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Abstract
For Schrödinger maps from R2 ×R+ to the 2-sphere S2, it is not known if finite energy
solutions can form singularities (blow up) in finite time. We consider equivariant
solutions with energy near the energy of the two-parameter family of equivariant
harmonic maps. We prove that if the topological degree of the map is at least four,
blowup does not occur, and global solutions converge (in a dispersive sense, i.e.,
scatter) to a fixed harmonic map as time tends to infinity. The proof uses, among
other things, a time-dependent splitting of the solution, the generalized Hasimoto
transform, and Strichartz (dispersive) estimates for a certain two space–dimensional
linear Schrödinger equation whose potential has critical power spatial singularity
and decay. Along the way, we establish an energy-space local well-posedness result
for which the existence time is determined by the length scale of a nearby harmonic
map.
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1. Introduction and main results
The Schrödinger flow for maps from Rn to S2 (also known as the Schrödinger map,
and, in ferromagnetism, as the Heisenberg model or Landau-Lifshitz equation) is given
by the equation

∂u
∂t

= u × �u, u(x, 0) = u0(x). (1.1)

Here, u = u(x, t) is the unknown map from Rn × R+ to the 2-sphere

S
2 := {u ∈ R

3
∣∣ |u| = 1

} ⊂ R
3;

� denotes the Laplacian in Rn, and × denotes the cross product of vectors in R3. A
somewhat more geometric way of writing equation (1.1) is

∂u
∂t

= JP�u, (1.2)

where P = P u denotes the orthogonal projection from R3 onto the tangent plane

TuS
2 := {ξ ∈ R

3 | ξ · u = 0}

to S2 at u (so that P�u = �u + |∇u|2u) and

J = J u := u×

is a rotation through π/2 on the tangent plane TuS
2.

On the one hand, equation (1.1) is a borderline case of the Landau-Lifshitz-Gilbert
equations that model dynamics in isotropic ferromagnets (including dissipation):

∂u
∂t

= aP�u + bJP�u, a ≥ 0 (1.3)
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(see, e.g., [15]). The Schrödinger flow corresponds to the case of a = 0. The case
of b = 0 is the well-studied harmonic map heat flow, for which some finite-energy
solutions do blow up in finite time (see [4]).

On the other hand, equation (1.1) is a particular case of the Schrödinger flow for
maps from a Riemannian manifold into a Kähler manifold (see, e.g., [8], [24], [10],
[7]). We consider only the case of maps R2 × R+ → S2 in this article.

We refer the reader to our previous article [11] for more detailed background
on (1.1) (and further references), limiting the discussion here to a list of a few basic
facts we need in order to state our results.

Energy conservation
Equation (1.1) formally conserves the energy

E(u) := 1

2

∫
Rn

|∇u|2 dx = 1

2

∫
Rn

n∑
j=1

3∑
k=1

∣∣∣∂uk

∂xj

∣∣∣2 dx. (1.4)

The space dimension n = 2 is critical in the sense that E(u) is invariant under scaling.
In general,

E
(
u(·)) = s2−nE

(
u
( ·
s

))
(1.5)

for s > 0.

Equivariant maps
Fix m ∈ Z a nonzero integer. By an m-equivariant map u : R2 → S2 ⊂ R3 we mean
a map of the form

u(r, θ) = emθR v(r), (1.6)

where (r, θ) are polar coordinates on R2, v : [0, ∞) → S2, and R is the matrix
generating rotations around the u3-axis:

R =
⎡⎣0 −1 0

1 0 0
0 0 0

⎤⎦ , eαR =
⎡⎣cos α − sin α 0

sin α cos α 0
0 0 1

⎤⎦. (1.7)

Radial maps arise as the case of m = 0. The class of m-equivariant maps is formally
preserved by the Schrödinger flow.

Topological lower bound on energy
If u is m-equivariant, we have |∇u|2 = ∣∣ ∂u

∂r

∣∣2 + r−2
∣∣ ∂u
∂θ

∣∣2 = ∣∣ ∂v
∂r

∣∣2 + (m2/r2)|Rv|2,
and so

E(u) = π

∫ ∞

0

(∣∣∣∂v
∂r

∣∣∣2 + m2

r2
(v2

1 + v2
2)
)

r dr. (1.8)
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If E(u) < ∞, then v(r) is continuous, and the limits limr→0 v(r) and limr→∞ v(r)
exist (see [11]). So we must have v(0), v(∞) = ±k̂, where k̂ = (0, 0, 1)T . Without
loss of generality, we fix v(0) = −k̂. The two cases v(∞) = ±k̂ then correspond
to different topological classes of maps. We denote by �m the class of m-equivariant
maps with v(∞) = k̂:

�m = {u : R
2 → S

2
∣∣ u = emθRv(r), E(u) < ∞,

v(0) = −k̂, v(∞) = k̂
}
. (1.9)

For u ∈ �m, the energy E(u) can be rewritten

E(u) = π

∫ ∞

0

{∣∣∣∂v
∂r

∣∣∣2 + m2

r2
|J vRv|2

}
r dr

= π

∫ ∞

0

∣∣∣∂v
∂r

− |m|
r

J vRv
∣∣∣2 r dr + Emin (1.10)

(recall that J v := v×) with

Emin = 2π

∫ ∞

0
vr · |m|

r
J vRv r dr = 2π |m|

∫ ∞

0
(v3)r dr = 4π |m|. (1.11)

Thus for u ∈ �m, there is a nontrivial lower bound for the energy:

u ∈ �m =⇒ E(u) ≥ 4π |m|. (1.12)

In general, one has E(u) ≥ 4π |deg|, where deg is the degree of the map u, considered
as a map from S2 to itself (defined, e.g., by integrating the pullback by u of the volume
form on S2).

Harmonic maps
For a map u ∈ �m, the topological lower bound (1.12) is saturated if and only if

∂v
∂r

= |m|
r

J vRv, (1.13)

and the minimal energy is attained (i.e., (1.13) is satisfied) precisely at the two-
parameter family of harmonic maps

Om :=
{
e(mθ+α)Rh

(r

s

) ∣∣∣ s > 0, α ∈ R

}
, (1.14)
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where

h(r) =
⎛⎝h1(r)

0
h3(r)

⎞⎠ , h1(r) = 2

r |m| + r−|m| , h3(r) = r |m| − r−|m|

r |m| + r−|m| . (1.15)

The rotation parameter α is determined only up to shifts of 2π (i.e., really α ∈ S1).
The fact that h(r) satisfies (1.13) means

(h1)r = −m

r
h1h3, (h3)r = m

r
h2

1. (1.16)

Note that Om is just the orbit of the harmonic map emθRh(r) under the symmetries of
the energy E which preserve equivariance: scaling and rotation. Explicitly, the maps
in Om are of the form

u(r, θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos(mθ + α)h1

(r

s

)
sin(mθ + α)h1

(r

s

)
h3

(r

s

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (1.17)

Of course, these harmonic maps are each static solutions of the Schrödinger flow
(1.1). In fact, it is not hard to show that they are the only m-equivariant static solutions
(though this fact plays no role in our analysis).

The orbital stability of Om

We recall the main result of [11].

THEOREM 1.1 ([11, Th. 1.1])
There exist δ > 0 and C1, C2 > 0 such that if u ∈ C([0, T ); Ḣ 2 ∩ �m) is a solution
of the Schrödinger flow (1.1) conserving energy and satisfying

δ2
1 := E(u0) − 4π |m| < δ2,

then there exist s(t) ∈ C([0, T ); (0, ∞)) and α(t) ∈ C([0, T ); R) such that∥∥∥u(x, t) − e(mθ+α(t))Rh
( r

s(t)

)∥∥∥
Ḣ1(R2)

≤ C1δ1, ∀t ∈ [0, T ). (1.18)

Moreover, s(t) > C2/‖u(t)‖Ḣ 2(R2). Furthermore, if T < ∞ is the maximal time of
existence for u in Ḣ 2 (i.e., if limt→T −‖u(t)‖Ḣ 2(R2) = ∞), then

lim inf
t→T −

s(t) = 0. (1.19)
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Theorem 1.1 can be viewed, on the one hand, as an orbital stability result for the
family Om of harmonic maps (at least up to the possible blowup time) and, on the
other hand, as a characterization of blowup for energy near Emin: solutions blow up if
and only if the length scale s(t) goes to zero. Here, s(t) (and the rotation angle α(t))
is determined simply by finding, at each time t , the harmonic map that is Ḣ 1-closest
to u(t). More precisely, a continuous map{

u ∈ �m

∣∣E(u) < 4π |m| + δ2
}→ R

+ × (R mod 2π),

u �→ (
s(u), α(u)

) (1.20)

is constructed in [11] which, for m-equivariant maps with energy close to 4π |m|,
identifies the unique Ḣ 1-closest harmonic map:∥∥∥u − e[mθ+α(u)]Rh

( r

s(u)

)∥∥∥
Ḣ 1

= min
s∈R+,α∈R

∥∥∥u − e[mθ+α]Rh
(r

s

)∥∥∥
Ḣ 1

. (1.21)

Then we set s(t) := s(u(t)).
In this article, we continue our study of the Schrödinger flow for equivariant maps

with energy close to the harmonic map energy. We begin with an energy-space local
well-posedness theorem for such maps. It is worth noting that despite a great deal of
recent work on the local well-posedness problem in two space dimensions (see [22],
[9], [16], [1], [12]; see also [17], [13] for the modified Schrödinger map case), there is
no general result for energy-space initial data. For our special class of data, however,
we do have such a result. Before stating it, let us first make precise the sense in which
our energy-space solution solves the Schrödinger map problem.

Definition 1.2 (Weak solutions)
Let Z := {u : Rn → S2, Du ∈ L2} be the energy space. We say that u(x, t) is
a weak solution of the Schrödinger flow (1.1) on the time interval I = [0, T ], with
initial data u0 ∈ Z, if
(1) u ∈ L∞(I ; Z) ∩ Cweak([0, T ]; Z),
(2) u(0) = u0,

(3)
∫∫

Rn×I
{u · φt − u × ∂j u · ∂jφ} dx dt = 0, ∀φ ∈ C1

c (I × Rn; R3).

Remark 1.3
It is not strictly necessary to require that Du be weakly continuous in t (in property
(1)). The weak form of the equation (property (3)) implies that ut ∈ L∞([0, T ]; H−1),
and so, after redefinition on a set of time measure zero, u ∈ Lip([0, T ]; H−1) and
Du ∈ Lip([0, T ]; H−2). Since we also have Du ∈ L∞([0, T ]; L2), we can prove
Du ∈ Cweak([0, T ]; L2).

We have the following.



ASYMPTOTIC STABILITY IN THE SCHRÖDINGER FLOW 543

THEOREM 1.4 (Local well-posedness)
Let |m| ≥ 1. There exist δ > 0 and σ > 0 such that the following hold. Suppose that
u0 ∈ �m and E(u0) = 4πm + δ2

0 , δ0 ∈ (0, δ]. Let s0 := s(u0), as defined in (1.20)
and (1.21). Then there is a unique weak solution u(t) of (1.1),

u(t) ∈ C(I ; �m), I = [0, σ s2
0 ].

Moreover, E(u(t)) = E(u0) for t ∈ I . If, furthermore, u0 ∈ Ḣ 2, then u(t) ∈
C(I ; �m ∩ Ḣ 2). Suppose that un

0 → u0 in �m, and let un denote the corresponding
solutions of (1.1); then un → u in C(I, �m).

It is worth emphasizing that the existence time furnished by Theorem 1.4 depends not
on the energy ‖u0‖2

Ḣ 1 of the initial data (reflecting the energy-space critical nature
of the equation in dimension n = 2) but rather on s(u0), the length scale of the
Ḣ 1-nearest harmonic map.

There are at least two ways to define blowup for these solutions. Suppose u(t) ∈
C([0, T ), �m ∩ Ḣ k), 0 < T < ∞ with k = 1 or 2. If k = 1, we say that u(t) blows
up at t = T if limt→T − u(t) does not exist in Ḣ 1. If k = 2, we say that u(t) blows up
at t = T if lim supt→T − ‖u(t)‖Ḣ 2 = ∞.

For u0 ∈ �m ∩ Ḣ k , k = 1, 2, denote by T k
max the maximal time such that there is

a unique solution u(t) ∈ C([0, T k
max); �m ∩ Ḣ k).

COROLLARY 1.5
Under the same assumptions as in Theorem 1.4, suppose that the solution u(t) ∈
C([0, T ), �m ∩ Ḣ k), k = 1 or 2, and T < ∞.
(i) (Blowup alternative) The solution u(t) blows up at time T (i.e., T = T 1

max) if
and only if lim inft→T − s(u(t)) = 0. In this case, s(u(t)) ≤ C

√
T − t , and if

k = 2, T = T 1
max = T 2

max with ‖u(t)‖Ḣ 2 ≥ C(T − t)−1/2.
(ii) (Lower bound for Tmax := T 1

max) We have Tmax ≥ σ [s(u0)]2. (Here, σ is the
constant from Theorem 1.4.)

Corollary 1.5(i) improves Theorem 1.1 by giving explicit bounds.
We also have Ḣ 1 local well-posedness for the small-energy equivariant case

considered in [5]. Since the energy is conserved, local well-posedness implies global
well-posedness.

