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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES FOR
SOLUTIONS OF STOCHASTIC EQUATIONS(1)
BY

AVNER FRIEDMAN AND MARK A. PINSKY

ABSTRACT. We consider a system of Ito equations in a domain in R, The
boundary consists of points and closed surfaces. The coefficients are such that,
starting for the exterior of the domain, the process stays in the exterior, We give
sufficient conditions to ensure that the process converges to the boundary when
t—oo, In the case of plane domains, we give conditions to ensure that the process
“‘spirals’’; the angle obeys the strong law of large numbers.

Introduction. In a previous work [4] we have investigated the behavior of
solutions of linear stochastic differential equations when ¢ — oo, The purpose of
the present work is to extend the results of [4] to nonlinear equations. Specifically
we shall consider a Markov process on R! defined by the stochastic equations

n
dxi = Z ois(x)dws + bi(x)dt (1<i<l 1<s¥< n),

Py |
x(0)=x,
1 1

together with a *'stable manifold’’ dG. The set 'G will consist of a finite number
of points together with a finite number of closed domains. The coefficients o, s
b, arte such that if the process starts on JdG then it stays forever on dG.

Our first result (Theorem 1.1) gives a set of sufficient conditions for the non-
attainability of G, starting from the exterior. If G consists of points and convex
bodies, it suffices that the normal components of the diffusion and the drift vanish
on dG; in general we need to impose an additional ‘‘convexity®’ relation between
dG, the drift and the diffusion coefficients to ensure the nonattainability of dG.

The next result (Theorem 2.1) gives sufficient conditions that x(t) — 4G
when t — . This theorem contains local stability conditions (near dG and near
o) reminiscent of the linear case [4], as well as a certain nondegeneracy condi-
tion. None of these conditions can be relaxed.
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332 A. FRIEDMAN AND M. A. PINSKY

The techniques used to prove both the nonattainability and the stability
theorems involve cdnstruction of certain comparison functions which generalize,
respectively, 7~¢ and logr, used in the linear case.

In $§3—5 we construct *‘exact’’ comparison functions to prove that when
I =2, x(¢) “*spirals’’ at a linear rate when ¢ — . (In the linear case we were
able to prove this result more directly by probabilistic methods.) Our method of
proof differentiates strongly between the cases of degenerate and nondegenerate
tangential diffusion. In §$ 3,4 we deal with the special case where G is a point;
the nondegenerate case is treated in $3, and the degenerate case is treated in S4.
Finally, the general case is treated in 3.

1. Nonattainability of the boundary. Consider a system of [ stochastic dif-
ferential equations

(1.1) dx, = 2 o, (x)dw +b (x)dt (1<ig)

s=l

where w(t),. .., w™¢) are independent Brownian motions. We shall assume
(A) The functions ois(x), bi(x) (1<i<1, 1<s <n) are uniformly Lipschitz
continuous on R’ and

1.2) lo, N + (6N <KL+ |5 (xe RY

for some constant K.

Let Gy¢-- » G, be mutually disjoint sets in RY; for 1 Sisky G] consists
of one point z, and for ky+1<j< k, G i is a bounded closed domain with C3
boundary 9G . "k G, consists of one point z, we set aG, {z ] Let p; (x) be
the distance functmn P; (x) = dist(x, G ) defined for x £ int G j and let

G €= {x; X ¢ int G]., pi(x) _<_ G} (€> 0),

>

k ~
=UG
j=l

If G is a closed domain, then p; (x) is a C? function in Gh provided ¢ is
suff1c1ently small. If G, is a point Z then P; (x) is a C* function for x £ = P

Set (a ) oo*, 0= (a ), o* = transpose of o, andletb=0 P b) Let
v= (vl,- aey "1) be the outwatd normal to dG, if G is a closed domam. We
assume

(B) If 1<h <k, then b(z,)=0, 0,(z,)=0for 1<i<l, 1<s<n If
ky+1<h <k then

(1.3 Z ayy; =0 on dG,,

1s1=l
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 333

aZ
1.4) &) +1 121 a, rg—:z 0 on 9G,.
j= i

Note that (1.3) means that 2:=1 (El. L1 GisY; )2 = 0. Hence 1%;0,01=0
Since v, =dp,/dx, on dG,, it follows that

1 dp, (x)

i=1 1S

=0(p,(x)) as p,(x) =0 (1<s<n)

Taking squares we get

! dp,(x) dp, (x ) .
(1.5) i,jzd ai,.(x) FR » ’ 0[p WP e Gb.eo)

for € sufficiently small, where C 0 is a positive constant. The condition (1.4)
implies that

( ) 1 4 azp (x) -
(1.6) 12=1 b (x) ;,'Z=l aﬁ(x)axi ,- -C,p,lx) (xe Gb.eo)

where C is a positive constant.

Suppose 0 eC!l in G P If (1.3) holds then 2 o,v;=0, ie., the vectors
T = (al yeecy "l s) are tangent to dG,. Since the funcnon 2 0isV; vanishes on
OG p» it follows that its derivative with respect to T, also vamshes on dG,, so
that

% 0 on G
22 zsa Z isé;:= on b

This leads to

1 9, 1 Ox,,
! a..-—pL=- > —l-l-vl. on acb.
o axiaxi =1 ax,.

Hence (1.4) is then equivalent to
1 1 L 92
Z .-_2-——] Vizo on aGb.
izl t 2 j=1 ax]

Inwhatfollowsweshalltake € so small that Gb o N G"O - £ & ifbir
Denote by G the complement of Uk G. Its boundary dG is the union
U,

Theorem L1 Let (A), (B) bold, and let x(t) be any solution of (1.1) with
#0) € G. Then P> 0; x4) € 3G} = 0.

~ ~
Proof. Let R(x) be a function defined in the closure of G, C 2 in G, such
that
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334 A. FRIEDMAN AND M, A. PINSKY

plx) if x€G,  (1<j<k)
a.”n RG)={ o ’
el if x| > M,

and €; <R(x) <M elsewhere; M is chosen so large that G e {x; |x] <M}. Let
V{x) = 1/[R(x))€ for some ¢> 0. Introducing

Lu=2 zl:a(x & u Zb()
u=-2— - s a + X

=1 Y 7 ax i=l

we have
—em R 1 —e~2 OR R R
LV=-er~¢! $p. { €2 08 OR _ p~e-1
R b=t 5 Tayfder DR 22— 3
(1.8) o

ij 2
Zb -—+ F 2 R;[e(e+1)g-f.%g.-- R j_l_?__]:
i ] 7

i,]

Using (1.5), (1.6) in &b,co’ if Gb is a closed domain, and the boundedness of
the functions

R L PR %
(1.9) a?.’ ox .(9x .’ R2 ' R

in G bae’ if G, isa pomt, we deduce that the coefficient of V on the right-hand
side of (1 8) is bounded above by a constant, say p,, if x€ G P For |x| > M,
the functions in (1.9), as well as & / R, are still bounded. Hence the coeffxcxent
of V in (1.8) is bounded above by some constant p, throughout the whole set G
Thus, we have LV(x) < pV() in G V{x) — o if dist(x, 9G) — 0.
Introduce the hitting time of GG

inf{t > 0; x(#) € a&‘;,
T =
oo if no such t exists.

