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We examine the conditions of asymptotic stability of second-order linear dynamic equa-
tions on time scales. To establish asymptotic stability we prove the stability estimates by
using integral representations of the solutions via asymptotic solutions, error estimates,
and calculus on time scales.
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1. Main result

In this paper, we examine asymptotic stability of second-order dynamic equation on a
time scale T,

L
[
y(t)

]= y∇∇ + p(t)y∇(t) + q(t)y(t)= 0, t ∈ T, (1.1)

where y∇ is nabla derivative (see [4]).
Exponential decay and stability of solutions of dynamic equations on time scales were

investigated in recent papers [1, 5–7, 11, 12] using Lyapunov’s method. We use different
approaches based on integral representations of solutions via asymptotic solutions and
error estimates developed in [2, 8–10].

A time scale T is an arbitrary nonempty closed subset of the real numbers.
For t ∈ T we define the backward jump operator ρ : T→ T by

ρ(t)= sup{s∈ T : s < t} ∀t ∈ T. (1.2)

The backward graininess function ν : T→ [0,∞] is defined by

ν(t)= t− ρ(t). (1.3)
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2 Asymptotic stability for dynamic equations on time scales

If ρ(t) < t or ν > 0, we say that t is left scattered. If t > inf(T) and ρ(t)= t, then t is called
left dense. If T has a right-scattered minimumm, define Tk = T−{m}.

For f : T→R and t ∈ Tk define the nabla derivative of f at t denoted f ∇(t) to be the
number (provided it exists) with the property that, given any ε > 0, there is a neighbor-
hood U of t such that

∣
∣ f
(
ρ(t)

)− f (s)− f ∇(t)(ρ− s)
∣
∣≤ ε

∣
∣ρ(t)− s

∣
∣ ∀s∈U. (1.4)

We assume supT=∞. For some positive t0 ∈ T denote T∞ ≡ T
⋂
[t0,∞).

Equation (1.1) is called asymptotically stable if every solution y(t) of (1.1) and its
nabla derivative approach zero as t approaches infinity. That is,

lim
t→∞ y(t)= 0, lim

t→∞ y∇(t)= 0. (1.5)

We establish asymptotic stability of dynamic equations on time scales by using calculus
on time scales [3, 4] and integral representations of solutions via asymptotic solutions [8].

A function f :∈ T→ R is called ld-continuous (Cld(T)) provided it is continuous at
left-dense points in T and its right-sided limits exist (finite) at right-dense points in T.

By Lld(T) we denote a class of functions f : T→ R that are ld-continuous on T and
Lebesgue nabla integrable on T. C2

ld(T) is the class of functions for which second nabla
derivatives exist and are ld-continuous on T.

R+
ν =

{
K : T−→R, K(t)≥ 0, 1− νK(t) > 0, K ∈ Cld(T)

}
. (1.6)

We assume that p,q ∈ Cld(T∞).
From a given function θ ∈ C2

ld(T∞) we construct a function

k(t)= θ∇(t)
2θ2(t)

. (1.7)

For ν > 0 we choose θ1(t) as a solution of the quadratic equation

νθ21 − 2θ1(1+ νθ) + 2θ− p+ νq+2kθ
1− 2kθν

= 0, (1.8)

or

θ1 = θ +
1
ν
+
√
D, D = θ2 +

1+ νp+ ν2q

(1− 2kθν)ν2
. (1.9)

If ν= 0, then (1.8) turns into a linear equation and θ1(t) is defined by the formula

θ1(t)= θ(t)− θ′(t)
2θ(t)

− p(t)
2

, (1.10)

Note that (1.8) is a version of Abel’s formula for a dynamic equation (1.1), and (1.10)
is Abel’s formula for the corresponding differential equation.
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Define auxiliary functions

θ2(t)= θ1(t)− 2θ(t), Ψ(t)=
(

êθ1
(
t, t0
)

êθ2
(
t, t0
)

θ1êθ1
(
t, t0
)

θ2êθ2
(
t, t0
)

)

, (1.11)

Hov j(t)=−q− pθj − θ2j − θ∇j
(
1− νθj

)
, j = 1,2, (1.12)

K(s)=
(

1
∣
∣1− νθ1(s)

∣
∣ +

1
∣
∣1− νθ2(s)

∣
∣

)

K1(s), (1.13)

K1(s)=
∣
∣
∣
∣
∣

(
θ1Hov2−θ2Hov1

)
(s)

4θ(s)θ
(
ρ(s)

)

∣
∣
∣
∣
∣, (1.14)

Qjk(t)=
∥
∥1− νΨ−1Ψ∇(t)

∥
∥
∣
∣
∣
∣
Hov j(t)êθk

(
t, t0
)

θ(t)êθ j
(
t, t0
)
∣
∣
∣
∣, j,k = 1,2, (1.15)

where êθ(t, t0) is the nabla exponential function on a time scale, and ‖ · ‖ is the Euclidean
matrix norm ‖A‖ =

√∑n
k, j=1A

2
k j .

