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ASYMPTOTIC STABILITY FOR TWO-DIMENSIONAL BOUSSINESQ

SYSTEMS AROUND THE COUETTE FLOW IN A FINITE CHANNEL

NADER MASMOUDI, CUILI ZHAI, AND WEIREN ZHAO

Abstract. In this paper, we study the asymptotic stability for the two-dimensional Navier-
Stokes Boussinesq system around the Couette flow with small viscosity ν and small thermal
diffusion µ in a finite channel. In particular, we prove that if the initial velocity and initial

temperature (vin, ρin) satisfies ‖vin − (y, 0)‖H2
x,y

≤ ε0 min{ν, µ}
1

2 and ‖ρin − 1‖H1
x
L2

y
≤

ε1 min{ν, µ}
11

12 for some small ε0, ε1 independent of ν, µ, then for the solution of the two-

dimensional Navier-Stokes Boussinesq system, the velocity remains within O(min{ν, µ}
1

2 )
of the Couette flow, and approaches to Couette flow as t → ∞; the temperature remains

within O(min{ν, µ}
11

12 ) of the constant 1, and approaches to 1 as t → ∞.

1. Introduction

In this paper, we consider the two-dimensional Navier-Stokes Boussinesq system in a finite
channel Ω = {(x, y) : x ∈ T, y ∈ (−1, 1)}:

(1.1)





∂tv + v · ∇v − ν∆v +∇P = −ρge2
∂tρ+ v · ∇ρ− µ∆ρ = 0, ∇ · v = 0,
v(t, x,±1) = (±1, 0), ρ(t, x,±1) = c0,

v(0, x, y) = vin(x, y), ρ(0, x, y) = ρin(x, y),

where ν is the viscosity coefficient and µ is the thermal diffusivity, v(t, x, y) = (v1, v2) is the
two-dimensional velocity field, P (t, x, y) is the pressure, ρ is the temperature, g = 1 is the
normalized gravitational constant and e2 = (0, 1) is the unit vector in the vertical direction.
The boundary condition in (1.1) means that the fluid is moving together with the boundary
and the temperature is fixed at the boundary. Let us also normalize c0 = 1 for simplicity.

The system (1.1) has a flowing steady state

(1.2) vs = (y, 0), ρs = 1, ps = y + c.

Now we introduce the perturbation: v = u+(y, 0), P = p+ps and ρ = θ+ρs, then (u, p, θ)
satisfies

(1.3)





∂tu+ y∂xu+
(
u2

0

)
+ u · ∇u− ν∆u+∇p = −

(
0
θ

)
,

∂tθ + y∂xθ + u · ∇θ − µ∆θ = 0, ∇ · u = 0,
u(t, x,±1) = 0, θ(t, x,±1) = 0,
u(0, x, y) = uin(x, y), θ(0, x, y) = θin(x, y).

We also introduce the vorticity ω = ∇× u = ∂yu
1 − ∂xu

2, which satisfies

(1.4)





∂tω + y∂xω + u · ∇ω − ν∆ω = −∂xθ,
∂tθ + y∂xθ + u · ∇θ − µ∆θ = 0,
u = ∇⊥ψ = (∂yψ,−∂xψ), ∆ψ = ω.

1

http://arxiv.org/abs/2201.06832v1


2 NADER MASMOUDI, CUILI ZHAI, AND WEIREN ZHAO

Note that we can not impose the boundary condition on the vorticity, which is the main
difficulty of this paper.

Before stating our main result, let us first recall previous works about the stability of
flowing steady states. The linear inviscid two-dimensional Boussinesq system with shear
flows has been extensively studied starting from the works of Taylor [18], Goldstein [12] and
Synge [17]. We also refer to the book of Lin [13]. The system (1.3) is well studied in the
infinite channel case T× R. We can refer to [5, 10, 22, 23, 24]. The best stability threshold
result when ν = µ is

‖ωin‖Hs ≤ ǫν
1

2 , ‖θin‖Hs ≤ ǫν, ‖|Dx|
1

3 θin‖Hs ≤ ǫν
5

6 ,(1.5)

with s > 1, which was proved by Deng, Wu and Zhang [10]. The mechanisms leading to
stability are the so-called inviscid damping and enhanced dissipation, which are well studied
for the Navier-Stokes system around Couette flow which we will introduce later. Without
thermal diffusion, Masmoudi, Said-Houari and Zhao [14] considered the Navier-Stokes Boussi-
nesq system with no heat diffusion in the thermal equation, and they studied the stability of
Couette flow for the initial data perturbation in Gevrey-1

s
for 1

3 < s ≤ 1 in the domain T×R.
For the Euler Boussinesq system ν = µ = 0, the global well-posedness for large data is an
open problem. In [21], Yang and Lin proved the linear inviscid damping for the linearized
two-dimensional Euler Boussinesq system which is generalized in [6]. The nonlinear inviscid
damping for large time is studied by Bedrossian, Bianchini, Coti Zelati and Dolce [1].