THEOREM 1.6 (Small-energy local well-posedness)
Let |m| ≥ 1. There exist δ > 0 and σ > 0 such that the following hold. Suppose that
u0 = emθRv0(r) and E(u0) ≤ δ2; then there is a unique weak solution u(t, r, θ) =
emθRv(t, r) of (1.1) such that u(t) ∈ C([0, σ ]; Ḣ 1). Moreover, E(u(t)) = E(u0) for
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t ∈ [0, σ ]. Suppose that un
0 are equivariant, un

0 → u0 in Ḣ 1, and let un denote the
corresponding solutions of (1.1); then un → u in C([0, σ ], Ḣ 1).

Note that this result does not cover the radial case (m = 0).
The question of whether singularities can form in the Schrödinger flow is open. So

far, it has only been shown that they cannot form for small-energy radial or equivariant
solutions (see [5]). Our Theorem 1.1 leaves open the question of whether finite-time
blowup can occur for maps in �m with energies near Emin = 4π |m|. The main result
of this article shows that when |m| ≥ 4, it does not. Moreover, we show that these
solutions converge (in a dispersive sense) to specific harmonic maps as t → ∞. Here
is the main result.

THEOREM 1.7 (Main result)
Let |m| ≥ 4. Let (r, p) satisfy 2 < r ≤ ∞, 2 ≤ p < ∞, with 1/r + 1/p = 1/2.
There exist positive constants δ, C, and Cp such that if u0 ∈ �m satisfies

δ2
1 := E(u0) − 4π |m| < δ2,

then for the corresponding solution u(t) of the Schrödinger flow (guaranteed by
Theorem 1.4),
(1) there is no finite-time blowup: Tmax = ∞;
(2) there exist s(t) ∈ C([0, ∞); (0, ∞)) and α(t) ∈ C([0, ∞); R) such that∥∥∥∇[u(x, t) − e(mθ+α(t))Rh

( r

s(t)

)]∥∥∥
(L∞

t L2
x∩Lr

t L
p
x )(R2×[0,∞))

≤ Cpδ1; (1.22)

(3) furthermore, ∣∣∣ s(t)

s(u0)
− 1
∣∣∣+ |α(t) − α(u0)| ≤ Cδ2

1, ∀t > 0,

and there exist s+ > 0 and α+ with

s(t) → s+, α(t) → α+, as t → ∞. (1.23)

Remark 1.8
(1) The L∞

t L2
x (energy-space) estimate in (1.22) already follows from Theorem 1.1.

The other space-time estimates in (1.22) further imply asymptotic convergence
to the family of harmonic maps (at least, in a time-averaged sense—the best we
can expect without further assumptions on the initial data). The convergence
results (1.22) and (1.23) are precisely what we mean when we say the harmonic
maps are asymptotically stable under the Schrödinger flow for |m| ≥ 4.
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(2) Note that for |m| = 1, 2, 3, the fate of solutions with energy near Emin is still
an open question. Our restriction |m| > 3 is connected with the slow spatial
decay of the harmonic map component h1(r) ∼ (const)r−|m| as r → ∞. For
a somewhat technical reason, we need r2h1(r) ∈ L2(r dr) (see Lem. 2.4),
which requires |m| > 3. For seemingly more fundamental reasons, we need
rh1(r) ∈ L2(r dr) (see (2.17)), which holds if |m| > 2.

(3) The recent work [21] on the analogous wave map problem imposes the same
restriction of |m| ≥ 4, but it proves that blowup is possible in this class, sug-
gesting that singularity formation is a more delicate question for Schrödinger
maps than for wave maps.

We end the introduction with a few words about our approach. One key observation,
already used in [11], is that the tangent vector field

W := ∂v
∂r

− |m|
r

J vRv

measures the deviation of the map u from harmonicity. (This is indicated, e.g.,
by (1.13).) Furthermore, when expressed in an appropriate orthonormal frame, the
coordinates of W satisfy a nonlinear Schrödinger-type equation that is suitable for
obtaining estimates—this is the generalized Hasimoto transform introduced in [5] to
study the small-energy problem.

In the present article, this nonlinear Schrödinger-type partial differential equation
is coupled to a 2-dimensional dynamical system describing the dynamics of the scaling
and rotation parameters s(t) and α(t), a careful choice of which must be made at each
time in order to allow estimation. This is all done in Section 2.

The key to proving convergence of the solution to a harmonic map is then to
obtain dispersive estimates—in this case, Strichartz-type estimates—for the linear part
of our nonlinear Schrödinger equation. The potential appearing in the corresponding
Schrödinger operator turns out to have (const/|x|2)-behavior both at the origin and as
|x| → ∞, which is a borderline case not treatable by purely perturbative methods.
Fortunately, a recent series of articles by Burq, Planchon, Stalker, and Tahvildar-Zadeh
[2], [3] addresses the problem of obtaining dispersive estimates when the potential
has just this critical decay rate, provided the potential satisfies a repulsivity condition
(which, in particular, rules out bound states). Though their relevant results are for
dimension n ≥ 3, we are able to adapt their approach to prove the estimates that we
need in our 2-dimensional setting. This is done in Section 3.

Finally, in Section 4, we prove Theorem 1.7 by applying the linear estimates of
Section 3 to the coupled nonlinear system of Section 2.
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Since the proofs of Theorems 1.4 and 1.6 and Corollary 1.5 are independent of
the rest of the article, they are postponed until Appendix A. Some lemmas are proved
in Appendix B.

Remark 1.9
From here on, we assume that m > 0. For m < 0, simply make the change of variable
(x1, x2, x3) → (x1, −x2, x3).

Notation. Throughout the article, the letter C is used to denote a generic constant, the
value of which may change from line to line. Vectors in R3 appear in boldface, while
their components appear in regular type: for example, u = (u1, u2, u3).

2. The dynamics near the harmonic maps

2.1. Splitting the solution
Let u(x, t) = emθRv(r, t) ∈ �m be a solution of the Schrödinger map equation (1.1).
We write our solution as a harmonic map with time-varying parameters, plus a pertur-
bation:

v(r, t) = eα(t)R [h(ρ) + ξ(ρ, t)] , ρ := r

s(t)
. (2.1)

In Section 2.3, we take up the central question of precisely how to do this splitting
(i.e., the choice of s(t) and α(t)).

It is convenient and natural to single out the component of the perturbation ξ

which is tangent to S2 at h:

ξ(ρ, t) = η(ρ, t) + γ (ρ, t)h(ρ), η(ρ, t) ∈ Th(ρ)S
2,

so that η · h ≡ 0. Thus the original map u is written

u(x, t) = e[mθ+α(t)]R
[(

1 + γ (ρ, t)
)
h(ρ) + η(ρ, t)

]
;

ρ = r

s(t)
, η(ρ, t) ∈ Th(ρ)S

2.

The pointwise constraint |v| ≡ 1 forces

1 ≡ |h + ξ|2 = |(1 + γ )h + η|2 = (1 + γ )2 + |η|2,

so γ (ρ, t) ≤ 0 and |η(ρ, t)| ≤ 1. If |ξ| ≤ 1, then

γ (ρ, t) = +(1 − |η(ρ, t)|2)1/2 − 1 ∈ [−1, 0]. (2.2)
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A convenient orthonormal basis of Th(ρ)S
2 is given by

ĵjj :=
⎛⎝0

1
0

⎞⎠ and J h(ρ ) ĵjj =
⎛⎝−h3(ρ)

0
h1(ρ)

⎞⎠,

and we express tangent vectors like η ∈ ThS
2 in this basis via the invertible linear map

Vρ : C → Th(ρ)S
2,

z = z1 + iz2 �→ z1̂jjj + z2J
h(ρ ) ĵjj .

So we write

η(ρ, t) = Vρ
(
z(ρ, t)

)
,

and in this way, the complex function z(ρ, t), together with a choice of the parameters
s(t) and α(t), gives a full description of the original solution u(x, t), provided |ξ| ≤ 1.

From (2.2), we find

|z| = |η| ≤ 1

2
=⇒ |γ | � |z|2, |γρ | � |z||zρ |. (2.3)

These estimates, together with results in [11], show that if s and α are chosen appro-
priately, then for E(u) − 4πm small,

‖z‖2
X � E(u) − 4πm � ‖z‖2

X,

where X := {z : [0, ∞) → C | zρ ∈ L2(ρ dρ), z/ρ ∈ L2(ρ dρ)} with

‖z‖2
X :=

∫ ∞

0

{
|zρ(ρ)|2 + |z(ρ)|2

ρ2

}
ρ dρ. (2.4)

The space X is therefore the natural space for z, corresponding to the energy space
for the original map u. The fact that

z ∈ X =⇒ z continuous in (0, ∞), z(0+) = z(∞−) = 0, and ‖z‖L∞ � ‖z‖X

(2.5)
follows easily from the change of variable ρm = ey and Sobolev imbedding on R (see
[11]).

Remark 2.1
Unless explicitly stated otherwise, Lebesgue norms of radial functions such as z(ρ)
are always with respect to the R2 Lebesgue measure ρ dρ.
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2.2. Equation for the perturbation
The next step is to derive an equation for z(ρ, t). In terms of v(r, t), the Schrödinger
map equation can be written as

vt = v ×
(

vrr + 1

r
vr + m2

r2
R2v

)
. (2.6)

Using (2.1), we find

e−αRvt = [α̇R − s−1ṡρ∂ρ](h + ξ) + ξt , (2.7)

s2e−αR(v × Mrv) = (h + ξ) × (Mρh + Mρξ), (2.8)

where

Mρ := ∂2
ρ + 1

ρ
∂ρ + m2

ρ2
R2

(and the right-hand sides are evaluated at (ρ = r/s(t), t)).
Consider first (2.8). Since �H + |∇H|2H = 0 for H = emθRh, we have

Mh = −2
m2

ρ2
h2

1h, (2.9)

where M = Mρ . Thus

RHS of (2.8) = h × Mξ + ξ ×
(

− 2
m2

ρ2
h2

1h
)

+ ξ × Mξ

= h ×
(
M + 2

m2

ρ2
h2

1

)
ξ + ξ × Mξ.

Keeping in mind (2.3), we write

RHS of (2.8) = h ×
(
M + 2

m2

ρ2
h2

1

)(
Vρ(z)

)+ F1,

where F1 = h × (M + 2(m2/ρ2)h2
1)γ h + ξ × Mξ is the nonlinear part. By (2.9), we

have Mγ h = 2γρhρ + (· · ·)h = 2γρ(m/ρ) k̂ + (· · ·)h, and hence

F1 = −2γρ

m

ρ
h1̂jjj + ξ × Mξ. (2.10)

Using R2 ĵjj = −ĵjj , R2J h ĵjj = h1h3h − h2
3J

h ĵjj , (J h ĵjj )ρ = −(m/ρ)h1h, and
(J h ĵjj )ρρ = −(m2/ρ2)h2

1J
h ĵjj − ((m/ρ)h1)ρh (all easy computations), we find that
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the linear part can be rewritten as

h ×
(
M + 2

m2

ρ2
h2

1

)(
Vρ(z)

) = −h × [Vρ(Nz)] = Vρ(−iNz),

where N denotes the differential operator N := −∂2
ρ − (1/ρ)∂ρ + (m2/ρ2)(1 − 2h2

1).
Because ξt = Vρ(zt ) + γth, (2.7) and (2.8) give

s2[Vρ(zt ) + γth] + [s2α̇R − sṡρ∂ρ](h + ξ) = Vρ(−iNz) + F1

or

Vρ(s2zt + iNz) = F, (2.11)

where

F := F1 + [−s2α̇R + sṡρ∂ρ](h + ξ) − s2γth.

Because the left-hand side of (2.11) lies in ThS
2, the right-hand side does also, and

hence F · h ≡ 0. We can rewrite (2.11) on the complex side by applying (V ρ)−1:

is2 ∂z

∂t
= Nz + i(Vρ)−1F, N = −∂2

ρ − 1

ρ
∂ρ + m2

ρ2
(1 − 2h2

1). (2.12)

This is the equation that we sought for z(ρ, t).
In order to see the form of the nonlinear terms (Vρ)−1(F) more clearly, we

compute

(Vρ)−1
(
Rh(ρ)

) = h1(ρ), (Vρ)−1
(
ρ∂ρh(ρ)

) = imh1,

(Vρ)−1
(
P h(ρ)RVρ(z)

) = izh3, (Vρ)−1
(
P h(ρ)ρ∂ρVρ(z)

) = ρzρ,

where P h(ρ) denotes the orthogonal vector projection onto Th(ρ)S
2. Thus, using h+ξ =

(1 + γ )h + Vρ(z),

(Vρ)−1(F) = [−s2α̇+imsṡ](1+γ )h1−s2α̇izh3+sṡρzρ+(Vρ)−1(P h(ρ)F1). (2.13)

2.3. Orthogonality condition and parameter equations
We have not yet specified s(t) and α(t). The main result of [11] says that if the energy
is close to Emin (i.e., δ2

1 := E(u)−Emin � 1), then there exist continuous s(t) > 0 and
α(t) ∈ R such that ‖emθRξ‖Ḣ 1 � δ1 as long as s(t) stays away from zero. The choice
of the parameters was simple and natural: at each time t , s(t) and α(t) were chosen
so as to minimize ‖emθRξ‖Ḣ 1 . In this article, we are forced into a different choice of
s(t) and α(t), as we now explain.
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Supposing for a moment that s(t) ≡ 1, the linearized equation for z(ρ, t) can be
read from (2.12):

i∂tz = Nz. (2.14)

The factorization

N = L∗
0L0, L0 := ∂ρ + m

ρ
h3 = h1∂ρ

1

h1
(2.15)

(where the adjoint L∗
0 is taken in the L2(ρdρ) inner product) shows that ker N =

span{h1}. In particular, (2.14) admits the constant (in time) solution z(ρ, t) ≡ h1(ρ).
Since we would like z(ρ, t) to have some decay in time, we must choose s(t) and α(t)
in such a way as to avoid such constant solutions. Since N is self-adjoint in L2, the
natural choice is to work in the subspace of functions z satisfying

(z, h1)L2 =
∫ ∞

0
z(ρ)h1(ρ)ρ dρ ≡ 0, (2.16)

which is invariant under the linear flow (2.14).
Recall, however, that the energy space for z is the space X (defined in (2.4)).