Note that θ1 and θ2 can be used to form approximate solutions y1 and y2 of (1.1) in
the form yj(t)= êθ j (t, t0), j = 1,2. Also, from the given approximate solutions y1 and y2
the function θ = (θ1− θ2)/2 can be constructed.

Theorem 1.1. Assume there exists a function θ(t)∈ C2
ld(T∞) such thatQjk ∈R+

ld, 1− νθj =
0 for all t ∈ T∞, k, j = 1,2,

lim
t→∞ êQjk

(
t, t0
)
<∞. (1.16)

Then (1.1) is asymptotically stable if and only if the condition

lim
t→∞

∣
∣
∣θk−1j êθ j

(
t, t0
)∣∣
∣= 0, k, j = 1,2, (1.17)

is satisfied.

We can simplify condition (1.16) under additional monotonicity condition (1.19) be-
low.

Theorem 1.2. Assume there exists a function θ(t)∈ C2
ld(T∞) such thatK ∈R+

ld, 1− νθj = 0
for all t ∈ T∞, the conditions

lim
t→∞

∣
∣êθ j

(
t, t0
)∣∣= 0, j = 1,2, (1.18)

2�[θj(t)
]≤ ν(t)

∣
∣θj(t)

∣
∣2, t ∈ T∞, j = 1,2, (1.19)

lim
t→∞ êK

(
t, t0
)
<∞, t ∈ T∞, (1.20)

are satisfied.
Then every solution of (1.1) approaches zero as t→∞.



4 Asymptotic stability for dynamic equations on time scales

Corollary 1.3. Assume there exists a function θ(t) ∈ C2
ld(T∞) such that K1 ∈ R+

ld, 1−
νθj = 0 for all t ∈ T∞, conditions (1.18), (1.19), and

lim
t→∞ êK1

(
t, t0
)
<∞, t ∈ T∞, where K1 is defined by (1.14), (1.21)

are satisfied.
Then every solution of (1.1) approaches zero as t→∞.

The next two lemmas from [1, 12] are useful tools for checking condition (1.18).

Lemma 1.4. Let M(t) be a complex-valued function such that for all t ∈ T∞,1−M(t)ν(t) =
0, then

lim
t→∞ êM(t)

(
t, t0
)= 0 (1.22)

if and only if

lim
T→∞

∫ T

t0
lim
p↘ν(s)

Log
∣
∣1− pM(s)

∣
∣

−p ∇s=−∞. (1.23)

The following lemma gives simpler sufficient conditions of decay of nabla exponential
function.

Lemma 1.5. AssumeM ∈ Cld(T), and for some ε > 0,

lim
t→∞

∫ t

t0
�[M(s)

]∇s=−∞ if ν= 0, (1.24)

∣
∣1−Mν(t)

∣
∣≥ eε > 1,

∫∞

t0

∇s
ν(s)

=∞ if ν > 0. (1.25)

Then (1.22) is satisfied.

Remark 1.6 [1]. The first condition (1.25), for ν > 0, means that the values of M(t) are
located in the the exterior of the ball with center 1/ν∗ and radius 1/ν∗,

{

z :
∣
∣
∣
∣z−

1
ν∗

∣
∣
∣
∣ >

1
ν∗

}

, ν∗ = inf
[
ν(t)

]
, (1.26)

and it may be written in the form

2�[M(t)
]
< ν(t)

∣
∣M(t)

∣
∣2. (1.27)

Remark 1.7. In view of Lemma 1.5, conditions (1.18) and (1.19) of Theorem 1.2 can be
replaced by

∫∞

t0

ds

ν(s)
=∞, for ν > 0,

2�[θj(t)
]
< ν(t)

∣
∣θj(t)

∣
∣2, t ∈ T∞, j = 1,2.

(1.28)
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Remark 1.8. In order to apply Theorem 1.2 for the study of exponential stability of a
dynamic equation (1.1), one can replace condition (1.18) by the necessary and sufficient
condition of exponential stability of an exponential function on a time scale given in [12].