Analogously define hitting times T, with respect to 1/p-neighborhoods of 62:"
(p =1, 2, D By the proof of Theorem 1.1 in [3] it follows that
(1.10) Ele Ty gl — 0 if p— o,
where B is the set where inf, ) R(x(:)) = 0. It follows that E{e‘”‘TxB¥ =0, i.e.,
T = % a.s. on B. This completes the proof.

Remark 1. The condition (1.3) means that the “‘radial’’ diffusion vanishes
on 9G,. The condition (1.4) is a “‘convexity”’ condition on 9G p With respect to
the diffusion matrix and the drift. It is elementary to verify that the matrix
€] 2pb/ dx 0x ) is a positive matrix on dG, whenever G, is a convex body. A
matrix (b ) is called positive if % b, x>0 for any real numbers x.] Since,

on aGb,
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 335

azpb azph
é aiiaxia_xi= § a—xiaxi(z ir ]r) ;g Ox ax " "9

we conclude that (1.4) holds whenever (b, v) > 0 and (azpb/ axiax,.) is a posi-
tive matrix; in particylar, whenever (b, v) >0 and G p is a convex body.

Remark 2. The condition (1.4) is essential for the validity of Theorem 1.1. In
fact, let y be a point on a hypersurface dG, and let V be an open neighborhood
of y. Suppose (1.3) holds on V N dG,, and

B+t B %,
b, v + a, <0 VN dG,.
’ 2 5% 1 3 Ox . ax on
~ ~
For x €V N G, denote by plx) the probability that x(¢) exits V N G by hitting
9G,, given that '{(O) = x. Then, as proved by Pinsky [7], not only iswp(x) posi-
tive for x €V NG, x near y, butalso plx) =1 if x -y, x€VNG.

2. Stability. We now turn to the question of asymptotic stability when
t — 0. As in the linear case [4], to prove asymptotic stability it suffices to con-
struct a solution of Lf <~y with certain auxiliary properties. If f(x) = ®(R(x)),
a short calculation yields

Lf(x) = YA (R(x)) + BY' (R(x)) = £

2.1)
= BAI"(R(x)) + D' (R&) R(x)] + RO (R()),
where
@-3 a ()RR
i,j
2.2) B - zb(x)0R+-za()“

3— i,j ax 6x

0= -Q&/2R)/R.

Suppose 6(r) (0 <7 <) is a continuous function satisfying

(2.3) 0(x) < 6(R(x))
with
(2.4) 0= lin:) 6r)<o, 6 =lim 6(r)<O0.

The condition 6, <0 can be realized if and only if

(2.5) fim 0Q)<0 (A<h<kh
0<,l%(x)—'0
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336 A. FRIEDMAN AND M. A. PINSKY

The condition 6, <0 can be realized if and only if

(2.6) im 0kx)<O0.

x|—0o0

Thus, if (2.5), (2.6) hold then there exists a continuous function 6(r) satisfying
(2.3), (2.4).

If (2.5) holds for ko + 1 <h <k then from (1.5) it follows that Tim(B/R) <
as pb(x) \ 0. Hence $<0 on 0G,. Combining this with (1.4) we conclude that

azp
(60} + = ,,21 a"ax o, =0 on dG, (kg+1<h<k)N
We shall need the following assumptions:
(C) Denote by G (1] > 0) the set of all points with 7< R(x) < 1/17. Then

e Tij
i,j=1

L dR IR . ~
Y afx )-—'5;_> 0 ifx€G,, V_R(x) £ 0
ij
2.7) !
Y a ()aR(X)<O 1fx€G VR(x) 0,
i.5=1 i ax x .
4] 7
where 7 is such that 6() <0 if r <7 or if r > 1/7.
(D) (i) the functions ai’.(x) are twice continuously differentiable if 0 < R(x)
<, or if R(x) > 1/9; (ii) the functions

da /x> O%a /Oxx, 3b/dx,

are uniformly H5lder continuous on compact subsets, and

9%a. 0b.
>

c, - _<c
is] - Zax ax Z l

i

a..
17

ox,
7

where C is a constant.
The following result shows that the condition (C) is satisfied whenever
(al ) is nondegenerate outside U G

Lemma 2.1. If n> 2 and (q; (x)) is positive definite for x¢ Ge’ |x| < 1/e,
where ¢ is sufficiently small, tben the condition (C) is satisfied for some choice

of R.

Proof. By the proof of the Schoenflies’ theorem [5] there is a diffeomorphism
y =f(x) of the exterior of U G; onto the exterior of U" G] in R, where
G seey G are points su:uated on the y 1-ax1s and Gk.o ALY G are balls
thh centers on the y,-axis; the center of G lies to the left of the center of
G' .. Furthermore, this diffeomorphism preserves the distance functions (to

7+l
U G and to U G ) as long as the distance is sufficiently small. Suppose for
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 337

simplicity that k=0, k = 2. Denote by (Cl’ 0,+++, 0) the midpoint of the seg-
ment connecting the center (al, 0,04+, 0) of G'l to the center (0-2, 0,-++,0) of
G'z. Construct a positive C 2 function dly?) (where y* = (}’zy see,y l» on the
plane y, = ¢, which increases radially, with grad &ly*) £ 0 if y’ £ 0, such that
a¢/ay =0, az¢/ay ay =0 (2<i,j<1) at y' = 0. Construct also a C? function
lﬁ(yl), positive for a <yl <a,, such that l//(y1 ly, -2 | for y1 near a,,
and such that ¢'(y,) ;é 0 if y, #¢, and Ylc,) = 4(0,:--, 0) ACH
¥ () <o.

We now construct a C2 positive function My) for y ¢ (G U Gy, Iyl <R,
(Ro large) which extends the functions ¢, i and the dlstance funcnon from
G; U G; (as long as the distance is sufficiently small). This function is to
satisfy

grad Ay) # 0 if y # (c}, 0500+, 0),

grad My) = 0, a%(lL 0 if G,7)#(1,1)

i%;

9? )\(y)

<0 aty= (cl,Ou- 0).
ayl

The construction of such a function Aly) can be accomplished by introducing a
family of curves y,, connecting (al’ 0,+++,0) to (az’ 0,+++, 0) and intersec-
ting the plane y, =¢, orthogonally at (cl, y*). My) is defined along Yy such
that its tangential denvauve vanishes only at y, =c,

Let B, be a ball {x: |x| <R *} containing G, U Gz' Choose R so large
that the i mage of B=B, (G uG ) under the dxffeomorphlsm y= /(x) is cone
tained in the ball {y; lyl <R } Defme R(x) = Mf(x)) for x € B. Clearly
VR(k)£0 if x€B, x £x* where [(x*) is the point (cl, 0, »++, 0). Furthermore,

as easily seen,

1 2
3 ai.(x) IR <0 at x=x%
i,3=1 ! Ox 0%,

i

Now extend R(x) as a positive C? function in R!~ (G1 UV Gz) such that R(x) =
= |x| for all x| sufficiently large, and such that V R(x) £ 0 if |x| > R* This
.completes the proof of the lemma in case kg = 0, k = 2. The proof for general
k 0 k is similar.

