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ASYMPTOTIC STABILITY OF PLANAR RAREFACTION WAVES

FOR VISCOUS CONSERVATION LAWS IN SEVERAL DIMENSIONS

ZHOUPING XIN

Abstract. This paper concerns the large time behavior toward planar rarefac-

tion waves of the solutions for scalar viscous conservation laws in several di-

mensions. It is shown that a planar rarefaction wave is nonlinearly stable in

the sense that it is an asymptotic attractor for the viscous conservation law.

This is proved by using a stability result of rarefaction wave for scalar viscous

conservation laws in one dimension and an elementary L -energy method.

0. Introduction

We will establish the asymptotic stability of planar rarefaction waves for

scalar viscous conservation laws in two or more space dimensions. We consider

zz-dimensional scalar viscous conservation laws of the form

( 1 ) «, + ¿W"))*, = ¿ *,7 V, '        x € R" '  < > °•
i=l 1,7=1

where u e R , A = (a¡A), called the viscosity matrix, is a constant positive

definite matrix, and we assume that all the flux functions are smooth (say in

C" ) and equation (1) is genuinely nonlinear in the xx-direction [8], i.e., for a

fixed constant a > 0,

(2) /,'(«)>«•

The initial data for equation ( 1 ) is

(3) u(x, 0) = Uf(x)

satisfying

(4) xlimJ\u(xx,-)-u±\\L!»(^) = 0,

where u±, u_ < u+, are two constants. A planar rarefaction wave (in .re-

direction) ur(xx, t) is a solution of the following initial value problem for the
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806 ZHOUPING XIN

corresponding inviscid equation

(5) «, + (/■»)*, =0,       xx eR1, t>0,

(6) w(x,,0) = zZo(x,),

where Wq(x,) satisfies

(7) lim   uJx.) = u,,    and   -¡—uJx.)>0,    a.e.
*,-»±oo    u     ' x dx,    u     '

Since any rarefaction waves of (5) with same end states are time asymptotically

equivalent (i.e., they converge to each other in L°°-norm as t tends to infinity

[6]), for definiteness, we will study a smooth rarefaction wave u(xx, t) of (5)

with initial data u0(xx) which satisfies

A2
(8) -j^Uf(xx)>0,    and

d
<k0-j^u0(xx),       Vx, eR1

for some positive constant zc0. Then our main result in this paper is the fol-

lowing stability theorem.

Theorem 1. Suppose that ur(xx, t) is a smooth planar rarefaction wave with

initial data uQ(xx) e C"(R ) satisfying (8). Then there exists a constant ô such

that if

(9) \\Uf(-)-Uf(-)\\HM/2+l{r)<ô,

then problem (1), (3) has a global smooth solution u(x, t) satisfying

(10) lim ||tt(-,í)-Mr(-,í)IL-«-) = 0.
I—.oo ^     iR   '

Remark 1. For the case that cz; = a¡fu), it can be shown by checking our fol-

lowing proof that Theorem 1 still holds under the assumption that the strength

of the wave, u+ - u_ , is small.

Remark 2. The choice of jc, -direction is no loss of generality, since we can

reduce a general situation to this case by a suitable change of coordinates.

Remark 3. In the following, we will only give a proof of Theorem 1 for the case

n = 2, since the proof for n > 2 is identical.

Remark 4. In Theorem 1, we have no restriction on the strength of the planar

rarefaction wave, this is in constrast to the complementary case of the stability

of viscous scalar shock fronts in several dimensions [3] which is proved for

weak waves only.

The proof of Theorem 1 is based on a stability result of rarefaction waves

for scalar viscous conservation laws in one dimension and an elementary L -

energy method. The one dimension stability of expansion waves for scalar

viscous conservation laws was first established by Il'in and Oleinik [4] based on

a maximum principle.  Another approach using the semigroup argument was
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PLANAR RAREFACTION WAVES FOR VISCOUS CONSERVATION LAWS 807

given in [1]. Our proof of multidimension stability in Theorem 1 has more in

common with the proof of stability of weak rarefaction waves for systems of

viscous hyperbolic conservation laws in one dimension which has recently been

studied by many authors (see [12, 13, 7, 9, 10]).