Example 1.9. Consider the Euler equation

y∇∇ +
ay∇

ρ(t)
+
by(t)
tρ(t)

= 0, a,b ∈R, (1.29)

on the time scale T∞ ⊂ (0,∞). We assume that the regressivity condition

tρ(t) + atν(t) + bν2(t) = 0, ∀t ∈ T∞, (1.30)

is satisfied. Suppose λ1 and λ2 are two distinct roots of the associated characteristic equa-
tions

λ2 + (a− 1)λ+ b= 0, λ1,2 = 1− a±√(1− a)2− 4b
2

. (1.31)

If

2�[λj
]
<

ν(t)
t

∣
∣λj

∣
∣2,

∫∞

t0

∇s
ν(s)

=∞, j = 1,2, (1.32)

then from Theorem 1.2 it follows that all solutions of (1.29) approach zero as t→∞.
To check the conditions of Theorem 1.2 we set

θ = λ1− λ2
2t

=
√
(1− a)2− 4b

2t
. (1.33)

In view of

θ∇ = λ2− λ1
2tρ(t)

, (1.34)

we have

2kθ = θ∇

θ
=− 1

ρ(t)
, 1− 2kθν= 1+

ν

ρ(t)
= t

ρ
,

D = θ2 +
1+ νp+ ν2q
(
1− 2kθν

)
ν2
= θ2 +

1+ aν/ρ+ bν2/tρ

tν2/ρ
=
(
1− a

2t
− 1

ν

)2
.

(1.35)

Hence from (1.9), (1.11) we get

θ1 = θ +
1
ν
+
√
D = θ +

1
ν
+
1− a

2t
− 1

ν
= λ1

t
, θ2 = λ2

t
. (1.36)

By direct calculations from (1.12) we get

Hov j =
−b− (a− 1)λj − λ2j

tρ
= 0, j = 1,2. (1.37)
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So

K1(t)=
∣
∣
∣
∣
∣

(
θ1Hov2−θ2Hov1

)
(s)

4θ(s)θ
(
ρ(s)

)

∣
∣
∣
∣
∣≡ 0, K(t)≡ 0, (1.38)

and condition (1.20) is satisfied. Conditions (1.18), (1.19) follow from (1.32) and Lemma
1.5 (withM = λj/t).

If T=R, then ν= 0, êθ j (t, t0)= (t/t0)λj , j = 1,2, and condition (1.32) becomes

�(2λj
)=�

(
1− a±

√
(a− 1)2− 4b

)
< 0. (1.39)

If T = Z, then ν = 1 and ρ = t + 1. From [4] exact solutions of (1.29) are êλj /t(t, t0) =
Γ(t+1)Γ(t0 + 1− λj)/Γ(t+1− λj)Γ(t0 + 1), j = 1,2, and condition (1.32) becomes

2�
[
1±

√
(a− 1)2− 4b

]
<

∣
∣1±√(a− 1)2− 4b

∣
∣2

t
. (1.40)

Example 1.10. Consider the linear dynamic equation on a time scale

y∇∇(t) +
ay∇(t)
ρ(t)

+
tby(t)

ρ(t)
(
1+ t2

) = 0. (1.41)

Choosing θ again as in (1.33) we have (1.36) and

θ1Hov2−θ2Hov1 = θ1θ2

(
1− νθ∇

θ

)
− θ∇1 +

θ∇

θ
θ1− q

= b

tρ
− q = b

tρ
− tb

ρ
(
1+ t2

) = b

ρt
(
1+ t2

) .

(1.42)

Thus

K1(t)= |b|
(
1+ t2

)(
λ1− λ2

)2 . (1.43)

From Theorem 1.2 it follows that all solutions of (1.41) approach zero as t→∞, provided
that conditions (1.32) and (1.21) are satisfied.

For the time scales T = R, condition (1.21) is satisfied. For the time scale T = Z with
t0 = 1, we have ν≡ 1, and condition (1.21) is satisfied also since

∫∞

t0

Log
(
1− ν(s)K1(s)

)

−ν(s)
∇s=−

∞∑

n=1
Log

(
1−K1(n)

)≤−
∞∑

n=1
Log

(
1−Cn−2

)
<∞.

(1.44)

2. Method of integral representations of solutions

Lemma 2.1 (Gronwall’s inequality). Assume y, f ∈Cld(T
⋂
(t,b)),K∈R+

ldy, f ,K ≥ 0. Then

y(t)≤ f (t) +
∫ b

t
K(s)y(s)∇s ∀t ∈ T

⋂
(t,b) (2.1)
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implies for all t ∈ T
⋂
(t,b) that

y(t)≤ f (t) +
∫ b

t
êK
(
ρ(s), t

)
K(s) f (s)∇s. (2.2)

Proof. From K(t)≥ 0 it follows that

K2(t)≡ K(t)
1+ ν(t)K(t)

≥ 0, 1−K2(t)ν(t)= 1
1+K(t)ν(t)

> 0, (2.3)

and from [4, Theorem 3.22] we have

êK2 (b, t) > 0. (2.4)

Denote

M(t)≡
∫ b

t
K(s)y(s)∇s, �K2 ≡ −K2

1−K2ν
. (2.5)

Then

y(t)≤ f (t) +M(t), (2.6)

or

M∇ =−K(t)y(t)≥−K(t)( f (t) +M(t)
)
, (2.7)

which implies that

M∇ +K(t)M(t)≥−K(t) f (t). (2.8)