Theorem 2.2. Let (A), (B), (2.5), (2.6) and (C), (D) bold, and let x(t) be any
solution of (1.1) with x(0) € G. Then

P lim dist (x(l), 35) = 0}:

=00
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338 A. FRIEDMAN AND M. A. PINSKY

Proof. Suppose first that the g, (x) belong to C (RN, Let E = {xeG ;
V R(x) = 0}. E is a compact set. On E,

l
Q(x)=ﬁ (x)aR <0

| O ; 2

by the second inequal‘ity of (2.7). Hence there is a small neighborhood E of E,
whose closure is in G, such that Q(x)<0 if x€E . Letr, =7, r,=1/7. From
the first inequality of (2.7),
(2.8) ,,,% (x)ii gj >aR? if r,<RU)<ry, x £ B
where @ is a positive constant. We shall construct a function ®(r) whose second
derivative ®"(r) has jump discontinuities at the points 7,27, and is otherwise
continuous, such that

2(a) ') > 0;

2b) LB(R(K)) <~v if R(x) £ rys7,; Vv positive constant;

2(C) lim’_’o q)(r) = =o00;

2(d) r®'(r) is bounded, 0 <r < oo,

Let

2.9) p(r) = exp {L’ L+ 265/ ds}

S
and define Y{r) in 7, <7 <7, by

r o+l
ek’ (r) = %V.J‘ 2t li? ds, ¢(1)=0,
4 s

Then '(x) > 0 if ry Sr<ry, Also,

(2.10) ") + U + 20(:)/0) ' /r = = 2v/ar®.
~
On the other hand, from (2.1), (2.8) we have, for x € G

1 " 2R*O\ ¢ 2R\ ¥
Ly(R(x)) =5&[¢ + (1 T) ]< &[./, ( T)ﬁ]
where the argument in ¢, t/l', x/l" is R(x); here we have used (2.8). By (2.10) the
quantity in the last brackets is < ~2v/ (aR?). Hence
Ly(R(x)) < %Q(=20/aR?) = ~@u/aR?.

~
Application of (2.8) once more shows that Ly(R(x)) <-v for x€G, ~E If
x€E, then

P'(R(x)) + ¢' (R(x))/R(x) < 0
by (2.10) [since we may assume that 6(r) >0 if r=R(x), x € E,). Recalling that
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 339

' (R(x)) > 0, O(x) < 0 on the closure of E,, we conclude, by (2.1), that
LyR(x)) <~v <0 if x €E. Designating min (v, v) by v, we get the in-
equality Ly/(R(x)) < —v throughout G n

Define

A logr+B; if 0<r<r),
(2.11) () = {Y(n) ifry<r<ry,

A,logr+B, if r,<r<e,

and choose the constants 4 , B, so that ®(r) and ®'(r) are continuous at Ty
7, Since Y'r)>0 in r, <r <r,, the constants A, are positive. But then 2(a)
holds. The conditions 2(c), 2(d) are also obviously satisfied. Finally, 2(b) was
already proved above for r; <r<7,. Its validity for r <r, and for r >r, follows
from (2.1) and the fact that 6(r) <p <0 if r<r  orif r>7..

Let I'™(r) (m =1, 2,.-+) be a continuous function such that I"™(r) = ®" ()
if |r-r}>1/m (i=1,2), T™() is bounded independently of m, when |r —ril <
1/m, and

[PrmGar= [P 0Wdr @=r~1m, b=r +1/m; i=1,2)
a a 1 1

Define

") = ®(1) + @' (W~ D+ ] f] T™s)ds ar.
Then (9™)'(r) = ®(¢), @™)"() =®"C) if |r~r,|>1/m (=1, 2) and (D™)"()

is bounded independently of m when |r ~r.| < 1/m. Finally,
[®™(r) - ®(r)| < C/m forall r>0,,
where C is a constant independent of m. For any small §, 0 <& < 7., define
() if r>8,
q)s (T) =

log 8 + (r= 8)/8 - Y(r - 8)Y8? if 0<r<35,
and

O™(r) if r>9,
log & + (r = 8)/8 - %(r- 8)%8% if 0<r< 8.

Let R 4x) be a positive C 2 function in the whole space, coinciding with
R(k) if R(x)> 8.

Let

O7T(r) = ;

1 d u ! du
(2.12) Leu = ? i”-zﬂ (aii(x) +é.) + 2 bi(x)aTi

i axl.axj =1
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340 A. FRIEDMAN AND M. A. PINSKY

where € > 0, and let 6(x) be a matrix such that (69" = (a,; + €5,)). We can choose

of to be uniformly Lipschitz continuous on compact subsets [2] Denote by x<(7)

the solution of the stochastic equatxon (1.1) when the o,; are replaced by the 0€
Since &% (r) and Rs(x) are C? functions, we can apply It3’s formula:

DT(R (=€ () = BT(R(x(0))

(2.13) R 5(x ‘( ) .
-z f @Y Ry e 2 o (xS Ndu' + [

i,j 1

L DZ(R 8(x€ (s)))ds.

€

Our assumptions on @i b; (in particular, assumption (D} (ii)) are such that a re -
sult of Aronson and Besala [1] ensures the existence of a fundamental solution
K(x, t, y) for the uniformly parabolic operator (with, generally, unbounded coef-
ficients) L, - 9/dt Hence, letting dyu = dP x dt, we have

wlw, s); ri~ 1/m < Rg(x€(s)) < i+ 1/my, 0< s< 1}

(2.14) ¢ .
= e 1Ry €-r fet/m KeO 5, €V =0 it m— o

We used here the fact that the measure of the set {£ [R5(£) ~ 7| < 1/m} con-
verges to zero if m — . This is certainly true if 7, and 1/r, are sufficiently
small, which may be assumed.