The rest of the paper is organized as follows. In §1, by making use of a

stability result for rarefaction wave in one space dimension, we can construct

a planar solution U(xx, t) for equation (1) which approximates the smooth

rarefaction wave u(xx, t) ; see Lemma 2. Then, we write the solution u(x, t)

of (1), (3) as a perturbation of U(xx, t) and reduce the proof of Theorem 1 to

the energy estimates on the difference between u(x, t) and U(xx, t). The basic

stability estimate and higher order estimates are given in §2 and §3. Finally,

we study the existence and large time behavior of the solution of (1), (3) by

applying the a priori estimate derived in §3.

1. Preliminaries

We begin by considering the following Cauchy problem:

(n) {Ut + (fix(U))Xí=axxUx¡x¡,       xxeRx, t>0,

\ U(xx, 0) = Uf(xx).

Noting that ax, > 0 and (7), by the nonlinear stability of rarefaction waves for

scalar conservation laws in one space dimension (see [4, 1]), we see that there

exists a unique global (in time) smooth solution C/(x,, t) to ( 11 ) which has

the centered rarefaction wave of (5) determined by data (u_, u+) as a time

asymptotic state in L°°-norm. Since all rarefaction waves of (5) with the same

end states are time asymptotically equivalent in L°°-norm, we have

lim \\U(-, t)-u(-, Olli-di') = 0.

Furthermore, if we denote Ux (x, , t) by w(xx , t), then w(xx , t) satisfies

(12) wl + fx(U)wXt+fx'(U)w2 = axxwx¡xr

Since w(xx, 0) = (u0(xx))x > 0 by (8), it follows from a maximum principle

that U(xx, t) is strictly increasing in x, for each fixed t > 0, i.e.,

w(xx, t) = -— U(xx ,t)>0,    Vx, e R , t > 0.
A

In other words, this says that the characteristic fields corresponding to the solu-

tion c/(x,, t) of (11) is expansive, i.e.,

JL[fx(U(xx,t))]>0,    Vx, eR1, f>0.

We list some properties of U(xx, t) in the following lemma which we will use

later.
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Lemma 2. The Cauchy problem (11) has a unique smooth solution  U(xx, t)

satisfying:

;i3)

:i4)

:i5)

°°(r') - °-(i)     lim||[/(-,0-"r(-,/)ll¿

(ii)   — U(xx ,/)>0,    Vx, eR1, />0.

(iii) There exists a positive constant K = K(kQ) such that

dx
■U(xx,t) <K^zru(xx,t),    Vx, eR1,  i>0.

dx

Proof. We have already proved (i) and (ii). For (iii), we differentiate (12) with

respect to x,  and set tp = wr , then we get
i xt

<t>, + Aw)^ + iA'iu)w<t> + A'iv)™ = au<t>XlX, ;

thus

4, - «i.^.x, + AiVWx, + *fx\V)wcp = -fx"(U)w*.

If we define a linear parabolic differential operator L by

L = ír"<>¿?fr'{V)A + i/,'{U}w-

w

(16)

then

(17)

On other hand, we get from (12) that for any constant C

(Cw)l+/x(U)(Cw)Xi+/x'(U)Cw2 = axx(Cw)

so that

L(tP) = -/."(£/)

(18) L(Cw) = 2C/.'(U) w

We now choose \C\ = K so large that

K > max < zc0 , — max \/x"(U) w\
2ax¡eR>

We note that we can take K < oo, since it can be proved that

\w(-, 0IIz.oo(ri) ̂ Mo>     for all/>0,

where

A/0 = ||u;(.,0)||£cc(R
(R')

a      r . .

dx-U^

which is a finite constant by our assumption.   To see this, let M(t)  be the

solution of the following problem

Í-M(t) + aM(t)2 = 0,        M(0) = Mf,
dt
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where a is the positive constant in (2). Then we have that 0 < M(t) < MQ.

