.4) holds whenever (¿>, v) > 0 and (<9 ph/dxjdx) is a posi-
tive matrix; in particular, whenever ib, v) > 0 and G,  is a convex body.

Remark 2. The condition (1.4) is essential for the validity of Theorem 1.1. In
fact, let y be a point on a hypersurface dG,   and let V be an open neighborhood
of y.  Suppose (1.3) holds on V n dGh, and

1 Ph
ib, v) + T   y   a..-— < 0   on V O dG,.

2 f£i    "dx.dx. >>
r\r r\.

For «eVnG, denote by p (x) the probability that x(t) exits V O G by hitting
c3Gfc, given that x(o) = x. Then, as proved by Pinsky [7], not only is pix) posi-
tive for x € V n G, x near y, but also pix) —, I if x _, y, x £ V Cl G.

2. Stability. We now turn to the question of asymptotic stability when
t-.ro. As in the linear case [4], to prove asymptotic stability it suffices to con-
struct a solution of Lf <-v with certain auxiliary properties. If fix) - $(7?(x)),
a short calculation yields

Lfix) = yßti'iRix)) + WiRix)) = £<D
(2.1)

where

= 'A&W'iRix)) + <Î>'iRix))/Rix)] + Rix)QixWiRix)),

air^      / \ dR  dR- >   a..(x)-,
ff   "      dx. dx.••7 i ;

(2.2) *-Z^î4ï^.
Í OX,- I,;' OX .OX .

Q = (£B - S/2R)/R.

Suppose 0(r) (O < r < °°) is a continuous function satisfying

(2.3) Qix) < 6\Rix))

with

(2.4) B0 = lim 6ir) < 0,      0^ = lim  0(r) < 0.
f--0 r—oa

The condition Q. < 0 can be realized if and only if

(2.5) ÏÏnT      ß(x) < 0      (1 < h < k).
0</^(x)—0
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336 A. FRIEDMAN AND M. A. PINSKY

The condition 9oo<0 can be realized if and only if

(2.6) ïïrn   Qix) < 0.
M-~

Thus, if (2.5), (2.6) hold then there exists a continuous function dir) satisfying

(2.3), (2.4).
If (2.5) holds for kQ + 1 < h < k then from (1.5) it follows that îïm"(3B/R) < «

as pAx) \ 0. Hence 3B < 0 on dGy. Combining this with (1.4) we conclude that

1 Í d2Ph
(¿>» ") + T   E   au T-T- = °   on dG.     ikn + Kh< k).

2 l%\   l1 dx.dx. b       0       -    -

We shall need the following assumptions:
(C) Denote by G    ir¡ > 0) the set of all points with r¡ < R(x) < I/77. Then

V   a..ix)???a>0    if x£G. V R(x)¿ 0;fe    "     *,*</ "      *
1   ; ,2
¿fe    "      ax.<9x. 1*    «

where 7j is such that ö(r) < 0 if r < r¡ or if r > I/77.
(D) (i) the functions ff..(x) are twice continuously differentiable if 0 < R(x)

< r¡, or if R(x) > 1/7/; (ii) the functions

da.Jdx.,      d2 a. J dx.dx.,      dbjdx.
»/      ; zj      z    ; z      z

are uniformly Holder continuous on compact subsets, and
d2a.. db.da..zj

dx.j
<C,     £-!L-V_i<c

,• ,• dx .dx.       i   dx.Z.7 J        ; Z ,

where C is a constant.
The following result shows that the condition (C) is satisfied whenever

(a..) is nondegenerate outside  U- G..

Lemma 2.1. If n>2 and (a,.(x)) z's positive definite for x4 G(, |x| < 1/e,i]
where t is sufficiently small, then the condition (C) z's satisfied for some choice

of R.
Proof. By the proof of the Schoenflies' theorem [5] there is a diffeomorphism

y = fix) of the exterior of U*_i *»,• onto the exterior of Uy=i ^y m R , where
G,,..«,G,    are points situated on the y, -axis and Gk    j» •••» G^ are balls
with centers on the yj-axis; the center of G. lies to the left of the center of
G.  ,. Furthermore, this diffeomorphism preserves the distance functions (to
U- G. and to JJ . G'.) as long as the distance is sufficiently small. Suppose for
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 337

simplicity that kQ = 0, k = 2. Denote by (c , 0, • ••, O) the midpoint of the seg-
ment connecting the center {ay 0,• • •, 0) of Gj to the center (a2, 0,• • •, O) of
G2. Construct a positive C2 function t/>(y') (where y' = (y,»« • •, y,)) on the
plane yj »c,, which increases radially, with grad 0(y') ¡¿O if y' ¿ 0, such that
dft/dy{ = 0, d2ft/dy dy. = 0 (2 < >• /' < /) at y' = 0. Construct also a C2 function
ftiy^l, positive for ai<y ^^ a2» sucn tnat ^^1^ = \v \ ~ a\ f°r vi near a-»
and such that ft'iy^ ¿ 0 if y j ?¿ Cj and ^(cj) = <£((),• • •, 0), ft'ic^ = 0,
^"(t^KO.

We now construct a C    positive function \iy) for y 4 0j, u G'), |y| < R.
iRQ large) which extends the functions ft, ft and the distance function from
G, u G, (as long as the distance is sufficiently small). This function is to

satisfy

gradA(y)^ 0    if y 4 icy 0,. • •, 0),

gradA(y)=0,       îïjaÙ- 0    if (í,/) ¿ (l, l),
dy.dy.

-^<0   aty = (Cy0,.--,0).
¿yj

The construction of such a function A(y) can be accomplished by introducing a
family of curves y , connecting (a , 0, • • •, O) to (a.., 0,« • •, O) and intersec-
ting the plane y. =Cj orthogonally at (c ,y'). A(y) is defined along y , such

that its tangential derivative vanishes only at y, = c..
Let BQ be a ball {x: |x| < R*] containing GjU G 2. Choose RQ so large

that the image of B = BQ-ÍG1U G2) under the diffeomorphisra y = /(x) is con-
tained in the ball {y; |y| < RQ]. Define Rix) = A(/(x)) for x e 73. Clearly
V Rix) ¡¿ 0 if x e B, x ¿ x* where /(x*) is the point ic y 0, • • •, O).   Furthermore,

as easily seen,

y   g..ix).d R_.<0   atx = x*.
,£-    "      dx.dx.