In this paper, we mainly study the boundary effect due to the non-slip boundary condition
on the velocity.

Our main result is stated as follows.

Theorem 1.1. Suppose that (u, θ) solves the system (1.3) with the initial data (uin, θin).
Then there exist constants ν0 and ε0, ε1, C > 0 independent of ν, µ so that if

‖uin‖H2 ≤ ε0 min{ν, µ}
1

2 ,

‖θin‖H1 + ‖|Dx|
1

6 θin‖H1 ≤ ε1 min{ν, µ}
11

12 ,

for some sufficiently small ε0, ε1, 0 < min{ν, µ} ≤ ν0, then the solution (u, θ) is global in
time and satisfies the following stability estimates:

‖(1− |y|)
1

2ω‖
L̃∞
t FL1L2

y
+ ‖∂xu‖L̃2

tFL1L2
y
+ ‖|Dx|

1

2u‖
L̃∞
t FL1L∞

y
+ ν

1

4‖|Dx|
1

2ω‖
L̃2
tFL1L2

y

≤ Cε0min{ν, µ}
1

2 ,

and

‖θ‖
L̃∞
t FL1L2

y
+ ‖|Dx|

1

6 θ‖
L̃∞
t FL1L2

y
+ µ

1

6‖|Dx|
2

3 θ‖
L̃2
tFL1L2

y
≤ Cε1min{ν, µ}

11

12 ,

where ‖f‖
L̃
p
tFL1L

q
y
=

∑
k∈Z

‖f̂k‖Lp
tL

q
y
and f̂k = 1

2π

∫
T
f(x)e−ikxdx is the Fourier transform of f

in the x direction and k is the wave number.

Remark 1.2. The function space L̃p
tFL

1L
q
y is of the same spirit as the Chemin-Lerner’s

Besov space [8].

Remark 1.3. The asymptotic stability holds for the initial perturbation satisfying
∑

k∈Z

‖ŵin,k‖L2 +
∑

k∈Z\{0}

|k|−1‖∂yŵin,k‖L2 ≤ Cε0min{ν, µ}
1

2 ,
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and

‖θ̂in,0‖L2 +
∑

k∈Z\{0}

‖|k|
1

6 θ̂in,k‖L2 ≤ Cε1 min{ν, µ}
11

12 .

Remark 1.4. The estimate ‖∂xu‖L̃2
tFL1L2

y
is due to the inviscid damping and the estimates

ν
1

4‖|Dx|
1

2ω‖
L̃2
tFL1L2

y
and µ

1

6‖|Dx|
2

3 θ‖
L̃2
tFL1L2

y
are due to the enhanced dissipation.

Remark 1.5. Compared to [10], when ν = µ, the interpolation of Sobolev spaces gives that
the stability threshold is actually more restrictive than the one in our paper. In [10], an
extra smallness on lower frequencies is required, namely ‖θin‖Hs ≤ ǫν. The key point of
improvement is that we are able to control the buoyancy term and nonlocal terms in the
temperature equation by avoiding discussing the different sizes of θ in different frequencies.

Remark 1.6. If θin = 0, ν = µ, Theorem 1.1 is consistent with the Navier-Stokes result in
[9]. We also remark that the stability problem of two-dimensional Couette flow has previously
been investigated. One may refer to [3, 4, 15, 16] for infinite channel case, and to [2, 9] for
finite channel case. In this paper, the linear estimates of the velocity and the vorticity can
be obtained by the same method as [9], and in order to shorten this paper, we will use some
linear estimates from [9] as a black box.

Remark 1.7. For the Navier-Stokes result, the restriction on the size of perturbations for

the asymptotic stability is ν
1

2 which was obtained in [9] due to the boundary effect. Without

boundary, it is expected that the stability threshold is ν
1

3 for perturbations in some higher
regularity Sobolev spaces [15]. By modifying the time-dependent multiplier of [15] and treating
the bouyancy term as in this paper, one can obtain that for the system (1.4) in T × R, the
asymptotic stability holds for larger initial perturbations, namely,

‖ωin‖Hs ≤ ε0 min{ν, µ}
1

3 ,

‖θin‖Hs + ‖|Dx|
1

6 θin‖Hs ≤ ε1 min{ν, µ}
2

3 ,

with some s large.

In order to control the buoyancy term, in section 2, we obtain the precise estimates of θ by
decomposing the system of θ into inhomogeneous problem and homogeneous problem. For
the homogeneous part, we can obtain the sharp bound by using the Gearhart-Prüss lemma in
[20]. And for the inhomogeneous part, we obtain Proposition 2.5 by some resolvent estimates
which were obtained in section 3 of [9] with the Navier-slip boundary condition. Finally, in
section 3, we will mainly give the proof of the nonlinear stability.

2. Space-time estimates of the linearized Boussinesq equations

In this section, we establish the space-time estimates of the linearized two-dimensional
Boussinesq equation. By taking the Fourier transform in x ∈ T, we have

θ(t, x, y) =
∑

k∈Z

θ̂k(t, y)e
ikx, ω(t, x, y) =

∑

k∈Z

ŵk(t, y)e
ikx, u(t, x, y) =

∑

k∈Z

ûk(t, y)e
ikx.