Computing L OT(Rs(x%s))) in a manner analogous to (2.1), and using the
definitions of ®F and Ry, we find that L OF(R 5(##(s))) is bounded uniformly
with respect to m. We can then use (2.14) to conclude [by the Lebesgue bounded
convergence theorem] that, as m — o, the second integral on the right-hand side
of (2.1.3) converges in L2 to [f L ®5(Rs(x*(s))ds. Similarly, the stochastic inte-
gral on the right-hand side of (2.13) is convergent in probability to

€

v (ORSGEGD ,
T [, @Ry (s)))-—-————ol.i(x () dw,

i,j
We conclude that
q)s(R g(xe O)NE ‘DS(R 5("(0)))
(2.15) R(x€(s))
-, Dy (R5(x (s)» of S Ndw + [ LBRy(s))ds.

i,f

We now need the relation

(2.16) sup [x€(s) - x(s)] — O in probability, as € — 0.
Ossst

To verify it, notice by [2] that, as ¢ — 0,
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ASYMPTOTIC STABILITY AND SPIRALING PROPERTIES 341
(2.17) of(x) — olx) uniformly on compact sets;

here we use the assumption that 0;;€ CHR?). Hence, by a standard argument
[s, p. 52, for any T > 0,

(2.18) sup Elx€(t) - x()|2 =0 if e — 0.
0<t<T

We can write

@) - <) = [ Bl - blxlsN]ds

(2.19) +ff [0 ~ ol (N1 dus) + [ Tola€(s) = olx(s)duuts)
=A 0+ B(1) + Clo)
If we denote by p the Lebesgue measure on (0, T), then
P x M) > RIS o5 [T Ele)|2ds < 25 —0.

if R —» =, where C is a constant independent of ¢. Hence, by (2.17), for any
8>0,
(2.20) (P x ph|o(x(s)) - olx(s))| > 88 — 0 if e — 0.

We can now show that
(2.21) E [ 165N = ols¥(sN]2ds — 0 i e — 0.

Indeed, by (2.20), the integrand converges to zero in measure P x p. The inte-
grand is also uniformly integrable, since

ox(s)) = olx (s # < €1 + [#5(s)| )
and (by [5, p. 48])
E [l l6)as<c

(C constant independent of €¢). Hence (2.21) follows.
Now, for the Itd integral | é 1(s) duls) we have [5]

E sup fot 7(s)dw(s) 2 < 4E foT |f(s)|? ds.

0<t<T

Using this with f(s) = 0(%%(s)) — o(x%(s)) we get, upon using (2.21),

E sup |BMOI?—0 if e—0.
0<t<T
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342 A. FRIEDMAN AND M. A.PINSKY
Recalling (2.17), we can similarly show that

E sup lC(t)lz—'O if e >0,
O<t<T

The same assertion also holds for A (s). Hence, (2.19) gives

E sup |x(t) - =(1)]> =0 if e — 0,
0<t<T

and (2.16) follows.
From (2.16), we deduce, for a sequence {¢'},

P{x€'(s) — x(s) uniformly in s, 0< s< =1 if ¢ — 0.

Hence, by Theorem 1.1, for almost all w, if & is sufficiently small, say & < "),

then inf ___, R(x¢'(s)) > & for all ¢ sufficiently small, so that

(2.22) Im [, La®Ry&(Nds < vt
As for the stochastic integral we have, for fixed 8; if ¢ — 0 then

dR .
[} oRym = S(" &) 0, (x(s) dw’

(2.23) — [L @R s REr) 8("(5»0 () d

d
- [; ¥ RN EED g ()

in probability; for a subsequence {e"} of {¢} the convergence is a.s. Hence, if
8 is any one of the numbers 1/p (p=1, 2,+-+) then (2.17) holds for all w€ Q,
where P(Q )-— 1, 9, mdependent of p, where ¢ varies over a suitable sequence

In the defmmon of 8"(w) given above we can take the values of 8" to be
1/p (p=1, 2,--+). Denote by A, the set of points @ with & o) = 1/p. 1f
wEA,N Q,, then (2.22) holds thh 8=1/p, and (2.23) holds with & =1/p
(where the convergence is at the point ). Since P[( Up A p) NQyl=1, we con-
clude that a.s.

(226 RGN - REON < T [ FruN EZD

i,j l

j(x(s))dwi - vt

In deriving (2.24) we have assumed that o, ;€ c 2(Rl) If this assumption is
not satisfied, we approximate the 0. umformly by au which belong to C ARY)
and for which the assumptions (A)—(D), (2.5), (2.6) hold. In view of (D)(i), we
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can take o, 5 =04 if R(x)>14+1/n or if R(x) <7/2. If we apply (2.24) to o
(with x(2) = x%()) and take k — , we obtain (2.24).
We can now easily complete the proof of Theorem 2.2. First,

¢ dR 2 ’ dR JR
Z | ZYRDTo, )| - @R e s & 5

; .
7 i

is a bounded function in G. Hence by Lemma 1.3 of [3]

1 t gt dR(x(s)) .
- IZ"J; D(R(s)) o, o, (x(sNdw’ — 0

a.s. as t — oo, From (2.24) we then conclude that

2.25) I MR
o0

This implies that ®(R(x())) — =00 if ¢ — 0. Hence, R(x(8)) — 0 if t — o a.s.
This completes the proof of Theorem 2.2.
Remark 1. The inequality (2.25) implies that

dist (x{¢), 3G) < Ae~V't
forany 0<v'<v, where A is a random variable.
Remark 2. The differentiability assumptions made in (D)(ii) can be weakened,
if we redefine L, (see (2.12)) by

I
E;— Z x)+ b, ) + Z b‘(x)—

' 3. ax pe)

whete the aﬁi, bf. are smooth functions that converge to @ b; in an appropriate
manner.

Remark 3. Theorems 1.1, 2.2 can be extended to the case where some of the
domains G, (ko + 1< b < k) have piecewise C> boundary and are convex. For
simplicity take G=G,, k5 +1 =k =1. We assume

(G) G is a bounded, closed and convex domain with piecewise c? boundary 9G.

By 9G being piecewise C3 we mean the following: G can be triangulated
by means of C3 surfaces (with boundary) I 1-j.i
Fo,i being points, i.e., vertices of dG. One can then show that the distance
function R(x) if C! and piecewise C? in Gt,0 (for some e0> 0). The set of dis-

of dimension I-j, 1< < &

continuities X of the second derivatives of R(x) divides G €o 1! into regions Ql—; i
bounded by some hypersurface of 2, by the outer boundary of G‘ o and by I" 1-ji*
We replace the condition (B) by

(B) b=0, 0= 0 at the vertices I' . Oneach I';_; , (1 <7< D) (1.3), (1.4)
hold for all the normals v w I';_. . pointing into Q;_; ..
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Theorem 1.1'. Let (G), (A), (ﬁ), (D) bold. Then the assertion of Theorem 1.1

is valid,

Proof. For any small 8> 0, let R5(x) = R(x) if R(x) > 8, and Ry(x) is posi-
tive C! and piecewise C? in R\ Let R%(x) be a mollifier of R 4(x), obtained by
convolving R 4{x) with P /m(x), where pE(x) =0 if |x| > e pe(x) =
y exp [e2/(|x]2 - 2] if x| <e [pf{x)dx = 1. One can verify that R(x) — R4x),
D _R7(x) — D _Ry(x) forall x, and D2R7(x) — D2R4(x) if R(x)> 3, x ¢ Z.
Further, lDf‘ R%(x)] <C, C constant independent of m. We now modify the proof
of Theorem 1.1. First we apply It’s formula to e ~“VZ(x"(#)) (x7(¢) is the so-
lution of (1.1) with ¢ replaced by ¢”; 0™ (0™)*= (az.]. + naij) as in [3]. Then we
let m — oo, using the fact that L. has a fundamental solution. Finally we take
17 — 0. This leads to (1.10).