Now extend R(x) as a positive C2 function in R  - (Gx U G2) such that Rix) =
= |x| for all |x| sufficiently large, and such that V^rU) ¿ 0 if |x| > R*.  This

.completes the proof of the lemma in case kQ = 0, k = 2. The proof for general

&., e is similar.

Theorem 2.2. Lei (A), (B), (2.5), (2.6) and (C), (D) hold, and let x(t) be any
rV

solution of (1.1) with x(0) £ G. Teen

pjlim dist(x(i), r5G)=o|=l.
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338 A. FRIEDMAN AND M. A. PINSKY

Proof. Suppose first that the <rf.(x) belong to C2iRl). Let E = \xeG  ;
V^Rfc) = oi. E is a compact set. On E,

ew4¿, »«<*>;$; <°
by the second inequality of (2.7). Hence there is a small neighborhood E. of E,
whose closure is in G   , such that Qix) < 0 if x £ EQ. Let r. = r¡, r2 = l/r¡. From
the first inequality of (2.7),

(2.8) £ a..ix)p |* > aR2    if r, < R(x) < r2, x t EQ
{,;=! dx. oxz      ;

where a is a positive constant. We shall construct a function $ir) whose second
derivative 0  (r) has jump discontinuities at the points r.» r2, and is otherwise

continuous, such that
2(a) $'(r) > 0;
2(b) £$(R(x)) <-v if R(x)j¿rj,r2; v positive constant;

2(C)  limr_0  $(,-) = -oo;

2(d) T$'ir) is bounded, 0 < r < oo.
Let

/o m t\ iCrl + 20U)/a , )(2.9) p(r) = explji -j-ds\

and define zp(r) in fj <r < r    by

p(rty'(r) = |1 Jr'2+1 ̂  ás,      <*/(l) = 0.

Then if/'ir) > 0 if rt < r < r2<  Also,

(2.10) xj,Hir) + (1 + 20(r)/a) </r'/r = -2v/ar2.

On the other hand, from (2-1), (2.8) we have, for x e G    - E0>

^W,4a[,%(1 + ̂)|]<If-+(lt^)£]
where the argument in if/, if/', if/" is R(x); here we have used (2.8). By (2.10) the
quantity in the last brackets is <-2v/(aR ). Hence

L«A(R(x)) < Vi&i-2v/aR2) = -&,/aP2.

Application of (2.8) once more shows that Lip(R(x)) <-v for x £ G    - EQ.  If

x eEQ, then

^"(R(x)) + <A'(R(x))/R(x)<0

by (2.10) [since we may assume that dir) > 0 if r = R(x), x £ EQ]. Recalling that
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 339

zp'(R(x)) > 0, Q(x) < 0 on the closure of EQ, we conclude, by (2.1), that

Lif/iRix)) < -vQ < 0 if x £ EQ. Designating min iv, vQ) by v, we get the in-
equality Lxf/iRix)) <—v throughout G   .

Define

(2.11) <D(r) =

Al log r + Bj     if 0< r< rj,

if/ir) if rj < r< r2,

A2 log r + B2    if r2<r< 00,

and choose the constants A ., B . so that <$>ir) and $ (r) are continuous at t.,
r2. Since if/ (r) > 0 in rx < r < r2, the constants A¿ are positive. But then 2(a)
holds. The conditions 2(c), 2(d) are also obviously satisfied. Finally, 2(b) was
already proved above for r, < r < r2> Its validity for r < r,  and for r > r. follows
from (2.1) and the fact that Oir) < p < 0 if r < r. or if r > r..

Let Tmir) im = 1, 2, • • •) be a continuous function such that Tm(r) = $"(r)

if |r - r{\ > l/ra (z = 1, 2), Tmir) is bounded independently of m, when |r - r.\ <
l/m, and

f* Tmir)dr =   f * <D"(r)a-r      (a = r. - 1/rc, & = r. + 1/rc; Í = 1, 2).
Ja Ja ' z'a

Define

4>m(r) = <D(1) + <D'(l)(r - 1) + £ $' rmis)dsdr.

Then ($m)'(r) = $'(r), ($m)"(r) = $"(r) if |f - r.\ > l/m (i = 1, 2) and ($m)"(r)

is bounded independently of m when \r — r \ < l/m. Finally,

\<bmir) _ <p(r)| < C/m    for all r > 0W

where C is a constant independent of m. For any small 8, 0 <8 <r., define

I $(r) if r > 5,

/ log S + (r - 5)/S - M(r - 8)2/82    if 0 < r < 8,
and

(<Dm(r) ifr>S,
$?(r) = (

I log 5 + (r - S)/S - Mr- 8)2/82   if 0 < r < 5.
Let R s(x) be a positive C    function in the whole space, coinciding with

R(x) if R(x) > S.
Let

Z.J-I ,        j Z     1 ,
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340 A. FRIEDMAN AND M. A. PINSKY

where e > 0, and let ofix) be a matrix such that cfio*)* = (a.. + eS..). We can choose
oe to be uniformly Lipschitz continuous on compact subsets [2]. Denote by xf(i)
the solution of the stochastic equation (1.1) when the o.. ate replaced by the oe...

Since <S>mir) and Rg(x) are C2 functions, we can apply ItS's formula:

<Î>^iRsix(it)))-^iRsixiO)))

(2-13) rt dRAx'is))
= Z Jo ($s) (Rs(xf(i)))-4-o*Axeis))dwj + /' Le<D^(Rs(xeU)))a-5.

Í,; OX.