And for convenience, we suppress the index k in θ̂k, ŵk, ûk.
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2.1. Space-time estimates for the vorticity. Let us first study the following system for
k 6= 0: {

∂tŵ + ν(∂2y − k2)ŵ + ikyŵ = −ikf1 − ∂yf
2, w|t=0 = ŵin(k, y),

ŵ = ∂yû
1 − ikû2, û(t, k,±1) = 0.

(2.1)

We also introduce the space-time norm:

‖f‖LpLq =
∥∥‖f(t)‖Lq(−1,1)

∥∥
Lp(R+)

.

Let us introduce the following estimate for (2.1).

Proposition 2.1. (Proposition 6.1 in [9].) Let 0 < ν ≤ ν0 and ŵ be a solution of (2.1) with
ŵin ∈ H1(−1, 1) and f1, f2 ∈ L2L2, where ŵin satisfies 〈ŵin, e

±ky〉 = 0. Then there exists a
constant C > 0 independent of ν, k so that

|k|‖û‖2L∞L∞ + k2‖û‖2L2L2 + (νk2)
1

2‖ŵ‖2L2L2 + ‖(1 − |y|)
1

2 ŵ‖2L∞L2

≤ C
(
‖ŵin‖

2
L2 + k−2‖∂yŵin‖

2
L2

)
+ C

(
ν−

1

2 |k|‖f1‖2L2L2 + ν−1‖f2‖2L2L2

)
.

2.2. Space-time estimates for θ. First of all, we consider the linearized equation:

∂tθ̂ − µ(∂2y − k2)θ̂ + ikyθ̂ = −ikg1 − ∂yg
2, θ̂|t=0 = θ̂in, θ̂|y=±1 = 0.(2.2)

By the standard energy estimates for θ̂, we can easily get the following proposition, which

is important for the estimates of high frequency of θ̂.

Proposition 2.2. Let θ be a solution of (2.2) with θ̂in ∈ L2(−1, 1) and g1, g2 ∈ L2L2. Then
there exists a constant C > 0 independent in µ, k so that

‖θ̂‖2L∞L2 + µk2‖θ̂‖2L2L2 + µ‖∂y θ̂‖
2
L2L2 ≤ Cµ−1

(
‖g1‖2L2L2 + ‖g2‖2L2L2

)
+ ‖θ̂in‖

2
L2 .

Proof. Taking L2 inner product between (2.2) and θ, we get

〈∂tθ̂, θ̂〉 − µ〈(∂2y − k2)θ̂, θ̂〉+ 〈ikyθ̂, θ̂〉 = 〈−ikg1 − ∂yg
2, θ̂〉.

By taking the real part and integration by parts in the above equality, we obtain

1

2

d

dt
‖θ̂‖2L2 + µ‖∂y θ̂‖

2
L2 + µk2‖θ̂‖2L2 ≤ C‖g1‖L2‖kθ̂‖L2 + C‖g2‖L2‖∂y θ̂‖L2

≤
1

4
µ‖kθ̂‖2L2 + Cµ−1‖g1‖2L2 +

1

4
µ‖∂y θ̂‖L2 + Cµ−1‖g2‖2L2 .

Thus by integrating in time, we have

‖θ̂‖2L∞L2 + µk2‖θ̂‖2L2L2 + µ‖∂y θ̂‖
2
L2L2 ≤ Cµ−1

(
‖g1‖2L2L2 + ‖g2‖2L2L2

)
+ ‖θ̂in‖

2
L2 .

�

In order to deal with the buoyancy term ∂xθ in the vorticity equation, we also need to give

the following estimates about θ̂.

First, we decompose θ̂ = θ̂I + θ̂H , where θ̂I solves

∂tθ̂I − µ(∂2y − k2)θ̂I + ikyθ̂I = −ikg1 − ∂yg
2, θ̂I |t=0 = 0, θ̂I |y=±1 = 0,(2.3)

and θ̂H solves

∂tθ̂H − µ(∂2y − k2)θ̂H + ikθ̂H = 0, θ̂H |t=0 = θ̂in, θ̂H |y=±1 = 0.(2.4)

For the homogeneous part θ̂H , by using transport diffusion structure and the Gearhart-
Prüss type lemma with sharp bound [20], we use the following estimates.
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Lemma 2.3. (Lemma 6.3 in [9].) Let θ̂in ∈ L2(−1, 1). Then for any k ∈ Z, there exist
constants C, c > 0 independent of µ, k such that

‖θ̂H‖L2 ≤ Ce−cµ
1
3 |k|

2
3 t−µt‖θ̂in‖L2 .

Moreover, for any |k| ≥ 1,

(µk2)
1

3 ‖θ̂H‖2L2L2 ≤ C‖θ̂in‖
2
L2 .