Multiplying the last inequality by −1/êK2 (b,ρ(t)) < 0, and in view of

ê∇K2
(b, t)

êK2 (b, t)
= ê∇�K2

(t,b)

ê�K2 (t,b)
=�K2(t)=−K(t), (2.9)

we have
(

M(t)
êK2 (b, t)

)∇
= M∇ − (ê∇K2

(b, t)/êK2 (b, t)
)
M

ê
ρ
K2
(b, t)

= M∇ +KM

ê
ρ
K2
(b, t)

. (2.10)

Hence

−
(

M(t)
êK2 (b, t)

)∇
≤ K f (t)

ê
ρ
K2
(b, t)

. (2.11)

Integrating over (t,b) we have

M(t)
êK2 (b, t)

−M(b)≤
∫ b

t

K(s) f (s)∇s
ê
ρ
K2
(b,s)

,

M(t)≤ êK2 (b, t)
∫ b

t

K(s) f (s)∇s
êK2

(
b,ρ(s)

) =
∫ b

t
êK2

(
ρ(s), t

)
K(s) f (s) f∇s,

(2.12)
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or

y(t)≤ f (t) +M(t)≤ f (t) +
∫ b

t
êK2

(
ρ(s), t

)
K(s) f (s)∇s. (2.13)

From this inequality and in view of

êK2 (s, t)≤ êK (s, t), (2.14)

(2.2) follows.
The last inequality is trivial for ν= 0 because

0≤ K2(s)≤ K(s). (2.15)

For ν > 0 we also have

êK2 (s, t)= exp
∫ s

t

Log
(
1−K2ν(z)

)∇z
−ν

≤ exp
∫ s

t

Log
(
1−Kν(z)

)∇z
−ν

= êK (s, t).

(2.16)

�

Consider the system of ordinary differential equations

a∇(t)= A(t)a(t), t ∈ T∞, (2.17)

where a(t) is an n-vector function and A(t)∈ Cld(T ,∞) is an n×nmatrix function. Sup-
pose we can find the exact solutions of the system

ψ∇(t)=A1(t)ψ(t), t ∈ T∞, (2.18)

with the matrix function A1 close to the matrix function A, which means that condition
(2.21) is satisfied. LetΨ(t) be the n×n fundamental matrix of the auxiliary system (2.18).
If the matrix function A1 is regressive and ld-continuous, the matrixΨ(t) exists (see [6]).
Then solutions of (2.17) can be represented in the form

a(t)=Ψ(t)
(
C+ ε(t)

)
, (2.19)

where a(t), ε(t), C are the n-vector columns: a(t) = column(a1(t), . . . ,an(t)), ε(t) =
column(ε1(t), . . . ,εn(t)), C = column(C1, . . . ,Cn); Ck are arbitrary constants. We can con-
sider (2.19) as a definition of the error vector function ε(t).

Denote

H(t)≡ (Ψ− νΨ∇
)−1(

AΨ−Ψ∇
)
(t). (2.20)

Theorem 2.2. Assume there exists a matrix functionΨ(t)∈ C1
ld(T∞) such that ‖H‖ ∈R+

ld,
the matrix function Ψ− νΨ∇ is invertible, and

ê‖H‖(∞, t)= exp
∫∞

t
lim

m→ν(s)

Log
(
1−m

∥
∥H(s)

∥
∥)∇s

−m <∞. (2.21)
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Then every solution of (2.17) can be represented in form (2.19) and the error vector function
ε(t) can be estimated as

∥
∥ε(t)

∥
∥≤ ‖C‖(ê‖H‖(∞, t)− 1

)
, (2.22)

where ‖ · ‖ is the Euclidean vector (or matrix) norm ‖C‖ =
√
C2
1 + ···+C2

n.

Remark 2.3. From (2.22) the error ε(t) is small when the expression

∫∞

t
lim

m↘ν(s)

(
Log

(
1−m

∥
∥(Ψ− νΨ∇

)−1(
A−A1

)
Ψ(s)

∥
∥)

−m

)

∇s (2.23)

is small.