Our assumptions on a.., 7>. (in particular, assumption (D) (ii)) are such that a re-
sult of Aronson and Bésala [l] ensures the existence of a fundamental solution

K£ix, t, y) fot the uniformly parabolic operator (with, generally, unbounded coef-
ficients) L( - d/dt. Hence, letting a/t = dP x dt, we have

plia, s); r. - 1/m < R8(xe(s)) < r{ + 1/m, 0 < s < I j

(2.14)
= Jo * J|jt8tf )-.;|<i,m KeW°>' * *>* - •   i« » - -

We used here the fact that the measure of the set [f; |Rs(£) - t{\ < l/m] con-
verges to zero if »72 —» oo. This is certainly true if r. and l/r2 are sufficiently

small, which may be assumed.
Computing Lf<b^iRAjcfis))) in a manner analogous to (2.1), and using the

definitions of <bm and Rs, we find that Le$™iR s(xfU))) is bounded uniformly
with respect to m. We can then use (2.14) to conclude [by the Lebesgue bounded
convergence theorem] that, as m —» oo, the second integral on the right-hand side
of (2.13) converges in L2 to ¡^ L(<&ARsixfis)))ds. Similarly, the stochastic inte-

gral on the right-hand side of (2.13) is convergent in probability to

dRsixeis))
£ /0 (V(Rs(*fk)»-4-o(..ixeis))dw'.
i.i "Xi

We conclude that

Os(Rs(*e(r)))-Os(Rs(*(0)))

(2.15) „,   , dRAx£is)) .      -.
= E Jo *s<R8<*fkW—Jx-of/^&W + J0 LeOs(Rs(xe(s)))a-s.

i<i i
We now need the relation

(2.16) sup \x£is) - x(s)| —» 0    in probability, as e —♦ 0.
0*sst

To verify it, notice by [2] that, as e —» 0,
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 341

(2.17) o*ix)—» a(x)    uniformly on compact sets;

here we use the assumption that o-.e C2iR). Hence, by a standard argument
[5, p. 52], for any T > 0,

(2.18) sup   E|xe(z) - x(f)|2 — 0    if f — 0.
0«Si<T

We can write

x<{i) - xit) = f¡ [bixHs)) - bixis))]ds

(2-19) +JJ [¿Ms)) - o(xeis))]dwis) + ft [o(xe(s)) - oixis))]dwis)

= Aeit) + Beit) + C(it).

If we denote by p the Lebesgue measure on (O, f), then

(P x p)i|xe(s)| > R} < L  fT E\x€is)\2ds < 4 ^0~R2 J0 ~ R2

if R —» oo( where C is a constant independent of e. Hence, by (2.17), for any
8>0,

(2.20) (Pxp.)\\ofixtis))-oix€is))\>8}-+0   ife—0.

We can now show that

(2.21) E JoT \oeix€is)) - oixeis))\2 ds — 0   if e -» 0.

Indeed, by (2.20), the integrand converges to zero in measure P x p. The inte-
grand is also uniformly integrable, since

|af(xf(s)) - oixfis))\4 < Cil + |xf(s)|4)

and (by [5, p. 48Í)

E f*\xeis)\4ds<C

(C constant independent of f). Hence (2.21) follows.

Now, for the Itô integral J¿ fis) dwis) we have [5]

E   sup   I f ' f{fi)Ms) 2 <4E   fT \fis)\2ds.
o<zst r ° -     Jo

Using this with fis) = o"f(xe(s)) - oix€is)) we get, upon using (2.21),

E   sup   \Beit)\2 ->0   if € —0.
0<zsT
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Recalling (2.17), we can similarly show that

E   sup   |C(/)|2 — 0   if e-.0.
0<t<T

The same assertion also holds for Ai.t). Hence, (2.19) gives

E    sup   |xf(í)-x(í)|2 —0   ifí^O,
o<t<T

and (2.16) follows.
From (2.16), we deduce, for a sequence {fM,

P{xf'is) —. x(s) uniformly in s, 0 < s < f} = 1    if e4 —» 0.

Hence, by Theorem 1.1, for almost all <a, if 8 is sufficiently small, say 8<8*ico),
then inf0ssst Rixe'is)) > 8 tot all e1 sufficiendy small, so that

(2.22) lim    f* Lel^ARJx^is)))ds<-vt
fl-.Q    JO f °        ° —

chastic integral we have, for fixed 8:

/J 0;(Rs^(S)))-^íl)C7i.;.(x^))í7:

í»-0
As for the stochastic integral we have, for fixed 8: if e" —> 0 then

5x.i

(2.23) - f>'8(Rs(xis)))8R&(x(s))a..ixis))dw'
J0 dx.        ''i

=  r^iRixis)))^^o..ixis))dw'
J° dx.        "

1

in probability; for a subsequence U" ] of {f1] the convergence is a.s. Hence, if
8 is any one of the numbers 1/p (p = 1, 2, • • •) then (2.17) holds for all coe QQ
where PÍQq) = 1, í2Q independent of p, where e varies over a suitable sequence.

In the definition of 8 ia>) given above we can take the values of 8   to be
l/p (p = 1, 2, • • •)• Denote by A    the set of points a with 8 ico) = 1/p. If
cù e Ap n fl0, then (2.22) holds with 8 = l/p, and (2.23) holds with 8 = 1/p
(where the convergence is at the point co). Since P[(LL Aj n fig] = 1, we con-

clude that a.s.

(2.24) <D(R(x(r))) - <D(R(x(0))) < £ JQ' ̂ iRixis)))^^o..ixis))dw' - i/t
'.7 ax.

In deriving (2.24) we have assumed that o..e C2iRl)> If this assumption is
not satisfied, we approximate the o\. uniformly by tn. which belong to C ÍR )
and for which the assumptions (A)-(D), (2.5), (2.6) hold. In view of (D)(i), we
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can take o*¡. = o¡. if R(x) > 1 +. l/r? or if R(x) < r//2. If we apply (2.24) to a*,
(with x(i) = x*(r)) and take k —. », we obtain (2.24).

We can now easily complete the proof of Theorem 2.2. First,

£ \z*\Rix))po..ix)\\i<!>'iR))2Za..(x)^ p.i    I   i dx.   "| *-  *i     dx. dx.

is a bounded function in G. Hence by Lemma 1.3 of L3]

- l£ *'(*«*)» S^Ä>MW - 0i    --JO dx *'1    t,l vxi

a.s. as t —» ». From (2.24) we then conclude that

/, ,«                                                       rr- 0(P(x(/)))(2.25) hm - <-u.
t—*oo t

This implies that $(P(x(i))) —. -oo if < —» «. Hence, Rixit)) -* 0 if / —» °° a.s.
This completes the proof of Theorem 2.2.

Remark 1. The inequality (2.25) implies that

distixit),âG)<Ae-p,t

for any 0 < v1 < v, where A is a random variable.
Remark 2. The differentiability assumptions made in (D)(ii) can be weakened,

if we redefine  L   (see (2.12)) by

I,;-» ,      j z-i ,

where the aí.,  i>; are smooth functions that converge to a.., b. in an appropriate
manner.

