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Abstract 

nSYMPTOTIC STABILITY OF n SOLUTION OF AN AUTONOMOUS 

SYSTEM IN m2 
, CONSISTING OF SUBSYSTEMS 

by 

Paul van den Heuvel 

In this paper a generalization is proved of a theorem by Laroque (1979) • 
• This theorem asserts that if an autonomous system x = F(x) consists of 

linear subsystems defined on cones in m2 and if the function F(x) is 

continuous, then the origin is an asymptotically stable solution of the 
2 system, if the subsystems are asymptotically stable in m • It is shown 

that the linearity restrictions in the theorem of Laroque can be relaxed. 

in a neighbourhood of the equilibrium. 

1. INTRODUCTION 

Recently a number of papers have appeared in economic literature dealing 

with the equilibria of systems, consisting of several subsystems. 

The location of these equilibria in state space is such that there are 

several domains in a neighbourhood of the equilibrium, on which different 

adjustment equations are valid. If the resulting systems are denoted by 
o 
x(t) = F(x(t),t), then the functions in the right-hand sides of these 

equations are continuous but not differentiable on the boundaries of the 

domains. Laroque (1979) proved the asymptotic stability of such a system 

in m2 , if the domains are cones and the subsystems are asymptotically 

stable linear autonomous first order systems. 

The goal of this paper is to establish a similar theorem in which the re­

striction of linearity is relaxed with respect to both the domains and the 

subsystems. 

In section 2 some well-known definitions and theorems are given concerning 

stability of the total system. Furthermore a brief description is given 

of Laroque's theorem. 

The main theorem is the subject of Section 3. 
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2. SOME STABILITY PROPERTIES 

In the sequel we will restrict ourselves to autonomous systems in JR2 , 

i.e. systems of the form 

(1) 
o 

:x: F(X)i F(O) = 0 

2 where x E lR and F 

By 

(x -+ 0) 

where f 2 2 2 2 
lR -+ lR and g : lR -+ lR ,is meant that 

lim II f (x) II = 
x-+o II g(x) II 

o • 

(see de Bruijn (1961». 

We will start with the definition of (asymptotic) stabil·ity and some 

stability theorems, which can be found for instance in Wilson (1971). 

Definition 1 

Let 0 be an equilibrium of system (1) and let x(t,x
O

) denote the solution 

of the initial value problem 

o 
X = F(x) 

x(O) = Xo . 

\ o is a stable equilibrium if for any € > 0 there is a C > 0 such that for 

any a E JR 
2 

II all < <5 .. 'It ::1: 0 IIx(t,alll < g • 

If 0 is a stable equilibrium and there is an n > a such that 

lIall < n" lim IIx(t,a)1I a 
t-+<» 

then a is called an asymptotically stable equilibrium. 



- 3 -

Definition 2 

A function V lR
2 

+ lR is a Liapunov function of system (1) if in some 

neighbourhood of 0 

(i) Vex) is continuous 

(ii) V(O) = 0, Vex) > 0 for x ~ 0 . 
(iii) vex) is decreasing on any solution path of system (1). 

We recall the following well-known results. 

Property 1 

If there is a Liapunov function of system (1), the origin is an asymp­

totically stable solution of system (1). 

Property 2 

.The eigenvalues of the matrix A have negative real parts if and only if 

the origin is an asymptotically stable solution of the system 

.. 
x Ax 

Note that Property 2 implies that in lR2 asymptotic stability is equi­

valent with tr A < 0 and det A > 0 • 

Property 3 (poincare-Liapunov) 

If f (x) = 0-(11 x II) (x + 0) and the origin is an asymptotically stable equi­

librium of 

o 
x Ax 

it is also an asymptotically stable solution of 

.. 
x Ax + f (x) • 

The following property is proved in Laroque (1979) (:Proposition 3.4). 
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Property 4 

Let C i' i = 1, ••• , n be closed cones in lR
2 

with vertices in the origin, 

with disjoint interiors and such that 

n 
U = lR

2 
C. 

i=l ). 

Let the numbering of the cones around the origin be clockwise, with 

Co := C . n 

If the systems 

0 

x A.x 
). 

i l, ..• ,n 

defined on the whole lR
2 

, have the origin as an asymptotically stable 
2 2 

equilibrium and if G lR -+ lR defined by 

G(x) A.x 
). 

for x E to} U [C.\C. ] 
). "-1 

is continuous, then the origin is an asymptotically stable solution of the 

system 

o 
(2) X = G(x) • 

The proof of Laroque's result consists of two parts. 

First he considers the case in which there exists a real eigenvector in 

one of the cones, let us say C
i

• He shows that trajectories can not pass 

this eigenvector, so any trajectory stays ultimately in the cone Ci and 

converges to the origin. 