Proof of Theorem 2.2. Let a(t) be a solution of (2.17). The substitution a(t) = Ψ(t)u(t)
transforms (2.17) into

u∇(t)=H(t)u(t), t > T , (2.24)

where H is defined by (2.20). By integration we get

u(t)= C−
∫ b

t
H(s)u(s)∇s, b > t > T , (2.25)

where the constant vector C is chosen as in (2.19).
Estimating u(t) we have

∥
∥u(t)

∥
∥≤ ‖C‖+

∫ b

t

∥
∥H(s)

∥
∥ ·∥∥u(s)∥∥∇s. (2.26)

From
(
êK (t,c)

)∇ = KêK (t,c),

(
êK (c, t)

)∇ =
(

1
êK (t,c)

)∇
= −K

ê
ρ
K (t,c)

=−KêK
(
c,ρ(t)

)
,

(2.27)

by integration we get

∫ b

a
K(s)êK (s,c)∇s= êK (b,c)− êK (a,c), (2.28)

∫ b

a
K(s)êK

(
c,ρ(s)

)∇s= êK (c,a)− êK (c,b). (2.29)

Using Gronwall’s inequality (2.2) from (2.26) we get

∥
∥u(t)

∥
∥≤ ‖C‖

(
1+
∫ b

t
‖H‖ê‖H‖

(
ρ(s), t

)∇s
)

≤ ‖C‖
(
1+
∫ b

t
‖H‖ê‖H‖(s, t)∇s

)
.

(2.30)
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In view of (2.28),

∥
∥u(t)

∥
∥≤ ‖C‖ê‖H‖(b, t). (2.31)

From representation (2.19) and expression (2.25) we have

ε(t)=Ψ−1a−C = u−C =−
∫ b

t
H(s)u(s)∇s. (2.32)

Then using (2.31) we obtain the estimate given by (2.22):

∥
∥ε(t)

∥
∥≤

∫ b

t
‖Hu‖∇s≤ ‖C‖

∫ b

t

∥
∥H(s)

∥
∥ê‖H‖(b,s)∇s

≤ ‖C‖
∫ b

t

∥
∥H(s)

∥
∥ê‖H‖

(
b,ρ(s)

)∇s= ‖C‖(ê‖H‖(b, t)− 1
)
.

(2.33)

�

Theorem 2.4. Let y1, y2 ∈ C2
ld(T∞) be the complex-valued functions such that ‖H‖ ∈R+

ld,
and

ê‖H‖(∞, t) <∞, (2.34)

where

Bk j(t)≡
yk(t)Lyj(t)

W(y1, y2)
, Ly ≡ y∇∇ + p(t)y∇ + q(t)y, j = 1,2, (2.35)

Ψ=
(
y1(t) y2(t)
y∇1 (t) y∇2 (t)

)

, W
(
y1, y2

)= y∇2 (t)y1(t)− y∇1 (t)y2(t), (2.36)

H(t)= (1− νΨ−1Ψ∇
)−1
(

B21(t) B22(t)
−B11(t) −B12(t)

)

. (2.37)

Then every solution of (1.1) can be written in the form

y(t)= [C1 + ε1(t)
]
y1(t) +

[
C2 + ε2(t)

]
y2(t), (2.38)

y∇(t)= [C1 + ε1(t)
]
y∇1 (t) +

[
C2 + ε2(t)

]
y∇2 (t), (2.39)

where C1, C2 are arbitrary constants, and the error function satisfies the estimate

∥
∥ε(t)

∥
∥≤ ‖C‖(− 1+ ê‖H‖(∞, t)

)
. (2.40)

Proof of Theorem 2.4. We can rewrite (1.1) in the form

v∇(t)= A(t)v(t), (2.41)

where

v(t)=
(

y(t)
y∇(t)

)

, A(t)=
(

0 1
−q(t) −p(t)

)

. (2.42)
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Now we apply Theorem 2.2 to the system (2.41). By direct calculations from (2.20) we
get (2.37), and condition (2.21) of Theorem 2.2 follows from (2.34).

From Theorem 2.2 it follows that

v(t)=Ψ(t)
(
C+ ε(t)

)
. (2.43)

Representations (2.38), (2.39), and estimates (2.40) follow from Theorem 2.2. �

Proof of Theorem 1.1. We are looking for solutions of (1.1) in the form

yj(t)≡ êθ j
(
t, t0
)= exp

(∫ t

t0
lim

m↘ν(τ)

Log
(
1−mθj(τ)

)

−m ∇τ
)
, j = 1,2, (2.44)

where the functions θj are defined by (1.8) and (1.11).
From (2.44) (see [4]) we have

y∇1 (t)= θ1(t)y1(t), y∇2 (t)= θ2(t)y2(t),

W
[
y1, y2

]

y1y2
= y1y

∇
2 − y2y

∇
1

y1y2
= θ2− θ1 =−2θ,

Lyj
y j
= θ2j +

(
1− νθj

)
θ∇j + pθj + q, j = 1,2.

(2.45)

By direct calculations

B12(t)= y1Ly2
W
(
y1, y2

) = Hov2(t)
2θ(t)

, B21(t)= y2Ly1
W
(
y1, y2

) = Hov1(t)
2θ(t)

,

B11(t)= y1Ly1
W
(
y1, y2

) = Hov1(t)
2θ(t)

êθ1
(
t, t0
)

êθ2
(
t, t0
) ,

B22(t)= y2Ly2
W
(
y1, y2

) = Hov2(t)
2θ(t)

êθ2
(
t, t0
)

êθ1
(
t, t0
) .