Using (2), it is easy to check that M(t) is an upper solution for nonlinear

parabolic equation (12). Consequently we have

IM-, 0ll¿~(R') <M(t)<M0,     for all />0.

It follows from this and (17), (18) that

L(-Kw) = - 2Kf(U)w2 < -2Kaw2 < -(f"(U)w)w2

= L((p) < 2Kaw2 < 2K/x'(U)w2 = L(Kw).

Since we also have \tp(xx, 0)| < kQw(xx, 0) < Kw(xx, 0) by (8), thus by a

comparison theorem for a parabolic equation (cf. [11]), we have

\cp(xx,t)\<Kw(xx,t),    VxxeRX,t>0.

This completes the proof of (iii). We remark that (iii) also can be proved by

the argument given in [14].    D

By (i) in Lemma 1, we see that, in order to prove Theorem 1, it would

suffice to show that the smooth expansive planar wave U(xx, t) is an asymptotic

attractor for the equation (1). Thus we will consider the solutions of (1), (3)

in a neighborhood of U(xx, t). As we will see later, the advantage of using

U(xx, t) instead of u(xx, t) is that U(xx, t) is an exact solution of (1) and

this will enable us quite easily to estimate some terms which do not decay in

x2-direction.

Now, we suppose that u(xx, x2, t) is a solution of (1), (3). We decompose

the solution as

(19) u(xx,x2, t) = U(xx, t) + V(xx,x2, t).

It follows from (11) and (9) that the Cauchy problem (1), (3) is equivalent to

the following initial value problem:

(20) Vt + iAiU)V)X] + [Q(U, V)]Xi + (f2(U + V))Xi = ¿2 a¡jVx¡x¡,
i, J= i

(21) V(xx, x2,0) = Vf(xx, xf) = Uf(xx, xf) - Uf(xx) e H2(PA2),

where Q(U, V) = fix(U + V) - fi}(U) - fx(U)V satisfying \Q(U, V)\ < CV2
for some constant C > 0 if \V\ is small enough. Then, we need only to show

that the Cauchy problem (20), (21) has a smooth global solution, which tends

to zero as / approaches infinity uniformly with respect to x, and x2. This is

an initial value problem for a parabolic equation with initial data in H2(R2),

so the local (in time) existence of solution is standard, and in order to get the

global existence and large time behavior, we will need an a priori estimate on

the solution of (20), (21). For this, we first define the solution space for (20) by

(22) X(0, T) = {<P(xx ,x2,t)e C°(0, T; H2) ; ^ , «^ e L2(0, T; H2)}
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with T > 0. We suppose that the solution V(xx, x2,t) of (20), (21) belongs

to X(0, T) for some T > 0 and set

(23) N(t)=  sup  ||F(.,t)|Ur2).
r€[0,í] (     '

In what follows, we always assume that N(T) < e0 for some positive constant

e0. The desired a priori estimate on V will be derived in the following sections.

2. Basic estimate

2
In this section we derive the basic L -energy estimate on  V(xx, xf).  For

2       2
ease of notation, in what follows we will use || • || to denote the norm in L (R )

and /// the triple integral over [0, i]xR unless otherwise stated. Multiplying

(20) by V and integrating over [0, /] x R2 gives

\\\Vi-, Oil2 + jjj V[/xiU)V]Xi dxx dx2dx

+ jjjv[Q(lA,V)]xdxxdx2dx

+
(24)