For the inhomogeneous part, considering the system

−µ(∂2y − k2)Θ̂ + ik(y − λ)Θ̂ = F, Θ̂(±1) = 0,(2.5)

we have the following sharp resolvent estimates for the linearized operator, which is very

important for the space-time estimates of θ̂I .

Lemma 2.4. (Proposition 3.1 and Proposition 3.3 in [9].) Let Θ̂ ∈ H2(−1, 1) be a solution
of (2.5) with λ ∈ R. Then it holds for F ∈ L2(−1, 1),

µ
2

3 |k|
1

3 ‖∂yΘ̂‖L2 + (µk2)
1

3‖Θ̂‖L2 + |k|‖(y − λ)Θ̂‖L2 ≤ C‖F‖L2 ,

and for F ∈ H−1(−1, 1),

µ‖∂yΘ̂‖L2 + µ
2

3 |k|
1

3 ‖Θ̂‖L2 ≤ C‖F‖H−1 .

Proposition 2.5. Let θ̂I be a solution of (2.3). Then there exists a constant C > 0 inde-
pendent of µ, k such that

(µk2)
1

3‖θ̂I‖
2
L2L2 + ‖θ̂I‖

2
L∞L2 ≤ C

(
µ−

1

3 |k|
4

3‖g1‖2L2L2 + µ−1‖g2‖2L2L2

)
.

Proof. Now we use the resolvent estimates in Lemma 2.4 to obtain the semigroup estimates.
By taking the Fourier transform in t:

θ̂(λ, k, y) =

∫ +∞

0
θ̂I(t, k, y)e

−itλdt,

Gj(λ, k, y) =

∫ +∞

0
gj(t, k, y)e−itλdt, j = 1, 2,

we get that from (2.3),

(iλ− µ(∂2y − k2) + iky)θ̂(λ, k, y) = −ikG1(λ, k, y)− ∂yG
2(λ, k, y).(2.6)

Using Plancherel’s theorem, we know that
∫ +∞

0
‖θ̂I(t)‖

2
L2dt ∼

∫

R

‖θ̂(λ)‖2L2dλ,

∫ +∞

0
‖gj(t)‖2L2dt ∼

∫

R

‖Gj(λ)‖2L2dλ, j = 1, 2.

We further decompose θ̂I = θ̂
(1)
I + θ̂

(2)
I , where θ̂

(1)
I and θ̂

(2)
I solve

(iλ− µ(∂2y − k2) + iky)θ̂
(1)
I (λ, k, y) = −ikG1(λ, k, y), θ̂

(1)
I |y=±1 = 0,

(iλ− µ(∂2y − k2) + iky)θ̂
(2)
I (λ, k, y) = −∂yG

2(λ, k, y), θ̂
(2)
I |y=±1 = 0.

By Lemma 2.4, we get

(µk2)
1

3 ‖θ̂
(1)
I (λ)‖L2 ≤ C‖kG1(λ)‖L2 ,
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and

µ
2

3 |k|
1

3‖θ̂
(2)
I (λ)‖L2 ≤ C‖G2(λ)‖L2 .

Then, by Plancherel’s theorem, we have

(µk2)
1

3‖θ̂I‖
2
L2L2 ∼ (µk2)

1

3

∥∥∥‖θ̂I(λ)‖L2

∥∥∥
2

L2(R)

≤ 2(µk2)
1

3

(∥∥∥‖θ̂(1)I (λ)‖L2

∥∥∥
2

L2(R)
+

∥∥∥‖θ̂(2)I (λ)‖L2

∥∥∥
2

L2(R)

)

≤ C(µk2)
1

3

(∥∥∥(µk2)−
1

3‖kG1(λ)‖L2

∥∥∥
2

L2(R)
+

∥∥∥µ−
2

3 |k|−
1

3 ‖G2(λ)‖L2

∥∥∥
2

L2(R)

)

= Cµ−
1

3 |k|
4

3

∥∥∥‖G1(λ)‖L2

∥∥∥
2

L2(R)
+ Cµ−1

∥∥∥‖G2(λ)‖L2

∥∥∥
2

L2(R)

∼ µ−
1

3 |k|
4

3‖g1‖2L2L2 + µ−1‖g2‖2L2L2 .

Next we estimate ‖θ̂I‖L∞L2 . Notice that

1

2
∂t‖θ̂I‖

2
L2 + µ‖∂y θ̂I‖

2
L2 + µk2‖θI‖

2
L2

= Re〈(∂t − µ(∂2y − k2) + iky)θ̂I , θ̂I〉

= Re〈−ikg1 − ∂yg
2, θ̂I〉 = Re

(
− ik〈g1, θ̂I〉+ 〈g2, ∂y θ̂I〉

)

≤ |k|‖g1‖L2‖θ̂I‖L2 + ‖g2‖L2‖∂y θ̂I‖L2 ,

which gives

∂t‖θ̂I‖
2
L2 + µ‖∂y θ̂I‖

2
L2 + 2µk2‖θ̂I‖L2 ≤ µ−

1

3 |k|
4

3 ‖g1‖2L2 + (µk2)
1

3‖θ̂I‖
2
L2 + µ−1‖g2‖2L2 .