(2.46)

In view of (1.16) condition (2.34) of Theorem 2.4 is satisfied. From Theorem 2.4 and
(2.40) it follows that |εj(t)| ≤ C, j = 1,2. From (1.17) we get yj(t)→ 0, y∇j (t)→ 0, t→∞.
So asymptotic stability of (1.1) follows from representations (2.38) and (2.39).

Now we prove that if one of (1.17) is not satisfied, then there exists asymptotically
unstable solution y(t).

Assume for contradiction that (1.5) is satisfied and, for example, the first condition of
(1.17) is not satisfied. Then there exists the sequence tn→∞ such that

lim
tn→∞

∣
∣y1
(
tn
)∣∣= λ1 > 0. (2.47)

There exists the subsequence tnj ≡ tm of the sequence tn such that

lim
tm→∞

∣
∣y2
(
tm
)∣∣= λ2 ≥ 0. (2.48)
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From Theorem 2.4 any solution y(t) of (1.1) can be represented in the form (2.38)
with some constants C1, C2, or

y(tm)=
[
C1 + ε1

(
tm
)]
y1
(
tm
)
+
[
C2 + ε2

(
tm
)]
y2
(
tm
)
, (2.49)

where from (2.40) we have
∣
∣εj(t)

∣
∣≤ ‖C‖(ê‖H‖(∞, t)− 1

)−→ 0, (2.50)

as t = tm→∞.
From representation (2.49) it follows that λ1, λ2 must be finite numbers. Otherwise,

the left side of the representation vanishes and the right side approaches infinity when tm
approaches infinity. Choosing C1 = 1, C2 = 0 we obtain from (2.49), as t→∞,

0= λ1 + λ1 lim
tk→∞

ε1
(
tk
)
+ λ2 lim

tk→∞
ε2
(
tk
)= λ1, (2.51)

which contradicts the assumption λ1 > 0. �

Lemma 2.5. If 1− νθj(t) = 0 for all t ∈ T∞, and

2�[θj(t)
]≤ ν(t)

∣
∣θj(t)

∣
∣2, t ∈ T∞, j = 1,2, (2.52)

then the functions |yj(t)| are nonincreasing. That is,
∣
∣yj(t)

∣
∣≤ ∣∣yj(τ)

∣
∣ whenever t0 ≤ τ ≤ t. (2.53)

Proof. If ν ≡ 0, then the functions |yj| (see (2.44)) are nonincreasing in view of (2.52)
and

∣
∣yj(t)

∣
∣∇

∣
∣yj(t)

∣
∣ =

∣
∣yj(t)

∣
∣′

∣
∣yj(t)

∣
∣ =�

[
θj
]≤ 0. (2.54)

If ν > 0, then from (2.52) it follows that

∣
∣1− νθj

∣
∣=

√
(
1− ν�[θj

])2
+
(
ν�[θj

])2 ≥ 1, j = 1,2, (2.55)

Log
∣
∣1− ν(t)θj(t)

∣
∣

−ν(t)
≤ 0. (2.56)

Hence the functions |yj(t)| = exp(
∫ t
t0 (Log|1− νθj(τ)|/−ν(τ))∇τ) are nonincreasing. �

Proof of Theorem 1.2. In view of (1.12), (2.44) by direct calculations we have

y∇1 y∇∇2 − y∇2 y∇∇1

W
[
y1, y2

] = q(t) +
θ1Hov2−θ2Hov1

2θ
. (2.57)

It is easy to check that y1, y2 are exact solutions of

y∇∇ +
y∇∇1 y2− y∇∇2 y1

W
[
y1, y2

] y∇(t) +
y∇1 y∇∇2 − y∇2 y∇∇1

W
[
y1, y2

] y(t), (2.58)
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or

y∇∇ + p(t)y∇(t) +

(

q(t) +
θ1Hov2−θ2Hov1

2θ

)

y(t)= 0, (2.59)

in view of (1.8) and (2.57).
Indeed from

y∇∇1 + py∇1 + qy1 = 0, y∇∇2 + py∇2 + qy2 = 0 (2.60)

we have

p = y∇∇1 y2− y∇∇2 y1
W
[
y1, y2

] , q = y∇∇2 y∇1 − y∇∇1 y∇2
W
[
y1, y2

] , (2.61)

or

p =
(
θ1y1

)∇
y2−

(
θ2y2

)∇
y1(

θ2− θ1
)
y1y2

= θ∇1 + θ21 − νθ∇1 θ1− θ∇2 − θ22 + νθ∇2 θ2
θ2− θ1

,

q =
(
θ2y2

)∇
θ1y1−

(
θ1y1

)∇
θ2y2(

θ2− θ1
)
y1y2

= θ1
(
θ∇2 + θ22 − νθ∇2 θ2

)− θ2
(
θ∇1 + θ21 − νθ∇1 θ1

)

θ2− θ1
,

p =−θ1− θ2− θ∇

θ
+ νθ∇2 + νθ1

θ∇

θ
, q = θ1θ2

(
1− ν

θ∇

θ

)
+ θ1

θ∇

θ
− θ∇1 .

