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The time-asymptotic linear stability of pulsatile flow in a channel with compliant walls is
studied together with the evaluation of modal transient growth within the pulsation
period of the basic flow as well as non-modal transient growth. Both one (vertical-
displacement) and two (vertical and axial) degrees-of-freedom compliant-wall models are
implemented. Two approaches are developed to study the dynamics of the coupled fluid-
structure system, the first being a Floquet analysis in which disturbances are decomposed
into a product of exponential growth and sum of harmonics while the second is a time-
stepping technique of the evolution of the fundamental solution (monodromy) matrix.
A parametric study of stability in the non-dimensional parameter space, principally
defined by Reynolds number (Re), Womersley number (Wo) and amplitude of the applied
pressure modulation (Λ), is then conducted for compliant walls of fixed geometric and
material properties. The flow through a rigid channel is shown to be destabilised by
pulsation for low Wo, stabilised due to Stokes-layer effects at intermediate Wo while
the critical Re approaches the steady Poiseuille-flow result at high Wo and that these
effects are made more pronounced by increasing Λ. Wall flexibility is shown to be
stabilising throughout theWo-range but, for the relatively stiff wall used, is more effective
at high Wo. Axial displacements are shown to have negligible effect on the results
based upon only vertical deformation of the compliant wall. The effect of structural
damping in the compliant-wall dynamics is destabilising thereby suggesting that the
dominant inflectional (Rayleigh) instability is of the Class A (negative-energy) type.
It is shown that very high levels of modal transient growth can occur at low Wo and
this mechanism could therefore be more important than asymptotic amplification in
causing transition to turbulent flow for two-dimensional disturbances. Wall flexibility
is shown to ameliorate mildly this phenomenon. As Wo is increased modal transient
growth becomes progressively less important and the non-modal mechanism can cause
similar levels of transient growth. We also show that oblique waves having non-zero
transverse wave numbers are stable to higher values of critical Re than their two-
dimensional counterparts. Finally, we identify an additional instability branch at high
Re that corresponds to wall-based travelling-wave flutter. We show that this is stabilised
by the inclusion of structural damping, thereby confirming that it is of the Class B
(positive-energy) instability type.

1. Introduction

Studies of the stability of a modulated unsteady base flow over a rigid wall date back a
number of decades while in recent years attention has been given to the stability of steady
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base flow through a compliant channel. Potential applications of these fundamental
systems range from the enhancement of heat-mass-momentum transfer through the
destabilization of an otherwise stable flow through to skin-friction drag reduction if the
modulation or the fluid structure interaction (FSI) has a stabilizing effect on the base flow.
The present work combines these hitherto separate strands of investigation to analyse the
stability of modulated flow through a compliant channel. Clearly, the present system has
applications in both engineered and biomechanical systems, the latter in consideration
of blood flow through small vessels wherein the unsteady base flow is laminar.
The earliest comprehensive stability study of a modulated base flow through a rigid

channel is the Floquet analysis of Kerczek & Davis (1974) and was summarised by Davis
(1976). It was shown that the Stokes layer always has a stabilizing effect on the Tollmien-
Schlichting waves (TSW) since a disturbance decays faster inside the Stokes layer than it
would in a fluid with zero base flow wherein only viscous dissipation is rate-determining.
In the latter paper it was shown that the most unstable part of the flow was outside
of the Stokes layer. However, it was also recognised that the highly inflectional velocity
profiles during parts of the base-flow cycle had a destabilizing effect but only when the
modulation frequency was small so that growth within the cycle occurs on a sufficiently
rapid scale to outweigh the time-varying change of the base state.
Later work by Kerczek (1982), also using a Floquet analysis, on the stability of plane

pulsatile Poiseuille flow through rigid channels predicted that it is more stable than the
corresponding steady plane Poiseuille flow for a range of imposed oscillation frequencies
from ωc/10 to 8ωc, where ωc is the frequency of the critical mode for steady plane
Poiseuille flow, and for the amplitude of velocity modulation (relative to the underlying
steady flow) up to Λv = 0.25. Outside of this range of frequencies, it was found that
modulation was destabilizing as found in the numerical simulations of Singer et al. (1989)
and the Floquet analysis of Hall (1975) for very high frequency modulation. In addition,
Singer et al. (1989) found that the maximum stabilization is achieved when the ratio of
the Stokes layer thickness to distance from the wall of the steady-flow critical layer is
about 0.4.

Both the Floquet analysis of Kerczek (1982) and the numerical simulations of Singer
et al. (1989) revealed that for relatively low frequency modulation, there is a large
increase of the disturbance kinetic energy during the part of the oscillatory cycle in
which there are regions of inflection in the velocity profile and that this could trigger
transition to turbulence by initiating nonlinear secondary instabilities, even if all the
initial disturbances are in the linear range and the flow is linearly stable if integrated over
a cycle. This finding was in agreement with the experimental observations of the stability
of flow in the aorta (Nerem et al. 1972) and in a pipe (Einav & Sokolov 1993) where it was
concluded that the inflection of the velocity profile during the systolic deceleration is the
most important factor for the observed instabilities. In contrast to the aforementioned
studies, Straatman et al. (2002) conducted a Floquet analysis of plane pulsatile Poiseuille
flow over rigid walls and found that the modulation is destabilizing for the entire range of
frequency modulation. They also identified a critical Womersley number, representing the
balance between viscous and inertial forces, at which modulation exercises the maximum
level of destabilization.
We now turn attention to the stability of steady flow through compliant channels or

over compliant walls (infinite channel height). Local linear stability analysis, assuming
spatial growth, and numerical simulations of plane Poiseuille flow over finite compliant
panels accounting only for vertical panel displacements were respectively presented by
Davies & Carpenter (1997a) and Davies & Carpenter (1997b). Within this system,
they verified the possible occurrence of the fluid-based unstable TSWs, flow-induced
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wall-based travelling-wave flutter (TWF) and divergence instability, and their modal
interactions, that have been predicted for Blasius flow (Carpenter & Morris 1990; Lucey
& Carpenter 1995) and potential flow (Lucey & Carpenter 1992) over compliant walls.
They also showed that even very short compliant panels are able to suppress the growth
of TSWs and that the panel edges exhibit non-trivial singular behaviour causing waves
to propagate upstream from the trailing edge with a wavelength close to that of the TSW
or evanescent waves to exist as a result of the fixed leading-edge boundary condition.
Wall compliance can stabilize TSWs as a means of transition postponement when

its structural dynamics (determined by geometric parameters and material properties)
interact with the flow to generate a reduction to Reynolds-stress energy production
integrated through the boundary layer (Carpenter & Morris 1990). However, to postpone
transition the compliant wall must not succumb to the wall-based instabilities that can
provide an alternative route to transition as demonstrated by Lucey & Carpenter (1995)
when modelling the experiments of Gaster (1988). Carpenter & Morris (1990), Davies &
Carpenter (1997a) and Carpenter & Gajjar (1990) demonstrated that the viscous wall
layer stabilizes TWF which is caused by the irreversible energy transfers from the flow
to the wall via the existence of a critical layer that generates a phase difference between
the wall velocity and perturbation fluid pressure. The effect of structural damping, that
removes energy from the wall, is stabilizing for TWF. These studies also predict that
divergence instability is stabilized by the critical layer and destabilized by the viscous
wall layer. However, it has since been accepted that energy-dissipation effects have little
to no bearing upon the critical flow speed at which divergence occurs because exactly at
onset it is a static wave (Pitman & Lucey 2009). Nevertheless, flow shear in the boundary
layer does play a part in the determination of its critical flow speed as shown by Kapor
et al. (2009).
In light of the foregoing overviews, the interaction of a modulated base flow with

wall compliance has the potential to support a rich variety of system dynamics. One
investigation of such a system has been conducted by Thaokar & Kumaran (2004), using
a Floquet analysis of modulated Couette flow over both a spring-backed flexible plate
accounting for both vertical and axial structural displacements and an incompressible
viscoelastic gel for low and intermediate Reynolds numbers. They found a purely oscil-
latory instability in the limit of zero Reynolds number which is stabilized by an increase
in frequency. This instability occurs through the work done by the action of the viscous
fluid stress on the tangential motion of the compliant wall. They then showed that the
corresponding instability due to steady base flow (over a compliant wall) and the effect
of base-flow oscillations reinforce each other, and were able to map the instability bounds
using a non-dimensional parameter that represented the difference between the steady
and oscillatory strain rates.
In the present work, we study the stability of the plane pulsatile Poiseuille flow over

spring-backed compliant walls in order to assess the effect of the pressure modulation am-
plitude and its frequency on the stability of the FSI system. We implement compliant-wall
models which allow both vertical and vertical-axial displacements. In order to validate
the models, but also to study the transient stability of the FSI system, we implement
two different numerical procedures for the Floquet analysis. In the first method, following
Kerczek (1982); Schmid & Henningson (2001); Thomas et al. (2011), the amplitude of
the disturbances are expressed as the product of the temporal exponential growth and a
sum of Fourier modes and a final generalized eigenvalue matrix problem is formulated.
In the second method, a time-stepping procedure is developed, based on the temporal
evolution of the fundamental solution matrix, the eigenvalues of which at the end
of the fundamental period (monodromy matrix) define the system stability (Iooss &
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Joseph 1990; Seydel 1988), as the number of periods of oscillation asymptotes to infinity.
This time-stepping algorithm is used to study the modal transient amplification of the
disturbances within the base-flow oscillatory cycle for a given spatial wavenumber, by
finding the largest singular value of the fundamental matrix or the maximum value of
the Rayleigh quotient for each time step (Meyer 2000; Schmid & Henningson 2001).
Alternatively, the resulting initial value problem is integrated in time with a random
initial vector, monitoring the energy of the FSI system during the oscillation cycle
(Kerczek 1982). Finally, the early non-modal transient amplification of the disturbances
due to the non-normality of the Navier-Stokes operator, is studied by defining the energy
norm of the fundamental matrix (Reddy et al. 1993; Schmid 2007; Hœpffner et al. 2010)
which is calculated from the extracted eigenvalues and eigenvectors of the fundamental
matrix at each time step of the response evolution.