Certainly, the linear flow (2.14) does not preserve the subspace {f ∈ X, 〈f, h1〉X = 0}
(since N is not self-adjoint in X). In fact, neither z nor h1 lies in L2 in general. The
best we can do is

|(z, h1)L2 | =
∣∣∣( z

ρ
, ρh1

)
L2

∣∣∣ ≤ ‖z‖X‖ρh1‖L2 .

So to make sense of (2.16), we require

ρh1(ρ) = 2ρ

ρm + ρ−m
∈ L2(ρ dρ), (2.17)

which holds only if m ≥ 3. This is one of the reasons that we cannot handle the small
|m| cases in Theorem 1.7. The further restriction m > 3 is needed in Proposition 2.3
in Section 2.4.

In order to ensure that condition (2.16) holds for all times t , it suffices to impose it
initially and then ensure that the time derivative of the inner product vanishes for all t .
Differentiating (2.16) with respect to t , and using equations (2.12), (2.13), and (2.16),
yields a system of ordinary differential equations (ODEs) for s(t) and α(t):

[s2α̇ − imsṡ]
(
h1, (1 + γ )h1

)
L2 = (h1, (Vρ)−1(P h(ρ)F1) − s2α̇ih3z + sṡρzρ

)
L2 .

(2.18)
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The orthogonality condition (2.16) is precisely the one that ensures the terms linear in
z disappear from (2.18) and hence the key property that ṡ and α̇ be at least quadratic
in z. More precisely, the system (2.18) leads to the following estimate.

LEMMA 2.2
If ‖z‖X � 1, then

|sṡ| + |s2α̇| �
∥∥∥ z

ρ2

∥∥∥2

L2
+
∥∥∥zρ

ρ

∥∥∥2

L2
.

Proof
Using

|(h1, h3z)| � ‖ρh1‖L2

∥∥∥ z

ρ

∥∥∥
L2

� ‖z‖X � 1,

|(h1, ρzρ)| � ‖ρh1‖L2‖zρ‖L2 � ‖z‖X � 1,

|(h1, γ h1)| � ‖ρ2h2
1‖L∞

∥∥∥ z

ρ

∥∥∥2

L2
� ‖z‖2

X � 1,

in (2.18), we arrive at

|sṡ| + |s2α̇| �
∣∣(h1, (Vρ)−1(P h(ρ)F1)

)∣∣. (2.19)

To finish the proof of the lemma, we need to find (Vρ)−1(P hF1) explicitly. Using the
calculation of Lemma B.1 in Appendix B, we have(

h1, (Vρ)−1P hF1
)
L2

=
∫ ∞

0

(
i(h1)ρ(−γ zρ + zγρ) + m

ρ
h2

1

(− 2γρ − iz2(z1)ρ + iz1(z2)ρ
)

+ m

ρ
(h2

1)ρ(γ 2 − iz2z) + i
m2

ρ2
(2h2

1 − 1)h1γ z
)
ρ dρ.

Now, using inequality (2.5), together with (h1)ρ = −(m/ρ)h1h3, and the fact that
ρ2h1(ρ) is bounded for m ≥ 2, the estimat∣∣(h1, (Vρ)−1(P hF1)L2

)∣∣ � ∥∥∥ z

ρ2

∥∥∥2

L2
+
∥∥∥zρ

ρ

∥∥∥2

L2

follows. Together with (2.19), this completes the proof of Lemma 2.2. �

2.4. A nonlinear Schrödinger equation suited to estimates
We need to prove that z(ρ, t) has some decay in time, but the nonlinear Schrödinger-
type equation (2.12) is not suitable for obtaining such estimates, for at least two
reasons. First, as noted previously, the linearized equation has constant solutions,
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and so the orthogonality condition (2.16) has to be explicitly used in order to get
any decay whatsoever. Second, and maybe more seriously, some of the nonlinear
terms contain derivatives (even two derivatives) of z, leading to a loss of regularity.
Fortunately, there is a neat way around these problems: the generalized Hasimoto
transform of [5] yields an equation without these difficulties, as we now explain.

Let u = emθRv(r) ∈ �m. From (1.10), it is clear that the tangent vector

W(r) := vr (r) − m

r
J vRv(r) ∈ Tv(r)S

2

plays a distinguished role. In particular, u is a harmonic map if and only if W ≡ 0.
Indeed, the Schrödinger map equation (1.1), written in terms of v(r, t), can be factored
as

∂v
∂t

= J v
[
Dv

r + 1

r
− m

r
v3

]
W, (2.20)

where

Dv
r := P v(r)∂r

denotes the covariant derivative (with respect to r , along v). The idea is to write an
equation for W in an appropriately intrinsic way.

Following [5], let e(r) ∈ Tv(r)S
2 be a unit-length tangent field satisfying the gauge

condition

Dv
r e ≡ 0, e|r=∞ = ĵ . (2.21)

Expressing W in the orthonormal frame {e, J ve},

W = q1e + q2J
ve,

and using (2.20) and (2.21), it is not difficult to arrive at the following equation for
the complex function q(r, t) := q1(r, t) + iq2(r, t):

iqt = −
(
∂r + m

r
v3

)(
∂r + 1

r
− m

r
v3

)
q + Sq

=
(

− �r + 1

r2

(
(1 − mv3)2 + mr(v3)r

))
q + Sq,

(2.22)

where the function S(r, t) arises as Dv
t e = SJ ve. From the curvature relation

[Dr, Dt ]e = −Re
[(

∂r + 1

r
− m

r
v3

)
q
(
q + m

r
ν
)]

J ve,
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where P v(r) k̂ = k̂ − v3v = ν1e + ν2J
ve, we find

S = Re
∫ ∞

r

(
∂τ + 1

τ
− m

τ
v3(τ, t)

)
q(τ, t)

(
q(τ, t) + m

τ
ν(τ, t)

)
dτ. (2.23)

Thus the term in (2.22) involving S is nonlocal and nonlinear. We can simplify the
expression for S by integrating by parts in the term involving ∂τq, and using the
relation νr = −v3(q + (m/r)ν), to arrive at

S(r, t) = −1

2
Q(r, t) +

∫ ∞

r

1

τ
Q(τ, t) dτ, Q := |q|2 + 2m

r
Re(ν̄q). (2.24)

Thus equation (2.22) resembles a cubic nonlinear Schrödinger equation, keeping in
mind that
(a) there are nonlocal nonlinear terms;
(b) it is not self-contained: the unknown map v(r, t) itself appears in several places

(including through ν).
Furthermore, since

δ2
1 = E(u) − 4πm = 1

2
‖W‖2

L2 = π‖q‖2
L2(r dr),

we are dealing with a small L2 data problem for equation (2.22) (even though
the map u is not a small-energy map). This is what allows us the estimates we
need.

Because of the fact (b) mentioned above, and in order to close the estimate of
Lemma 2.2, we need to be able to control z (and hence v) in terms of q. This is possible
only if we have a supplementary condition such as (2.16) (since q = 0 just means
v(r) = eαRh(r/s) for some s, α). Parts of the proof of the following estimates are
a simple adaptation of the corresponding argument in [11], where the orthogonality
condition was somewhat different.

PROPOSITION 2.3
If m ≥ 3 and (2.16) holds, and if ‖z‖X � 1, then for 2 ≤ p < ∞,
(1) ‖zρ‖Lp + ‖z/ρ‖Lp � s1−2/p‖q‖Lp ;
(2) if m > 3, ‖zρ/ρ‖L2 + ‖z/ρ2‖L2 � s‖q/r‖L2 .

Proof
The first observation is that, modulo nonlinear terms, q(r) is equivalent to
(1/s)(L0z)(r/s), where L0 = ∂ρ + (m/ρ)h3(ρ). Precisely,
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sW(sρ) = Vρ(L0z) + m

ρ
z1(h1z2 + h3γ ) ĵjj

+ m

ρ

(− h1z
2
1 + [h3z2 − h1(1 + γ )]γ

)
J h ĵjj

+
(
γρ + m

ρ
[h1z2γ − h3|z|2]

)
h.

Using (2.5), it follows easily that for 2 ≤ p ≤ ∞,

‖L0z‖Lp � s1−2/p‖q‖Lp + (‖z‖X + ‖z‖3
X)
∥∥∥|zρ | + |z|

ρ

∥∥∥
Lp

,∥∥∥ 1

ρ
L0z

∥∥∥
L2

� s

∥∥∥1

r
q

∥∥∥
L2

+ (‖z‖X + ‖z‖3
X)
∥∥∥ |zρ |

ρ
+ |z|

ρ2

∥∥∥
L2

.

In light of these estimates, and ‖z‖X � 1, Proposition 2.3 follows from the next
lemma.

LEMMA 2.4
For m ≥ 3 and z(ρ) satisfying (2.16),
(1) ‖z‖X � ‖L0z‖L2 ;
(2) ‖|zρ | + |z|/ρ‖Lp � ‖L0z‖Lp for 2 ≤ p < ∞;
(3) if m > 3, ‖|zρ |/ρ + |z|/ρ2‖L2 � ‖L0z/ρ‖L2 .

Proof
An estimate very similar to the first one here is proved in [11]. (Only the orthogonality
condition is different.) Here, we prove the first and third statements together, by
showing ∥∥∥ |zρ |

ρb
+ |z|

ρ1+b

∥∥∥
L2

�
∥∥∥L0z

ρb

∥∥∥
L2

for −1 ≤ b ≤ 1. If this is false, we have a sequence {zj } with∥∥∥ (zj )ρ
ρb

∥∥∥2

L2
+
∥∥∥ zj

ρ1+b

∥∥∥2

L2
= 1,∫

zj (ρ)h1(ρ)ρ dρ = 0,∥∥∥L0zj

ρb

∥∥∥
L2

→ 0.

(2.25)

It follows that up to subsequence, zj → z∗ weakly in H 1 and strongly in L2 on
compact subsets of (0, ∞) and that L0z

∗ = 0. Hence z∗(ρ) = Ch1(ρ) for some
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C ∈ C. Integration by parts gives∥∥∥L0zj

ρb

∥∥∥2

L2
=
∥∥∥ (zj )ρ

ρb

∥∥∥2

L2
+ m

∫ ∞

0

|zj |2
ρ2b+2

(
m + 2bh3(ρ) − 2mh2

1(ρ)
)
ρ dρ,

and so, defining V (ρ) := m + 2bh3(ρ) − 2mh2
1(ρ), we see that for any ε < 1/m,

lim sup
j→∞

m

∫ ∞

0

|zj |2
ρ2b+2

[V (ρ) − ε]ρ dρ ≤ −mε.

If 2|b| + ε < m (which certainly holds under our assumptions that |b| ≤ 1 and
m > 3), then {ρ | V (ρ) − ε ≤ 0} is a compact subset of (0, ∞), and so

m

∫
V −ε≤0

|C|2h2
1(ρ)

ρ2b+1
[V (ρ)−ε]ρ dρ = lim

j→∞
m

∫
V −ε≤0

|zj |2
ρ2b+2

[V (ρ)−ε]ρ dρ ≤ −mε,

which implies that C �= 0. Finally, for any ε ′ > 0,

0 = lim
j→∞

∫ ∞

0
zj (ρ)h1(ρ)ρ dρ

=
∫ 1/ε′

ε′
Ch2

1(ρ)ρ dρ + lim
j→∞

( ∫ ε′

0
+
∫ ∞

1/ε′

)
zj (ρ)h1(ρ)ρ dρ.

Since ‖zj/ρ
1+b‖L2 ≤ 1, and ρ1+bh1 ∈ L2 (this is precisely where we need m > 3 for

b = 1), the last integrals are uniformly small in ε ′, and we arrive at

0 =
∫ ∞

0
Ch2

1(ρ)ρ dρ,

contradicting C �= 0.
We now prove the second statement. First, note that following [11, proof of Lem.