Theorem 2.2 also extends to the case where (G) holds and (B) is replaced by
(B). In the proof we use (2.13) with R replaced by RT.

Note that the convexity of dG is actually required only in a neighborhcod of
the set where the boundary is not C> (so as to ensure that R(x) is in C!).

Remark 4. The conditions (2.5), (2.6) and (C) are (essentially) necessary
for the validity of the assertion of Theorem 2.1. In fact, if in (2.5) the inequality
is reversed at G, ¢ , consisting of one point] then pl(x(t)) may not converge to
0 a.s. (compare the linear case [3]). A similar remark applies to (2.6). Finally,
regarding (C), if for instance bi =0, g, =0 in an open set Q outside G, then
x(¢) will not leave €, so that the assertion of Theorem 2.1 will not hold. This
remark applies also when the bi do not vanish identically in €, but there is an
integral manifold of % = b(x) in Q.

Remark 5. The condition (D) (ii) was needed only in order to ensure the
existence of the fundamental solution K (x, ¢, s). If ai].(x), b,(x) are bounded
functions then, since (A) holds, the existence of the fundamental solution follows
from the general theory of parabolic equations [3] (without assuming (D) (ii)). How-
ever, we do not consider here the case of bounded ;i b,, for the condition (2.6)
cannot hold in this case.

Application. Let L be the elliptic operator associated with the diffusion
process (1.1), and consider the Cauchy problem

% L ifxeRl >0,

(2.26) o
u(0,.x) = f(x) if x € RL

Suppose f(x) is continuous and bounded. Then a solution of (2.26) is given by
ult, x) = Ef(£ (1)) where fx(t) is the solution of the stochastic system (1.1) with
the initial condition £ (0) = x. Set c;= /(zj) if 1 <j<kgy, and suppose f= c;
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(c]. constant) on 6G1. if ko +1 <7<k Then, under the conditions of Theorem 2.1,

& .

(2.27) llim ulty x) = Z:l c,.p].(x) (Pj(x) >0, i pi(x) = 1)
-£—00 j= j=1

where p].(x) is the probability that pf(fx(t)) —0as t— o0,

The assumption (D) made in Theorem 2.2 is superfluous. Indeed, this condi-
tion was used only in proving (2.24). As indicated in a forthcoming paper by one
of us (A.F.), (2.24) can be proved (more simply) without assuming (D). This is
also a consequence of a new treatment of stability problems by one of us M.P.).

The condition (2.6) made in Theorem 2.2 can be replaced by a weaker con-
dition, e.g.

(*) B+ AR/R<-a/R* for some A>-1.
Indeed, just modify the definition of ®(r) in (2.11), taking

) = A2r1+)‘+ B,,

and observe that () implies that L&(R) <-v if R(x) is large (v positive con-
stant). Further refinements of (2.6) will appear in a forthcoming paper by one of
us (M.P.).

3. Angular behavior in the case /= 2; case of a point. We now consider
the case [ =2 and propose to study the rotation properties of x(t). We introduce
polar coordinates (r, ) by x =7 cos ¢, y = r sin ¢. The stochastic differentials
dr, d¢ may be formally computed by

- L L
dr=r.dx+1.dy+ Yir, a;dt + Tey@129t + /zryyazzdt,

de = ¢xdx + ¢ydy + l/Zd’x’:al ldt + ¢xya12dt + %(ﬁyyazzdt.
Noting that

¢x=_sin¢, & =cosqS

’

r y r
2sin¢ cos ¢ sin¢ ~ cos’e 2sin¢g cos ¢
Prx = ™ by = P byy = Y A

7, =COs P, r, = sin b

sin’¢
xx - 5 ' xy

sin ¢ cos ¢ cos’¢
=‘_"9 Lg ’

Yy r

we have

(3.1) dr= f: 3's(r, s + blr, odt, do= Z": %s(r, Pldw® + ?;(r, @)dt
s=1

s=1
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where

'b‘s(r, @) = 0, ,cos d+0, sind,

Ur, @) =b, cos ¢ + b, sin d + Z—i-(a(x))tl, X"),

N sin
as(r’ ¢)=_ r¢a +COS ¢0‘

1s r 2s?

r,qS) Mbl —b, -z(a(x))t,h),

here A = (cos ¢, sin @), A = (~sin ¢, cos ¢) and (alx)y, v)=2 aij(x)"i"i
(=5 1,)s v= v, v,)). We now assume
e, (x)

2 r3
0, &)=Y o x.+e (x), —— =0 if |x| =0,
is b is"i " tis ]

E) ()
bfx) = Zb’x +¥(x), — —0 if x| —0,
j=1 |«

where oi:s, b:: are constants.
This implies that the stochastic differential equations (3.1) have the form

dr = r[i 3's(¢)dw‘ + 'I:(gb)dt] + Lﬁ R du® + Rodt] .
s=1 =1
= [ > 5's(qf>)dws + ‘I:’(qS)dt] + [ Y 0 dw® +®Odt]
s=1 s=1

where R =o0(r), ®_=0(1) (0<s <n) when r — 0, uniformly for 0 < ¢ < 2.

Now let y(t) = (r(¢), ¢(t)) be the diffusion process defined by the solution of
the stochastic differential equation (3.1) with r(0) > 0. By the method used to
prove Theorem 1.1, the solution never leaves the half-plane (0, ) x (= o0, s0).
Define x(t) = (x,(¢), x,(t)) where x,(t) = r(¢) cos $(t), x,(t) = r(¢) sin ¢(¢). By the
method used to prove Theorem 2.1 of [3), we deduce

Theorem 3.1. {x(¢), t > 0} is a diffusion process which can be obtained as a
solution of (1.1).

This theorem allows us to study the algebraic angle ¢(t) as one component
of a Markov process, rather than as a multivalued function of x(z). In what fol-
lows we shall compare ¢(t) with the solution of the single stochastic equation

(3.3) dp = olp)dw + blp)dt
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olp) = /21 F @),  bg) = b

Theorem 3.2. Assume that (A)—(D) and (2.5), (2.6) bold with k = ko =1,
G, = {0}, Assume also that (E) holds and that o{z) > 0 for all real z. Let

where

A= 2 blz) dz > 0.
0 02(2)
Then
(t)
(3.4) P {lim ‘ft.‘ - c} -1
{—00

where ¢ is a positive constant. If A <0, the conclusion bolds with ¢ negative.