UJv[fi2(U + V)]xdxxdx2dx

= \\\V(-,0)\\2 + jjjv Ç atJVx¡x dxxdx2dx.
i,j=\

Each term in (24) will be estimated separately as follows. First, by assumption

that A = (a¡A) is positive definite, we see that there exists a constant b > 0

such that

(25) /// V   E  aUVx,x¡ dxX dx2d* * -b[ WiVx, '  Vx2)i-> ^)W2^

as follows from integrating by parts. Next, taking into account (2) and (14), we

may integrate by parts twice to get

jjj VU[{U)V]Xi dxx dx2dx <-jjj fx(U)VVX] dxx dx2dx

(26) = i jjj[AiU)]x¡ V2 dxx dx2 dx

- \ ill 'U*>'V2{Xx ,Xl,t)dX{ dXld%'

To estimate the third term on the left-hand side of (24), we write Q(U, V) =

g(U, V)V2, here g(U, V) is a smooth bounded function by the Taylor for-
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mula. Thus, integration by parts leads to

jjj V[QiU, V)]xdxxdx2dx = -jjjg(U, V)V2Vxdxxdx2dx

jjjguUXiiVi/3)dxldx2dr + jjj gvVXi(V3ß)dXldX2dr

< C, sup | V(xx, x2, t) | / / / Ux V dxx dx2 dx

libc2 111 \vx Vl\dxxdx2dx

for some positive constants C, and C2 , where the sup is taken over [0, /] x

R . We treat the last term on the right-hand side of (27) as follows: for fixed

(x,, x2, t), we have by Cauchy inequality that

2 fX>       8 2 f+°°
V2(xx,x2,t)= j     —V2(xx,x2,t)dxx<2j       \WXi\dxx

<2||F(.,x2,t)||L2(R,)||^|(.,x2,.t)||L2(R,),

consequently

fit |V V3\ dxx dx2dx = iff |Vx¡ V\V2 dxx dx2dx

< 2Jj[\\V(.,x2,x)\\L2{Rl)\\Vx¡(.,x2,x)\\LhRl)j\VVx¡\dxx]dx2dx

(28) ff 7 2
-2JJ   l|K(''X2'T)llL2(Rl)H^,(-'X2'T)lltV)í/X2í/T

2      sup      \\V(-,x2,x)\\2L2{R<)      \\Vx(.,x)\\2dx,
0<T<t,x,€R[ Jo

<

and so

jjjv[QiU, V)]xdxxdx2dx

(29) - ^i SUPI Vix\ > x2' t)\ Ux V dxx dx2 dx

>^2T)IIÍ2(R')/
+ 2C2       sup       |F(.,x2r)||;2iRh       |Fr(.,T)||2¿r.

0<T<t,x2€Rl

Finally, we estimate the last term on the left-hand side of (24). Since U does

not depend on x2, we may get after integrating by parts several times that

/// V[fi2(U + V)]Xi dxx dx2 dx = jjJAiu + V)VVx2 dxi dx2 d*

- -\jjjf2\U+V)V2VX2dxxdx2dx

= \ jjj f2"iU+ V)V3VXi dxx dx2 dx,
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consequently

I Iff V[f2iV + V)]X2 dxx dx2 dx < C3 iff \VVXJV2 dxx dx2 dx

for some positive constant C3. Therefore, in a similar way as for the estimate

(28), we have

(30)

jjjv[fi2(U+V)]X2dxxdx2dx

< 2      sup \V(x
0<t<t,x.€R

> •> T)llÍ2(R')y Vx(.,x)\\2dx.

Collecting all the estimates (24), (25), (26), (29) and (30) together, we arrive at

the following lemma.