4.4], the estimate ∥∥∥|zρ | + |z|
ρ

∥∥∥
Lp

� ‖L0z‖Lp + ‖L0z‖L2 (2.26)

can be deduced from the X-estimate above (the case of b = 0). Now, fix a smooth
cutoff function �(t) with �(t) = 1 for t ∈ [0, 1], �(t) = 0 for t ∈ [2, ∞), and
�t (t) < 0 for t ∈ (1, 2). Let φ(ρ) := �(t) with t = (ρ/s)β , where s � 1 and
0 < β � 1 are such that

ε1 = ‖ρφρ(ρ)‖L∞ � β
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and

ε2 := ∥∥ρ[1 − φ(ρ)]h1(ρ)
∥∥

L2(ρ dρ)
≤ ‖ρh1(ρ)‖L2((s,∞),ρ dρ)

are sufficiently small. Now, using (2.16),∣∣∣ ∫ h1zφρ dρ

∣∣∣ = ∣∣∣ ∫ h1z(1 − φ)ρ dρ

∣∣∣ ≤ ε2

∥∥∥ z

ρ

∥∥∥
L2(ρ dρ)

.

Observe that the proof of the X-estimate above (and hence also of (2.26)) works
even if

∣∣ ∫ h1zρ dρ
∣∣ = o(1)‖z/ρ‖L2 , and so provided ε2 is sufficiently small, we can

apply (2.26) to obtain∥∥∥ z

ρ

∥∥∥
p

≤
∥∥∥zφ

ρ

∥∥∥
p

+
∥∥∥z(1 − φ)

ρ

∥∥∥
p

� ‖L0(zφ)‖p + ‖L0(zφ)‖2 +
∥∥∥z(1 − φ)

ρ

∥∥∥
p

� ‖L0(zφ)‖p +
∥∥∥z(1 − φ)

ρ

∥∥∥
p
.

Now, 1 − φ is supported for ρ ≥ s � 1, and on this set, h3(ρ) ≥ 1/2. Then an easy
adaptation, [5, Lem. 3.6] (using m > 1), yields∥∥∥z(1 − φ)

ρ

∥∥∥
p

�
∥∥L0

(
z(1 − φ)

)∥∥
p
,

and hence ∥∥∥ z

ρ

∥∥∥
p

� ‖L0(zφ)‖p + ∥∥L0

(
z(1 − φ)

)∥∥
p

� ‖L0(z)φ‖p + ‖L0(z)(1 − φ)‖p + ‖zφρ‖p.

Since ‖zφρ‖p ≤ ε1‖z/ρ‖p, we conclude that

‖zρ‖p +
∥∥∥ z

ρ

∥∥∥
p

≤ C‖L0(z)‖p + Cε1

∥∥∥ z

ρ

∥∥∥
p
.

If ε1 is small enough, the last term can be absorbed to the left-hand side.
That completes the proof of the lemma. �

End of proof of Proposition 2.3
Hence the proposition is proved. �

Combining Proposition 2.3 with Lemma 2.2 leads to the following.
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COROLLARY 2.5
Under the conditions of Proposition 2.3, if m > 3,

|s−1ṡ| + |α̇| �
∥∥∥q

r

∥∥∥2

L2
. (2.27)

This is our main estimate of the harmonic map parameters s(t) and α(t).

2.5. Nonlinear estimates
We can now use Proposition 2.3 to estimate the nonlinear terms in (2.22). The idea
is that from the splitting of Section 2.1, we expect v3(r, t) = h3(r/s(t)) + “small.”
We freeze the scaling factor s(t) at, say, s0 := s(0) (and, without loss of generality,
we rescale the solution so that s0 = 1) and treat the corresponding correction as a
nonlinear term:

iqt + �rq − 1 + m2 − 2mh3(r)

r2
q = Uq + Sq, (2.28)

where

U := 1

r2

[
m(v3 − h3)

(
m(v3 + h3) − 2

)+ mr
(
(v3)r − (h3)r

)]
.

(Here, we have used r(h3)r = mh2
1 and h2

1 + h2
3 = 1.) Recall, from (2.24),

S(r, t) = −1

2
Q(r, t) +

∫ ∞

r

1

τ
Q(τ, t) dτ, Q := |q|2 + 2m

r
Re(ν̄q).

The next lemma estimates the right-hand side of (2.28) in various space-time norms.

LEMMA 2.6
Provided that (2.16) holds and that ‖z‖X � 1, we have

‖rUq‖L2
t L

2
x
�
(
(1 + ‖s−1‖L∞

t
)‖s − 1‖L∞

t
+ ‖q‖L∞

t L2
x

)∥∥∥q

r

∥∥∥
L2

t L
2
x

+ ‖s−1‖1/2
L∞

t
‖q‖2

L4
t L

4
x

(2.29)
and

‖Sq‖L
4/3
t L

4/3
x

� ‖q‖L4
t L

4
x

(
‖q‖2

L4
t L

4
x
+
∥∥∥q

r

∥∥∥
L2

t L
2
x

)
. (2.30)

Proof
Recall

v3(r) = h3

(r

s

)
+ ξ3

(r

s

)
=
(

1 + γ
(r

s

))
h3

(r

s

)
+ h1

(r

s

)
z2

(r

s

)
,
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and set, as usual, ρ = r/s. Estimate (2.29) follows from ‖z‖L∞ � ‖z‖X, the estimates
in Proposition 2.3, and
• |h3(r/s) − h3(r)| = ∣∣ ∫ s

1
d

dτ
h3(r/τ ) dτ

∣∣ = m
∣∣ ∫ s

1 (1/τ )h2
1(r/τ ) dτ

∣∣ �
[min(1, s)]−1|s − 1|,

• r|[h3(r/s)]r − [h3(r)]r | = m|h2
1(r/s) − h2

1(r)| � [min(1, s)]−1|s − 1|.
For estimate (2.30), begin with

‖Sq‖L
4/3
x L

4/3
t

≤ ‖q‖L4
t L

4
x
‖S‖L2

t L
2
x
.

Using the Hardy-type inequality ‖ · ‖L2
x
� ‖r∂r · ‖L2

x
yields

‖S‖L2
t L

2
x
� ‖Q‖L2

t L
2
x
� ‖q‖2

L4
t L

4
x
+ ‖ν‖L∞

t L∞
x

∥∥∥q

r

∥∥∥
L2

t L
2
x

.

And since |ν| = |̂k − v3v| � 1, we arrive at (2.30). �

3. Dispersive estimates for critical-decay potentials in two dimensions
In order to establish any decay (dispersion) of solutions of (2.28), we need good
dispersive estimates for the linear part

iqt = −qrr − 1

r
qr + 1

r2
(1 + m2 − 2mh3)q. (3.1)

This turns out to be a little tricky since it is a borderline case in two senses: the space
dimension is 2, and the potential has (1/r2)-behavior both at the origin and at infinity;
that is,

1

r2

(
1 + m2 − 2mh3(r)

) ∼

⎧⎪⎨⎪⎩
(1 + m)2

r2
, r → 0,

(1 − m)2

r2
, r → ∞.

(3.2)

In this section, we consider linear Schrödinger operators like the one appearing
on the right-hand side of (3.1). More precisely, let

H = −� + 1

r2
+ V (r), V ∈ C∞(0, ∞), 0 ≤ r2V (r) ≤ const. (3.3)

Such an operator is essentially self-adjoint on C∞
0 (R2\{0}), extends to a self-adjoint

operator on a domain D(H ) with C∞
0 (R2\{0}) ⊂ D(H ) ⊂ L2(R2), and generates a

one-parameter unitary group e−itH such that for φ ∈ L2, ψ = e−itHφ is the solution
of the linear Schrödinger equation iψt = Hψ with initial data ψ |t=0 = φ (see, e.g.,
[18]).
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Our goal is to obtain dispersive space-time (Strichartz) estimates for e−itH of the
sort which hold for the free (H = −�) evolution:

‖eit�φ‖Lr
t L

p
x
+
∥∥∥∫ t

0
ei(t−s)�f (s) ds

∥∥∥
Lr

t L
p
x

� ‖φ‖L2 + ‖f ‖
Lr̃′

t L
p̃′
x
, (3.4)

where (r, p) and (r̃ , p̃) are admissible pairs of exponents:

(r, p) admissible ←→ 1

r
+ 1

p
= 1

2
, 2 < r ≤ ∞,

and p′ = p/(p − 1) denotes the Hölder dual exponent. The endpoint case of (3.4),
(r, p) = (2, ∞), is known to be false in general but true for radial φ and f , save for
the double-endpoint case of r = r̃ = 2 (see [23]).

Perturbative arguments to extend estimates like (3.4) to Schrödinger operators
with potentials (in general, one has to include a projection onto the continuous spec-
tral subspace in order to avoid bound states, which do not disperse) cannot work
for borderline behavior like (3.2). Fortunately, the problem of obtaining dispersive
estimates when the potential has this critical falloff (and singularity) has been taken
up in recent articles by Burq, Planchon, Stalker, and Tahvildar-Zadeh [2], [3]. In place
of a perturbative argument, the authors make a repulsivity assumption on the potential
(which, in particular, rules out bound states), and they prove more or less directly—by
identities—that solutions have some time decay, in a spatially weighted space-time
sense (a Kato smoothing–type estimate). This approach is ideally suited to our present
problem: the operator appearing in (3.1) satisfies the following repulsivity property.
When written in the form (3.3),

−r2
(
rV (r)

)
r
+ 1 ≥ ν for some ν > 0. (3.5)

We cannot rely directly on the results of [2] and [3] here. The article [2] considers
only potentials (const)/r2, while the results of [3] hold in dimension at least 3 only
and do not immediately extend to dimension 2 for two reasons: one is the failure of
the Hardy inequality, and the other is the failure of the double-endpoint Strichartz
estimate (even for radial functions). However, we can recover the argument from [3]
by exploiting the radial symmetry of our functions to avoid the Hardy inequality,
and we can avoid the use of the double-endpoint Strichartz estimate by following the
approach of [2], which in turn follows [20].

THEOREM 3.1
Suppose that the Schrödinger operator H satisfies conditions (3.3) and (3.5). Let
φ = φ(r) be radially symmetric. Then for any admissible pair (r, p), we have

‖e−itHφ‖Lr
t L

p
x
+
∥∥∥ 1

|x|e
−itHφ

∥∥∥
L2

t L
2
x

� ‖φ‖L2 . (3.6)
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If f = f (r, t) is radially symmetric and (r̃ , p̃) is another admissible pair, then∥∥∥ ∫ t

0
e−i(t−s)Hf (x, s) ds

∥∥∥
Lr

t L
p
x

+
∥∥∥ 1

|x|
∫ t

0
e−i(t−s)Hf (x, s) ds

∥∥∥
L2

t L
2
x

� min
(‖f ‖

Lr̃′
t L

p̃′
x
, ‖|x|f ‖L2

t L
2
x

)
. (3.7)

Remark 3.2
In [3], the single endpoint Strichartz estimate ((3.6) with r = 2) is also obtained for
dimensions at least 3. In two dimensions, though it holds in the free, radial case, we
do not know if it holds for our operators. However, it is essential to the present article
to have an estimate with L2

t -decay (Lr
t with r > 2 is simply not enough; see Sec. 4).

Our way around this problem is to use the above weighted L2
t L

2
x-estimate that arises

naturally in the approach of [3].

Proof of Theorem 3.1
Parts of the proof are perturbative, so we identify a reference operator:

H = −� + 1

r2
+ V =: H0 + V.

Note that H0 = −� + 1/r2 satisfies the “usual” Strichartz estimates (those satisfied
by −�, as in (3.4)) on radial functions since H0 is simply −� conjugated by eiθ when
acting on such functions.

Step 1. Following [3], we begin with weighted resolvent estimates.

LEMMA 3.3
For f = f (r) radial,

sup
µ �∈R

∥∥∥ 1

|x| (H − µ)−1f

∥∥∥
L2(R2)

� ‖|x|f ‖L2(R2). (3.8)

Proof
We can assume that f ∈ C∞

0 (0, ∞), with the lemma then following from a standard
density argument. Set u := (H −µ)−1f so that (H −µ)u = f , and note that u = u(r)
is radial since f is. To avoid the use of the Hardy inequality in [3], we change variables
from u(r) to

v(x) := eiθu(r)
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and use |∇v|2 = |ur |2 + (1/r2)|u|2, so∥∥∥ v

|x|
∥∥∥

L2
� ‖v‖H 1 . (3.9)

In terms of v, the equation for u becomes

(−� + V − µ)v = f̃ , (3.10)

where f̃ (x) := eiθf (r) ∈ L2, and so v ∈ D(−�+V ) ⊂ H 2. The proof of the lemma
now follows the corresponding proof in [3] precisely, using −d2

dθ2 ≥ 1 on functions of
our form eiθf (r), and with (3.9) (rather than Hardy) providing v/|x| ∈ L2 where
needed. �

Step 2. As in [3], the next step is to invoke [14] to conclude that the resolvent
estimate (3.8) implies the following Kato smoothing weighted L2-estimate for the
propagator: for φ = φ(r), ∥∥∥ 1

|x|e
−itHφ

∥∥∥
L2

t L
2
x

� ‖φ‖L2 . (3.11)

This is one part of (3.6). Note that the reference operator H0 also satisfies the weighted
estimate (3.11) (a fact that follows from the same argument). Another direct conse-
quence of the resolvent estimate (3.8) is the inhomogeneous version of (3.11),∥∥∥ 1

|x|
∫ t

0
e−i(t−s)Hf (·, s) ds

∥∥∥
L2

t L
2
x

� ‖|x|f ‖L2
t L

2
x
, (3.12)

which is one part of (3.7). The estimate (3.12) is probably standard, but we did not
see a proof, and so we supply one in Section B.2.