Our analysis also considers three dimensional modes. Squire’s theorem states that
shear flows with rigid walls first become exponentially unstable to two-dimensional wave
perturbations at a value of the Reynolds number that is smaller than any value for which
unstable three-dimensional perturbations exist (Schmid & Henningson 2001). However,
this theorem cannot be applied for viscous flows bounded by compliant walls or for the
transient growth of disturbances. It has been shown by Yeo (1992), when studying the
linear stability of the Blasius boundary layer over compliant walls, that three-dimensional,
or oblique, TSW modes tend to become more dominant than their two-dimensional
counterparts for sufficiently compliant walls. Thus, the critical Reynolds number for
the TSW neutral curves of a compliant wall is determined by three-dimensional modes.
Accordingly, we investigate the effect of the three-dimensional disturbances on the time-
asymptotic stability (as the number of periods asymptotes to infinity) and the modal
transient growth (within the fundamental period) of plane pulsatile Poiseuille flow over
relatively stiff isotropic compliant walls . This serves to show how the wavelength of
spanwise disturbances affects the neutral-stability curves generated for two-dimensional
disturbances in modulated plane Poiseuille flow as well as the maximum modal transient
amplification of the disturbances.

The remainder of this paper is organized as follows. The formulation of the base and
the three-dimensional disturbance fields for the flow over spring-backed compliant walls
with only vertical displacements is described in Section 2 followed by Section 3 in which
we describe the structural model for a compliant wall that admits both vertical and
axial displacements. The methods of solution for the stability problem are described in
Section 4. Results for the time-asymptotic stability problem, modal transient growth
within the period of base-flow modulation and non-modal transient growth are presented
and discussed in Section 5. Concluding remarks are given in Section 6.

2. System Modelling

2.1. Base flow field

We consider the plane pulsatile Poiseuille flow through two compliant walls separated
by 2L∗ distance as illustrated by figure 1. We consider as characteristic length scale, L∗,
the half distance of the separation of the compliant walls, as velocity scale the maximum
velocity of the steady plane Poiseuille flow, U∗

0 , while the forcing angular frequency of the
periodic pulsations defines the time scale, 1/ω∗

f (when the forcing frequency tends to zero
a characteristic time scale can be defined through the velocity, U∗

0 ). The flow field is then
characterized by the Reynolds number, Re = U∗

0L
∗/ν∗l , where ν

∗
l the kinematic viscosity



5

Figure 1. Schematic of the system studied

of the fluid, and the Womersley number, Wo = L∗(ω∗
f/ν

∗
l )

1/2 with the Navier-Stokes
equations taking the form,

Wo2

Re

∂U

∂t
+U · ∇U = −∇P +

1

Re
∇

2U . (2.1)

Here and hereafter, ∗ denotes a dimensional quantity. The fluid is assumed to move only
in the streamwise direction x due to a mean pressure gradient applied in this direction
that changes periodically with a frequency ω∗

f and amplitude Λ,

∂PB

∂x
=

dP

dx

(

1 + Λ
exp(it) + exp(−it)

2

)

. (2.2)

Alternatively, periodic velocity variation with amplitude Λv could be imposed; these
relate to the amplitude of the disturbance pressure gradient through Λv = 2Λ/Wo2. Our
choice of Λ as the control parameter ensures that finite pumping power is maintained as
we vary Wo.
We assume that the mean pressure gradient does not induce vertical displacements

of the compliant walls and so in their equilibrium state they rest along z = ∓1.
This assumption extends to the unsteady base flow provided that the vertical wall
displacements induced by the fluctuating part of the pressure gradient are small. This
is the case for the stiff walls used in the present study but its effect in yielding a time-
varying channel height would need to be incorporated in the calculation of the unsteady
base flow when the walls are very flexible. Correspondingly, for the compliant walls that
admit axial displacement, we assume that the fluid shear of the base flow is cancelled by
the inclusion of pre-tension in the wall.

Decomposing the base velocity field into steady and time-dependent parts, UB(x, t) =
U(x) + U ′(x, t), and taking into account that each part independently satisfies the
continuity equation, the fluid momentum equation (2.1), the no-slip boundary conditions
on the undeformed compliant walls, we obtain for the steady part,

Ux = 1− z2 and
dP

dx
= − 2

Re
, (2.3)
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while the time-dependent part of the base flow is given by

Ux
′ = q−1exp(−it) + q1exp(it) =

iΛ

Wo2

[

1− cosh
(

i3/2Wo z
)

cosh
(

i3/2Wo
)

]

exp(−it)

+
iΛ

Wo2

[

cosh
(

i1/2Wo z
)

cosh
(

i1/2Wo
) − 1

]

exp(it), (2.4)

where z is the coordinate normal to the flow direction.

2.2. Perturbation field

2.2.1. Flow field

We proceed by decomposing the velocity field to a base flow field and a field of small-
amplitude disturbances which have a spatial exponential form,

U(x, y, z, t) = Ux,B(z, t) + ǫu(x, y, z, t) = Ux,B(z, t) + ǫû(z, t)exp(iαx+ iβy) + c.c.,

P (x, y, z, t) = PB(x, t) + ǫp(x, y, z, t) = PB(x, t) + ǫp̂(z, t)exp(iαx+ iβy) + c.c., (2.5)

where ǫ ≪ 1, α, β are the disturbance wavenumbers in the streamwise and spanwise
direction respectively, while the amplitudes of disturbance velocity and pressure, û(z, t),
p̂(z, t) depend on time and c.c. denotes the complex conjugate. Substituting the per-
turbation forms of equation (2.5) into the governing equation (2.1) and the continuity
equation, and expanding in powers of ǫ, we obtain for the O(ǫ) problem, after subtracting
the O(1) problem and eliminating the pressure disturbance,

Wo2
∂

∂t
Lûz = (L − iαReUx,B)Lûz + iαRe

∂2Ux,B

∂z2
ûz, (2.6)

where L = ∂2/∂z2 − κ2 and κ2 = α2 + β2. Equation (2.6) is recognised as the
Orr-Sommerfeld equation for pulsatile flow that supports the well-known flow-based
inflectional and Tollmien-Schlichting-wave instabilities and their inter-connectedness that
feature in the results that follow.
Using decomposition (2.5), the continuity equation, the streamwise and spanwise

part of the Navier-Stokes equations for the O(ǫ) problem, we can express the pressure
disturbance amplitude p̂(z, t) as a function of ûz(z, t),

p̂ = − Wo2

κ2Re

∂2ûz

∂t∂z
− iαUx,B

κ2

∂ûz

∂z
+

iα

κ2

∂Ux,B

∂z
ûz +

1

κ2Re
L∂ûz

∂z
. (2.7)

2.2.2. Structural model

For the compliant-wall dynamics, we use the two-dimensional isotropic Kirchhoff plate
equation with additional terms to account for a dashpot-type damping and a uniformly
distributed spring foundation. Combined with the normal force balance on the two
compliant walls (Shankar & Kumaran 2002) and keeping only O(ǫ) terms, we obtain

ns · T · ns = −p(x, y, z = ∓1, t) +
2

Re

∂uz

∂z
(x, y, z = ∓1, t)∓ 2

Re

∂Ux,B

∂z
(z = ∓1, t)

∂ηz,s
∂x

= Ms
∂2ηz,s
∂t2

+Dz,s
∂ηz,s
∂t

+Ksηz,s +Bs

[

∂4ηz,s
∂x4

+ 2
∂4ηz,s
∂x2y2

+
∂4ηz,s
∂y4

]

, (2.8)

where ns = −(∂ηz,s/∂x)ex − (∂ηz,s/∂y)ey ± ez are the linearised unit vectors normal
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to the two compliant surfaces (s = 1, 2 lower/upper surfaces) and directed into the fluid
domain, T = −PI + (1/Re)[∇U + (∇U)T ] is the total stress tensor of the fluid at
the two compliant walls, ηz,s(x, y, t), the vertical displacement of the two compliant
surfaces, considered positive in the direction of the normal vectors, and p(x, y, z =
∓1, t) is the non-dimensional pressure disturbance on the compliant walls. The non-
dimensional coefficients of compliant-wall inertia, damping, spring-foundation stiffness,
flexural rigidity respectively, are defined by

Ms =
ρ∗sh

∗
sω

∗2
f L∗

ρ∗l U
∗2
0

, Dz,s =
D∗

z,sω
∗
fL

∗

ρ∗l U
∗2
0

, Ks =
K∗

sL
∗

ρ∗l U
∗2
0

, Bs =
B∗

s

ρ∗l U
∗2
0 L∗3

, (2.9)

with ρ∗s and h∗
s the material density and thickness, respectively and B∗

s = E∗
sh

∗
s
3/[12(1−

ν2)] with E∗
s the elastic modulus and ν the Poisson ratio (Timoshenko & Woinowsky-

Krieger 1959).