(2.62)

Excluding θ∇1 we have

νq+ p = νθ1θ2

(
1− ν

θ∇

θ

)
+ νθ1

θ∇

θ
− νθ∇1 − θ1− θ2− θ∇

θ
+ νθ∇2 + νθ1

θ∇

θ

= νθ1θ2

(
1− ν

θ∇

θ

)
+2νθ1

θ∇

θ
− 2νθ∇ − θ1− θ2− θ∇

θ

= νθ1
(
θ1− 2θ

)(
1− 2kθν

)
+2νθ12kθ− 2ν2kθ2− 2θ1 + 2θ− 2kθ

= νθ21
(
1− 2kθν

)− 2θ1
(
νθ− ν22kθ2 + 1− 2kθν

)
+2θ

(
1− 2kθν

)− 2kθ.

(2.63)

Thus we get (1.8):

νq+ p = νθ21
(
1− 2kθν

)− 2θ1
(
1+ νθ

)(
1− 2kθν

)
+2θ

(
1− 2kθν

)− 2kθ. (2.64)

So the solutions of (1.1) or the nonhomogeneous equation

y∇∇ + p(t)y∇(t) +
(
q(t) +

θ1Hov2−θ2Hov1
2θ

)
y(t)=

(
θ1Hov2−θ2Hov1

2θ

)
y(t)

(2.65)
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may be written in the form (see [3, 4])

y−C1y1−C2y2 =
∫ t

t0

y1
(
ρ(τ)

)
y2(t)− y2

(
ρ(τ)

)
y1(t)

W
[
y1, y2

](
ρ(τ)

)
(
θ1Hov2−θ2Hov1

2θ

)
(τ)y(τ)∇τ

=−
∫ t

t0

(
y2(t)

y2
(
ρ(τ)

) − y1(t)
y1
(
ρ(τ)

)
)(

θ1Hov2−θ2Hov1
)
(τ)y(τ)∇τ

4θ
(
ρ(τ)

)
θ(τ)

.

(2.66)

Using Lemma 2.5 and the formula y(ρ(τ))= y(τ)− ν(τ)y∇(τ) we get the estimate
∣
∣y(t)

∣
∣≤ ∣∣C1y1(t) +C2y2(t)

∣
∣

+
∫ t

t0

( ∣
∣y1(τ)

∣
∣

∣
∣y1
(
ρ(τ)

)∣∣ +

∣
∣y2(τ)

∣
∣

∣
∣y2
(
ρ(τ)

)∣∣

)∣
∣(θ1Hov2−θ2Hov1

)
(τ)y(τ)

∣
∣∇τ

4
∣
∣θ
(
ρ(τ)

)
θ(τ)

∣
∣ ,

(2.67)

or

∣
∣y(t)

∣
∣≤ ∣∣C1y1(t) +C2y2(t)

∣
∣+

∫ t

t0
K(τ)

∣
∣y(τ)

∣
∣∇τ, (2.68)

where K(τ) is defined in (1.13).
Further we need a different version of Gronwall’s inequality from the one in Lemma

2.1. Note that delta version of this Gronwall’s inequality was proved in [3].

Lemma 2.6. Assume y, f ∈ Cld(T), f , y ≥ 0, K ∈R+
ν . Then

y(t)≤ f (t) +
∫ t

t0
K(s)y(s)∇s ∀t ∈ T∞, (2.69)

implies

y(t)≤ f (t) +
∫ t

t0
êK
(
t,ρ(s)

)
K(s) f (s)∇s ∀t ∈ T∞. (2.70)

Proof. Denote

z(t)≡
∫ t

t0
K(s)y(s)∇s, (2.71)

then

y(t)≤ f (t) + z(t), z∇(t)−K(t)z(t)= K(t)y(t)−K(t)z(t)≤ K f (t). (2.72)

From K ∈R+
ν follows êK > 0 (see [4, Theorem 3.22]), and

(
z

êK

)∇
= z∇ −Kz

ê
ρ
K

≤ K f

ê
ρ
K

, (2.73)

by integration

z(t)
êK
(
t, t0
) − z

(
t0
)= z(t)

êK
(
t, t0
) ≤

∫ t

t0

K(s) f (s)∇s
êK
(
ρ(s), t0

) . (2.74)
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or

z(t)≤
∫ t

t0
K(s)êK

(
t, t0
)
êK
(
t0,ρ(s)