Remark 3. Theorems 1.1, 2.2 can be extended to the case where some of the
domains G, ik0 + 1 < h < k) have piecewise C^ boundary and are convex. For
simplicity take G = G., kQ + 1 = k = 1. We assume

(G) G is a bounded, closed and convex domain with piecewise C5 boundary dG.
By dG being piecewise C3 we mean the following: dG can be triangulated

by means of C3 surfaces (withboundary)  T^_ .  . of dimension I- j, 1 < /< /;

Tq j. being points, i.e., vertices of dG. One can then show that the distance
function R(x) if C1 and piecewise C2 in Gf   (for some in > 0). The set of dis-
continuities 2 of the second derivatives of R(x) divides G     into regions fi;_y .•

bounded by some hypersurface of 2, by the outer boundary of Gf , and by T/   •;•
We replace the condition (B) by

(B) b = 0, o = 0 at the vertices T. ... On each T,   . . (l < ;'< /) (1.3), (1.4)
hold for all the normals v to T.   • f pointing into Q/_y ;•
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Theorem l.l'. Let (G), (A), (B), (D) hold.  Then the assertion of Theorem 1.1
zs valid.

Proof. For any small 8 > 0, let RgU) = Rix) if Rix) > 8, and Rg(x) is posi-
tive C1 and piecewise C2 in Rl. Let RgG.) be a mollifier of Rsix), obtained by
convolving R g(x) with Pr/Jx)f  where  p£U) = 0  if  |*| > e» p/*) =
y exp [e2/(|x|2 - <r2)] if |x| < i, fp(x)dx = 1. One can verify that R|(x) — RSW,
DxR|(x)— DxRs(x) for all x, and D2R£(x) — D*RSM if RU) > S, x t/ 2.
Further,  \D2 R™(x)| < C, C constant independent of m. We now modify the proof
of Theorem 1.1. First we apply ItS's formula to e~^V^ix^it)) ixvit) is the so-
lution of (1.1) with o replaced by ov; a7,(<r7)) = (a . + 778..) as in [3]. Then we
let 777 —> oo, using the fact that L     has a fundamental solution. Finally we take
7/ —» 0. This leads to (1.10).

Theorem 2.2 also extends to the case where (G) holds and (B) is replaced by
(B). In the proof we use (2.13) with Rg replaced by R™.

Note that the convexity of dG is actually required only in a neighborhood of
the set where the boundary is not C3  (so as to ensure that Rix) is in C1).

Remark 4. The conditions (2.5), (2.6) and (C) are (essentially) necessary
for the validity of the assertion of Theorem 2.1. In fact, if in (2.5) the inequality

is reversed at Gj  [Gj consisting of one point] then p.ixit)) may not converge to
0 a.s. (compare the linear case [3]). A similar remark applies to (2.6). Finally,
regarding (C), if for instance b. = 0, a. = 0 in an open set ñ outside G, then
xu) will not leave fl, so that the assertion of Theorem 2.1 will not hold. This
remark applies also when the b. do not vanish identically in fi, but there is an
integral manifold of x = bix) in Í2.

Remark 5. The condition (D)(ii) was needed only in order to ensure the
existence of the fundamental solution Kfix, t, s). If a;.(x), 6.(x) are bounded

functions then, since (A) holds, the existence of the fundamental solution follows
from the general theory of parabolic equations [3] (without assuming (D)(ii)). How-
ever, we do not consider here the case of bounded a..,b., tot the condition (2.6)
cannot hold in this case.

Application. Let L be the elliptic operator associated with the diffusion
process (1.1), and consider the Cauchy problem

fa r.7— = Lu     if x e R', t > 0,
(2.26) *

a(0,x) = /(x)    ifxeR'.

Suppose fix) is continuous and bounded. Then a solution of (2.26) is given by
ait, x) = EfiÇxit)) where ^(i) is the solution of the stochastic system (1.1) with
the initial condition cfx(o) = x. Set c. = fiz.) if 1 < /' < kQ, and suppose / = c.
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(c. constant) on dG. if kQ + 1 < ; < k.  Then, under the conditions of Theorem 2.1,

(2.27) lim uit, x) = ¿ cpix)     (p (x) > 0, V p .(x) = l)

where fi .(x) is the probability that pA£xit)) —» 0 as f —♦ ».
The assumption (D) made in Theorem 2.2 is superfluous. Indeed, this condi-

tion was used only in proving (2.24). As indicated in a forthcoming paper by one
of us (A.F.), (2.24) can be proved (more simply) without assuming (D). This is
also a consequence of a new treatment of stability problems by one of us (M.P.).

The condition (2.6) made in Theorem 2.2 can be replaced by a weaker con-
dition, e.g.

(*) B + AS/R < - a/Rx    for some A > - 1.

Indeed, just modify the definition of <Kr) in (2.11), taking

$(r) = A2r1+X+ B2,

and observe that (*) implies that L${R) <-v if R(x) is large (v positive con-
stant). Further refinements of (2.6) will appear in a forthcoming paper by one of
us (M.P.).

3. Angular behavior in the case 1 = 2; case of a point. We now consider
the case 1 = 2 and propose to study the rotation properties of x(i). We introduce
polar coordinates (r, <p) by x = r cos rp, y = r sin cp. The stochastic differentials
dr, d<fi may be formally computed by

dr = rxdx + rydy + Vir^a^dt + rxyal2dt + Viryya22dt,

dcf> = cWx + <pydy + lA'pxxalldt + <Pxyal2dt + V2<ßyya22dt.
Noting that

^ sin <p" ,   _ cos <f>
r rv r

^~-2
r~ r

, 2 sin ó cos ó       , sin ó - cos d>       , 2 sin ó cos d>
"¿xx =-~2-.     <Axy = -^--*     <¿yy =-7--.

r   = cos <p,       r   = sin <p,

sin <p sin <f> cos cfi cos cß
rxx=—       '     Txy- '     ryy = —      '

we have

(3.1)    a> = ¿ osir, <f>)dws + tir, <p)dt,      dcf> = ¿ \ir, cp)dws + %, <p)dt
s=l   ' s*7l
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where

<y (r, ft) = o     cos ft + ff,   sin ft,

bir, ft) = bl cos ft + b2 sin ft + — (a(x)A , À ),

% /     ,.      sin ft cos ta
*>¿) =-—°ls + -T-°2s>

here A = (cos ft, sin <p), AX = (-sin <p, cos ft) and <a(x)p, i/) = 2 a..ix)p.v.
ip = (pj, p2), f = ivy v2)). We now assume

»toW-g'Lv'i.W'    ^--o ifW^o,

(E) 2 ~w
¿.(x) = £ «¿x +T(x), ^fl - 0     if |*| - 0,

where o^, tV. are constants.