2.2.3. Interface conditions

On the compliant surfaces, the perturbation velocity and stresses are each continuous
between fluid and solid. Thus, the boundary conditions for the velocity for the O(ǫ)
problem are

ux(x, y, z = ∓1, t)± ηz,s(x, y, t)
∂Ux,B

∂z
(z = ∓1, t) = 0, (a)

uy(x, y, z = ∓1, t) = 0, (b)

uz(x, y, z = ∓1, t) = ±Wo2

Re

∂ηz,s
∂t

(x, y, t). (c)

(2.10)

Using the decomposition ηz,s(x, y, t) = η̂z,s(t)exp(iαx+ iβy) + c.c. and (2.5) in (2.10)
and (2.8), taking into account (2.7) and the continuity equation, we obtain the first
boundary condition for the O(ǫ) problem applied at the compliant surfaces (z = ∓1),

±Wo4α
∂Ux,B

∂z

∂2ûz

∂t∂z
− κ2Re2α

∂Ux,B

∂z
Ms

∂ûz

∂t
=

κ2Re2α
∂Ux,B

∂z
Dz,sûz − iκ2Wo2Re

[

Bs

(

α4 + 2α2β2 + β4
)

+Ks

] ∂ûz

∂z

±iα2Wo2Re
∂Ux,B

∂z

(

∂Ux,B

∂z
ûz − Ux,B

∂ûz

∂z

)

±Wo2α
∂Ux,B

∂z

(

∂3ûz

∂z3
− κ2 ∂ûz

∂z

)

, (2.11)

while the enforcement of (2.10)(c), taking into account (2.10)(a) and the continuity
equation, yields the second boundary condition on the compliant surfaces (z = ∓1),

iWo2
∂Ux,B

∂z

∂2ûz

∂t∂z
= iWo2

∂2Ux,B

∂t∂z

∂ûz

∂z
− αRe

(

∂Ux,B

∂z

)2

ûz. (2.12)

2.2.4. Spatial discretization

For spatial discretization in the direction normal to the base flow, z, we use the
Chebyshev pseudospectral method. The domain is discretized into M + 1 collocation
points, with their positions given by

z(j) = − cos

[

(j − 1)π

M

]

, for j = 1,M + 1, (2.13)
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and the spatial derivatives of a function at the collocation points are then related to
the values of the function there through the Chebyshev differentiation matrices (Canuto
et al. 1988).

3. FSI accounting for both vertical and axial structural displacements

Herein, the FSI system for plate-spring compliant walls that admit both vertical and
axial displacements is modelled for two-dimensional (streamwise and normal to the flow)
disturbances. In addition to the normal force balance, equation (2.8), we enforce the
tangential force balance on the compliant walls (Shankar & Kumaran 2002); this provides
the equation of motion for axial displacements,

ts · T · ns = ± 1

Re

(

∂uz

∂x
(x, z = ∓1, t) +

∂ux

∂z
(x, z = ∓1, t)

)

=

Ms
∂2ηx,s
∂t2

+Dx,s
∂ηx,s
∂t

−As
∂2ηx,s
∂x2

, (3.1)

where, ts = ex±(∂ηz,s/∂x)ez, are the linearised unit vectors tangential to the compliant
surface, ηx,s(x, t), is the dimensionless axial wall displacement, Dx,s is the dimensionless
structural damping in the streamwise direction, and As the dimensionless in-plane
stiffness (the resistance of the compliant walls to the change of the axial deformations)
defined as As = E∗

sh
∗
s/[(1− ν2)(ρ∗l U

∗2
0 L∗)].

The linearised kinematic boundary conditions are written as

ux(x, z = ∓1, t)± ηz,s(x, t)
∂Ux,B

∂z
(z = ∓1, t) =

Wo2

Re

∂ηx,s
∂t

(x, t), (a)

uz(x, z = ∓1, t) = ±Wo2

Re

∂ηz,s
∂t

(x, t). (b)

(3.2)

Using the decompositions (2.5) with β = 0, ηz,s(x, t) = η̂z,s(t)exp(iαx) + c.c. and
ηx,s(x, t) = η̂x,s(t)exp(iαx)+c.c., equation (2.7) and the continuity equation, the system
of equations (2.6) with the boundary conditions (2.8), (3.1), (3.2) is cast in the form of
the following initial value problem,

dv̂

dt
= P(t)v̂, v̂ = {ĉz,s, η̂z,s, ĉx,s, η̂x,s, ûT

z }T , v̂(t = 0) = v̂0, (3.3)

where ĉz,s = dη̂z,s/dt, ĉx,s = dη̂x,s/dt and P is periodic in time with fundamental period
T .

4. Methods of solution

4.1. Floquet analysis through decomposition into a product of exponential growth and

sum of harmonics

Following Thomas et al. (2011), the unknown variable ûz(z, t) is decomposed into a
product of exponential growth and a sum of harmonics,

ûz(z, t) = exp(µt)

N
∑

n=−N

φn(z)exp(int), (4.1)

where µ are the Floquet exponents whose real values define temporal instability(+ve)
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/ stability(-ve) of the system and N is a large number, typically N = 1000, in order
to ensure a converged solution. Substituting (4.1) into (2.6) and equating coefficients of
harmonics results in

µWo2Lφn = −iαRe

(

q1L − ∂2q1
∂z2

)

φn−1

+

(

L2 − iWo2nL − iαReUx,BL+ iαRe
∂2Ux,B

∂z2

)

φn

−iαRe

(

q−1L − ∂2q−1

∂z2

)

φn+1. (4.2)

Relevant expressions for the boundary conditions are obtained by substituting (4.1)
into (2.11) and (2.12). The system of equations comprising (4.2) together with the
boundary conditions, is cast as the generalized eigenvalue problem,

Ay = µBy,

y = {φT
−N φT

−N+1 . . . φT
0 . . . φT

N−1 φT
N}T , (4.3)

where A and B are sparse matrices and φ the vector of M +1 unknowns arising from the
spatial discretization. Typically, M = 70 in order to obtain convergence. The function
eigs in MATLAB was implemented to extract the eigenvalues µ and eigenvectors y.

4.2. Floquet analysis through the monodromy matrix

The system of equations (2.6), with the boundary conditions (2.11) and (2.12) can be
written in a similar form to the initial value problem (3.3),

dûz

dt
= Q(t)ûz, ûz(t = 0) = û0

z, (4.4)

where the matrix Q is periodic with known period T , due to the imposed periodic base
velocity UB . The monodromy matrix M is calculated by solving the following initial
value matrix problem (Iooss & Joseph 1990; Seydel 1988):

M = S(t = T ) :
dS

dt
= Q(t)S, S(t = 0) = I , (4.5)

where I is the identity matrix, S(t) = W (t)exp(tC), the fundamental matrix, W (t +
T ) = W (t), T -periodic matrix, while the eigenvalues of the monodromy matrix M =
exp(TC) = Zexp(TD)Z−1, called Floquet multipliers k, define the system stability and
D the diagonal matrix with components being the Floquet exponents µ (Schmid 2007);
hence k = exp(Tµ). Finally, the columns of Z contain the eigenvectors of the matrix C,
that correspond to the Floquet exponents. Using a second-order backward-integration
scheme for time evolution we obtain at time n,

S
n = [3I − 2∆tQn]

−1 [
4S

n−1 − S
n−2

]

,

S
0 = S(t = 0) = I , S

1 =
[

I −∆tQ1
]−1

S
0, M = S(t = T ) = S

N , (4.6)

where we have used for n = 1, the first order backward Euler scheme to initiate the
iteration procedure. Alternatively, (4.5) can be integrated explicitly in time using the
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following iterative algorithm for the solution of the fundamental matrix S (Schmid &
Kytomaa 1994)

S
n
l+1 = I +

∫ n

0

Q
n
S

n
l dt, (4.7)

where the integral of the matrices, calculated with the trapezoidal rule, is taken
component-wise and the solution at time n is considered converged after the (l + 1)th
iteration, when the Frobenius norm of the matrix corresponding to the relative error
between consecutive iterations, becomes smaller than a specified value. Following either
of the above two numerical procedures for the solution of (4.5), the matrix M is evaluated
at the end of one period T from the product of the matrices or the sum of the integrals
calculated at the previous times, respectively. Its eigenvalues, the Floquet multipliers,
kj , j = 1, · · ·M + 1 determine the stability of the pulsatile flow through the compliant
channel in the following manner: The flow-structure system is stable if |kj | < 1 for
j = 1, 2, · · ·M + 1 and unstable if |kj | > 1 for some j (Iooss & Joseph 1990; Tsiglifis
& Pelekasis 2011). In addition, the sign of the real part of the unstable eigenvalue,
determines how the resulting solution is unstable: if Im(kj) = 0 with Re(kj) < −1 then
the unstable solution, ûz(t), is periodic with twice the period of that of the base flow,
whereas if Im(kj) = 0 with Re(kj) > 1 the solution is periodic with the same period of
the base flow. Finally, if Im(kj) 6= 0 with |kj | > 1 the unstable solution is quasi-periodic
with characteristic frequencies being those of the base flow and the bifurcating solution,
leading to a toroidal structure in the phase space (Iooss & Joseph 1990).