Proof. For the proof, it suffices to find a fuaction { such that
3(a) Yo (P)f" (B} + (PN (B) = 1 (o0 < p < ),
3(b) limy o, f(#)/é = 1/c (c positive constant),
3(c) {' and " are bounded,
3(d) ' is bounded below by a positive constant.
Indeed, if { is such a function, then by Ito’s formula,

gD = f$O) + 3 [ 5.1 )" (@) dw®
(3.5) 1 :
+ fo‘ [7 > @6, N2["() + B, ¢)/'(¢)]dr~.
Since I’c}’s(r(l), &))" ()] < const, Lemma 1.3 of [3] gives

(3.6) tim £ [ T F,00 @) @ =0 ass.

t—00

We now consider the integrand of the second integral on the right-hand side
of (3.5). Given €>0, let 7, >0 be such that

‘i Gl - o) <o (B d)- BB <

s=1

for 0 <r <ry. Let T =supit>0; r(e) > ro}. By Theorem 2.2, T <= a.s. For
t>T, we have by 3(a)

‘;- 5 360 SN0 + Tke), (30 - 1) < 26K

where K is a common bound on f " and f", given by 3(c). Combining this with
(3.6), it follows from (3.5) that
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:;/(‘75(’)) S1+2K,  lin @t(_‘)_) > 1-26K.

This implies that a.s. lim,_ . f(¢(t))/t = 1; in particular, ¢(t) — o if £ — oo
Invoking condition 3(b), we then get

lim $() _ - lim _$)_ f(g(2))
oo £ pef (¢>(t)) t

which completes the proof of the theorem, subject to the construction of f.

——— =y

To construct f, let
* b) = 26@),
B = exp 2 [ :¢ wh 10 f7 o L °°2/’8<§>

Clearly [ satisfies 3(a). Since A >0 we may write

2 fx bz) dz=2AE’1‘?+m(x)

0 0,2(2)
where
x={x/2nl2m u(z) x x
m(x)=2 fo —‘;2—(—2—)-d2—2A(Zr - ?7])
is a 2m-periodic function. Thus B(x) = exp{Ax + m(x)} (A = A/n). Hence we have
' B(z) x expiAz + m(z) - Ax — m(x)}
(x) = — dz
[ * B( ) f o0 2( ) —o00 02(2)

3.7)

(u=x~2)

foo expi-Au + mx = u) — m(x)} d
o*(x - u)

Denote the last integral by G(x). Since m and 0? are 27-periodic, the same is
true of G(x). We conclude that

* G(z)d
lim ,-:-(i‘-)~ lim fl——;-: 1 G( )dz.

smoo X x—00 2r Jo
This proves 3(b). The condition 3(c) follows immediately from (3.7) and the dif-
ferential equation 3(a). Finally, condition 3(d) follows from the positivity of
/() for any x (by (3.7)) and the asymptotic relation (3.7), noting that the inte-
gral on the right (denoted above by G(x)) is both 27-periodic and positive func-
tion. Having proved 3(a)—-3(d), the proof of Theorem 3.2 is complete.

4. Case of a point, continued. In this section we continue the analysis of
§3 in case the condition o(z) > 0 imposed in Theorem 3.2 is not satisfied, i.e.,
in case the angular diffusion is degenerate. We shall need the condition:

(E’) The condition (E) holds, and, for some € > 0,
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@1 3 B, 0 - z FE@PL+ i)l (0<r<?
s=1

s=1

where 7(r, ¢) — 0 if 7 — 0, uniformly with respect to ¢.

Theorem 4.1. Assume that (A)-(D) and (2.5), (2.6) bold with k = ky=1,
={0}. Assume also that (E') bolds, that o(z) £ 0, o(2) is not everywhere
positive, and that b(z) > 0 (b(z) < 0) whenever o(z) = 0. Then

¢(t) } -1

——=cC

l—wo
wbhere ¢ is a positive (negative) constant.
Proof. It suffices to prove the theorem in case b(z) <0 whenever o(z) = 0.

Denote by x, (k= 1, £2,+++) the zeros of o(z), so enumerated that Xee1> %
for all &. Note that o(z) vanishes to a finite order at each point X

Lemma 4.2, There exists a function [ with a periodic, positive and con-
tinuous detrivative [ and with second derivative [* existing for all x # x,
(=00 < k < o) such that

(4.2 L") + B W =1 if x4 3,

oo [/ exists and is positive.

Further, lim,_, ) o:x)f"(x) =0 and lim
Proof. Let
x blu)

1 0%(x)

B(x) = exp Z{I du} (x, <x<x)

where e, is a point in (x, x,). By the assumptions on b and o, B(x) <
expl-K/|x - x,]|7} (K> 0, y > 0). Hence 172 Blw)/0*(w) du < 0. We define

. 1 *228() _
/(x)_BG) J; .(u)du, fle))=0.

Clearly (Bf')' =-2B/0?, and hence

n 2b 2
ff+=f'=-= for x, <x<x,
TR T2
By I’Hospital’s rule,
2
lin )= lim ZBEVCD 1
%%, X% o B'(x) b(xz)
Similarly, limx_.xl f(x)=-1/ b(xl).
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In the interval (x,, x,) we define f'(x) by the formula

1 1% ZB(u)
re= g b E g

,

where 8 is now defined by B(x) = exp{f o 26(u)/0*(u) du} for some e, in the
interval (x,, x,). We define f(x) uniquely in (x,, x,) by setting flx, +0) =

/(x2 - 0). Inductively we can thus extend f' and f to the whole line, preserving
the condition l1mx_m b(x)f'(x) = =1 and the continuity of f. From the differential

equation (4.2) for [’ we deduce that lim_, 02 (x)f"(x) = 0. Next, f' is positive
and 2n-periodic. Finally, since

[x/27]
[ =fle)+ [* 'wdu= fz 7" (Wdu + 0(1),
€1

we have
/(x) f(2m) - /(0)

x—._oo x 27

Assume now that (4.1) holds for all > 0. Then we have

Lemma 4.3. [ satisfies

FB) - [ BN~ 3 [ 1 (G0, SN 4. ¢
s=1

4.3) t
<K [ 1), ¢ ds

where K is a constant, and 17(r, ) — 0 if r — 0, uniformly with respect to .

Note that if 7{(r, ¢) = 0 then this reduces to It5’s formula.

Proof. We shall apply It3’s formula to a regularization of f, and go to the
limit.

Given € > 0 and a positive integer m, let

Blx) = exp{ f bla) du} (x_ <x<x )

o2 u) + €
4.4
0 fi (x)= L [ *n 2B d ﬁe(xm)]
o Bx) ETR y + oy .

Lemma 4.4, Forany x, x__<x<x_, /é'm(x) — f'(x) as € — 0.