Step 3. Next, we establish more of the inhomogeneous estimates in (3.7) but first
for the reference operator H0. Since we do not have the double-endpoint Strichartz
estimate available, we now depart from [3] and henceforth follow [2] (which in turn
relies partly on [20]). Note that by (3.11) for H0, for any ψ ∈ L2

x ,(
ψ,

∫ ∞

0
eisH0f (·, s) ds

)
L2

x

=
∫ ∞

0
ds
(
e−isH0ψ, f (·, s)

)
L2

x

≤
∥∥∥ 1

|x|e
−isH0ψ

∥∥∥
L2

t L
2
x

‖|x|f ‖L2
t L

2
x
� ‖ψ‖L2‖|x|f ‖L2

t L
2
x
,
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yielding ∥∥∥∫ ∞

0
eisH0f (·, s) ds

∥∥∥
L2

x

� ‖|x|f ‖L2
t L

2
x
.

Hence by the Strichartz estimates for H0, for (r, p) admissible,∥∥∥∫ ∞

0
e−i(t−s)H0f (·, s) ds

∥∥∥
Lr

t L
p
x

=
∥∥∥e−itH0

∫ ∞

0
eisH0f (·, s) ds

∥∥∥
Lr

t L
p
x

�
∥∥∥∫ ∞

0
eisH0f (·, s) ds

∥∥∥
L2

x

� ‖|x|f ‖L2
t L

2
x
.

Finally, the required estimate∥∥∥∫ t

0
e−i(t−s)H0f (·, s) ds

∥∥∥
Lr

t L
p
x

� ‖|x|f ‖L2
t L

2
x

(3.13)

follows from a general argument of Christ and Kiselev [6] (see also [2]).

Step 4. To obtain the remaining part of (3.6) (the Strichartz estimate), we use (3.11)
and (3.13) in a perturbative argument. We have

e−itHφ = e−itH0φ + i

∫ t

0
e−i(t−s)H0V e−isHφ ds,

and so for (r, p) admissible,

‖e−itHφ‖Lr
t L

p
x
� ‖φ‖L2 + ‖|x|V e−isHφ‖L2

t L
2
x

≤ ‖φ‖L2 + ‖|x|2V ‖L∞

∥∥∥ 1

|x|e
−isHφ

∥∥∥
L2

t L
2
x

� ‖φ‖L2 .

This finishes the proof of (3.6).

Step 5. It remains to prove the rest of the inhomogeneous estimates in (3.7). But
given (3.6), these follow again from the argument used in step 3.

That completes the proof of Theorem 3.1. �

COROLLARY 3.4
If m ≥ 2, estimates (3.6) and (3.7) hold for the operator

H := −� + 1

r2
(1 + m2 − 2mh3)

coming from the Schrödinger map problem.
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Proof
We have

1

r2
(1 + m2 − 2mh3) = 1

r2
+ V (r), V (r) = m

r2

(
m − 2h3(r)

)
.

So for m ≥ 2,

(m + 1)2 ≥ 1 + r2V (r) ≥ (m − 1)2 ≥ 1,

and

1 − r2(rV )r = 1 + m
(
m − 2h3(r) + 2mh2

1(r)
) ≥ 1 + m(m − 2) ≥ 1.

Thus conditions (3.3) and (3.5) both hold with ν = 1. �

4. Proof of the main theorem
Let u ∈ C([0, Tmax); �m) be the solution of the Schrödinger map equation (1.1) with
initial data u0 (given by Th. 1.4). Energy is conserved:

E
(
u(t)

) = E(u0) = 4πm + δ2
1 .

We begin by splitting the initial data u(0), using the following lemma, which is proved
in Section B.3.

LEMMA 4.1
If m ≥ 3 and δ is sufficiently small, then for any map u ∈ �m with E(u) ≤ 4πm+ δ2,
there exist s > 0, α ∈ R, and a complex function z(ρ) such that

u(r, θ) = e[mθ+α]R

[(
1 + γ

(r

s

))
h
(r

s

)
+ Vr/s

(
z
(r

s

))]
(4.1)

with z satisfying (2.16); that is,∫ ∞

0
z(ρ)h1(ρ)ρ dρ = 0, (4.2)

and ‖z‖2
X � E(u) − 4πm.

Invoking Lemma 4.1, we have

u0 = e[mθ+α0]R

[(
1 + γ

( r

s0

))
h
( r

s0

)
+ Vr/s0

(
z
( r

s0

))]
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with z0 satisfying the orthogonality condition (2.16), and

‖z0‖X � δ1 � 1.

Now, rescale by setting

û(x, t) := u(s0x, s2
0 t).

Then û is another solution of the Schrödinger map equation (1.1), and

û(x, 0) = e[mθ+α0]R
[(

1 + γ0(r)
)
h(r) + Vr

(
z0(r)

)]
.

Let q(r, t) be the complex function derived from the Schrödinger map û, as in Sec-
tion 2.4.

Suppose that (r, p) is an admissible pair of exponents. Define a space-time norm
Y by

‖q‖Y := ‖q‖L∞
t L2

x∩L4
t L

4
x∩Lr

t L
p
x
+
∥∥∥q

r

∥∥∥
L2

t L
2
x

.

As long as ‖z‖X � ‖q‖L2
x

remains sufficiently small, Corollary 3.4, together with
estimates (2.29) and (2.30), yields

‖q‖Y � ‖q(0)‖L2 + [(1 + ‖s−1‖L∞
t

)‖s − 1‖L∞
t

+ (1 + ‖s−1‖L∞
t

)‖q‖Y + ‖q‖2
Y

]‖q‖Y .

(4.3)
We also have

û = e[mθ+α(t)]R

[(
1 + γ

( r

s(t)
, t
))

h
( r

s(t)

)
+ Vr/s(t)

(
z
( r

s(t)
, t
))]

,

with z(ρ, t) satisfying (2.16), s(0) = 1, α(0) = α0, and, by Corollary 2.5, s(t) ∈
C([0, T ); R+) and α(t) ∈ C([0, T ); R), with

‖s−1ṡ‖L1
t
+ ‖α̇‖L1

t
� ‖q‖2

Y . (4.4)

Taking ‖q(0)‖L2 � δ1 sufficiently small, estimates (4.3) and (4.4) yield

‖q‖Y � δ1, ‖s−1ṡ‖L1
t
+ ‖α̇‖L1

t
� δ2

1 . (4.5)

(And, in particular, ‖z‖X � 1 continues to hold.) Since∣∣∣∇[û − e[mθ+α(t)]Rh
( r

s(t)

)]∣∣∣ � 1

s

(
|zρ | +

∣∣∣ z
ρ

∣∣∣)(1 + |z|),

the estimates of Proposition 2.3 give∥∥∥∇[û − e[mθ+α(t)]Rh
( r

s(t)

)]∥∥∥
Y

� ‖q‖Y � δ1. (4.6)
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Estimate (4.5) shows
(a) that s(t) ≥ const > 0, and hence, by Corollary 1.5, we must have Tmax = ∞;
(b) that

s(t) → s∞ ∈ (1 − cδ2
1, 1 + cδ2

1), α(t) → α∞ ∈ (α0 − cδ2
1, α0 + cδ2

1)

as t → ∞.
Finally, undoing the rescaling, u(r, t) = û(r/s0, t/s

2
0 ), yields the estimates of

Theorem 1.7. �

Appendices

A. Local well-posedness

In this appendix, we prove Theorem 1.4 and Corollary 1.5 on the local well-posedness
of the Schrödinger flow (1.1) when the data u0 ∈ �m has energy E(u0) = 4πm + δ2

0

close to the harmonic map energy, 0 < δ0 ≤ δ � 1. In Section A.1, we show that z

(and hence u) can be reconstructed from q, s, and α; this section is time-independent.
In Section A.2, we set up the equations for the existence proof. In Section A.3, we
show that we have a contraction mapping, and we complete the proofs of Theorem
1.4 and Corollary 1.5. In Section A.4, we discuss the small-energy case.

Recall the decomposition u(r, θ) = emθRv(r), and recall

v(r) = eαR [h(ρ) + ξ(ρ)] = eαR

⎡⎣(1 + γ )h1 − h3z2

z1

(1 + γ )h3 + h1z2

⎤⎦ (ρ), (A.1)

where ρ = r/s, ξ = z1̂jjj + z2h × ĵjj + γ bh, and γ =
√

1 − |z|2 − 1. The time-
dependence of u, v, ξ, α, s, and γ has been dropped from (A.1). The equation Dre = 0
is equivalent to

er = −(vr · e)v. (A.2)

Recall that qe = vr − (m/r)J vRv with νe = J vRv = k̂ − v3v. By substituting in
(A.1) and using L0h = (m/r) k̂, qe should satisfy

se−αRqe(r) = (L0z)(ρ) ĵjj + G0(z)(ρ), ρ = r

s
, (A.3)

where

G0(z)(ρ) := se−αR
[
vr−m

r
(̂k−v3v)

]
−(L0z) ĵjj = γρh+m

ρ
(γ k̂+γ h3h+ξ3ξ) (A.4)
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and ‖G0(z)‖L2 � ‖z‖2
X when ‖z‖X � 1. In other words, q is rescaled L0z, plus

error.
In this appendix, we choose a different orthogonality condition for z, instead of

(2.16). Specifically, we choose the unique s and α so that

〈h1, z〉X = 0. (A.5)

(Recall that 〈f, g〉X = ∫∞
0 (f̄rgr + (m2/r2)f̄ g)r dr .) Condition (A.5) makes sense

for all m �= 0 and suffices for the proof of local well-posedness. In contrast, (2.16)
makes sense only if |m| ≥ 3, but it is necessary for the study of the time-asymptotic
behavior. In [11, Sec. 2], we chose s and α to minimize ‖u − e(mθ+α)Rh(·/s)‖Ḣ 1 .
The resulting equations in [11, Lem. 2.6] are 〈h1, z1〉X = 0 and 〈h1, z2〉X =∫∞

0 (4m2/ρ2)h2
1h3γ (ρ)ρ dρ. Condition (A.5) is similar but has no error term. The

unique choice of s and α can be proved by the implicit function theorem, similar to
the proof of Lemma 4.1, and it is skipped. It is important to point out, however, that
the parameter s used here, though not the same as s(u) defined in (1.20) and (1.21),
is nonetheless comparable: s = s(u)(1 + O(δ2

0)). (This comes immediately from
the implicit-function-theorem argument.) Thus we can state the local well-posedness
result (Th. 1.4) in terms of s(u0).

A.1. Reconstruction of z and u from q, s, and α

In this section, all maps are time-independent. For a given map u = emθRv(r) ∈ �m

with energy close to 4πm, we can define s, α, z, and q. The three quantities s, α, and
z determine u and hence q. Conversely, as is done in Lemma A.2 of this section, we
can recover z and u if s, α, and q are given, assuming that ‖q‖L2 ≤ δ. Before that, we
first prove difference estimates for δe in Lemma A.1.

For given s > 0, α ∈ R, and z ∈ X small, we define v(r) = V(z, s, α)(r) by
(A.1), and we define e(r) = Ê(z, s, α)(r) by the ODE

e(z)(∞) = eαR ĵjj, er = −(vr · e)v, where v = V(z, s, α). (A.6)

Note that the boundary condition is different from that in (2.21). By setting zb = 0, the
proof of Lemma A.1 shows that oscillation e � ‖z‖X and e converges as r → 0, ∞,
which makes sense of this boundary condition. Also, denote Ê(z) = Ê(z, 1, 0). Simple
comparison shows

Ê(z, s, α) = eαRÊ(zs), zs(r) := z
(r

s

)
. (A.7)

LEMMA A.1
Suppose that zl ∈ X, l = a, b, are given with ‖zl‖X sufficiently small. Let δz :=
za − zb, let δv := V(za, 1, 0) − V(zb, 1, 0), and let δe := Ê(za) − Ê(zb). Then

‖δv‖X + ‖δe‖L∞ � ‖δz‖X.
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Proof
Note that

‖hr‖L2(rdr) ≤ C; ‖ξl‖X � ‖zl‖X + ‖zl‖2
X, l = a, b. (A.8)

Since δv = δξ = (δz) ĵjj + (δγ )h,

‖δv‖X + ‖δξ‖X � (1 + ‖za‖X + ‖zb‖X)‖δz‖X � ‖δz‖X. (A.9)

For δe, write δe = (δe1, δe2, δe3), and write

δej,r = −(δξr · ea)va,j − (vb,r · δe)va,j − (vb,r · eb)δξj , j = 1, 2, 3. (A.10)

First, consider δe2. Integrate in r . Using (A.8), (A.9), va,2 = za,1, and vl,r ∈
L2(r dr),

|δe2(τ )| �
∫ ∞

τ

(∣∣∣(δξr · ea)
za

r

∣∣∣+ ∣∣∣(vb,r · δe)
za

r

∣∣∣+ ∣∣∣(vb,r · eb)
δz1

r

∣∣∣)r dr

� (1 + max
l=a,b

‖zl‖X)‖δz‖X + max
l=a,b

‖zl‖X‖δe‖L∞. (A.11)

Next, we consider δe1 and δe3. Equation (A.10) for j = 1, 3 can be written as a
vector equation for x = (δe1, δe3)T :

xr = A(r)x + F, (A.12)

where

A(r) = −
[
h1

h3

]
[h1,r , h3,r ] = m

r
h1

[
h1h3, −h2

1

h2
3, −h1h3

]
and

F =
[
F1

F3

]
, Fj = −(δξr · ea)va,j − (ξb,r · δe)hj − (vb,r · δe)ξa,j − (vb,r · eb)δξj ,

j = 1, 3.