4.3. Modal transient growth

The preceding analysis determines whether disturbances amplify in the limit of an infi-
nite number of periods of oscillation. However, within the period, T , of a single pulsation,
that features inflectional velocity profiles, large modal transient growth of disturbance
kinetic energy may occur. This can be advected downstream during, potentially causing
transition to turbulence even though all the Floquet multipliers lie within the unit disk.
We are therefore motivated to assess the efficacy of compliant walls in mitigating the
total transient energy growth as compared to that generated in a rigid channel. The
solution of the systems (4.4) or (3.3) can be written as,

û(t) = S(t)û0
z. (4.8)

Then, the transient growth of the above system at time t maximized over all the initial
conditions, quantified by the induced 2-norm of the fundamental matrix S, is:

G(t) = max
û

0

z
6=0

‖û(t)‖22
‖û0

z‖22
= max

û
0

z
6=0

‖S(t)û0
z‖22

‖û0
z‖22

= ‖S(t)‖22 = σ2
max(S(t))

= max
û

0

z
6=0

û†
z(t)ûz(t)

û†0
z û0

z

= max
û

0

z
6=0

û†0
z S†(t)S(t)û0

z

û†0
z û0

z

, (4.9)

where σmax is the largest singular value, † is the conjugate transpose and the quotient
is recognized as the Rayleigh quotient (Meyer 2000; Schmid & Henningson 2001). The
maximum total growth, G(t), at time t, is obtained by finding the largest singular value
of the fundamental matrix through SVD (Singular Value Decomposition) or by solving
the following eigenproblem for the largest eigenvalue λmax (Mao et al. 2009; Meyer 2000;
Schmid & Henningson 2001),
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S
†(t)S(t)û0

z = λû0
z. (4.10)

An alternative way to measure the transient growth is by integrating numerically
the initial-value problems, (4.4) or (3.3), using a random initial vector v̂0 (Kerczek
1982) and calculating the time evolution of the total energy (TE) of the fluid-structure
interaction (FSI), written here for the two-dimensional case and when both vertical and
axial displacements of the compliant walls occur as

E(t) =
1

2

∫ π/α

−π/α

∫ 1

−1

|ux|2 + |uz|2 dz dx

+
1

2

∫ π/α

−π/α

Ms

(

∂ηz,s
∂t

)2

+Ms

(

∂ηx,s
∂t

)2

dx

+
1

2

∫ π/α

−π/α

Bs

(

∂2ηz,s
∂x2

)2

+As

(

∂ηx,s
∂x

)2

+Ksη
2
z,s dx. (4.11)

The first and second integrals respectively correspond to the flow (FKE) and structural
kinetic energies (SKE), while the third evaluates the strain energy of the structure (SPE)
comprising contributions from plate flexure, plate tension and the spring foundation,
respectively in the order written.
Finally, we remark that details of the calculation of non-modal transient growth are

deferred to §5.3 in which this mechanism is explored in the context of time-asymptotic
stability and modal transient growth.

5. Results and Discussion

5.1. Steady plane Poiseuille flow

In order to validate the present models, we consider steady Poiseuille flow between
two parallel compliant walls with system parameters identical to those given by Eqn.
(4.1) in the two-dimensional analysis of Davies & Carpenter (1997b) wherein the critical
Reynolds number and wavenumber were found, using local spatial stability analysis, to
be Recrit. = 6020.5 and αcrit. = 0.975 for ωc = (Wo2/Re)ω = 0.257 (see also Figure (5)
of Davies & Carpenter (1997b)). We therefore use this Reynolds number and streamwise
wavenumber, setting β = 0 and Λ = 0 in our model with Bs = 0.530,Ks = 2.119,
As = 146.9 and Ms = 5.75 × 10−6 (M ′

s = 0.333 when made dimensionless using the
characteristic time-scale as defined through the centerline velocity) to generate the results
presented in Fig. 2. We remark that for these and subsequent results of the eigen-analysis
the variation of velocity perturbations, uz and ux and the shear stress, τzx across the
channel height are normalised to unity; for clarity the eigenvectors of ux and τzx are
plotted over the half-channel height because their variation is anti-symmetric about the
channel centre-line.

Figure 2(a) shows the spectrum of Floquet exponents, with Fig. 2(b) being a magnifi-
cation of the region around the least stable eigenvalues, predicted by the decomposition
method for compliant walls with only vertical structural displacements. The onset of
instability, evidenced by the marginally positive Re(µ), demonstrates that the critical
Reynolds number is closely aligned with that found by local spatial stability analysis.
It is noted that the Floquet exponents are not unique in the sense that the µ =
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Re(µ) + i[Im(µ) + m] for integer m are also eigenvalues; for this reason, the horizontal
distance between the eigenvalues is unity.
Figure 2(c), is a plot of the time dependence of the normal component of the flow

disturbance velocity, uz, in the center of the channel (dashed blue line) and on the lower
compliant wall (solid red line). It can be seen that the disturbance velocity oscillates
but its amplitude remains constant with time thereby denoting neutral stability at
the chosen (critical) Reynolds number. The oscillation frequency is determined by the
spectral density of the time dependence of uz at the channel centre presented in Fig.
2(d); the value of ω = 62 yields ωc = 0.257 which agrees with that of Davies & Carpenter
(1997b) for steady Poiseuille flow. Figure 2(e) shows the eigenvector of disturbance shear
stresses τzx = (1/Re)(∂uz/∂x+ ∂ux/∂z) for the compliant- and rigid-wall cases. Careful
comparison, reveals that wall compliance serves to increase marginally the concentration
of fluid shear stress close to the wall-flow interface that would then suggest that the
compliant wall experiences a slightly higher shear stress than its rigid counterpart.
Finally, Fig. 2(f) is a plot of the length of the Floquet multipliers against their

imaginary part, extracted by the monodromy matrix, considering compliant-wall models
with each of vertical and vertical-axial displacements. It can be seen that one system
eigenvalue (highlighted by the arrow) has marginally crossed the unit disk thereby
validating the results predicted by the decomposition method. The figure also shows
that the inclusion of axial motion in the compliant-wall dynamics has almost no effect on
the stability of the fluid-structure interaction for steady Poiseuille flow. It is remarked
that the model which allows both vertical and axial deformations of the compliant walls
has, through the construction of the Monodromy matrix, four real Floquet multipliers
with length unity which appear as single point in the figure. These eigenvalues appear
as a consequence of analytically taking the time derivative of the two equations (3.2)(a)
and (b) at each boundary in order to couch the system in the form (4.5). Alternatively,
we can retain the original system in the form

L(t)
dS

dt
= R(t)S, S(t = 0) = I , (5.1)

and after applying the second-order backward-integration scheme, we obtain the discre-
tised solution equivalent to that of equation (4.6),

S
n = [3L

n − 2∆tRn]
−1

L
n
[

4S
n−1 − S

n−2
]

,

S
0 = S(t = 0) = I , S

1 =
[

L
1 −∆tR1

]−1
L
1
S

0. (5.2)