Lemma 3. There exist positive constants e¡  (i = 1,2) and C4 depending only

on the flux functions and viscosity matrix, such that if

(31)

(32)

sup
0<T<i,(x, ,x2)€R2

V(xx,x2, t)\ <sx,

sup
0<T</

sup ||F(x,, -, t)||22Ri + sup \\V(-,x2, t)||2
L-v.eR'

then, for all t e [0, T], we have

2(R') <e2>

[33)

\V(-,t)\\2 + jjj\Ux¡\V2(xx,x2,t)dxxdx2dx

+ f'wiK ,Vx)(.,x)\\2dx<Cf\V(.,0)\\2.
Jo      ' '      2

Next, we notice that the conditions (31) and (32) will be satisfied if N(T) is

suitably small. In fact, it follows from Sobolev inequality that there exists an

absolute constant C5, such that

(34) \V(xx,x2,t)\<C5N(T).SUP | r   ^./v -   ,  •v-,,   t y |   _;;   v^«-1

0<r<r,(.Y, ,.v2)€R2

To estimate the left-hand side of (32), we set

0(x2, i) = ||F(-,x2,T)||L2(Rl),

then

eix2,t)< j
4Ö(X2'°

dx2=     \ — / V2(xx ,x2,t)dxx dx-,

<2 a vv„ (xx, x2, t)dxxdx2<\\V(-, t)\\¿ + \\V (■, t)\\¿

<N(T).

Thus

(35) sup       \\V(.,x2,x)\\2L2(Ri)<N2(T).
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Similarly

(36) sup      ||F(x,,.,T)||22(Rl)<A2(r).

As a consequence of (34)-(36) and Lemma 3, we arrive at the following basic

a priori estimate

Proposition 4 (a priori estimate). There exist positive constants ôQ (< e0) and

C4 independent of T, such that if N( T) < ¿0, then the basic energy estimate

(33) holds.

3. Higher estimates

In this section we will establish energy estimates on higher order derivatives of

U, which will yield a time uniform estimate on U with which we can obtain the

global existence of solution by a standard continuity argument. These estimates

will be derived by making use of the basic estimate (33). First, we estimate the

first derivative of U and we have

Lemma 5. There exists a constant C  > 0 such that if N(T) < ôQ, then

\Vi-,t)\\2Hl{R2) + jjj\UXi\V2(xx,x2,t)dxxdx2di

■li\\{vx,,rX2)('>mH'(*)dT<cjv(.,o)\\2H,
(37)

RA

Proof. Since the estimate on Vr is similar to but somewhat easier than that

on Vx , we will only derive the estimate on Vx . For this, we differentiate (20)

with respect to x2, multiply the resulting equation by  V    and integrate over

[0, /] x R2. We find

l2\K2i->t)\\2 + b['\\iVx¡X2,VX2X2)(.,x)\\2dx
J 0

< jll^O. 0)H2 + |/// K2íAiUW]x¡X2 dxx dx2dx

+ \jjjvx2[Qiu,v)]XiX2dXldx2dx

+ \jjJKy2iU+V)]X2X2dxxdx2dx .

We now estimate the last three terms on the right-hand side of (38). (In what

follows, we will denote by C any positive constant which does not depend on

(38)
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T A) First, using integration by parts and Cauchy inequality, we can get

(39)      \SISV^U)V]A^dX^X2dX\ = \jjjVx2x2lAiU)V)x¡dxxdx2dl

= /// Vx2x2lA'iV)UX] V + AiU)Vx]dxx dx2dx

< ^ j' \\VX2Xi(-, x)\\2dx + C jjj \UX[\V2(xx, x2, t)dxxdx2dx

fJo
+ c  \\vx(.,x)rdx.

/o

Continuing,

(40) jjjvXi[Q(U, V)]XiXidxxdx2dx\ = \jjjvXiXi[(U, V)]Xtdxxdx2di

-C///|F^|C|^|F2 + K2|^.l + |F^l)ö?Xl^2i/T

-if' ^2x2i-^)W2dz + Cjjj\Ux)v2iXl . *2> t)dx, dx2dx

+ C f'\\Vx(-,x)\\2dx,
Jo       '

where we have used estimate (34) and the assumption N(T) < eQ . In a similar

way, one can obtain

jjJK2[f2iU+V)}X2X2dxxdx2dx

= \jjjVx2x2AiU+V)VX2dxxdx2dx

^yf\\vx2x2i->?)w2d*+cj^\\vXi(-,x)w2dx.