To simplify the linear part x̃r = A(r)x̃, let y = U−1x̃, where

U (r) =
[
h1, −h3

h3, h1

]
, U−1 =

[
h1, h3

−h3, h1

]
.

Then y satisfies

yr = (U−1)rUy + U−1AUy = m

r
h1

[
0, 0

−1, 0

]
y.
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This linear system can be solved explicitly,

y(r) =
[

1, 0
p(ρ, r), 1

]
y(ρ), p(ρ, r) = −

(∫ r

ρ

m

r
h1(τ ) dτ

)
= −[2 arctan τm]rρ.

Thus the linear system x̃r = A(r)x̃ has the solution x̃(r) = P (ρ, r)x̃(ρ) with the
propagator

P (ρ, r) = U (r)

[
1, 0

p(ρ, r), 1

]
U−1(ρ).

The original system (A.12) with x(0) = 0 has the solution

x(r) =
∫ r

0
P (ρ, r)F (ρ) dρ.

To estimate x(r), the two terms of F3 with h3 as the last factor,

F̃3 = −(δξr · ea)h3 − (ξb,r · δe)h3,

require special care since F̃3 may not be in L1(dr). Other terms can be estimated as
follows:∣∣∣∣∫ r

∞
P (ρ, r)

[
F1

F3 − F̃3

]
dρ

∣∣∣∣ �
∫ ∞

0
|F1| + |F3 − F̃3| dr

� ‖δz‖X + (‖za‖X + ‖zb‖X) ‖δe‖L∞ .

We treat F̃3 by integration by parts:∫ r

∞
P (ρ, r)

[
0
F̃3

]
dρ =

∫ r

∞
P (ρ, r)

[
0

−(δξρ · ea + ξb,ρ · δe)h3

]
dρ

= −
[

0
(δξ · ea + ξb · δe)h3

]
(r)

+
∫ r

∞
P (ρ, r)

[
0

(δξ · ea,ρ + ξb · δeρ)h3 + (δξ · ea + ξb · δe)h3,ρ

]
dρ

+
∫ r

∞
Pρ(ρ, r)

[
0

(δξ · ea)h3 + (ξb · δe)h3

]
dρ =

3∑
j=1

Ij .

Now, we estimate the right-hand side one by one. For I1,

|I1| � ‖δξ‖L∞ + ‖ξb‖L∞‖δe‖L∞ � ‖δz‖X + ‖zb‖X‖δe‖L∞ .
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For I2, observe that

‖ea,r‖L2 ≤ C, ‖δer‖L2 � ‖δz‖X + ‖δe‖L∞,

due to the fact that ea,r = −(va,r · ea)va and δer = −(va,r · ea)va + (vb,r · eb)vb. Thus

|I2| � ‖δz‖X + ‖zb‖X (‖δz‖X + ‖δe‖L∞).

To estimate the last term I3, note that

Pρ(ρ, r)

= m

ρ
h1(ρ)U (r) ·

{[
0 0
1 0

]
· U−1(ρ) +

[
1 0

p(ρ, r) 1

]
·
[−h3, h1

−h1, −h3

]
(ρ)

}
,

and hence |Pρ(ρ, r)| � h1(ρ)/ρ. We get

|I3| �
∫ ∞

r

∣∣∣h1

ρ

∣∣∣ (|(δξ · ea)h3| + |(ξb · δe)h3|
)
dρ �

∥∥∥h1

ρ

∥∥∥
L2

(‖δz‖X+‖zb‖X‖δe‖L∞).

Summing up, we have shown

‖δe‖L∞ � ‖δz‖X + (‖za‖X + ‖zb‖X) ‖δe‖L∞ .

Since ‖za‖X + ‖zb‖X � 1, we can absorb the last term to the left-hand side. The
lemma is proved. �

LEMMA A.2
For given s > 0, α ∈ R, and q ∈ L2

rad with ‖q‖L2 ≤ δ, there is a unique function z =
Z(q, s, α) ∈ X such that 〈h1, z〉X = 0, ‖z‖X � δ, and the functions v = V(Z, s, α)
e = Ê(Z, s, α) satisfy (5.3). Moreover, Z(q, s, α) is independent of α and continuous
in q and s.

Proof
Simple comparison shows

Z(q, s, α) = Z
(
q(·s), 1, 0

)
. (A.13)

Thus it suffices to prove the cases of s = 1 and α = 0. We construct Z(q, 1, 0) by a
contraction mapping argument. Define the map

�q(z)(r) = L−1
0 �[qÊ(z) − G0(z)](r), (A.14)

where � = (Vr )−1P h(r) is a projection of vector fields on R+ to L2(r dr) with the
mapping (Vr )−1 : Th(r)S

2 → C and the projection P h(r) : R3 → Th(r)S
2 defined in



570 GUSTAFSON, KANG, and TSAI

Section 2.2; L−1
0 is the inverse map of L0 and maps L2(r dr) to the X-subspace h⊥

1 ;
Ê(z) is defined after (A.6), and G0(z) is defined by (A.4).

We show that �q is a contraction mapping in the class

Aδ = {z ∈ X : ‖z‖X ≤ 2C1δ
}
, C1 = ‖L−1

0 (Vr )−1P h(r)‖B(L2,X),

for sufficiently small δ > 0. First,

‖�q(z)‖X ≤ C1‖q‖2 + C‖G0‖2 ≤ C1δ + C‖z‖2
X.

Thus �q maps A into itself if δ is sufficiently small. We now prove difference estimates
for �q . Suppose that za, zb ∈ A are given, and let vl = V(zl) and el = Ê(zl), l = a, b.
Also, define ξl by (A.1), and note that δξ = δv. By Lemma A.1,

‖δv‖X + ‖δξ‖X + ‖δe‖L∞ � ‖δz‖X.

We now estimate δG0(z) = G0(za) − G0(zb) in Lp, p = 2, 4 (we need p = 4 later):

‖δG0(z)‖Lp
� ‖δγr‖Lp

+
∥∥∥δγ

r

∥∥∥
Lp

+ ‖δ(ξ3ξ)‖Lp
� (‖za‖X + ‖zb‖X)‖δz‖Xp

.

(A.15)

Thus

‖�q(za) − �q(zb)‖X � ‖qδe − δG0(z)‖L2 � ‖q‖L2‖δe‖L∞

+ (‖za‖X + ‖zb‖X)‖δz‖X � ‖δz‖X. (A.16)

Thus �q is indeed a contraction mapping, and the function Z(q, s, α) exists.
We now consider the continuity. The continuity in s follows from (A.13), although

it may not be Hölder continuous. For the continuity in q, let qa and qb be given, and
let zl = Z(ql, s, α), l = a, b. An estimate similar to (A.16) shows

‖δz‖X = ‖�qa (za) − �qb (zb)‖X � ‖δq‖L2 + ε‖δz‖X, (A.17)

where ε = ‖qa‖L2 +‖qb‖L2 +‖za‖X+‖zb‖X � 1, and hence ε‖δz‖X can be absorbed
to the left-hand side. This shows continuity in q in the L2-norm. �

A.2. Evolution system of q, s, and α

By (A.1), the dynamics of u are completely determined by the dynamics of z, s, and
α. Because of Lemma A.2, they are also completely determined by the dynamics of
q, s, and α. The latter system is preferred by us since the q-equation is easier than the
z-equation to estimate, and q lies in a more familiar space L2 rather than z in X.
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The equations for z and q are given by (2.12) and (2.22), respectively. However,
since we choose the orthogonality condition (A.5) (i.e., 〈h1, z(t)〉 = 0, ∀ t), the
equations for s and α are different from (2.18).

We now specify the equations that we use. Let q̃ := ei(m+1)θ+iαq. Recall that
νe = ν1e + ν2J

ve = J vRv = k̂ − v3v, and recall that νr = −v3(q + (m/r)ν). By
(2.22) and an integration by parts on the potential defined in (2.23), we obtain

iq̃t + �q̃ = V q̃, V = V1 − V2 +
∫ ∞

r

2

r ′ V2(r ′) dr ′, (A.18)

where

V1 := m(1 + v3)(mv3 − m − 2)

r2
+ mv3,r

r
, V2 := 1

2
|q|2 + Re

m

r
ν̄q.

For s and α, condition (A.5) implies that 〈h1, ∂tz(t)〉X = 0. Substituting in (2.12),
we get

〈h1, (s2α̇ − imsṡ)(1 + γ )h1 + s2α̇izh3 − sṡrzr〉X = 〈h1, −iNz + P F1〉X .

(A.19)
Note that

〈h1, Nz〉X = (L0N0h1, L0z)L2, 〈h1, r∂rz〉X = (rN0h1, zr)L2 .

Let G1 := 〈h1, P F1〉X = (N0h1, P F1)L2 , where N0 := −�r +m2/r2. By Lemma B.1
with g = N0h1,

G1 =
∫ ∞

0

(
igr (−γ zr + zγr ) + m

r
h1g(−2γr − iz2z1,r + iz1z2,r )

+ m

r
(h1g)r (γ

2 − iz2z) + i
m2

r2
(2h2

1 − 1)gγ z
)
r dr.

Separating real and imaginary parts, we can rewrite (A.19) as a system for α̇ and ṡ:

(‖h1‖2
XI + A)

[
s2α̇

−msṡ

]
= �G2 :=

[
(L0N0h1, L0z2)2

−(L0N0h1, L0z1)2

]
+
[

Re G1

Im G1

]
, (A.20)

where

I =
[

1, 0
0, 1

]
, A =

⎡⎢⎣〈h1, γ h1 − z2h3〉X ,
1

m
(rN0h1, z1,r )L2

〈h1, z1h3〉X , 〈h1, γ h1〉X + 1

m
(rN0h1, z2,r )L2

⎤⎥⎦.

We have ‖A‖L∞ � ‖z‖X.
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We study the integral equation version of (A.18) and (A.20) for q̃, s, and α:

q̃(t) = e−it�q̃0 − i

∫ t

0
e−i(t−τ )�(V q̃)(τ ) dτ, (A.21)

[
s(t)
α(t)

]
=
[
s0

α0

]
+
∫ t

0

{[
0 −(ms)−1

s−2 0

]
(‖h1‖2

XI + A)−1 �G2

}
(τ ) dτ. (A.22)

A.3. Contraction mapping and conclusion
Proof of Theorem 1.4
Let q0 ∈ L2

rad(R2), let s0 > 0, and let α0 ∈ R be given with ‖q0‖L2 ≤ δ. For δ, σ > 0
sufficiently small, we find a solution of (A.21) and (A.22) for t ∈ I = [0, σ s2

0 ].
We first construct the solution assuming s0 = 1. The solution for general s0 is

obtained from rescaling,

u(t, x) = ũ
( t

s2
0

,
x

s0

)
,

where ũ is the solution corresponding to initial data ũ0(x) = u0(x/s0) and s(ũ0) = 1.
Assuming that s0 = 1, we define a (contraction) mapping in the following class:

Aδ,σ = {(q̃, s, α) : I = [0, σ ] → L2(R2) × R
+ × R : ‖q̃‖Str[I ] ≤ δ;

∀t, q(t) = e−i(m+1)θ−iα(t)q̃(t) ∈ L2
rad, s(t) ∈ [0.5, 1.5]

}
(A.23)

for sufficiently small δ, σ > 0. Here,

‖q‖Str[I ] ≡ ‖q‖L∞
t L2

x [I ]∩L4
t L

4
x [I ]∩L

8/3
t L8

x [I ].

The map is defined as follows. Let q̃0 = ei(m+1)θ+iα0q0. Suppose that Q =
(q̃, s, α)(t) ∈ Aδ,σ has been chosen. For each t ∈ I , let q = e−i(m+1)θ−iαq̃, let
z = Z(q, s, α) be defined by Lemma A.2, and let v = V(z, s, α) and e = Ê(z, s, α)
be defined by (A.1) and (A.6), respectively. We then substitute these functions into
the right-hand sides of (A.21) and (A.22). The output functions are denoted as q̃�(t),
s�(t), and α�(t). The map Q → �(Q) = (q̃�, s�, α�) is the (contraction) mapping.

The following estimates are shown in [11, Lem. 3.1]:

‖q̃�‖Str[I ] � ‖q0‖L2
x
+ (σ 1/2 + ‖q‖2

L4
t,x [I ])‖q‖L4

t,x [I ]. (A.24)

We also have | �G2| � ‖z‖X + ‖z‖4
X, and thus

|s�(t) − 1| + |α�(t) − α0| �
∫ t

0
| �G2(τ )| dτ � σ‖q‖L∞

t L2
x
+ σ‖q‖4

L∞
t L2

x
.