(3.2)

This implies that the stochastic differential equations (3.1) have the form

dr = TZ * W*«* + TX<p)dt\ + [¿ R/ws + R0a-/1,

# = [*¿ *(0Vft»* + %p)dt\ + I"¿ 0/t*s + 0oa-fl

where Rs = o(r), 0^ = o(l) (0 < s < n) when r —» 0, uniformly for 0 < <p < 2ff.
Now let y(i) = (r(r), ftit)) be the diffusion process defined by the solution of

the stochastic differential equation (3.1) with r(0) > 0. By the method used to
prove Theorem 1.1, the solution never leaves the half-plane (O, oo) x (-oo, oo).

Define x(i) = (xj(r), x2(r)) where x^t) = rit) cos ftit), x2(t) = rit) sin <p(r). By the
method used to prove Theorem 2.1 of [3], we deduce

Theorem 3.1. }x(/), / > Oi is a diffusion process which can be obtained as a
solution of (1.1).

This theorem allows us to study the algebraic angle ftit) as one component
of a Markov process, rather than as a multivalued function of xit). In what fol-
lows we shall compare ftit) with the solution of the single stochastic equation

(3.3) dft = aift)dw + bift)dt
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where

°W-   l£~®M))2>      bi<f>)=bi<p).

Theorem 3.2. Assume that (A)-(D) and (2.5), (2.6) hold with k=kQ = l,
Gj = {Oi. Assume also that (E) holds and that oiz) > 0 for all real z.  Let

As  f2n_bizldz>
J°    o2iz)

Then

(3.4) PÍlim — =c)=lIt-»   t J
where c is a positive constant.  If A < 0, the conclusion holds with c negative.

Proof. For the proof, it suffices to find a function / such that

3(a) Mo-2(tp)/"(<p) + b(tp)f'{<f>) = 1 (-« < <p < «),
3(b) lim j^g,,/(<£)/</> = l/c (c positive constant),

3(c) /   and f are bounded,
3(d) /   is bounded below by a positive constant.

Indeed, if / is such a function, then by ItS's formula,

fi<pit)) = /(<p(0)) + £ Jo *(r' ¿W) *"*
(3.5)

+ /0' \} £ @s{t' <^2f"W + Ar. *)/'(*>]*.

Since  |ffs(Kt), rp(/))/'(í6(í))| < const, Lemma 1.3 of [3] gives

(3.6) lim   1 f ' y 3» (r, <f>)f'i<f>)dws = 0    a.s.
<-°° l  ■/u    s

We now consider the integrand of the second integral on the right-hand side

of (3.5). Given e > 0, let rQ > 0 be such that

I f (o ir, <f>))2 - o-2(«p)| < e,       |*(r, <p) - ¿Gp)| < eU=1   s I

for 0 <r < rQ. Let T = sup{f > 0; rit) > rQ}. By Theorem 2.2, T( < » a.s. For
t > T   we have by 3(a)

7 E <? «*). ¿(i)))2/'^» + b*irit), <pit))f'i<f>it)) - 1
2

<2tK

where K is a common bound on /' and /", given by 3(c). Combining this with

(3.6), it follows from (3.5) that
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üSM<l+2{Kl      J¡m¿MíL>>l-2í/C<-°°    t      - 7ZS,     t
This implies that a.s. lim^^ fiftit))/t = 1; in particular, ftii) —► oo ¡f t —» oo.

Invoking condition 3(b), we then get

lim -^= lim  -^^ = c,
f—o    Í t-^oofiftit))        t

which completes the proof of the theorem, subject to the construction of /.
To construct /, let

j8U).«PÍ2 C^-äft],   /«„ f- J- r «.V
l    J°  o\ft)      i Jo ßiz) J-°° o2ift)

Clearly / satisfies 3(a). Since A > 0 we may write

biz)2  r^Ldz = 2A^ + mix)
J°   o2iz) 2«

where

is a 27r-periodic function. Thus ßix) = exp{Ax + mix)] (A = A/jr). Hence we have

,,/ x_2_  çx ßjz)      _  rx exp \Xz + miz) - Ax - ttzMI
x ~J8<J)J-vü) z = J-~        ff2(2)

(3.7)
Xoo expi-A« + mix — u) — mix)]  ,        , .

-—*-— du      (u = x - z).
o2ix - u)

Denote the last integral by G(x). Since 77z and o2 are 2i7-periodic, the same is
true of G(x). We conclude that

,.    fix)    ,.     IÔG{z)dz     1    rin.
lim - = lim  -= —   I       G(z)dz.
_~    x      v_oo        x 2n JOx-«oo X-.00

This proves 3(b). The condition 3(c) follows immediately from (3.7) and the dif-
ferential equation 3(a). Finally, condition 3(d) follows from the positivity of
fix) for any x (by (3.7)) and the asymptotic relation (3.7), noting that the inte-
gral on the right (denoted above by G(x)) is both 2.7-periodic and positive func-
tion. Having proved 3(a)—3(d), the proof of Theorem 3.2 is complete.

4. Case of a point, continued. In this section we continue the analysis of
§3 in case the condition oiz) > 0 imposed in Theorem 3.2 is not satisfied, i.e.,
in case the angular diffusion is degenerate. We shall need the condition:

(E ) The condition (E) holds, and, for some T > 0,
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(4.1) £   (» (r, </>)]* = ¿ [£(«p)]2 [1 + nir, rp)]      (0 < r < 7)
s»=l s = l

where rj(r, rp) —♦ 0 if r —» 0, uniformly with respect to <f>.

Theorem 4.1. Assume that (A)-(D) and(2.5), (2.6) hold with k = kQ = I,
G, = loi. Assume also that (E') holds, that oiz) 4 0, ff(z) zs ííoí everywhere
positive, and that biz) > 0 ibiz) < 0) whenever oiz) = 0. Tie«

P|lim^=c) = l
It-.»   * )

where c is a positive (negative) constant.