5.2. Pulsatile plane Poiseuille flow

5.2.1. Modulation frequency Wo = 5

We now focus on the stability of pulsatile Poiseuille flow between compliant walls
when Wo = 5. This frequency lies within the range of the frequencies encountered in the
small vessels of human blood flow. Figures 3(a) and (b) show the velocity profiles of the
pulsatile base flow for Λ = 3 (Λv = 2Λ/Wo2 = 0.24) and Λ = 5 (Λv = 0.4), respectively,
during one period of the forcing disturbance pressure gradient. It can be seen that the
flow is accelerated during the first half period of the forcing and is decelerated during
the second, moving the inflection points away from the wall and towards the center of
the channel.
Figure 4, is a plot of the variation of the Reynolds number at which the flow becomes

unstable with the streamwise wavenumber for rigid and compliant walls and for different
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Figure 2. Steady plane Poiseuille flow through a compliant channel at instability onset: (a)
Spectrum of the Floquet exponents for the vertical-displacement compliant-wall model, (b)
Magnification of (a) to highlight the onset of instability, (c) Time-evolution of uz at the channel
center-line (blue line) and at the lower compliant wall (red line), (d) Spectral density of the
time sequence of uz at the channel center-line, (e) Perturbation shear stress τzx distribution
across the channel over one period of oscillations, (f) Spectrum of the Floquet multipliers for
the compliant-wall cases. Parameters: Recrit. = 6020.5, αcrit. = 0.975, β = 0, Wo = 5, Λ = 0
with compliant-wall properties the same as those in Davies & Carpenter (1997b)

values of the amplitude Λ as predicted by the asymptotic analysis. It is seen that as
the amplitude of the pulsation increases the flow is destabilized significantly relative to
the underlying steady Poiseuille flow. This is in agreement with the theoretical work
of Thomas et al. (2011), Singer et al. (1989), Kerczek (1982), Straatman et al. (2002)
and the experimental observations of Nerem et al. (1972) and Einav & Sokolov (1993),
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Figure 3. Pulsatile velocity profiles during one cycle of the periodic forcing pressure gradient
with Wo = 5 for (a) Λ = 3 (Λv = 0.24) and (b) Λ = 5 (Λv = 0.4)
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Λ = 0 (Λv = 0), Rigid

Λ = 0 (Λv = 0), Compliant

Λ = 3 (Λv = 0.24), Rigid

Λ = 3 (Λv = 0.24), Compliant

Λ = 5 (Λv = 0.4), Rigid

Λ = 5 (Λv = 0.4), Compliant

Figure 4. Variation of Reynolds number at which the flow becomes unstable with streamwise
wavenumber α, for rigid and compliant walls and for different values of the modulation amplitude
Λ. Parameters: Wo = 5, β = 0, compliant wall properties same as defined in eq.(4.1) of Davies
& Carpenter (1997b)

which showed that for low frequency modulation the flow is always destabilized due to the
powerful inviscid (Rayleigh or inflectional) instability. It is also seen that the effect of wall
compliance is stabilising in that it increases the critical Reynolds number (the minimum
for which instability onset occurs) but that this effect diminishes as the amplitude of the
flow pulsations is increased.
Figure 5(a), demonstrates convergence of the most unstable Floquet exponents of

the flow over the compliant walls for Λ = 3,Recrit. = 3775, αcrit. = 1.1, β = 0
(the critical case indicated in figure 4 by a red arrow) with increasing number of
collocation points as well as the number of Fourier modes, for the compliant-wall model
accounting only for vertical displacements. It can be seen that a converged solution has
been obtained for N=1000 and M=71. Figure 5(b), shows the corresponding Floquet
multipliers for both the rigid and compliant-wall cases for models with and without
the axial structural deformations. It can be deduced that the flow within rigid walls is
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slightly more asymptotically unstable than the flow within compliant walls and that the
inclusion in the model of the axial structural deformations has a small stabilizing effect
on the stability of the pulsatile flow through a compliant channel with its walls having
the present properties. In addition, since Im(kj) 6= 0 with |kj | > 1 the unstable modes
will have the frequencies both of the base flow and of the bifurcating solution. This
can also be observed in figure 5(c) where we show the time-evolution of the disturbance
velocity uz at the channel center-line and at the lower wall for the compliant-wall case.
Figure 5(d) is the spectral density of the channel centre-line uz disturbance for Λ = 0
and Λ = 3, for both the compliant- and rigid-wall cases. It can be seen that the unstable
wave-packet contains the fundamental frequency of the base flow but the wave-packet
comprises waves with broadband frequencies around the monochromatic frequency of the
steady Poiseuille flow between rigid plates at the given Reynolds number.
We remark that for the compliant-wall properties used herein, the lowest in-vacuo

eigenfrequency for vertical vibrations, ωvac. = 709.6, is far too high to create resonance
with the forcing frequency. The effect of wall compliance therefore has a very small
effect on the distributions of axial-flow, ux, and shear-stress, τzx, perturbations across
the channel as can be seen in figures 5(e) and (f). However, careful scrutiny shows that
wall compliance increases the prominence of the single and double maxima that appear
through the cycle of the eigenvector of ux and this effect generates a slightly increased
concentration of τzx close to the wall as compared with the rigid-wall case.
Kerczek (1982) showed that disturbances which are predicted to be asymptotically

stable at low Womersley number, could generate high levels of transient disturbance
kinetic energy downstream during the fundamental period T of pulsation due to the
inflectional velocity profiles during the deceleration phase of the flow and this could
trigger transition to turbulent flow. In figure 6(a) we show the modal transient growth
of disturbances, G, during one cycle of oscillation for flow through rigid- and compliant-
walled channels, the latter using the vertical-axial wall-displacement model. This figure
also includes the ratio of the total energy of the FSI system, equation (4.11), relative
to its initial value, E(t)/E(t = 0), as predicted using the integration of (3.3) for a
random initial vector v̂0 for both the compliant- and rigid-wall cases. We report that
these results correspond to the third period of oscillation in order to discard artificial
transient responses from the numerical integration of (3.3) (Kerczek 1982). It can be seen
that both methods predict similar behaviour, most significantly a five-order increase to
the magnitude of the disturbance total energy relative to its initial value and that the
effect of wall-compliance is mildly mitigating. This large increase of the disturbance
total energy during a part of the oscillation cycle for low modulation frequencies is in
qualitative agreement with Kerczek (1982) and Singer et al. (1989) and occurs close to
the time t = 3π/2, when there is the maximum flow deceleration and the inflection points
of the velocity profile are far from the walls.

In order to reveal how the total energy (TE) during modal transient growth is
distributed during the oscillation cycle and demonstrate the effect of structural damping
on it, we plot in figure 6(b) the time evolution of the system total energy (TE) and its
components, namely, the flow kinetic energy (FKE), the structural kinetic energy (SKE)
and the structural strain energy (SPE) for zero and at large values (that of critical
damping Dcrit. = 2

√
MsKs) of the structural damping as well as the case of flow in a

rigid-walled channel. It can be seen that most of the total energy (TE) of the system
comprises kinetic energy of the flow with a small contribution from the strain energy of
the wall and negligible contribution from the structural kinetic energy. This reflects the
fact that for the dynamics of the compliant wall given by its properties alongside the
chosen modulation frequency, the wall-compliance exercises negligible stabilizing effect
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Figure 5. (a) Convergence of the Floquet exponents with increasing collocation points (N)
and Fourier modes (M) for the compliant-wall case with vertical displacements, (b) Spectrum
of the Floquet multipliers, (c) Time evolution of uz at the channel center-line (blue line) and
at the bottom compliant wall (red line); the black dotted–line signifies the asymptotic solution,
exp(Re(µ)t). (d) Spectral density of the time sequence of uz at the channel center-line, (e) ux

and (f) τzx profiles during one cycle of oscillation. Parameters: Recrit. = 3775, αcrit. = 1.1,
β = 0, Wo = 5, Λ = 3, compliant-wall properties same as defined in eq.(4.1) of Davies &
Carpenter (1997b)

as also seen in the results of the asymptotic analysis in figure 4 for Λ = 3. In addition,
the inclusion of a large level of structural damping D = Dx,s = Dz,s, s = 1, 2 has a
small destabilizing effect on the transient response which manifests itself by an almost
one order of magnitude larger maximum flow kinetic energy than that found for the flow
through a compliant channel without damping.
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Figure 6. (a) Growth of disturbances during one cycle of modulation, G, and total energy
ratio E(t)/E(t = 0) with time for compliant and rigid walls, (b) Time-evolution of the total
energy (TE) and its contributions from the flow kinetic energy (FKE), structural kinetic
energy (SKE) and structural strain energy (SPE) with and without structural damping
D = Dx,s = Dz,s, s = 1, 2. Parameters: Recrit. = 3775, αcrit. = 1.1, β = 0, Wo = 5, Λ = 3,
compliant-wall properties same as defined in eq. (4.1) of Davies & Carpenter (1997b)

Cooper & Carpenter (1997) studied the stability of rotating-disc boundary-layer flow
over a compliant wall and found that structural damping has a destabilizing effect on
the inviscid (Type I) inflectional instability and therefore this is categorised as a Class
A instability in the energy classification scheme of Benjamin (1960, 1963) and Landahl
(1962). Figures 7(a) and (b) respectively show the maximum disturbance growth, G,
during the fundamental period of the forcing cycle at Recrit. = 3775 (the rigid-wall value
for Wo = 5 and Λ = 3) and the Reynolds number of instability-onset as functions of
the streamwise wavenumber of the disturbances. We remark that two peaks are resolved
in 7(a) and conjecture that the distinct wavenumbers at which these occur relate to the
positive and negative base-flow fluctuations superimposed upon the positive mean flow
within the pulsation cycle. The results arising from different levels of structural damping,
D = Dx,s = Dz,s, s = 1, 2, up to its critical value are included in Figures 7(a) and (b).
It can be seen that structural damping destabilizes both the transient and the time-
asymptotic responses of the FSI system with a more pronounced effect on the latter. In
addition, for the highest value of structural damping, the FSI system exhibits about a
half order of magnitude larger maximum total growth than that of the corresponding
flow through a rigid channel, which is similar to findings of figure 6(b). We also note
here that the shear-stress distribution (result not shown) is almost identical to that of
the corresponding undamped compliant-wall case of figure 5(f) with structural damping
generating a marginal increase to the concentration of shear-stress close to the wall.
Before closing this section, we briefly relate the present findings to human blood flow.