The second part of the proof concerns the case, where there does not exist 

such an eigenvector. Then the function L(x) defined by 

L(x) := det [x,G(x)] 

is non-zero for x # O. On account of the continuity of G(x) in system (2), 

L(x) is continuous and it can be proved now that 

o 
L(x)L(x) < 0 

on a trajectory. Therefore [L(X)]2 is a Liapunov function. 
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3. THE MAIN THEOREM 

In this section the following notations and assumptions are valid. 

Let c., i 
l. 

2 
1, ••• ,n be vectors in:m, with" ci " = 1, no two of them ~"'t).1 

~. The numbering of these vectors is clockwise with regard 
",VIa 

to the originai Co := cn • 

Let there be given n curves represented by 

The set B is defined as 
p 

B := cl B(O;p) • 
p 

(t -} 0) i=l, .•. ,n. 

It is assumed p is sufficiently small to let the ball B be d.vided 
p 

by the curves x = hi(t) in n disjoint subsets. 

The set 

5., i = l, ••• ,n 
1. 

is defined as the closure of such a subset of B , which has the boun­
p 

daries z = hi _l (t) and x = hi(t) (and part of the boundary of Bp). 

We define So := Sn 

Let for i = l, ... ,n, Ai be a 2 x 2 matrix and fi 

tion F : B -+:m,2 is defined by 
p 

F(x) := A.X + f. (x) 
1. l. 

for 

The following system is investigated. 

(3) 

Assumption 1 

o 
X F(x) , X E B 

P 

B -+:m,2. The func­
p 

For i l, ••. ,n the function fi is continuously differentiable on Si and 

f. (x) 
1. 

0'(11 x II) (x -+ 0) • 



- 6 -

Assumption 2 

The function F is continuous on B • It can be proved that under assumption 
p 

1 and 2 the function F is locally Lipschitz . continuous on B , which im­
p 

plies that any initial value problem of system (3) has a unique solution 

(cf. Wilson, 1971, p. 247). 

It will be shown (see Lemma 1) that the continuity of the right-hand side is 

maintained, if both the subsystems and the domains are linearized. As a 

consequence of this property the same Liapunov function, that plays a role 

in Laroque's proof, can be applied. We will also have to show that lineari­

zation of the domains gives rise to differences, that are ~(x). This lineari­

zation is handled in Lemma 2. 

Henceforth the following definition is applied. 

Definition 3 

The tangent cone C(Si) of Si' i = 1, ••• ,n is defined by the closed cone 

(not necessarily convex) generated by the tangent vectors of curves in S .• 
~ 

Ct.-. 

o _",=:::::=:.1..-..--1--__ kU) 

Figure 1 Figure 2 

tangent cone C (S.) of S. 
~ ~ 

tangent cone C(S.) of s. 
~ ~ 

In the Figures 1 and 2 examples of tangent cones are depicted. 
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With relation to the tangent cones the following lemma can be proved. 

Lamma 1 

Under Assumption 1 the function G 

G(x) := A x 
i 

is continuous on :m2 • 

Proof 

for 

:m2 ~:m2 defined by 

It suffices to prove that the function G(x) is continuous on the cammon 

boundary of C(Sl) and C(S2). 

The cornmon boundary of C(Sl} and C(S2' is given by 

Since F(x) is continuous on x = h1 (t) = CIt + ~(t) (t + 0), we have 

From these equations it follows that 

(t ... 0) • 

Hence 

(t 1- 0) 

and this can only be true if 

This equation implies that the function G(x} is continuous on the boun­

dary given by x = tcl " (In a similar way it can be proved that this func­

tion is continuous anywhere). 

o 
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It follows from the lemma that G(x) is equal to 

G(x) = 

Lemma 2 

A.x 
~ 

for X E C (S.) • 
~ 

Let the function g. (x) be defined on C(S.) n B by 
~ ~ p 

for X E C(S.) n B 
~ P 

where F(x) is defined in the same way as in system (3). 

Then under Assumption 2 

o-(lixll) (x + 0) • 

Proof 

The proof will be given for i = 1. Note that gl (x) - f1 (x) can only be 

nonzero if 

or 

Let t be defined by the property that tC
l 

is the orthogonal projection 

of x onto the ray generated by c 1 • Then if x + 0 and x E C(Sl) n 1nt S2 

it is easily seen that 

+0 (t '" 0) • 

Hence 

x = tc 1 + 0"(11 x II) (x + 0) • 

Application of Lemma 1 yields: 

(x + 0) • 
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Therefore, for x E C(5
1

) n int 52 

(x -+ 0) 

from which the assertion follows. 

It will be convenient to introduce the following definitions 

q x'x 

is the square of the Euclidian norm of the vector x. 

We will use a similar function as Laroque (see Section 2). 

Let L : lR2 
+ lR be defined by 

o 

L(x) := det (x for X E {oJ U [C(S.)\C(S. 1)] • 
~ 1.-

(i = 1, .•• , n) • 

It can easily be seen that L(x) can be written as follows. 