Therefore Aδ,σ is invariant under the map � if δ and σ are sufficiently small.
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We now consider the more delicate difference estimate. Suppose that we have Ql =
(q̃l, sl, αl)(t) for l = a, b. Let zl , vl , el , q̃

�

l , s
�

l , and α
�

l be defined respectively. Denote

δq̃ = q̃a(t, r) − q̃b(t, r), δz = za

(
t,

r

sa

)
− zb

(
t,

r

sb

)
, and so on. (A.25)

Note that we define δz in terms of r , not in terms of ρ (i.e., δz �= za(ρ) − zb(ρ); see
Rem. A.3 after the proof). In the rest of the proof, we denote

‖q‖2 = max
a,b

(‖qa‖2, ‖qb‖2), ‖z‖X = max
a,b

(‖za‖X, ‖zb‖X), and so on.

To start with, note that

‖z‖L∞
t X � δ, |δh1| � |δs|h1

r
, |δh3| � |δs|h

2
1

r
, |δγ | � |z||δz|.

(A.26)
We first estimate δe = ea − eb = Ê(za, sa, αa) − Ê(zb, sb, αb). By (A.7),

|δe| � |δα| +
∥∥∥∥Ê
(

za

( ·
sa

))
− Ê

(
zb

( ·
sb

))∥∥∥∥
L∞

.

By Lemma A.1, ‖Ê(za(·/sa)) − Ê(zb(·/sb))‖L∞ � ‖za(·/sa) − zb(·/sb)‖X = ‖δz‖X.
Thus

|δe| � |δα| + ‖δz‖X. (A.27)

We next estimate ‖δz‖X. By (A.3),

δ(L0z) ĵjj = δ[se−αRqe(r)] − δG0.

Here, δ(L0z) = L0(r/sa)za(r/sa) − L0(r/sb)zb(r/sb) and δG0 = G0(za(r/sa)) −
G0(zb(r/sb)). Rewrite

δ(L0z) = D1 + L0

( r

sa

)
δ1z,

where

D1 = (δL0)zb

( r

sb

)
, δ1z = za

( r

sa

)− �sa
zb

( r

sb

)
,

and �s is the projection removing h1(z/s): �sf = f − (〈h1(·/s), f 〉X/

〈h1, h1〉X)h1(·/s). Here, we have used L0(r/sa) = L0(r/sa)�sa
. Since L0(r/s) =
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s[∂r − (m/r)h3(r/s)], we have δL0 ∼ δs[L0(r/s) − s(m2/r2)h2
1(r/s) · (r/s2)], and

hence

‖D1‖L2 � |δs| · ‖z‖X.

Thus, taking L0(r/sa)−1,

‖δ1z‖X �
∥∥δ[se−αRqe(r)]

∥∥
2
+ ‖δG0‖2 + ‖D1‖L2 .

We can decompose

δz = δ1z + δ2z, δ2z = (1 − �sa
)zb

( r

sb

)
,

and we have

‖δ2z‖X �
〈
h1

( z

sa

)
− h1

( z

sb

)
, zb

( r

sb

)〉
X

≤ |δs|‖z‖X.

Note that

|δG0| � |δh||γρ | + δs

r
(|γ | + |ξ|2) + |δγρ | + 1

r
(|δγ | + |ξ||δξ|)

� |δs|
(
|z||zr | + |z|2

r

)
+ |δz|

(
|zr | + |z|

r

)
+ |z||δzr |.

Thus

‖δG0‖2 � |δs|‖z‖2
X + ‖z‖X‖δz‖X.

Finally,∥∥δ[se−αRqe(r)]
∥∥

2
� (|δs| + |δα| + ‖δe‖L∞) · ‖q‖2 + ‖δq‖2.

Adding these estimates, and using (A.27) and ‖z‖X � ‖q‖2, we get

‖δz‖X � (|δs| + |δα| + ‖δz‖X) · ‖q‖2 + ‖δq‖2.

Absorbing ‖δz‖X‖q‖2 to the left-hand side, we get

‖δz‖X � (|δs| + |δα|) · ‖q‖2 + ‖δq‖2. (A.28)

We now estimate ‖δq̃�‖Str[I ]. Apply the Strichartz estimate to the difference of
(A.21),

‖δq̃�‖Str[I ] � ‖δ(V q̃)‖L
4/3
t,x

� ‖V (δq̃)‖L
4/3
t,x

+ ‖(δV )q̃‖L
4/3
t,x

� ‖V ‖L2
t,x

‖δq̃‖L4
t,x

+ ‖δV ‖
L2

t,x+L
8/3
t L

8/5
x

‖q̃‖L4
t,x∩L

8/3
t L8

x
.
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Recall that V = V1 − V2 + ∫ r (1/r ′)V2. By the 4-dimensional Hardy inequality, for
each fixed t ,

‖V ‖L2
x
� ‖V1‖L2

x
+ ‖V2‖L2

x
�
∥∥∥1 + v3

r2

∥∥∥
2
+
∥∥∥v3,r

r

∥∥∥
2
+ ‖q‖2

4 + ‖q‖4 ·
∥∥∥ν

r

∥∥∥
4
,

and since v3(r) = (h3 + h3γ + h1z2)(r/s) and |ν| = |̂k − v3v|,∥∥∥1 + v3

r2

∥∥∥
2
+
∥∥∥v3,r

r

∥∥∥
2
� 1 + ‖z‖X +

∥∥∥z

r

∥∥∥
4
· ‖z‖X4,

∥∥∥ν

r

∥∥∥2

4
=
∥∥∥1 − v2

3

r2

∥∥∥
2
�
∥∥∥1 + v3

r2

∥∥∥
2
.

Thus ‖V ‖L2
x
� 1 + ‖q‖2

L4
x
, and hence ‖V ‖L2

t,x [I ] � σ 1/2 + ‖q‖2
L4

t,x
.

Denote Y = L2
t,x + L

8/3
t L8/5

x . By the Hardy inequality again,

‖δV ‖Y � ‖δV1‖Y + ‖δV2‖Y

�
∥∥∥δv3

r2

∥∥∥
Y

+
∥∥∥∂rδv3

r

∥∥∥
Y

+
(
‖q‖L4

t,x
+
∥∥∥ν

r

∥∥∥
L4

t,x

)
‖δq‖L4

t,x

+ ‖q‖L
8/3
t L8

x
·
∥∥∥δν

r

∥∥∥
L∞

t L2
x

.

Note that ν = e · (̂k − v3v). Thus δν = δe · (̂k − v3v) − e · ((δv3)v + v3δv), and∥∥∥δν

r

∥∥∥
L2

x

� ‖δe‖∞
∥∥∥1

r
(̂k − v3v)

∥∥∥
2
+
∥∥∥1

r
δv
∥∥∥

2
.

Since ‖(1/r)(̂k − v3v)‖2 � 1 + ‖z‖2
X � 1 and ‖(1/r)δv‖2 � |δα|‖(h + ξ)/r‖2 +

‖δh/r‖2 + ‖δz/r‖2, we conclude using (A.27) and (A.28),∥∥∥δν

r

∥∥∥
L2

x

� |δs| + |δα| + ‖δq‖2.

For δv3/r
2 and ∂rδv3/r , since v3(r) = (h3 + h3γ + h1z2)(r/s),

1

r2
|δv3| � 1

r2
(|δh3| + |δh1||z| + |δγ | + h1|δz|) � h1 + |z|

r

(
|δs| h1

r
+ |δz|

r

)
,

1

r
|∂rδv3| � |δs|

(h1(h1 + |z|)
r2

+ h1 + h2
1|z|

r
|zr |
)

+ h1 + h2
1|z|

r

|δz|
r

+ h1 + |z|
r

|∂rδz|.
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We do not want to bound (z/r)(δz/r) and (z/r)∂rδz in L2
x since, otherwise, we would

need a bound for ‖δz‖Xp
, p > 2, which requires extra effort. We have∥∥∥δv3

r2

∥∥∥
Y

+
∥∥∥∂rδv3

r

∥∥∥
Y

� ‖δs‖L∞
t

∥∥∥(h1(h1 + |z|)
r2

+ h1 + h2
1|z|

r
|zr |
)∥∥∥

L2
t,x

+
∥∥∥h1 + h2

1|z|
r

|δz|
r

∥∥∥
L2

t,x

+
∥∥∥h1 + |z|

r

( |δz|
r

+ |∂rδz|
)∥∥∥

L
8/3
t L

8/5
x

� ‖δs‖L∞
t

+
(

1 +
∥∥∥z

r

∥∥∥
L

8/3
t L8

x

)
‖δz‖L∞

t X.

Using ‖z/r‖L
8/3
t L8

x
� ‖q‖L

8/3
t L8

x
� δ and (A.28), we conclude that

‖δq̃�‖Str[I ] � (σ 1/2 + ‖q̃‖2
L4

t,x
)‖δq̃‖L4

t,x
+ ‖q̃‖Str[I ](‖δs‖L∞

t
+ ‖δα‖L∞

t
+ ‖δq̃‖L∞

t L2
x
).

(A.29)
We now estimate δs� and δα�. Estimating the difference of (A.22),

‖δs�‖L∞(I ) + ‖δα�‖L∞(I ) �
∫

I

(|δs| + |δA|)| �G2| + |δ �G2| dτ.

Note that | �G2| � ‖z‖X + ‖z‖4
X, note that

|δA| � ‖δh‖X‖z‖X + ‖h1‖X‖δz‖X � |δs|‖z‖X + ‖δz‖X,

and note that

|δ �G2| � ‖δh‖X‖z‖X + ‖h1‖X‖δz‖X + |δG1|
� |δs|‖z‖X + ‖δz‖X + (1 + ‖z‖∞) (‖z‖∞‖∂rδz‖2 + ‖∂rz‖2‖δz‖∞)

+ (‖z‖∞ + ‖z‖3
∞)
∥∥∥δz

r

∥∥∥
2
.

Thus

‖δs�‖L∞(I ) + ‖δα�‖L∞(I ) �
∫

I

|δs|‖z‖X + (1 + ‖z‖3
X)‖δz‖X dτ

� σ‖z‖X‖δs‖L∞(I ) + σ‖δz‖L∞
t X. (A.30)

Combining (A.28) – (A.30), we have proved that

‖δq̃�‖Str[I ] + ‖δs�‖L∞(I ) + ‖δα�‖L∞(I )

� (σ 1/2 + δ)(‖δq̃‖Str[I ] + ‖δs‖L∞(I ) + ‖δα‖L∞(I )). (A.31)
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Thus � is a contraction mapping on Aδ,σ if σ and δ are sufficiently small. We have
therefore established the unique existence of a triplet [sW (t), αW (t), qW (t)] solving
the (s, α, q)-system. This yields a map uW (t) ∈ C([0, T ]; �m).

If u0 ∈ Ḣ 2, the a priori estimates in [11, Lem. 3.1] show that ‖∇q̃‖Str[I ] is
uniformly bounded, so uW (t) ∈ C(I ; �m ∩ Ḣ 2).

If un
0 → u0 in �m ∩ Ḣ k , k = 1, 2, a difference estimate similar to (A.31) shows

Dn � ‖q̃n
0 − q̃0‖2 + (σ 1/2 + δ)Dn,

where Dn = ‖q̃n − q̃‖Str[I ] + ‖sn − s‖L∞(I ) + ‖αn − α‖L∞(I ). Thus Dn → 0 as
n → ∞, and hence un

W → uW .
The energy E(uW (t)) is conserved since E(uW (t)) = 4πm+π‖q(t)‖2

L2
x
= 4πm+

π‖q0‖2
L2

x
.

Finally, we must verify that uW is a solution of the Schrödinger flow, as in Defini-
tion 1.2. To do this, approximate the initial data u0 in �m by uk

0 with ∇uk
0 ∈ H 10 (say).

By [22], there is a unique strong solution uk
S(t) with initial data uk

0. The corresponding
triple [sk

S(t), αk
S(t), qk

S(t)] must satisfy the (s, α, q)-system. By uniqueness, sk
S(t) ≡

sk
W (t), and so on, and so uk

W (t) ≡ uk
S(t). By continuous dependence on Ḣ 1-data,

uk
S converges to uW in C([0, T ]; �m) and, in particular, in C([0, T ]; L2

loc). Finally,
uk

S satisfies the weak form of the Schrödinger flow (see Def. 1.2), and passing
to the limit, so does uW . Dropping the subscript W (u := uW ), Theorem 1.4 is
established. �

We now consider Corollary 1.5.

Proof of Corollary 1.5
Suppose that T is the blowup time. By Theorem 1.4, for each t < T we have
T − t ≥ σs(u(t))2. Thus s(u(t)) ≤ σ−1/2

√
T − t . If k = 2, by [11, Th. 2.1],

‖u(t)‖Ḣ 2 ≥ C2/s(u(t)) ≥ C2σ
1/2(T − t)−1/2. On the other hand, the Ḣ 2-estimates

of [11] show that the Ḣ 2-norm can blow up only if lim inft→T − s(t) = 0. Thus
T 2

max = T 1
max. Statement (ii) follows from Theorem 1.4 directly. Corollary 1.5 is

established.