Proof. It suffices to prove the theorem in case biz) < 0 whenever oiz) = 0.
Denote by x¿ ik = ±1, ±2,««0 the zeros of oiz), so enumerated that x,   j > xk
for all k. Note that oiz) vanishes to a finite order at each point x,.

Lemma 4.2. There exists a function f with a periodic, positive and con-
tinuous derivative f and with second derivative f existing for all x 4 x,
i-» < k < ») such that

(4.2) j02(x)f"ix) + bix)f'ix) = -1    if x 4 xk.

Further, lim t72(x)/"(x) = 0 and lim fix)/x exists and is positive.
X—*Xfc X     —

Proof. Let

j8(x) = exp  2ÍfX -^ du]      (x. < x < *,)
lJelo2iu)     ) % 2

where e, isa point in (xj, x2). By the assumptions on b and o, ßix) <
exp{-K/|x - x2\y} iK>0,y> 0). Hence f2 ßiu)/o2iu)du < ». We define

rix)=ifX2m»>du, ,(.,)- o.
ßix) Jx      a2(u)

Clearly ißf)' = -2ß/o2, and hence

/(/    2b .i        2/   + -rf  =-—   for Xj < x < x .
or a

By 1'Hospital's rule,

lim   /'(x)=  lim   ~2P(x)/a2{x)_L_
x-»x2 x->x2 ß ix) bix-)

Similarly, limx_xi fix) = -1/bixJ.
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In the interval (x2, x,) we define fix) by the formula

/3(x) Jx      o2iu)

where ß is now defined by ßix) = exp{/*   2biu)/o iu)du] tot some e2 in the
interval (x2, x,). We define fix) uniquely in (x2, x.) by setting fix2 + 0) =
fix2 — 0). Inductively we can thus extend f and / to the whole line, preserving
the condition lim    ^ 7>(x)/'(x) = -1 and the continuity of /. From the differential
equation (4.2) for /' we deduce that lim    ^  <t2(x)/"(x) = 0. Next, /' is positive
and 277-periodic. Finally, since

fix) = fieA + f* f'iu)du =  X¿   ¡*" f'iu)du + Oil),

we have

lim   LkL'(2g)-'(0)>Q,
jç__oo     X 2î7

Assume now that (4.1) holds for all r > 0. Then we have

Lemma 4.3. / satisfies

(4.3)

f(ftit))-fiftiO))- ¿  /„' f'iftir))osirir), ftir))dws
s = l

<K f¿\Í¡irir),ftir))\ds

where K is a constant, and fjir, ft) —» 0 if r —> 0,  uniformly with respect to ft.

Note that if rjir, ft) =e 0 then this reduces to ItS's formula.
Proof. We shall apply Itô's formula to a regularization of /, and go to the

limit.
Given f > 0 and a positive integer m, let

(4.4)

/3>) = expÍ2   P -J^—du\      ix      <x<x  ),
X    J°   o2iu)+e     ) -m-    -   m

Lemma 4.4. For any x, x      < x < x  , /'    (x) —» fix) as t —» 0.
'      7     — m —     —    m'  'i,m '

Proof. First we will show that convergence holds for *__ j < x < x  . Note
that
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mo ßfiy) ío  C>    b{u)     -/ \      (   ,    ,     \(4.5) —7-r = exp { 2   I    —-du}      (x < y < x   ).
ßeix)        Fl    J*  a2(„) + f     f

If 8 > 0, ß(iy)/ßfix) -, exp Í2 /*biu)/o2iu) du} boundedly for x < y < xm - 8,
and hence

(4.6) 2/V!^-l-.2ÍV!M      U-0).
0/*) a2(y) + í J* /S(x)a2(y)

Also,
ß (x )

(4.7) = exp \ 2 J       —-V
ßt<*) F|   J«     a2(«) + e|

0   if e -» 0.

Suppose we show that, given any y > 0, there exists 8 = S(y) such that

-Cxm      ße(y)dy_<
(4.8) lim s —r-T -~- < y-

^0Jxm-S /3eW a2(y) + e

Then, by combining this with (4.6), (4.7) we conclude that lim^,, \f( m(x) - /*(x)|
< 2y. Since y is arbitrary, we get

(4.9) um fl   (x) = /'(x)      (x       <x<x  ).v    " Q ' t,m m-l m

For the purpose of proving (4.8), we may assume, for simplicity, that x = 0,

xm » 1. From (4.5),

A

where the K. are positive constants, and 9 is chosen so that biy) < 0 for 0 <

y < 1. Hence,

When e —» 0, /¿ du/ic^iu) +«)—»» and hence the second term can be ignored.
As for the first term, we have
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fl-S        du ri-S   du
™oJS    JTTT = J«    XVe^u o (u) + t o (u)

By the Lipschitz continuity of a, fg du/o iu) » oo. Hence, given any M >'0, we
can find 8 = 8ÍM) > 0 so that fle~ S du/o2iu) > M. We then have

S-h^PEir]*«*" 2M].

Hence, given y > 0, if M is chosen so that K, exp[-7<2M] < y then (4.8) holds

(with 8i-q) = £(A1)).
To prove the convergence (4.9) at x = x   _., we can write, for any S > 0,

'    (x       ) =  f  m 2 I      /• y        biu)du
«- -1 =J^-ia2(y) + fexpL ̂ m-i7wTll y''ß?v?R\?

./^-l-.Jíí'     A¿y
^m-l        a2(y) + e        L   Jx«-1 ^(») + d

+ 0(e-K/vT)+     ^
73>m ,)è(x  )

since the exponent tends to zero exponentially fast when y > x   _ , + S. If we let

FfW - 2 j*^ 6(«)/(a2(a) + e) du, we have

/'   ix     .) = fX,"-1+S -^ exp[F iy)]dy + 0(e-K/V") +       ^ \

provided S is chosen so small that biy) < 0 for xm_l < y < xm_l + 8. If we now
integrate by parts, we get

/'     ( _1_ eXP[F<{xm-l+8)]
fe,m(Xm-l>-    b{x       )+ b(x +8)

rx™-1+8      rP ( *b'{y) a , o(„-k/Vm        ßf(Xm)+ exp[F(y)J——dy + Oie       v   )+      -_—.
Jxm-l '      b2iy) ße{xm-l)b{xm)

The integrated term tends to zero by the bounded convergence theorem. Likewise

exp[Ff(x      , + 8)] -» 0 if e -» 0. Hence
*        c      TO — I

im f ix   )—_-L_-/v .).-V£'m   m_1 bix     ,) m"1
Tff— 1

lim
f
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Finally, we recall that /'    (x  ) * - l/i>(x  ) = fix  ). We have therefore completed7 ' '€,m    m m       '      m K
the proof of (4.9) for xm_ l < x < x^.