As θ̂I |t=0 = 0, this shows that

‖θ̂I(t)‖
2
L2 ≤

∫ t

0

(
µ−

1

3 |k|
4

3 ‖g1(s)‖2L2 + (µk2)
1

3‖θ̂I(s)‖
2
L2 + µ−1‖g2(s)‖2L2

)
ds

≤ µ−
1

3 |k|
4

3 ‖g1‖2L2L2 + (µk2)
1

3 ‖θ̂I‖
2
L2L2 + µ−1‖g2‖2L2L2

≤ C(µ−
1

3 |k|
4

3‖g1‖2L2L2 + µ−1‖g2‖2L2L2).

Thus, we get

‖θ̂I‖
2
L∞L2 ≤ C(µ−

1

3 |k|
4

3‖g1‖2L2L2 + µ−1‖g2‖2L2L2).

This completes the proof of Proposition 2.5. �

Thus, combining Lemma 2.3 and Proposition 2.5, we immediately obtain the following

space-time estimates of θ̂.

Proposition 2.6. Let θ̂ be a solution of (2.2) with θ̂in ∈ L2(−1, 1) and g1, g2 ∈ L2L2. Then
there exists a constant C > 0 independent in µ, k such that

‖θ̂‖2L∞L2 + (µk2)
1

3 ‖θ̂‖2L2L2 ≤ ‖θ̂in‖
2
L2 + C

(
µ−

1

3 |k|
4

3 ‖g1‖2L2L2 + µ−1‖g2‖2L2L2

)
.
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3. Nonlinear stability

In this section, we prove Theorem 1.1. Due to the buoyancy term ∂xθ in the equation of

the vorticity, we need to estimate ‖|Dx|
1

6 θ(t)‖L2 in order to control the buoyancy term. In
fact, for the two-dimensional Boussinesq equation, the global existence of smooth solution is

well-known for the data uin ∈ H2(Ω), θin ∈ H1(Ω) and |Dx|
1

6 θin ∈ H1(Ω). The main interest
of Theorem 1.1 is the stability estimates

∑

k∈Z

Ek ≤ Cε0 min{ν, µ}
1

2 ,
∑

k∈Z

Hk ≤ Cε1min{ν, µ}
11

12 .(3.1)

Here E0 = ‖ŵ0‖L∞L2 and H0 = ‖θ̂0‖L∞L2 , and for k 6= 0,

Ek = ‖(1− |y|)
1

2 ŵk‖L∞L2 + |k|‖ûk‖L2L2 + |k|
1

2‖ûk‖L∞L∞ + (νk2)
1

4 ‖ŵk‖L2L2 ,

and

Hk = |k|
1

6 ‖θ̂k‖L∞L2 + µ
1

6 |k|
1

2‖θ̂k‖L2L2 .

And we can get the following estimates, which along with bootstrap arguments, then we can
easily deduce the estimates (3.1).

Proposition 3.1. There hold that, for k 6= 0,

Ek ≤ ‖ŵin,k‖L2 + |k|−1‖∂yŵin,k‖L2 + Cν−
1

2

∑

l∈Z

ElEk−l + Cν−
1

4µ−
1

6Hk,(3.2)

and

E0 ≤ ‖ŵin,0‖L2 + Cν−
1

2

∑

l∈Z\{0}

ElE−l.(3.3)

For H0, there holds that

H0 . ‖θ̂in,0‖L2 + µ−
1

2

∑

l∈Z\{0}

|l|−
2

3ElH−l.(3.4)

For k 6= 0, there hold that
1. for µk2 ≤ 1,

Hk . |k|
1

6 ‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + ν−
1

8µ−
5

24

∑

l∈Z\{0,k},|k−l|≤ |k
2

ElHk−l;(3.5)

2. for µk2 > 1,

Hk . |k|
1

6 ‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + ν−
1

8µ−
5

24EkH0.(3.6)

Proof. Proof of (3.2). Denoting ŵk(t, y) =
1
2π

∫
T
ω(t, x, y)e−ikxdx and

f1k (t, y) =
∑

l∈Z

û1l (t, y)ŵk−l(t, y), f
2
k (t, y) =

∑

l∈Z

û2l (t, y)ŵk−l(t, y),

we have

(∂t − ν(∂2y − k2) + iky)ŵk(t, y) = −ikθ̂k(t, y)− ikf1k (t, y)− ∂yf
2
k (t, y).(3.7)

It follows from Proposition 2.1 that

Ek ≤ C
(
ν−

1

4 |k|
1

2 ‖θ̂k‖L2L2 + ν−
1

4 |k|
1

2 ‖f1k‖L2L2 + ν−
1

2‖f2k‖L2L2

)
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+ ‖ŵin,k‖L2 + |k|−1‖∂yŵin,k‖L2 .(3.8)

As in [9], we get that for k 6= 0,
∥∥∥∥∥
û2k(t, y)

(1− |y|)
1

2

∥∥∥∥∥

2

L2L∞

=

∥∥∥∥∥ sup
y∈[−1,1]

|û2k(t, y)|
2

1− |y|

∥∥∥∥∥
L1

=

∥∥∥∥∥max{ sup
y∈[0,1]

|
∫ y

1 ∂z û
2
k(t, z)dz|

2

1− |y|
, sup
y∈[−1,0]

|
∫ y

−1 ∂zû
2
k(t, z)dz|

2

1− |y|
}

∥∥∥∥∥
L1

≤ 4‖∂y û
2
k‖

2
L2L2 = 4|k|2‖û1k‖

2
L2L2 ≤ 4E2

k .