Although the properties of the compliant walls used herein and the resulting critical
Reynolds numbers are dissimilar to those in the carotid artery, the present results suggest
that an increase to the stiffness and/or the damping of the arterial walls might change



18

(a)

α

m
a
x
(G

)
(b)

α

Re

Figure 7. (a) Maximum total amplification of the disturbances, at Recrit. = 3775 and (b)
Reynolds number at which the flow becomes unstable versus the streamwise wavenumber,
α, for different values of structural damping D = Dx,s = Dz,s, s = 1, 2. Parameters:
Wo = 5, Λ = 3, β = 0, compliant-wall properties same as defined in eq.(4.1) of Davies &
Carpenter (1997b)

the characteristics of the flow within the forcing cycle by causing transition from laminar
to turbulent flow and thus creating the conditions for the establishment of atherosclerotic
plaque. In such flows the maintenance of laminar-flow shear stress is crucial for normal
vascular function and the inhibition of proliferation, thrombosis and inflammation of
the vessel wall (Cunningham & Gotlieb 2005). This echoes the clinical research of
Armentano et al. (2006) who found that the arterial walls of people suffering from arterial
hypertension are characterized by a lower compliance and a larger wall-material viscosity.
Furthermore, Alexander (1995) reported that hypertension, that correlates with vessel
stiffening, increases the risk of atherosclerosis.

5.2.2. Modulation frequency Wo = 10

We now focus on the case with frequency modulation of the base flow at Wo = 10 using
the same compliant-wall properties as when Wo = 5 above. Figure 8 shows the variation
of the Reynolds number at instability onset with streamwise wavenumber, α, for both
rigid and compliant channel walls and different values of modulation amplitude, Λ. The
flow is destabilized by increasing Λ but to a lesser extent than that seen for Wo = 5
in figure 4. Wall compliance is again seen to have a stabilising effect at for each Λ-case
and this effect is greater than that seen in the corresponding results at Wo = 5. This is
because the higher modulation frequency is better matched to the natural frequency of
the compliant-wall structural dynamics.
Figure 9(a) shows the most unstable Floquet exponents of the flow over the compliant

wall for the model with vertical displacements for Λ = 5,Recrit. = 5475, αcrit. = 1.0, β =
0 (the case indicated in figure 8 with the black arrow). Figure 9(b) is a plot of the
corresponding Floquet multipliers predicted by the time-stepping technique (monodromy
matrix) for each of the vertical and axial-vertical displacement compliant-wall models
and for different levels of structural damping (the maximum being critical damping).
As in the Wo = 5 case, structural damping has a destabilizing effect on the inflectional
instability mechanism. Since Im(kj) 6= 0 with |kj | > 1, the unstable solution will have
frequencies both of the base flow and of the unstable solution. This can also be observed
in figure 9(c), where we show the time-evolution of the disturbance velocity uz at the
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Figure 8. Variation of the Reynolds number at instability onset with the streamwise
wavenumber α, for rigid and compliant walls for different values of the modulation amplitude
Λ. Parameters: Wo = 10, β = 0, compliant-wall properties same as defined in eq.(4.1) of Davies
& Carpenter (1997b)

channel center-line and on the bottom wall for the compliant-wall case. It can be seen
that the relative size of the wall disturbance velocity contribution is larger than of the
corresponding Wo = 5 case (figure 5(c)); this again indicates increased fluid-structure
interaction between the flow-modulation and structural frequencies at this higher Wo.
In figure 9(d), we show the growth of the disturbances, G, over one cycle of the pressure

modulation for flow through rigid and compliant channels as well as the time-evolution of
the total energy ratio E(t)/E(t=0), predicted by the numerical integration with random
initial conditions, for the conditions at the point marked with the black arrow in figure 8
and for different levels of structural damping. As in the Wo = 5 case, structural damping
increases mildly the maximum modal transient growth, G as compared with flow through
a rigid channel. However, this result (and that in figure 11(e) for β = 0 that is presented
later), suggests that up to a pressure-modulation amplitude of Λ = 5, transient effects
are relatively small for Wo > 10 and that the asymptotic analysis should be adequate
for the practical prediction of the system’s stability with respect to the energy growth of
disturbances.

5.2.3. Modulation frequency Wo = 15

We proceed by further increasing the frequency modulation to Wo = 15 keeping the
compliant-wall properties unchanged. Figure 10 shows that the flow is now stabilized by
the modulation in contrast to the effect at the lower values of Wo studied in the previous
subsections. This is in agreement with the work of Thomas et al. (2011), in which it was
found that modulation stabilizes plane oscillatory Poiseuille flow for Wo > 10

√
2. As

found for the lower Wo cases, wall compliance continues to be stabilising but its effect is
increased when a higher amplitude modulation is applied.
Figure 11(a) shows the most unstable Floquet exponents of the flow through the

channel with the vertical-displacement compliant-wall model for Λ = 5, Recrit. = 6500,
αcrit. = 0.96 and β = 0 and without structural damping (the critical case indicated with
the black arrow in figure 10). Figure 11(b) plots the corresponding Floquet multipliers
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Figure 9. (a) Spectrum of the Floquet exponents for the compliant-wall case, (b) Spectrum of
the Floquet multipliers for vertical and axial-vertical compliant-wall models and with different
levels of structural damping, (c) Time-evolution of uz at the center-line of the channel (blue
line) and at the bottom compliant wall (red line), (d) Growth of disturbances, G and total
energy ratio E(t)/E(t=0) with time for compliant and rigid walls and for different values of
the structural damping. Parameters: Recrit. = 5475, αcrit. = 1.0, β = 0,Wo = 10, Λ = 5,
compliant-wall properties same as defined in eq. (4.1) of Davies & Carpenter (1997b)

predicted by the eigenvalues of the monodromy matrix for the vertical and vertical-
axial structural displacements models for different levels of the structural damping (the
maximum being critical damping); clearly structural damping destabilizes the time-
asymptotic behaviour of the FSI system. The compliant-wall displacement velocities
are larger relative to the previous cases at lower Wo but, as seen in figure 11(d), wall
compliance continues to cause only a marginal increase to the shear-stress concentration
close to the wall. Finally, in figure 11(e) we show the transient growth of disturbances, G,
and the total energy ratio E(t)/E(t = 0) during one cycle of the pressure modulation for
different values of the structural damping, where it can be seen that the modal transient
growth of the total energy of disturbances is negligible in all cases.

5.3. Non-modal transient growth

It should be stressed that the previous results concern modal asymptotic analysis and
modal transient growth that occurs within the fundamental cycle of pulsation. However,
it has been proposed by Schmid (2007) that non-modal stability theory could explain
the discrepancy between the predictions of modal analysis and experimental results
at pulsatile-flow frequencies relevant to blood flow in arteries. Disturbances that are
predicted to be stable in the Floquet analysis could induce high levels of non-modal
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Figure 10. Variation of the Reynolds number at which the flow becomes unstable with
the streamwise wavenumber α, for rigid and compliant walls and for different values of the
modulation amplitude Λ. Parameters: Wo = 15, β = 0, compliant-wall properties same as
defined in eq. (4.1) of Davies & Carpenter (1997b)

transient disturbance kinetic energy downstream during the fundamental period T of
pulsation, or from period to period, due to the non-orthogonality of the eigenmodes of
the Navier-Stokes operator. In order to assess the potential of disturbances to generate
significant levels of total energy through a non-modal mechanism and compare these with
those produced by modal transient growth, we define the transient growth GE , quantified
by the energy norm of the fundamental matrix S, as

GE(t) = max
û

0

z
6=0

‖û(t)‖2E
‖û0

z‖2E
= max

û
0

z
6=0

‖F (t)exp(K t)û0
z‖22

‖F (t)û0
z‖22

= ‖F (t)exp(K t)F−1(t)‖22, (5.3)

where, G = FT F is the Gramian matrix corresponding to the total energy equation
(4.11), assembled using the eigenvectors of the fundamental matrix S and K , the diagonal
matrix with components being its eigenvalues at each time-step. In figure 5.3(a) and (b)
we plot the transient energy growth GE versus the time t′ (with characteristic time
defined through the centreline velocity, i.e. t′ = tU∗