Consider now the general case, and let xm_k_l <x< xm_fe. Rewrite (4.4):

,    „ 1     \Cm-k    W      .       ßK-k*]

ytíj8f(*) LJx«-y-i «-2(y) + f   J     ßix)bixm)    ßeix)bixm_k)

sie+TnW + lIl(-IVf.
;'=1

By the previous argument, limi_.0 I£ = f (x). To estimate II1, write

, s      ßM      •> r 1 r*      ■ i    2/3 (y)(y) _ ^f   m-7   | *■ f   m-;-l       *£ '"•       Ax     .) f        i        /•*     • i    2/3 (y)      Hm"'       -—   f   m-'~1 e        dy\.
eW      L/3/*m_y> "\z-y       a2(y) + e   J

When e —» 0, the factor in brackets tends to fix _ .) (uniformly with respect to
m, j); hence it is bounded by 2 sup|/ | if e is sufficiently small (independently
of m, j). On the other hand,

ß Xx      .)
= exp

/3f(x)
r2r^-y^)_J£exp[_vvr].
L ff (a) + f    J

Hence,

Similarly,

*5
¿ //y><K »exp[-K4/Vn< — expt-K/Vn
7=1 *

i7/£ < K6 exp [-K4/Vn.      fVf < K6 exp [-K/VT].

Putting all these estimates together gives the conclusion (4.9) for x     , _, <
x < x     ,.m—k

From the proof of Lemma 4.4 we see that |/',   (x)| < C if x      < x < xi " € ,m      ' — — m —     —    m
where the constant C is independent of m. Further, for fixed x, x   , <x< x,,
as e —» 0, f'(    (x) —» fix) for any m > k, where the convergence is uniform with
respect to m. Hence, taking m = [l/e] and denoting the corresponding function

/'      by f., we conclude

Lemma 4.4'.  On any compact set of the real line, fix) —» fix) boundedly, as

e-*0.

We extend each /£(x) as a C    bounded function on the whole line. The first
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derivatives of these extended functions converge to / (x) boundedly on every com-
pact'subset of the real line.

If we define fjß) =/(0) for all «, then also /f(x) —» fix) boundedly on com-
pact subsets, as e —» 0.

We use the notation of §3, and set

$f ir, ft) = y/&ir,ft)]2+e.

Denote by (>*(*), fteit)) the solution .of (3.1) when ag is replaced by a*. Since
the equation for dr( is the same as for dr, re(<) > 0 for all t > 0. Application of
Ito's formula yields

fWit)) = fWiO)) + Z    f ' S'iAr), fteir))f'ifteir))dwsir)
s=l J0    s

+ï(r<(r>, ¿eM)/U'M)U.

When.e —»0 the stochastic integrals converge, by Lemma 4.4 , to

£ So K{Át)> ^Yi<P^)dwsir).
s

The Lebesgue integral differs from the corresponding integral, obtained upon re-
placing the o^ir, ft) by a  ift) + e, by

where ir, ft) stands for ireir), fteir)). But by the condition (4.1), this last expres-
sion is bounded by f0 J]ir(, ftfto ift^f^ift^ dr. From the differential equation for
fe we have |CT2/e"| < (f + 0^)1/^1 m\l + bfe\< Ky. Hence, the Lebesgue integral on
the right-hand side of (4.10) is equal to

/0' WAo'ift') + el/,"■+ ?(re, <pe)/; I* + 6K7 f¡ |r,(re, <pe)| «4-

for some 6, \6\ < 1. Using the fact that M(o"2 + e)/f"+ bf( = -l and taking « —► 0
in (4.10), we obtain the assertion (4.3) with rjir, ft) = 7j(r, ft) + \bir, ft) - bift)\.

Completion of the proof of Theorem 4.1. Consider first the case that (4.1)
holds for all r > 0. Since At) —* 0 if t —» oo, the condition (4.1) yields

f Jo' to^' <M«))| ds -» 0   if r - »o.
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Further, (3.6) holds for the present case (with the same proof). Hence, dividing
both sides of (4.3) by / and letting t—»», we get Umi_MOfi<fAt))/t = -1 a.s.
Recalling that limjc_(_00/(x)/x exists and is a positive number, we deduce that
lim    » <f>it)/t exists a.s. and is a negative number.

In case (4.1) holds only for 0 < r < 7, let R(r) be a C00 function, R(r) = 1 if
r<7/2, Rir) = 0 if r > 7. By Itô's formula we have

f(i<peit))Rireit)) = f(i<f>Í0))RÍÁ0))

+ t ft \f(W)R'(re<r)) %<&),<&))
s = l

+ f'fi<t>fÍT))RÍrfÍT))&Areir), <peÍT))]dwsir)

+ /0'jl  £ ®s(r(ÍT),<peÍT))]2f;i<f><ir))

+ fé(<peir))%fir), <p-\r))ÍRÍr(ir))dr

+ /0'yj£ l^r€ÍT),<peir))}2R'XAr))
(s=l

+ R'irfÍT)Wir), <ßfir))lf(icf>(ir))dr

+ /o  E ÍP'^))/;^^))^^),^))^^),^))!*.i=l

Sa T = suplí; Át) > 7/2). By Theorem 2.2, T < » a.s. If we write each /I as
f0 + fi and proceed as before, we conclude that (4.3) holds in the modified form

/(<?(,))-/(<p(0))- ¿  f^f'i<f>it))^sirir),cf>ir))dwsir).' + t

(4.11)
< K /0%Wr),rp(r))a> + C,

where C is a.s. finite valued random variable. We can now proceed as before to
show that lim^^,<f>it)/t = c a.s., c > 0.