From which, we infer that, for k ∈ Z,

‖f2k‖L2L2 ≤
∑

l∈Z

∥∥∥∥∥
û2l (t, y)

(1− |y|)
1

2

∥∥∥∥∥
L2L∞

‖(1 − |y|)
1

2 ŵk−l‖L∞L2 ≤ 2
∑

l∈Z

ElEk−l,(3.9)

and

‖f1k‖L2L2 ≤ ‖û10‖L∞L∞‖ŵk‖L2L2 + ‖û1k‖L2L∞‖ŵ0‖L∞L2 +
∑

l∈Z\{0,k}

‖û1l ‖L∞L∞‖ŵk−l‖L2L2 .

Thanks to |l||k − l| & |k|(l 6= 0, k), we have
∑

l∈Z\{0,k}

‖û1l ‖L∞L∞‖ŵk−l‖L2L2 .
∑

l∈Z\{0,k}

|l|−
1

2Elν
− 1

4 |k − l|−
1

2Ek−l

. |k|−
1

2 ν−
1

4

∑

l∈Z\{0,k}

ElEk−l,

and

‖û10‖L∞L∞‖ŵk‖L2L2 + ‖û1k‖L2L∞‖ŵ0‖L∞L2 . ‖ŵ0‖L∞L2‖ŵk‖L2L2 . (νk2)−
1

4EkE0.

This shows that

‖f1k‖L2L2 . (νk2)−
1

4

∑

l∈Z

ElEk−l.(3.10)

Thus, by (3.8), (3.9) and (3.10), we obtain that

Ek ≤ ‖ŵin,k‖L2 + |k|−1‖∂yŵin,k‖L2 + Cν−
1

2

∑

l∈Z

ElEk−l + Cν−
1

4µ−
1

6Hk.

Proof of (3.3). Due to divu = 0, we have û20(t, y) = 0. By P0(û
1∂xû

1) = 0, we have

∂tû
1
0(t, y)− ν∂2y û

1
0(t, y) = −

∑

l∈Z\{0}

û2l (t, y)∂y û
1
−l(t, y)

= −
∑

l∈Z\{0}

û2l (t, y)ŵ−l(t, y) = −f20 (t, y).(3.11)

By integration by parts in (3.11), we get

〈(∂t − ν∂2y)û
1
0,−∂

2
y û

1
0〉 =

1

2
∂t‖∂yû

1
0(t)‖

2
L2 + ν‖∂2y û

1
0(t)‖

2
L2 = 〈f20 , ∂

2
y û

1
0〉,

which gives

∂t‖∂yû
1
0(t)‖

2
L2 + ν‖∂2y û

1
0(t)‖

2
L2 ≤ Cν−1‖f20 (t, y)‖

2
L2 ,
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from which, along with ∂yû
1
0(t, y) = ŵ0(t, y), we infer that

E2
0 = ‖ŵ0‖

2
L∞L2 ≤ Cν−1‖f20 (t, y)‖

2
L2L2 + ‖ŵin,0‖

2
L2 .(3.12)

Thus, by using (3.9), we obtain

E0 ≤ ‖ŵin,0‖L2 + Cν−
1

2

∑

l∈Z\{0}

ElE−l.

Proof of (3.4). Similarly, we can derive the evolution equation of θ̂0,

∂tθ̂0 − µ∂2y θ̂0 = −
∑

l∈Z\{0}

∂y(u
2
l θ̂−l)(t, y) = −∂yg

2
0(t, y).(3.13)

Similarly as the estimate of E0, we get that by integration by parts in (3.13),

H2
0 = ‖θ̂0‖

2
L∞L2 + µ‖∂y θ̂0‖

2
L2L2 ≤ Cµ−1‖g20(t, y)‖

2
L2L2 + ‖θ̂in,0‖

2
L2 .(3.14)

By using the Gagliardo-Nirenberg inequality and ∂yû
2
k = −ikû1k, we have

‖û2k‖L2L∞ ≤ C|k|
1

2 ‖û2k‖
1

2

L2L2‖û
1
k‖

1

2

L2L2 ≤ C|k|−
1

2Ek.(3.15)

And then, we obtain

‖g20‖L2L2 ≤
∑

l∈Z\{0}

‖û2l ‖L2L∞‖θ̂−l‖L∞L2 .
∑

l∈Z\{0}

|l|−
1

2 | − l|−
1

6ElH−l

.
∑

l∈Z\{0}

|l|−
2

3ElH−l.(3.16)

Thus, from (3.14) and (3.16), we have

H0 . ‖θ̂in,0‖L2 + µ−
1

2

∑

l∈Z\{0}

|l|−
2

3ElH−l.