0 /(ω
∗
fL

∗)) for different modulation
amplitudes, Λ, for rigid and compliant walls when Re = 5000 and α = 1 at each of low
(Wo = 5) and high (Wo = 15) modulation frequencies.
Considering first the rigid-wall results in figure 5.3(a), it is seen that at Wo = 5 the

energy growth due to modal effects in pulsatile flow vastly exceeds that due to non-modal
effects as can be discerned by comparing the values of the inset figure, that highlights
the non-modal growth and uses a linear vertical scale, with those of the main figure 5.3
(a). Of course, when the base flow is steady (Λ = 0) only non-modal transient growth
occurs; for this case excellent agreement is seen between the result of our calculation
and that of Reddy et al. (1993). In contrast, figure 5.3 (b) shows that at high-frequency
modulation, Wo = 15, the non-modal energy-growth mechanism is stronger than that
of the modal mechanism. However, at this frequency the levels of total energy extracted
from the mean flow are orders of magnitude smaller those that occur for low-frequency
modulation due to modal effects as seen in figure 5.3 (a) where a logarithmic scale has
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Figure 11. (a) Spectrum of the Floquet exponents for the compliant-wall case, (b) Spectrum of
the Floquet multipliers for vertical and axial-vertical compliant-wall models and with different
levels of structural damping, (c) Time-evolution of uz at the center-line of the channel (blue line)
and at the bottom compliant wall (red line), (d) τzx distribution over one period of oscillation,
(e) Growth of disturbances, G and total energy ratio E(t)/E(t = 0) with time for compliant
and rigid walls and for different values of the structural damping. Parameters: Recrit. = 6500,
αcrit. = 0.96, β = 0, Wo = 15, Λ = 5, compliant-wall properties same as defined in eq. (4.1) of
Davies & Carpenter (1997b)
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Figure 12. Energy growth of disturbances GE(t
′) with time t′ for different values of the

modulation amplitude Λ for rigid and compliant walls. (a) Wo = 5 and (b) Wo = 15. The
dotted– and dashed–dotted lines represent the asymptotic solution of the least stable Floquet
exponents, exp(2Re(µ)t), for the rigid and compliant walls, respectively. Parameters: Re = 5000,
α = 1, β = 0, compliant-wall properties same as defined in eq. (4.1) of Davies & Carpenter
(1997b)

been used for the vertical axis. Again, we show excellent agreement between our results
and those of Reddy et al. (1993). For both low- and high-frequency cases it is noted that
as the modulation amplitude is increased, non-modal transient growth decreases slightly
while modal transient growth increases significantly; for the low-frequency case it is seen
that Λ = 2 is sufficiently high that the flow is also asymptotically unstable. In addition,
it can be observed from the dashed lines that the energy variation from period to period
arising from modal effects closely follows the growth/decay predicted by the least stable
Floquet exponents, exp(2Re(µ)t), from the asymptotic analysis.
We now discuss the modelling and effect of wall-compliance in the transient results

presented in figure 5.3. Hœpffner et al. (2010) showed that wall-compliance in steady
plane Poiseuille flow increased (relative to rigid walls) the energy growth due non-modal
transient growth. They obtained converged results by projecting onto the 30 least-stable
eigenmodes; instability associated with the presence of spurious modes took place if
this number of modes was increased excessively. This appears to be a common problem
in systems, such as the present, where interfaces exist. It can be ameliorated if the
order of the derivatives in the Orr-Sommerfield and the dynamic interfacial equations



24

are reduced (Malik & Hooper 2007). Accordingly, we solved for the primitive variables
ux and uz explicitly and thus reduced the order of the highest derivative by one for the
field and dynamic interfacial equations (2.6) and (2.8). By doing so, convergence was
achieved by projecting onto the 40 least-stable eigenmodes; however a small-amplitude
short-wavelength instability still persists, especially in the later stages of the modal
growth; this is most prominent for high-frequency modulation. Figures 5.3(a) and (b)
show that wall-compliance increases the non-modal energy growth in that the maximum
of energy increases but reduces the modal transient growth for both low- and high-
frequency modulation. However, due to the high value of wall stiffness used herein, the
effects are fairly small. This is in qualitative agreement with the results of Hœpffner et al.
(2010) who showed that by increasing the wall stiffness the non-modal energy growth
tended to that of the rigid-wall system for steady plane Poiseuille flow. Finally, as seen
for rigid walls, figures 5.3(a) and(b) show good agreement between modal growth/decay
from period to period with that predicted by the least stable Floquet exponents.
As can be seen from figures 5.3(a) and (b) the non-modal energy growth may be

significant in the early stages of evolution of the initial perturbation, while at later times,
it is the modal energy growth and asymptotic stability that govern the system dynamics.
This is especially the case for low-frequency modulation. For high-frequency modulation
the combined effects of non-modal and modal transient growth are seen to be small. We
also remark that for high-frequency modulation the non-modal results for pulsatile flow
should be treated with caution because the modelling effectively assumes that the time-
scales on which the non-orthogonal stable eigenmodes decay must be vanishingly small
compared with the period of pulsation; this is exactly true for steady flow, closely adhered
to for a low-frequency unsteady base flow as seen in figure 5.3(a) but is seen not to be
the case for high-frequency modulation in figure 5.3(b). Overall, since the contribution of
non-modal transient growth is small relative to that of modal transient growth, we will
focus on the latter for the remainder of this paper. However, it is acknowledged that non-
modal transient growth can play a significant rôle for three-dimensional disturbances, for
example Schmid (2007) predict that the maximum transient energy growth of oblique
disturbances in rigid-walled channel flow can be up to O(104), and/or for more flexible
compliant walls (Hœpffner et al. 2010)

5.4. Summary of modulation-frequency effects in plane Poiseuille flow

We now focus on the onset of instability and therefore figure 13 summarises the
variation of critical Reynolds number with the modulation frequency, Wo. It can be seen
that for a given modulation amplitude there exists a range of Wo (approximately for
Wo = 10 to 30) where compliant-wall effects significantly stabilise the flow as evidenced
by higher critical Reynolds numbers than those of the corresponding rigid channel result.
Beyond this range compliance continues to have a marginally stabilising effect. It is also
noted that for both rigid and compliant channels the effect of modulation is stabilising
for Wo ' 13 while below this value it is strongly destabilising as compared with the
stability of steady plane Poiseuille flow (Λ = 0 results in the figure).
The present results indicate that as Wo → ∞ both the rigid and compliant channel

results asymptotically approach their corresponding steady base-flow critical Reynolds
numbers. This might appear counter-intuitive and contradicts the findings of Singer et al.
(1989) and Kerczek (1982) who showed stabilization when the modulation frequency
is close to that of the frequency of neutrally stable disturbances in steady Poiseuille
flow (Wo = 98.85). However, in the present work we have applied the modulation via
a pressure forcing that has a defined amplitude. This means that as Wo is increased
then the amplitude of the base-flow velocity variation is reduced; in the limit Wo →
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Figure 13. Critical Reynolds number versus Wo, for rigid and compliant walls and for different
values of the amplitude Λ and β = 0. Compliant-wall properties same as those defined in eq.(4.1)
of Davies & Carpenter (1997b)

∞, the base-flow velocity variation is zero and the base flow is therefore steady. To
illustrate this point of difference, Singer et al. (1989) and Kerczek (1982) used a velocity-
modulation amplitude Λv = 0.105 at Wo = 98.85 whereas our application of a pressure
modulation amplitude Λ = 5 leads to Λv = 2Λ/Wo2 = 0.001. In most physical systems
it is the imposition of a pressure modulation with finite magnitude that would generate
the unsteady base flow, while the assumption of a fixed velocity modulation at very high
frequencies would lead to unfeasible power requirements of the pumping system. The fact
that, in the present study, the critical Reynolds numbers for both rigid and compliant
channels approach those of steady Poiseuille flow provides further evidence that the
inflectional instability which dominates the system behaviour at low to intermediate
Wo-values is of Class A. This is because its neutral-stability branch becomes that of
the TSW branch at high Wo - that continues to exist for steady base flow - and it is
well-known that TSWs are Class A instabilities.

Figure 13 also suggests that there is an additive effect from the combination of
Stokes-layer and the compliant-wall stabilisation. For a given amplitude of the pressure
modulation, the thickness of the Stokes layer δ = (2ν∗l /ω

∗
f )

1/2 reduces as the modulation
frequency increases and the stabilizing effects of the Stokes layer decrease; this trend is
replicated for the corresponding compliant-wall cases, albeit at higher critical Reynolds
numbers, indicating that the action of the compliant walls does not modify Stokes-layer
effects in pulsatile plane Poiseuille flow. Finally we report that the critical streamwise
number that yields the critical Reynolds number is decreased by wall compliance, a
feature seen in Figures 4, 8 and 10, while for all cases decreasing Wo leads to higher
values of critical wavenumber.

5.5. Three-dimensional disturbances in pulsatile plane Poiseuille flow

All of the foregoing analyses have been restricted to two-dimensional disturbances,
hence β = 0. We now investigate the effect of oblique waves on the stability of plane
pulsatile flow over compliant walls. For the relatively stiff compliant walls used in the
present work, figure 14(a) shows that three-dimensional waves are asymptotically more



26

(a)

(b)

Wo

Recrit.

αcrit.