We have succeeded in eliminating condition (4.1) in Theorem 4.1. This
proof will appear in a forthcoming paper by one of us (M.P.).

5. Angular behavior in the general case 1=2. We shall consider in this section
the general case 1=2. We first treat the case where k = 1 and G, is a closed
unit disc with center (0, 0).  If we introduce polar coordinates x = r cos <£, y = r sin <f>,
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we get the equations in (3.1) with o a, b, os, b defined as before. We assume
(Ec) ois and b¡ ate continuously differentiable near |x| m 1.
The condition (1.3) translates into o  il, ft) = 0; coupled with ib, v) =

2 bjc. = 0 on |x| m I, it implies that ¿(l, ft) = 0. Hence we may rewrite (3.1) in
the form

(5.1)

dr m ir- 1)    ¿ 7fsift)dws + ÏXft)dt   + í ¿ «/*'* + Rodt\ »

d(P =     Ç %sift)dws + b\ft)dt    +     £ 9,*»* + ®0dt

where R   = oir - l), Rn = oir - l), 0e = o(l), 0n = o(l) when r\l, and & ift),

bift), o  ift), bift) ate (2:r)-periodic continuous functions which are not neces-
sarily trigonometric polynomials.  We adhere to the notation o ift) »

12«b1 &si<p))2\*, bift) = tift).
Let y(f) = iÁt), ftit)) be the solution of (5.1) with Ko) > 1, and set x^it) =

Hi) cos ftit), x2it) = rit) sin <p(i). By the remarks of §3 (Theorem 3.1), xit) =
(x,(í), x2(i)) is a solution of the original system (1.1).

Theorem 5.1. Assume that (A)-(D) and (2.5), (2.6) TWa" with k=l, Gj =
jx; |x| < 1}. Assume also that (E ) 7>o7ds and that oiz) > 0 for all real z. Let
A = 2 f20wbiz)/o2iz) dz > 0. Then

"fe.4M-
where c is a positive constant.  7/ A < 0, í¿e conclusion holds with c negative.

The proof of. this result is entirely parallel to the proof of Theorem 3.2, and
we omit the details. It suffices to remark only that oiz) may no longer be a trig-
onometric polynomial, but this does not affect the construction of / satisfying
3(a)-3(d).

Consider next the degenerate case, and assume
(Ec) oiz) is not everywhere positive, oiz) ¿ 0, and oiz) has no zeros of

infinite order.
(E ) The condition (Ec) holds, and, for some T > 0,

t $>- <0 = £  \-S\ft)]2[l + 7,(r, ft)]        (1< r < 1 + ?)
s=l s=l

where rf.r, ft) —* 0 if r —♦ 1, uniformly with respect to ft.

Theorem 5.2. Assume that (A)-(D) and (2.5), (2.6) hold with k=l, G, =
\x; \x\ < 1]. Assume also that (Ec), (E'c) hold, and that biz) > 0 ibiz) < 0) when-
ever oiz) = 0. Then Pjlim^^, ftit)/t = c] = 1 where c is a positive (negative) constant.
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In order to treat a general domain G, we shall transform to the case of a circle.
In a neighborhood of Gj we can introduce new variables yl = (l + p) cos(2tts/L),
y2 =■ (l + p) sin(27Ts/L) where the "polar coordinates" (p, s) ate defined by

(5.2) Xj = fis) + pgis),      x 2 = gis) - pfis),

0 <s <L, 0<p<p0 and f2 + g 2 = 1; L is the length of the boundary <9G j. By
means of Schoenflies' theorem [6] we can extend this mapping to a diffeomorphism
from Gc (the complement of G) onto the set \y. \y\ > li. The stochastic differen-
tials dp, ds can be computed in the form

(5.3) dp = ¿ 7rdwT + tdt,      ¿«p = ¿ o*dwT + tdt    (<f> = 2tts/L).
r=l ,=i   r

To compute o"r» tr , £>, ¿  we compute ax¿ from (5.2) and then compare with the
expression for dx. from (1.1). After some calculation, we arrive at the formulas

¿:^(p,<p)=[/alr + ga2rV[l-p(g/--/g)]

(5-4) /2a2
-^0,rp) = (/,1+g,2)-(g-/)[    _

\      lr  2r 2r

in agreement with the formulas in case of a point or a circle (see (3.1)).

Corollary 5.3. Let oi<f>) = \^"=1ioiO, <p))2}*, bi<f>) = b(0, <f>), where 0%, t
are defined by (5.4). Then the statements of Theorems 5.1, 5.2 remain true for
the present case.

The assertion <fAt)/t —» c a.s. can be stated in the following form: Denote
by ipit), sit)) the position of the solution x(f) near the boundary dG,, where
sit) is the "algebraic" length, [if a point moves along (9G,  so that its argument
increases (decreases) by 2z7, its "algebraic" length increases (decreases) by
L.] Then sit)/t -U c' a.s., where c' is a constant.

Suppose finally that there are k disjoint sets G,, • • •, G,  as in §§1, 2.
Then, on the set where p.ixit)) —» 0 we can apply (with trivial changes) the
analysis of §§3, 4 if 1 </'<*„ and of the present section if kQ + 1 < /' < k. Thus
if the conditions of Theorems 3.2 or 4.1 are satisfied, for a particular G., 1 <
/' < &0, then <p(/)/i —» c (c constant) for almost all tu for which p.ixit)) —» 0.
Similarly, Corollary 5.3 can be applied for a particular G. (A- + 1 < / < k) on the
set where p.ixit)) —» 0.

Remark.  Corollary 5.3 extends to the case where G,  is a star domain with
piecewise C3 boundary, provided dG^ is locally convex near the vertices (so
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that Pj(x) is in C1). Indeed, let r = gift) be the equation for dG.  (we assume
that G j is a star domain with respect to the origin). Define

i
aift) = Z I*>W» «¿))]2f A>     bift) = tigift), ft)).

s = l

Note that r —» oo,

9¿Át), ftit)) - Pigiftit)), ftit)) - o,     b\At), ftit))- l\giftit)), ftit)) - o,
by Theorem 2.1 extended to the present G,  (see Remark 3, §2). Hence the

assertion of Corollary 5.3 (with the present oift), bift)) remain true; the proof
being similar to the proofs of Theorems 5.1, 5.2.
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