Proof. First we will show that convergence holds for x, | <x <x_. Note
that
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@.5) B(y) { [ d} k<y<x )

2(u) +€

If >0, B(y)/B{x) —expi2 J26(w)/0Mu) du} boundedly for x<y < x, =8,

and hence
X - ﬂ( ) -8
e 2B [T B ()
B se T B@oy)
Also,
Bc(xm) *n blu)du

. = "'"0 i - U,

4.7) Bc(") ex g T 6} if e—0

Suppose we show that, given any y > 0, there exists 8 = 8(y) such that

= = B dy
“8 =0 7 %,,=8 B o®y) +e ™

Then, by combining this with (4.6), (4.7) we conclude that Tim o | fe m(x) f'(x)]
< 2y. Since y is arbitrary, we get

4.9) lim /; =1 & g <x<x ).
€—0 " m m m

For the purpose of proving (4.8), we may assume, for simplicity, that x = 0,
% = 1. From (4.5),

ﬁe(y) 26(u)
B~ ‘Pg[f fa]( 2(u)+€) ”i
2b(u) y du
K; exp[ ey . edu] <K, exp[—-K2 fe —————az(u) " e]

where the K are positive constants, and 0 is chosen so that b(y) <0 for 6 <

y < 1. Hence,
du
% B dy 1 exp[K u (u)+€]
%=? Blx) ) +e” tJ1-8 o*(y) + €

1-5 du 1 du
= K,{exp - exp|-K, —-]2.
N

When € — 0, [} du/(o*(u) + € — = and hence the second term can be ignored.
As for the first term, we have
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f 1-8 du fl-S du
8 6 27\

“‘° * () + € oX()

By the Lipschitz continuity of o, [} du/0?(u) = . Hence, given any M >'0, we
can find 8 = §(M) > 0 so that [5~% du/0%(w) > M. We then have

J— 1-8
lim exp [ fa du ] < exp[-K Ml

€0 0%(u) + €

Hence, given >0, if M is chosen so that K, exp[-K,M] <y then (4.8) holds
(with 8(p) = 5(M).

To prove the convergence (4.9) at x =% __,, we can write, for any 8> 0,
m y b(u)du Be(x )

em m—l f 2 exp[fo T d)'+—'———( ’;( )
m-1 0 (y +€ m=-1 0°(u) + Blx,, _)b\x,

x4 2 ,  bwdu
= exp| 2 dy
fxm-l o*y) + € Lm-—l o*u) + ¢

Bf(xm)
B, o)

+ 0(e” K/\/?)

since the exponent tends to zero exponentially fast when y 2 x__, + d. If we let
Fe(}') =2 fzm-l bu)/(o %) + ¢) du, we have

FX(y) T B
; ~K/VE€y, ___€m
S exp (F 9]y + Ole )+ BG _btx )

. xm_l +3
ft’.m(xm-l) = fx
m=-1

provided 8 is chosen so small that b(y) <0 for x,_1Sy<%,_,+0. If we now
integrate by parts, we get

1 explF(x, _; +9)]

)t blx__, +0)

/"”’(x’""l) B -b(xm -1

Blx )

xm_l+8 b'(y) -K/\/'e-
+ fxm—l exp[F ‘(y)]-bz—(y—) dy + Ofe )+ ﬂ————e(xm-l)b(xm)-

The integrated term tends to zero by the bounded convergence theorem. Likewise
exp[F(x_ _,+8)] — 0 ife — 0. Hence

)

B U s R

li
1m /€ P
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Finally, we recall that f; (x )=-1/b(x ) =f(x ). We bave therefore completed
the proof of (4.9) for x, _, <x<x .
Consider now the general case, and let ¥, _, _,<x<x__,. Rewrite (4.4):

' 1 *m-k 28 s(y ) B e(xm -k
x)= —— —_—dy 4 —————
fem™)= 5133 [fx TP

o*(y) + € mek

LIS | [ *mei Zﬁe(y) d] + Be(xm) _ ﬁe(xm-k)
PEBO i T we ] B B

LI
=ler 3 1P M= 1V,
,=

By the previous argument, lim = f'(x). To estimate II’ write

€—0 E

19 Pt [ [Tt T
B LBx, ) Fmei ) re

When € — 0, the factor in brackets tends to f' (xm_].) (uniformly with respect to

m, j); hence it is bounded by 2 sup|f'| if € is sufficiently small (independently
of m, j). On the other hand,

‘8;(;:)—]) = exp[ f m=i = :’:;‘1 €du:l <expl-K /\/—]
Hence,
i II?)< KS" exp[—K4/\/:]< 52 exp[—K4/\7:'-].
=t T T
Similarly,

HI < Kgexp[-K,/\E), IV, < Kg expl-K/Vel.

Putting all these estimates together gives the conclusion (4.9) for x_,_, <

x<x .

I:"nro; the proof of Lemma 4.4 we see that Ifle'm(x)| SCifx_ <x<x,
where the constant C is independent of m. Further, for fixed x, x_, <x <x,,
as € — 0, f;.m(x) — ['(x) for any m > k, where the convergence is uniform with
respect to m. Hence, taking m=[1/¢] and denoting the corresponding funttion

/é’m by /t',, we conclude

Lemma 4.4'. On any compact set of the real line, fé(x) — f(x) boundedly, as
€ —0.

Ve extend each f(x) asa C 2 bounded function on the whole line. The first
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derivatives of these extended functions converge to f'(x) boundedly on every com-
pact’subset of the real line.

If we define {,(0) =/(0) for all ¢, then also f(x) — {(x) boundedly on com-
pact subsets, as € — 0.

We use the notation of §3, and set

%e(ﬁ ¢) = VE§ (f,¢)]2 + €e

Denote by ((2), ¢%(#)) the solution of (3.1) when 3‘ is replaced by 0‘ Since
the equation for dr° is the same as for dr, () >0 for all £>0. Applxcatxon of
1t6’s formula yields

14650 = 150D + i [ L3650, SN (N aw)

s=1

(4.10) f . g 3 2 BG40, NI (B°()

<3040, ¢‘(r))f€'(¢‘(r))2 dr.

When .¢ — 0 the stochastic integrals converge, by Lemma 4.4, to
3 [ %60, @ (@) du).
s

The Lebesgue integral differs from the corresponding integral, obtained upon re-
placing the &(r, ¢) by F 4 (P) + ¢ by

) ~ "
}; [, B2, ) - FPY (P ar,

where (7, ) stands for (+(r), ¢°()). But by the condition (4.1), this last expres-
sion is bounded by [§7(, ¢‘)02(¢‘)/Z(¢‘) dr. From the differential equation for
f¢ we have |02/:| <le+ az)lf:I = |1+ 5] <K,. Hence, the Lebesgue integral on
the right-hand side of (4.10) is equal to

[ 1405 + €lf7 + B*, )2 Var + 0K, NI

for some 6, |0] < 1. Using the fact that %(o? + "+ bfg=-1 and taking ¢ — 0
in (4.10), we obtain the assertion (4.3) with 7(r, ¢) n(r, é) + |b(r, &) - ().

Completion of the proof of Theorem 4.1. Consider first the case that (4.1)
holds for all 7> 0. Since ft) — 0 if ¢ — o, the condition (4.1) yields

L[ Intrs), (D] ds — 0 if £ —on
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Further, (3.6) holds for the present case (with the same proof). Hence, dividing
both sides of (4.3) by ¢ and letting ¢t —o, we get lim, . f((1))/t=-1 a.s.

Recalling that lim _,__f(x)/x exists and is a positive number, we deduce that

lim,_,,, (2)/¢ exists a.s. and is a negative number.