Λ = 0, β = 0, Compliant

Λ = 0, β = 0, Rigid

Λ = 0, β = 0.5, Compliant

Λ = 0, β = 0.5, Rigid

Λ = 0, β = 1, Compliant

Λ = 0, β = 1, Rigid

Λ = 3, β = 0, Compliant

Λ = 3, β = 0, Rigid

Λ = 3, β = 0.5, Compliant

Λ = 3, β = 0.5, Rigid

Λ = 3, β = 1, Compliant

Λ = 3, β = 1, Rigid

Figure 14. Variation of (a) Critical Reynolds number, and (b) critical wavenumber with Wo,
for rigid and compliant walls for different values of the spanwise wavenumber, β. Compliant-wall
properties same as those defined in eq. (4.1) of Davies & Carpenter (1997b)

stable than their two-dimensional counterparts over the entire range of modulation
frequencies, Wo, examined for both steady and pulsatile flow with pressure-modulation
Λ = 3 because their corresponding critical Reynolds numbers are higher. It is also seen
in figure 14(a) that wall compliance is more effective in the stabilisation of oblique waves
than for their two-dimensional counterparts. Figure 14(b) shows the variation of the
streamwise wavenumber that yields the critical Reynolds number. The variations with
Wo seen for each value of transverse wavenumber, β for each modulation amplitude are
similar to those identified in Section 5.3 as is the difference between rigid- and complaint-
wall systems. Overall, increasing β decreases the critical wavenumber. However, there is
one striking departure for the compliant-wall case with Λ = 3 and β = 1 where a jump
in critical wavenumber occurs between Wo = 8 and 10. This corresponds to a switch of
modes and is discussed below.
Throughout this paper we have used compliant-wall properties that have been suffi-

ciently stiff that travelling-wave flutter (TWF) has not been the critical mode for desta-
bilisation. However, for the high Reynolds numbers associated with system destabilisation
at Λ = 3 and β = 1, TWF replaces the inflectional instability as the critical mode when
Wo > 10. This wall-based instability has much higher wavenumber as can be seen in
figure 14(b). Close inspection of the critical Reynolds-number variation at Λ = 3, β = 1
in figure 14(a) reveals that this instability branch remains below the value of the critical
Reynolds number for the corresponding steady base-flow result for all Wo > 10 and
significantly lower than the critical Reynolds number for the rigid-walled channel (in



27

which TWF cannot exist). For the TWF instability, there is no range of Wo for which
base-flow pulsation is stabilizing and this therefore suggests that the Stokes layer is a
further destabilising source of irreversible energy transfer from the flow to the wall.
TWF is a Class B instability and for this reason is stabilized by structural damping.

This is seen in figure 15(a), that shows the variation of Reynolds number at instability
onset with streamwise wavenumber with different amounts of structural damping for
the case with Wo = 15, Λ = 3 and β = 1. Clearly there exist two types of instability
branches: the rigid and compliant channel branch at lower wavenumbers associated with
inflectional instability while the second, at higher wavenumbers, for the compliant channel
is that of TWF. For an elastic wall, the TWF branch yields a critical Reynolds number
lower than that of the rigid-walled system and this continues to hold for an incremental
level of damping that is seen to be stabilising. However, when a sufficiently high level of
structural damping is present, the critical Reynolds number of TWF exceeds that of the
inflectional instability of the pulsatile flow through a rigid channel. At the same time,
the structural damping destabilizes the inflectional instability branch of the compliant
channel and it may become the critical instability.
While the structure of neutral-stability curves in figure 15(a) parallels that found

in Davies & Carpenter (1997a) for steady flow through a compliant channel using a
two-dimensional analysis (β = 0) wherein TSWs and TWF are the principal system
instabilities, the static divergence instability that they also found at low wavenumbers is
absent in our results. We remark that for their figure 7, Davies & Carpenter (1997a) used
a tensioned membrane instead of a spring-backed plate and this resulted in a very flexible
channel that is more prone to wall-based instabilities. For the spring-backed flexible
plate used in our system, an equivalent critical Reynolds number predicted for the onset
of two-dimensional divergence instability for steady inviscid fluid flow in a compliant
channel (Burke et al. 2014) is ReD ≈ 1.25 × 104, having chosen blood for the fluid and
characteristic dimension typical of a small blood vessel. This value falls within the range
of Reynolds numbers in figure 15(a). However, potential flow is known to yield a very low
estimate of divergence-onset flow speed (equivalent Reynolds number) because it does
not account for the effects of flow shear (Davies 2003; Kapor & Lucey 2012). In addition,
it has been shown by Lucey & Carpenter (1993) that two-dimensional disturbances give
significantly lower values of divergence-onset flow speed than their three-dimensional
counterparts. The combination of these effects accounts for the fact that we do not find
divergence eigenmodes in the range of Reynolds numbers used to generate figure 15(a).

In closing this subsection, we emphasise that for the present parameters, the stability of
the system will be determined by the inflectional instability of plane waves with β = 0.
Nevertheless, for compliant channels with more flexible walls than those used in the
present paper, the existence of TWF or divergence may determine the stability bounds for
certain combinations of system parameters. Finally, a transient modal analysis yielding
the results presented in figure 15(b) predicts that the maximum amplification of the total
energy of system disturbances, G, reduces as the wavelength of the spanwise disturbances
decreases for both rigid and compliant channels.

6. Conclusions

The time asymptotic (Floquet) stability and modal transient growth during the
pressure-modulation cycle of pulsatile plane Poiseuille flow bounded by compliant
walls has been investigated, implementing both vertical and vertical-axial displacement
models for the compliant walls. Two equivalent numerical methods were developed
for the stability analysis, namely a matrix method based on the decomposition of the
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Figure 15. (a) Variation of Reynolds number at which the flow becomes unstable with
the streamwise wavenumber for different levels of structural damping for the compliant-wall
case when Wo = 15, Λ = 3 and β = 1. II and TWF denote Inflectional and TWF
instability branches, respectively. (b) Maximum amplification of disturbances for the case with
Wo = 5, Λ = 3,Recrit. = 3775 against the streamwise wavenumber, α, for different transverse
wavenumbers, β. Compliant wall properties same as those defined in eq.(4.1) of Davies &
Carpenter (1997b)

unknown amplitude of the disturbance into a product of exponential growth and sum
of harmonics and a time-stepping technique based on the temporal evolution of the
fundamental solution matrix. In addition, transient growth due to non-normality of
the Navier-Stokes operator has been quantified and contrasted with that due to modal
transient growth.

For the relatively stiff compliant walls used in the present study, the pulsatile flow is
always stabilized by the flexibility of the compliant walls for the whole range of Womersley
numbers and amplitudes of the pressure modulation examined. This effect combines
favourably with the stabilizing effect of the Stokes layer in pulsatile flows. Structural
damping in the compliant walls has a destabilizing effect on the inflectional (Rayleigh)
instability that dominates the stability of pulsatile plane Poiseuille flow.

It was shown that modal transient growth within the period of pulsation may be
very significant when Wo < 10 for the amplitudes of pressure modulation used in the
present study even when the flow is asymptotically stable in that its eigenmodes are
exponentially decaying. The flexibility of the complaint wall serves to reduce this modal
transient growth; this effect is small for the relatively stiff complaint walls used in the
present study. In contrast, non-modal transient growth when Wo < 10 is shown to be
very small (as compared to that generated by the modal mechanism) and its maximum is
increased (relative to that for a rigid wall) by wall compliance. The differences in stability
bounds between the vertical and vertical-axial compliant-wall displacement models were
insignificant for the relatively high Reynolds numbers used in the present study.

For the properties of the compliant walls used herein, three-dimensional waves are more
stable than their two-dimensional counterparts and wall compliance is more effective in
their stabilisation because they tend to become unstable at higher Reynolds numbers
than those of two-dimensional waves. For system parameters that lead to high Reynolds
numbers for destabilisation through the inflectional instability, wall-based travelling-wave
flutter (TWF) can become the critical mode. In contrast to the inflectional instability,
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TWF is stabilized by structural stiffness and damping and destabilized by the Stokes
layer. It is noted that very compliant channels may lead to TWF featuring more promi-
nently at the lower Reynolds numbers associated with inflectional instability for plane
waves. Finally, the maximum amplification of three-dimensional disturbances within
the pressure-modulation cycle is found to be lower than that of their two-dimensional
counterparts.

The Floquet stability analysis with the wave-type approximation for the streamwise
and transverse directions conducted in the present study does not take into account the
structural boundary conditions of a finite-length compliant section in the channel. It
has recently been shown by Tsigklifis & Lucey (2015), studying the global stability of
Blasius boundary-layer flow over a compliant panel, that flow-based Tollmien-Schlichting
waves (TSW) and the wall-based TWF instabilities can resonate with eigenfrequencies
of a finite-length compliant wall to create global instabilities. The time-stepping method
introduced in the present work could serve as the platform for the extension of the present
analyses to include spatial non-uniformity of disturbances in the streamwise and/or the
spanwise direction, thus taking into account the structural boundary conditions of a
finite-length FSI system conveying pulsatile flow.
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