In order to control the nonlinear term ‖g1k‖L2L2 , during the estimates of Hk, we need to
divide them into the low frequency part µk2 ≤ 1 and the high frequency part µk2 > 1.

Proof of (3.5). First, we can derive the evolution equations of θ̂k(t, y) =
1
2π

∫
T
θ(t, x, y)e−ikxdx.

Denoting

g1k(t, y) =
∑

l∈Z

û1l (t, y)θ̂k−l(t, y), g2k(t, y) =
∑

l∈Z

û2l (t, y)θ̂k−l(t, y),

we have that θ̂k(t, y) satisfies,

(∂t − µ(∂2y − k2) + iky)θ̂k(t, y) = −ikg1k(t, y)− ∂yg
2
k(t, y).(3.17)

For µk2 ≤ 1, it follows from Proposition 2.6 that

Hk ≤ |k|
1

6 ‖θ̂in,k‖L2 +C
(
µ−

1

6 |k|
5

6 ‖g1k‖L2L2 + µ−
1

2 |k|
1

6‖g2k‖L2L2

)
.(3.18)

On the one hand, by using û20 = 0 and (3.15), we have that for k 6= 0,

‖g2k‖L2L2 ≤ ‖û2k‖L2L∞‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}

‖û2l ‖L2L∞‖θ̂k−l‖L∞L2

≤ |k|−
1

2EkH0 +
∑

l∈Z\{0,k}

|l|−
1

2 |k − l|−
1

6ElHk−l
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≤ |k|−
1

2EkH0 + |k|−
1

6

∑

l∈Z\{0,k}

ElHk−l.(3.19)

On the other hand, for g1k and k 6= 0, by using Gagliardo-Nirenberg inequality, we have

‖û1k‖L2L∞ ≤ C‖û1k‖
1

2

L2L2‖∂yû
1
k‖

1

2

L2L2 ≤ Cν−
1

8 |k|−
3

4Ek,(3.20)

and then we obtain that

‖g1k‖L2L2 ≤ ‖û10‖L∞L∞‖θ̂k‖L2L2 + ‖û1k‖L2L∞‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2

≤ ‖ŵ0‖L∞L2‖θ̂k‖L2L2 + ν−
1

8 |k|−
3

4Ek‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2

≤ µ−
1

6 |k|−
1

2E0Hk + ν−
1

8 |k|−
3

4EkH0 +
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2 .(3.21)

To estimate
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2 , we divide it into two parts and get that

∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2 ≤
∑

l∈Z\{0,k},|k−l|≤ |k|
2

‖û1l θ̂k−l‖L2L2 +
∑

l∈Z\{0,k},|k−l|> |k|
2

‖u1l θ̂k−l‖L2L2

def
= HL + LH,

whereas by (3.20),

HL ≤
∑

l∈Z\{0,k},|k−l|≤
|k|
2

‖û1l ‖L2L∞‖θ̂k−l‖L∞L2

.
∑

l∈Z\{0,k},|k−l|≤ |k|
2

ν−
1

8 |l|−
3

4 |k − l|−
1

6ElHk−l

. ν−
1

8 |k|−
3

4

∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l,(3.22)

and

LH ≤
∑

l∈Z\{0,k},|k−l|> |k|
2

‖û1l ‖L∞L∞‖θ̂k−l‖L2L2

.
∑

l∈Z\{0,k},|k−l|>
|k|
2

|l|−
1

2 |k − l|−
1

2µ−
1

6ElHk−l

. µ−
1

6 |k|−
1

2

∑

l∈Z\{0,k},|k−l|>
|k|
2

ElHk−l.(3.23)

And then, substituting (3.22) and (3.23) into (3.21), we get

‖g1k‖L2L2 . µ−
1

6 |k|−
1

2E0Hk + ν−
1

8 |k|−
3

4EkH0

+ ν−
1

8 |k|−
3

4

∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l + µ−
1

6 |k|−
1

2

∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l.(3.24)
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Thus, combining (3.18), (3.19) and (3.24), we get that for k 6= 0 and µk2 ≤ 1,

Hk .|k|
1

6‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z\{0}

ElHk−l + µ−
1

3 |k|
1

3E0Hk + ν−
1

8µ−
1

6 |k|
1

12EkH0

+ ν−
1

8µ−
1

6 |k|
1

12

∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l + µ−
1

3 |k|
1

3

∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l

. |k|
1

6 ‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + ν−
1

8µ−
5

24EkH0

+ ν−
1

8µ−
5

24

∑

l∈Z\{0,k},|k−l|≤ |k|
2

ElHk−l + µ−
1

2

∑

l∈Z\{0,k},|k−l|> |k|
2

ElHk−l

. |k|
1

6 ‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + ν−
1

8µ−
5

24

∑

l∈Z\{0,k},|k−l|≤
|k|
2

ElHk−l.