In case (4.1) holds only for 0 < r< €, let R(r) be a C* function, R(r) = 1 if
r<e/2, R(r) = 0 if 7> €. By Itd’s formula we have

14BNRED) = £ HONRHO)
. zl L USSR 6N 2,650), ¢
+ [RGB 66, SN du()
R fotgli 21 B (), /)

+ (1SN, ¢‘(r»§ RGS()) dr

n

f 32 G (), N2 R"(S))

+ R' GO, ¢f(r»$ 16N ar

v [ 3 RGOS0, SN, SN,
s=1

Set T = suplt; A1) >&/2}. By Theorem 2.2, T <o a.s. If we write each [} as
f ot f ! and proceed as before, we conclude that (4.3) holds in the modified form

CORITORS M O LOEO PR

(4.11) ,
<K [ aldn), gt + €,

where ‘C is a.s. finite valued random variable, We can now proceed as before to

show that lim,_,  $e)/t=c as., c>0.
We have succeeded in eliminating condition (4.1) in Theorem 4.1. This

proof will appear in a forthcoming paper by one of us (M.P.).

5. Angular behavior in the general case I =2, We shall consider in this section
the general case /= 2. We first treat the case where k=1 and G, is a closed
unit disc with center (0, 0). If we introduce polar coordinates x =7 cos ¢, y = sin ¢,
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we get the equations in (3.1) with ?s, z, 3’5, 2‘ defined as before., We assume
(E,) 0,, and b, are continuously differentiable near |x| = 1.
The condmon (1 3) translates into & (1, &) = 0; coupled with (b, v) =
2bx,=0 on |x| =1, it implies that b(l, &) = 0. Hence we may rewrite (3.1) in
the form

dr=(r-1) [ 2 Y(p)du® + 3(¢)dt] + [i R dw® + Rodt] R
s=1

s=1

- [ 3 ¥ (@) + 2’(¢)d:] + [ 3" 8 dus +®°dt]

where R = o(r— 1), Ry=olr=1), @_=o0l1), ) = o(1) when r\1, and & (),
b(qS) (qS), b(¢) are (Zﬂ)-penodlc continuous functlons which are not neces-

(5.1)

sanly trigonometric polynomals. We adhere to the notation o(¢) =
L@ (N, b = Bl
Let y(t) (H2), (1)) be the solution of (5.1) with {0) > 1, and set x(s) =
r(¢) cos pl1), x,(t) = H¢) sin ¢(2). By the remarks of $3 (Theorem 3.1), t) =
(xl(t), xz(t)) is a solution of the eriginal system (1.1).

Theorem 5.1. Assume that (A)—(D) and (2.5), (2.6) bold with k=1, G,=
{x; |x| < 1} Assume also that (E ) holds and that o(z) > 0 for all real z. Let
A=2 fg"b(z)/az(z) dz > 0. Then

P, 5 -} -

where ¢ is a positive constant. If A <0, the conclusion holds with ¢ negative.

The proof of this result is entirely parallel to the proof of Theotem 3.2, and
we omit the details. It suffices to remark only that o(z) may no longer be a trig-
onometric polynomial, but this does not affect the construction of f satisfying
3(a)-3(d).

Consider next the degenerate case, and assume

(Ec) o(2) is not everywhere positive, o{z) # 0, and o(2) has no zeros of
infinite order.

(E:_) The condition (E ) holds, and, for some € >0,

S B =3 BOPU s  U<r<lsed
s=1 s=1

where 7{r, $) — 0 if r — 1, uniformly with respect to ¢.

Theorem 5.2. Assume that (A)—(D) and (2.5), (2.6) hold with k=1, G,
{x; |x] < 1}. Assume also that (E BR (E' o) hold, and that (z) >0 (B(2) < 0) wben-
ever 0(z) =0. Then Pilim, ¢(t)/ t= c} = 1 where c is a positive (negative) constant.
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In order to treat a general domain G, we shall transform to the case of a circle.
In a neighborhood of G, we can introduce new variables y, = (1 + p) cos(2ms/L),
Y, = (1 + p) sin(27s/L) where the **polar coordinates (p, s) are defined by

(5.2) xy =) +pgls),  x,=gls)-pfls),

0<s<L,0<p<Zp, and f2+82=1; L is the length of the boundary JG,. By
means of Schoenfhes theorem [6] we can extend this mapping to a d1ffeomorph1sm

from G¢ (the complement of G) onto the set {y: |y| > 1}. The stochastic differen-
tials dp, ds can be computed in the form

n ~ ka i
(5:3)  dp=Y ¥duw +bdt, dp=3 Fdu +bdt (¢=2as/L)
r=1

r=1

~
To compute & 2 g", b, ? we compute dx; from (5.2) and then compare with the
expression for dx i from (1.1). After some calculation, we arrive at the formulas

=80, ¢ =0y, + 40, VL - plaT - o)

G-4) 20%' 201 r02 14 f i

L
=500, ) = (b, + 35) -G - /) ,
2m ¢ } 1 (g [ 017027 Eogr g.

in agreement with the formulas in case of a point or a circle (see (3.1)).

]
Corollary 5.3. Let olg) = {27 (& (0, p)21%, (@) = 50, ¢), where &, &
are defined by (5.4). Then the statements of Theorems 5.1, 5.2 remain true for
the present case.

The assertion ¢(2)/t — c a.s. can be stated in the following form: Denote
by (p(¢), s¢)) the position of the solution x(r) near the boundary 6G,, where

s(z) is the *‘algebraic’’ length. [If a point moves along dG, so that its argument
increases (decreases) by 2w, its ‘‘algebraic’’ length increases (decreases) by
L.] Then s(t)/t 2 ¢’ a.s., where ¢’ is a constant.

Suppose finally that there are k disjoint sets G,,+++, G, as in $1, 2.
Then, on the set where P; (x(2)) — 0 we can apply (with tnvxal changes) the
analysis of $§3, 4 if 1< i <k, and of the present section if ky+1<j<k Thus
if the conditions of Theorems 3 2 or 4.1 are satisfied, for a parnculax G 1<
i< ko, then ¢(t)/t — ¢ (c constant) for almost all @ for which P; (,x(t)) — 0.
Similarly, Corollary 5.3 can be applied for a particular G (k +1 < i <k) on the
set where p, (x(2)) — 0.

Remark. Corollary 5.3 extends to the case where G ; is a star domain with
piecewise C3 boundary, provided dG, is locally convex near the vertices (so
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that pl(x) is in C1), Indeed, let r = g() be the equation for dG, (we assume
that G, is a star domain with respect to the origin). Define

n %

Note that ¢t — o,
¥.(0), B0 - S, ¢ — 0, Hrle), $(00) = Belgse)), $(e) — 0,

by Theorem 2.1 extended to the present G, (see Remark 3, $2). Hence the
assertion of Corollary 5.3 (with the present o{¢), b(¢)) remain true; the proof
being similar to the proofs of Theorems 5.1, 5.2.
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