Remark A.3
(1) In Theorem 1.4, we did not try to prove continuity on data u0 in Ḣ 2, which

would require difference estimates in H 1 for q̃.
(2) In (A.25), we define δz in terms of r , not in terms of ρ (i.e., δz �= δ̃z =

za(ρ) − zb(ρ)). Indeed, in view of (A.3), since L0 depends on ρ, it may seem
natural to bound δ̃z using L0δ̃ẑjjj = δ[se−αRqe(sρ)]+ δ̃G0. However, to bound
the right-hand side, we need to bound the difference qaea(sbρ) − qaea(saρ) =∫ sb

sa
ρ∂r (qaea)(σρ) dσ for which ‖u‖Ḣ 2 is insufficient, and we need a weighted
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norm of u. The reason is that the dilation magnifies the difference when ρ is
large. In addition, to bound δv3 using δ̃z instead of δz, one needs a bound for
zrr .

(3) In the proof, we have avoided using ‖δz‖X4 since its estimate requires
‖δe‖∞. We know how to control ‖δe‖∞ by ‖δz‖X, but we do not know if
‖δe‖∞ � ‖δz‖X4 .

A.4. Small-energy case
The proof of Theorem 1.6 is similar to that of Theorem 1.4.

Proof of Theorem 1.6
When m ≥ 1, the limits limr→0 v0(r) and limr→∞ v0(r) exist, and it is necessary that
u0(0) = u0(∞). We may assume that u0(0) = u0(∞) = −k̂. In the proof of Theorem
1.4, we may redefine

h(r) := −k̂, v(r) = (z2, z1, −1 − γ )T ,

and the parameters s and α are no longer needed. The same proof—in particular,
the difference estimate ‖δq̃�‖Str[I ] � (σ 1/2 + δ)‖δq̃‖Str[I ]—then gives the local well-
posedness. �

Note that this proof does not directly apply to the radial case since ‖u(r)‖Ḣ 1 no longer
controls ‖z/r‖2.

B. Some lemmas

B.1. Computation of nonlinear terms
To find the equations for ṡ and α̇, we need to compute (g, (Vh)−1P hF1)L2 for g = h1

or g = N0h1. Here is the result.

LEMMA B.1
Recall that F1 = −2γr (m/r)h1̂jjj + ξ × (�r + (m2/r2)R2ξ ), and recall that
(Vh)−1P hF1 = ĵjj · F1 + i(h × ĵjj ) · F1. For any suitable function g,

(
g, (Vh)−1P hF1

)
L2 =

∫ ∞

0

(
igr (−γ zr + zγr ) + m

r
h1g(−2γr − iz2z1,r + iz1z2,r )

+ m

r
(h1g)r (γ

2 − iz2z) + i
m2

r2
(2h2

1 − 1)gγ z
)
r dr.

(B.1)
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Proof
Decompose∫ ∞

0
g(Vh)−1P hF1r dr =

∫
−2g

m

r
h1γr +

∫
gP (ξ × �rξ )

+
∫

gP
(
ξ × m2

r2
R2ξ

)
=: I1 + I2 + I3.

Denote [a, b, c] = aĵjj + bh × ĵjj + ch. For any vector η,

P (ξ×η) = [1, i, 0]·([z1, z2, γ ]×η) = ([1, i, 0]×[z1, z2, γ ])·η = [iγ, −γ, −iz]·η.

Since hr = (m/r)h1h × ĵjj ,

∂r [a, b, c] =
[
ar, br + m

r
h1c, cr − m

r
h1b
]
.

Thus

I2 =
∫

g[iγ, −γ, −iz] · �r [z1, z2, γ ]

=
∫

∂r [−igγ, gγ, igz] · ∂r [z1, z2, γ ]

=
∫ [

− i(gγ )r , (gγ )r + m

r
h1igz, i(gz)r − m

r
h1gγ

]
×
[
z1,r , z2,r + m

r
h1γ, γr − m

r
h1z2

]
=
∫

g(−iγrz1,r + γrz2,r + izrγr ) +
∫

gr (−iγ z1,r + γ z2,r + izγr )

+
∫

gr

(m

r
h1γ

2 − i
m

r
h1z2z

)
+
∫

g
(

− i
m

r
h1z2zr + i

m

r
h1zz2,r

)
+
∫

g
m2

r2
h2

1iz1γ.

Note that the first integral is zero, and we have canceled two
∫

g(m/r)h1γ γr . Also,

I3 =
∫

g[iγ, −γ, −iz] · m2

r2
R2ξ

=
∫

g(γ h3 − ih1z, iγ, ∗) · m2

r2
(z2h3 − γ h1, z1, 0)

=
∫

m2

r2
g(h2

3γ z2 − h1h3γ
2 + ih1h3z2z + ih2

1γ z − iγ z1).

Summing up I1 + I2 + I3, we get the lemma. �
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B.2. Linear weighted L2-estimate
LEMMA B.2
Let H be a self-adjoint operator on L2(Rn) satisfying the weighted resolvent estimate

sup
µ �∈R; φ∈L2,‖φ‖

L2 =1

∥∥∥ 1

|x| (H − µ)−1 1

|x|φ
∥∥∥

L2
� 1.

Then for f (x, t) ∈ (1/|x|)L2,∥∥∥ 1

|x|
∫ t

0
ei(t−s)Hf (x, s) ds

∥∥∥
L2

x,t (Rn×R)
� ‖|x|f ‖L2

x,t (Rn×R).

Proof
First, we have some simplifications. It suffices to prove the estimate for f (x, t)
compactly supported, and f (x, t) ∈ (1/|x|)L2

x,t ∩ L∞
t L2

x (by density). Also, it is
enough to consider t ≥ 0 (i.e., f (x, t) supported in {t ≥ 0}). Finally, we regularize
the integral: set

Fε(x, t) := 1

|x|
∫ t

0
ei(t−s)(H+iε)f (x, s) ds.

We prove the estimate for Fε with an ε-independent constant, and the lemma follows
from this. Under our assumptions, Fε is well defined as a (1/|x|)L2

x-valued function
of t , and ∫ ∞

0
‖|x|Fε(·, t)‖L2

x
dt < ∞.

Hence the Fourier transform of Fε in t is well defined (as a (1/|x|)L2
x -valued function

of τ ):

F̃ε(x, τ ) := (2π)−1/2

∫ ∞

0
e−itτFε(x, t) dt.

Changing the order of integration, we see

F̃ε(x, τ ) = 1

|x| (2π)−1/2

∫ ∞

0
dte−itτ

∫ t

0
dsei(t−s)(H+iε)f (x, s)

= 1

|x| (2π)−1/2

∫ ∞

0
dse−is(H+iε)

∫ ∞

s

dteit(H−τ+iε)f (x, s)

= 1

|x| (2π)−1/2(i)(H − τ + iε)−1

∫ ∞

0
dse−isτ f (x, s) ds

= 1

|x| (i)(H − τ + iε)−1f̃ (x, τ ).
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So using the weighted resolvent estimate gives

‖F̃ε‖L2
x
� ‖|x|f̃ (x, τ )‖L2

x
,

and squaring and integrating in τ yields

‖F̃ε‖2
L2

x,τ
� ‖|x|f̃ ‖2

L2
x,τ

� ‖|x|f ‖2
L2

x,t
.

By a vector-valued version of the Plancherel theorem (see, e.g., [19, Chap. XIII.7]),

‖Fε‖2
L2

x,t
= ‖F̃ε‖2

L2
x,t

� ‖|x|f ‖2
L2

x,t
,

completing the proof. �

B.3. Proof of the splitting lemma
Here, we prove Lemma 4.1.

Proof of Lemma 4.1
For u = emθRv(r) ∈ �m, s > 0, and α ∈ R, define

F (u; s, α) :=
∫ ∞

0
( ĵjj + iJ h(ρ) ĵjj ) · e−αRv(sρ)h1(ρ)ρ dρ ∈ C.

Note that for u of the form (4.1), (4.2) is equivalent to F (u; s, α) = 0.
Suppose that E(u) ≤ 4πm + δ2. It is shown in [11] that if δ is sufficiently

small, then there are ŝ, α̂, and ẑ such that u(r, θ) = e[mθ+α̂]R[(1 + γ̂ (r/ŝ))h(r/ŝ) +
Vr/ŝ(ẑ(r/ŝ))] and with ‖ẑ‖2

X � δ2
1 := E(u(0)) − 4πm ≤ δ2. (But ẑ does not sat-

isfy (4.2).)
It follows from this and the fact that ρh1(ρ) ∈ L2(ρ dρ) for m ≥ 3 that for some

δ0 > 0, F is a C1-map from{
u ∈ �m

∣∣E(u) ≤ 4πm + δ2
0

}× (R+ × R)

into C. Furthermore, straightforward computations show that

F
(
emθRh(r); 1, 0

) = 0

and (
∂sF
(
emθRh(r); 1, 0

)
∂αF

(
emθRh(r); 1, 0

)) = ‖h1‖2
L2

(
i

−1

)
.

By the implicit function theorem, we can solve F = 0 to get s = s(u) and α = α(u)
for u in an Ḣ 1-neighborhood of the harmonic map emθRh(r).

Since ‖ẑ‖X � δ, provided δ is chosen small enough (depending on the size of this
neighborhood),

û(x) := e−α̂Ru(ŝx) = emθR
[(

1 + γ̂ (r)
)
h(r) + Vr ẑ(r)

]
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lies in this neighborhood, yielding s(û) and α(û) with F (û; s(û), α(û)) = 0. Further-
more,

|s(û) − 1| + |α(û)| � ‖ẑ‖X,

and so

‖z(ρ)‖X = ∥∥( ĵjj + iJ h(ρ) ĵjj ) · e−α(û)Rv̂
(
s(û)ρ

)∥∥
X

� ‖ẑ‖X � E(u) − 4πm.

To complete the proof of the lemma, undo the rescaling: set s(u) := s(û)/ŝ, and
set α(u) := α(û) + α̂. �

References

[1] I. BEJENARU, On Schrödinger maps, Amer. J. Math. 130 (2008), 1033 – 1065.
MR 2427007 542

[2] N. BURQ, F. PLANCHON, J. G. STALKER, and A. S. TAHVILDAR-ZADEH, Strichartz
estimates for the wave and Schrödinger equations with the inverse-square
potential, J. Funct. Anal. 203 (2003), 519 – 549. MR 2003358 545, 559, 561,
562

[3] ———, Strichartz estimates for the wave and Schrödinger equations with potentials of
critical decay, Indiana Univ. Math. J. 53 (2004), 1665 – 1680. MR 2106340
545, 559, 560, 561

[4] K.-C. CHANG, W. Y. DING, and R. YE, Finite-time blow-up of the heat flow of harmonic
maps from surfaces, J. Differential Geom. 36 (1992), 507 – 515. MR 1180392
539

[5] N.-H. CHANG, J. SHATAH, and K. UHLENBECK, Schrödinger maps, Comm. Pure Appl.
Math. 53 (2000), 590 – 602. MR 1737504 543, 544, 545, 552, 556

[6] M. CHRIST and A. KISELEV, Maximal functions associated to filtrations, J. Funct.
Anal. 179 (2001), 409 – 425. MR 1809116 562

[7] W. DING, “On the Schrödinger flows” in Proceedings of the International Congress of
Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002,
283 – 291. MR 1957040 539

[8] W. DING and Y. WANG, Schrödinger flow of maps into symplectic manifolds, Sci. China
Ser. A 41 (1998), 746 – 755. MR 1633799 539

[9] ———, Local Schrödinger flow into Kähler manifolds, Sci. China Ser. A 44 (2001),
1446 – 1464. MR 1877231 542

[10] M. GRILLAKIS and V. STEFANOPOULOS, Lagrangian formulation, energy estimates,
and the Schrödinger map problem, Comm. Partial Differential Equations 27
(2002), 1845 – 1877. MR 1941660 539

[11] S. GUSTAFSON, K. KANG, and T.-P. TSAI, Schrödinger flow near harmonic maps,
Comm. Pure Appl. Math. 60 (2007), 463 – 499. MR 2290708 539, 540, 541,
542, 545, 547, 549, 553, 554, 555, 566, 572, 577, 581

[12] A. D. IONESCU and C. E. KENIG, Low-regularity Schrödinger maps, Differential
Integral Equations 19 (2006), 1271 – 1300. MR 2278007 542

http://www.ams.org/mathscinet-getitem?mr=2427007
http://www.ams.org/mathscinet-getitem?mr=2003358
http://www.ams.org/mathscinet-getitem?mr=2106340
http://www.ams.org/mathscinet-getitem?mr=1180392
http://www.ams.org/mathscinet-getitem?mr=1737504
http://www.ams.org/mathscinet-getitem?mr=1809116
http://www.ams.org/mathscinet-getitem?mr=1957040
http://www.ams.org/mathscinet-getitem?mr=1633799
http://www.ams.org/mathscinet-getitem?mr=1877231
http://www.ams.org/mathscinet-getitem?mr=1941660
http://www.ams.org/mathscinet-getitem?mr=2290708
http://www.ams.org/mathscinet-getitem?mr=2278007


ASYMPTOTIC STABILITY IN THE SCHRÖDINGER FLOW 583
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