It follows from (38)-(41) that

\\K2i->t)\\2 + bf\\iVx¡X2,VX2X2)(-,T)\\2dx

(42)       <||^(-,0)||2 + C   fff\Ux\V2(xx,x2,t)dxxdx2dx

+ i'\\iVx ,Vx)i-,r)\\2dx   .
Jo        '      2

Similar estimate holds for Vr . Now, the lemma follows from (42) and Propo-
•vi

sition 4.    D

Next, we estimate the second derivatives of V.

(41)
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Lemma 6. If N(T) < â0, then

(43)     £ \\d°V(-, t)\\2 + f £ \\daxV(-, x)\\2dx
|o|=2 °   |o|=3

< E llCK(->°)l|2 + c jjj\UXi\V2(xx,x2,t)dxxdx2dx
\n\=2

+ f\\iKrvx2)i-^)Ù^dr
J 0

fVoo/. We first estimate K. . Differentiating (20) twice with respect to x.

and multiplying the resulting equation by Vr r , we find
xxx{

KxXl {KlXli + iAiU)V]XiXiX¡+[Qiu, v)Wi+[fi2(u + v)]w}

2

= y^ a  V     V
/ j     ij   xtx¡   x¡x,xlx]

i,j=\

Integrating the above equation over [0, t] x R , we find after some manipula-

tions and integration by parts that

\\\vXíxi-^)t + bj\\(VwrVX[XíX2)(.,x)tdx

< ¿H^(-. °)l|2 + /// Vmlf2ÍU + V)]X2X¡ dxx dx2dx

+ jjJKiXlxl[Q(U,V)]XXidxxdx2dr

-jjjVxlXtlAiV)V]x¡XiXídxxdx2dx.

We denote the last three terms on the right-hand side of (44) by /, , I2 and 73

respectively. /, can be estimated quite easily as before, indeed, it follows from

Cauchy inequality that

7' S /// VW&{U + K)]v, dx* dxidT

= ¡H vXlxlXllAiu + v)vXiXi + f2'(u + v)ux¡ vX2

+ f2(U+ V)Vx Vx]dxx dx2 dx

<«/jl^Wl(-^)ll^ + CW^||^(ST)||2 + ||F^2(.,T)||2)i/T

+ C(h) jjj'\Vxf\Vxf(xx,x2,x)dxxdx2dx,

where x is a small positive constant to be chosen later. By Sobolev inequality,
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fjj\VxfiVx2\iXl . X2 ' ')<**, d^2dx

//[ll^i-.^.^Hz.^')

(45)

<

<C4

dx2dxX\\VxlXli- > X2> r)\\û(R>)\\Vx2i- > X2> *)IlAr'

{/'ll^1,1(-.t)l|2^ + ||||^(.,Xj,T)||i,(E.)</Jf2rfT}

where

<C^/'||K      (.,T)||2rfT + C^Äf /V  (.,T)||2</T,
Jo        ' ' Jo        2

i4, =        sup       ||Fv(-,x2, t)||l2(rI),
0<r<T,x,€R'

5,= SUP ||K(-,JC2, T)||L2(Ri

Consequently

(46)

',< H^'||^|Xi(-,T)||2rfT + C(x)(l-r
JoZ0

+ C(x) i'||Fv    (.,t)||2^t + C((kM, /V*
Jo     '' 2 Jo

{-,x)tdx.