L(x) = x'P'A.x for x E C(Si) (i = 1, ••• , n) . 
~ 

Furthermore L(x) is continuous 2 
on lR • 

Lemma 3 

Under Assumption 1 

0 x E C(Si) L(x) == (tr A.)L(x) + o-(q) (q 1- 0) for 
1. 

. 
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Proof 

For x E C(S,) we have, using the notation of Lemma 2 
1. 

o 
L'(x) 

The first term equals zero. To the second term the Cayley-Hamilton 

property 

2 
Al.' - (tr A,)A, + (det All = 0 

1. 1. 

2 
can be applied. The third and fourth term are 0'(11 x II) (x -+- 0) (cf. Lemma 2) 

and therefore they are O'(q) (q ~ 0). Hence 

(q ~ o) 

(tr Ai)L(x) + 0 + O'(q) (q .j.. 0) • o 

Lenuna 4 

Let Yo E C(Si) with If YO!! = 1 be an eigenvector of Ai with eigenvalue AO • 

For x E C (S,) 
1. 

o 
q 2x'A,x + O'(q) 

1. 
(q '" 0) • 

There is a positive p and an open cone K such that Yo E K and 

o 
q < 0 

Proof 

For x c C(S.) we have 
1. 

o 0 

q 2x'x 

for X E K n B 
p 



Using Lemma 2, 

g. (x) = o-(ilx II) 
1. 

2x'g. (x) 
1. 

o(q} 

Hence for x E C(S.) 
1. 

(4) " q = 2x' A. x + O"(q) 
1. 

- 11 -

(x -+ 0) 

(q i- 0) • 

(q -r 0) • 

Choose £ such that €E (O,-AO)' then the set K defined by 

2 
K := {x E lR x'A.x < - e XiX} 

1. 

contains YO. K is an open cone. 

For sufficiently small p for any x E K n B 
p 

" ( 5) q < - € q < 0 . 

Remark: 

o 

The result of Lemma 4 is also valid if yo lies on the common boundary of 

C(S.) and C(S. 1) (i = l, ••• ,n). 
1. 1-

For the time being it is assumed that there is only one such eigenvector 

as in Lemma 4 (with eigenvalue AO). 

We define 

(6) m:= min UL(X)]2 IlIxll = 1, x, K} 

where K is defined as in the proof of Lemma 4. 

Since the set {x IIxll = I , x , K} is compact and the function L(x) is 

continuous, this minimum exists. For x , K the inequality [L(X)]2 > 0 

holds hence 

m > 0 . 
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Define the real number a by 

(7) a := (max tr A .)m/2'f 
j J 

where m is defined as in (6) .o.l'1d ;V-'= \'Yl.Q-t IlAjll 
. J 

Since m > a , AO < a and for each j the inequality tr Aj < a holds, 

a is positive. 

Now the following theorem can be proved. 

Theorem 1 

Let Assumptions 1 and 2 hold. If the origin is an asymptotically stable 

solution of the systems 

., 2 
x A.x for x IE: lR (i = 1 , ••• , n) 

~ 

then the function V B ~ lR defined by 
p 

Vex) [L(X)]2 + a(x'x) 2 

where a is defined by (7), is a Liapunov function of system (3). 

Proof 

The function Vex) is continuous. Furthermore V(O) = 0 and 

Vex) > a for x .;. 0 . 

Along a solution path the following equation holds. 

o ., ., 
vex) 2L(x)L(x) + 2aqq 

The Lemma's 3 and 4 imply that for x E C(S.) n B 
~ P 

(q ... 0) • 
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From Lemma 4 we know that if p is sufficiently small the inequality (5) 

holds for K n B 
p 

Since also tr Ai < 0 

.. vex) < 0 for 

For x t K we have 

pllxJI'-
I x • Ai x I ~ I-JI At-O~X"'-'!' x~If-=---1)t-{ O.gl!-· 

Hence 

2 2 
2nqx'A

i
x ~ -2nq ~ = -(max tr A.)mq • 

j J 

By definition of m and q 

2 2 mq :;; [L(x)] • 

Therefore for x € C(Si) \ K 

<) 2 2 
Vex) < (2 tr Ai - max tr Aj)mq + ~(q) 

j 
(q .; 0) 

o 
and Vex) is negative for sufficiently small q. 

It can be concluded that Vex) is a Liapunov function of system (3). 0 

If there are several real eigenvectors such as in Lemma 4, Theorem 1 holds, 

provided that we take for "0 the minimum of the corresponding eigenvalues. 

Theorem 1 and Property 1 immediately imply: 

Theorem 2 

Let Assumptions 1 and 2 hold. If the origin is an asymptotically stable 

equilibrium of the systems 

for X € (i = 1, .•. ,n) 

then the origin is an asymptotically stable equilibrium of system (3). 
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