)
f (s)∇s=

∫ t

t0
K(s)êK

(
t,ρ(s)

)
f (s)∇s. (2.75)

Thus

y ≤ f + z ≤ f +
∫ t

t0
K(s)êK

(
t,ρ(s)

)
f (s)∇s. (2.76)

�

Using Gronwall’s inequality (2.70) in (2.68) we get the stability estimate

∣
∣y(t)

∣
∣≤ ∣∣C1y1(t) +C2y2(t)

∣
∣+

∫ t

t0
êK
(
t,ρ(s)

)∣∣C1y1(s) +C2y2(s)
∣
∣K(s)∇s. (2.77)

From (1.18) it follows that

lim
t→∞

∣
∣C1y1(t) +C2y2(t)

∣
∣= 0. (2.78)

Or for any ε > 0 there exists t0 such that for t > t0 we have

∣
∣C1y1(t) +C2y2(t)

∣
∣ < ε. (2.79)

Hence it follows from (2.77) that

∣
∣y(t)

∣
∣≤ ε

(
1+
∫ t

t0
êK
(
t,ρ(s)

)
K(s)∇s

)
. (2.80)

From (2.29)

∫ t

t0
K(s)êK

(
t,ρ(s)

)∇s= êK
(
t, t0
)− êK (t, t), (2.81)

and so

∣
∣y(t)

∣
∣≤ εêK

(
t, t0
)≤ Cε, (2.82)

from which it follows that y(t)→ 0 as t→∞. �

Corollary 1.3 follows from Theorem 1.2 because of inequality K(s)≤ K1(s) which fol-
lows from (2.55).

Proof of Lemma 1.4. Proof follows from the Hilger’s representation of exponential func-
tion on a time scale (see [6, Theorem 7.4(iii)])

∣
∣êM(t)

(
T , t0

)∣∣= exp
∫ T

t0
lim
p↘ν(s)

Log
∣
∣1− pM(s)

∣
∣

−p ∇s. (2.83)

�
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Proof of Lemma 1.5. From (1.25) it follows that 1−Mν = 0 and êM exists. For ν > 0 from
(1.25) we have

∣
∣êM(t)

(
t, t0
)∣∣= exp

∫ t

t0

Log
∣
∣1−Mν(s)

∣
∣

−ν(s)
∇s≤ exp

∫ t

t0

ε∇s
−ν(s)

−→ 0, t −→∞. (2.84)

�

For t ∈ T we define the forward jump operator σ : T→ T by

σ(t)= inf
{
s∈ T : s > t

}
. (2.85)

The graininess function μ : T→ [0,∞] is defined by

μ(t)= σ(t)− t. (2.86)

A function f :∈ T → R is called rd-continuous (Crd(T)) provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T.

By Lrd(T) we denote a class of functions f : T→ R that are rd-continuous on T and
Lebesgue integrable on T.

Assume yΔ is a delta (Hilger) derivative, and eλ(t, t0) is a delta exponential function.

Lemma 2.7 (see [1, 12]). Assume K ∈ Crd(T), and for some ε > 0

0 < |1+Kμ(t)| ≤ 1− ε < 1,
∫∞

t0

Δs

μ(s)
=∞ if μ > 0, (2.87)

∫∞

t0
�[K(s)]∇s=−∞ if μ= 0. (2.88)

Then

lim
t→∞eK

(
t, t0
)= 0. (2.89)

Remark 2.8. The first condition (2.87) means (see [1]) that the values of K(t) are located
in the interior of the annulus with center −1/μ∗ and radius 1/μ∗,

Sμ∗ =
{
z : 0 <

∣
∣
∣
∣z+

1
μ∗

∣
∣
∣
∣ <

1
μ∗

}
, μ∗ = sup

[
μ(t)

]
, (2.90)

and it may be written in the form

2�[K(t)] <−μ(t)∣∣K(t)∣∣2. (2.91)

Proof. It is enough to prove the lemma for the case μ > 0.
From |1+Kμ(t)| > 0 it follows that eK exists. From Log |1− ε| <−ε for 0 < ε < 1 and

from (2.87) for μ > 0 we have

∣
∣êK(t)

(
t, t0
)∣∣= exp

∫ t

t0

Log
∣
∣1+Kμ(s)

∣
∣

μ(s)
Δs≤ exp

∫ t

t0

−εΔs
μ(s)

−→ 0, t −→∞. (2.92)

�
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Remark 2.9. Comparing Lemmas 2.7 and 1.5 we see that nabla exponential functions ap-
proach zero in the larger region (see (1.25)) in the complex plane than delta exponential
functions (see (2.87)). Thus asymptotic stability conditions for nabla dynamic equations
should be less restrictive than for delta dynamic equations.
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