Proof of (3.6). For µk2 > 1, it follows from Proposition 2.2 that

Hk ≤ |k|
1

6‖θ̂k‖L∞L2 + |k|
1

6 (µk2)
1

2‖θ̂k‖L2L2

≤ |k|
1

6‖θ̂in,k‖L2 + Cµ−
1

2 |k|
1

6

(
‖g1k‖L2L2 + ‖g2k‖L2L2

)
.(3.25)

For g1k and k 6= 0, by (3.20), we obtain

‖g1k‖L2L2 ≤ ‖û10‖L∞L∞‖θ̂k‖L2L2 + ‖û1k‖L2L∞‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2

. ‖ŵ0‖L∞L2‖θ̂k‖L2L2 + ν−
1

8 |k|−
3

4Ek‖θ̂0‖L∞L2 +
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2

. µ−
1

6 |k|−
1

2E0Hk + ν−
1

8 |k|−
3

4EkH0 +
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2 .(3.26)

Whereas for the term
∑

l∈Z\{0,k} ‖û
1
l θ̂k−l‖L2L2 , we can obtain that by using |l||k− l| & |k|(l 6=

0, k),
∑

l∈Z\{0,k}

‖û1l θ̂k−l‖L2L2 .
∑

l∈Z\{0,k}

‖û1l ‖L∞L∞‖θ̂k−l‖L2L2

.
∑

l∈Z\{0,k}

|l|−
1

2Elµ
− 1

6 |k − l|−
1

2Hk−l

. µ−
1

6 |k|−
1

2

∑

l∈Z\{0,k}

ElHk−l.

And then, we obtain

‖g1k‖L2L2 . µ−
1

6 |k|−
1

2E0Hk + ν−
1

8 |k|−
3

4EkH0 + µ−
1

6 |k|−
1

2

∑

l∈Z\{0,k}

ElHk−l.(3.27)

Thus, combining (3.25), (3.19) and (3.27), we get that for k 6= 0 and µk2 > 1,

Hk . |k|
1

6‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + µ−
2

3 |k|−
1

3E0Hk + ν−
1

8µ−
1

2 |k|−
7

12EkH0

+ µ−
2

3 |k|−
1

3

∑

l∈Z\{0,k}

ElHk−l
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. |k|
1

6‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + µ−
1

2E0Hk + ν−
1

8µ−
5

24EkH0 + µ−
1

2

∑

l∈Z\{0,k}

ElHk−l

. |k|
1

6‖θ̂in,k‖L2 + µ−
1

2

∑

l∈Z

ElHk−l + ν−
1

8µ−
5

24EkH0.

This completes the proof of Proposition 3.1. �

Now we prove Theorem 1.1. From (3.3) and (3.2), we deduce
∑

k∈Z

Ek ≤
∑

k∈Z

‖ŵin,k‖L2 +
∑

k∈Z\{0}

|k|−1‖∂yŵin,k‖L2

+ Cν−
1

2

∑

k∈Z

∑

l∈Z

ElEk−l + Cν−
1

4µ−
1

6

∑

k∈Z\{0}

Hk.(3.28)

And by the fact that
∑

k∈Z

Hk = H0 +
∑

k∈Z\{0},µk2≤1

Hk +
∑

k∈Z\{0},µk2>1

Hk,

combining (3.4), (3.5) and (3.6), we can deduce that
∑

k∈Z

Hk . ‖θ̂in,0‖L2 +
∑

k∈Z\{0}

|k|
1

6‖θ̂in,k‖L2 + µ−
1

2

∑

k∈Z

∑

l∈Z

ElHk−l

+ ν−
1

8µ−
5

24

∑

k∈Z\{0},µk2≤1

∑

l∈Z

EkHk−l + ν−
1

8µ−
5

24

∑

k∈Z\{0},µk2>1

EkH0.(3.29)

On the other hand, it is easy to verify that from ‖uin‖H2 ≤ ε0 min{ν, µ}
1

2 and ‖θin‖H1 +

‖|Dx|
1

6 θin‖H1 ≤ ε1 min{ν, µ}
11

12 ,
∑

k∈Z

‖ŵin,k‖L2 +
∑

k∈Z\{0}

|k|−1‖∂yŵin,k‖L2 ≤ Cε0min{ν, µ}
1

2 ,

and

‖θ̂in,0‖L2 +
∑

k∈Z\{0}

|k|
1

6 ‖θ̂in,k‖L2 ≤ Cε1 min{ν, µ}
11

12 .

Thus, for ε0, ε1 suitably small, by bootstrap arguments, we can deduce from (3.28) and
(3.29) that

∑

k∈Z

Ek ≤ Cε0min{ν, µ}
1

2 ,
∑

k∈Z

Hk ≤ Cε1 min{ν, µ}
11

12 .

This completes the proof of Theorem 1.1. �
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