Next, we estimate /2. Straightforward calculation gives

h = jjj VXix,xlQiU ,V)]xX{dxxdx2dT

+ 1^,1^ + 1^,71 + ̂ ^ + 1^ + ̂ ]^,^^

+
///■ (i/.nn,r.^,7^,^^,jr^jA",    X|X|

where  g(t/, K)   is a smooth function.   By Cauchy inequality, (34) and the

assumption N(T) < e0, one can verify that

(47)

'2<*/VWl(->*)ii2^

+ C(x) i I i I \Ux\V2(xx, x2, t) dxx dx2dx + f \\VX(-, r)fH¡{Jt2)dx

+ / / / I Vx | (x,, x2, t) dxx dx2 dx \

+ jjj SiU, V)Vx¡x¡x¡ Ux¡x¡ V2 dxx dx2 dx,
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where x is as before. We now follow the similar argument as in (45) to show

(48) /// \VX |4(x,, x2, x)dxxdx2dx

<CAX f'\\V    (.,x)\\2dx + CA3x f\\V (-,x)\\2dx.
Jo       ' ' Jo       2

By using (iii) of Lemma 2 and (34), we can estimate the last integral on the

right-hand side of (47) as follows:

jjjsiV>v)Vx¡x¡xUXtXV2dxxdx2dx

<   ffflsiU, V)\\Vm\(kUXi)V2dxxdx2dx
(49) JJ,

C(x) jjj \UX¡\V2(xx ,x2,t)dxx dx2dx,

so that

(50)    /2<2k/VW|(.,t)||2¿t
J U

+ C(x) I / / / \Ux \V (x,, x2, t)dxx dx2dx

+ i\+A3x)['\\VX2(.,x)\\2Hl{R2)dx
J o

+ 0+^)/,||KXiXi(.,t)||2rft}.

Finally we estimate 73.

(51)   h = "/// VA^[AiUW]x¡XiXi dxx dx2dx

= jjjVxíXíxA\AiU)V]X]Xídxxdx2dx

-cy//,|^i*-|[^,K,+,^^i,+i^.-i|+ic^i*.K|]|/jcirf^<'T

<2xf\WWii^)\\2dr

+ C(x)f fff \UX¡|F2(x, ,x2,t)dxx dx2dx

+f\\KS-^)ù{R^+fi^xS-^n2^}.
where we have used Cauchy inequality and (iii) of Lemma 2 as in the estimate

of I2.
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We notice that in a similar way as in the proof of (35) and (36) one can check

that

(52)

A2X<_    sup   [||i:Vi(.,T)||2 + ||FV|X2(.,T)||2]<A(r)2,
0<t<T

Bx =   sup
0<t<T L

\Vx2i->*)\\2 + \\Vx2x2i->*)\\2]^NiT)2

Thus, if we now choose x = zj/8 , then it follows from (44), (46) and (50)-(52)

that for N(T)<Ô0

\\KtxS->m2+b[\\(vXíX¡x¡,vXiX¡X2)(.,x)\\2dx

<vxA-,0)\\l + c iff IUXtIV2(xx ,x2,t)dxx dx2dx     ■

+ fWxrvx,)i-^)ù(RAd^

Similar estimates hold for  V      and  V     .   Thus the proof of Lemma 6 is
x.x2

considered complete.    D

Combining Lemma 6 with Proposition 5, we have proved the following time-

uniform estimate

Proposition 7 (time-uniform estimate). There exists constant C4 > 0 indepen-

dent of T, such that if N( T) < öQ, then for t e[0,T], it holds that

HK(-> Olliv) + jjj \VXi\V2(xx, x2,t)dxx dx2dx

(53)

+ f\\(VxxVx2)i-> r)\\2H2{R2)dx<Cf\V(., 0)||$,2(R2)

4. Asymptotic behavior

The global existence of unique solutions for problem (20), (21) and its large

time behavior is an immediate consequence of Proposition 6. Indeed, combin-

ing the standard theory of the existence and uniqueness of the local (in time)

solution for parabolic equations with the time-uniform estimate (53), one can

extend the local solution for (20), (21) globally by the usual continuity process

and show that the estimate (53) holds forever (cf. [5, 3, 2]). Thus we have

Proposition 8. There exist positive constants S   (< ôf  and C4 such that if

\\vi'' Q)\\h2ir2) = llMo(') ~ wo(')ll//2(R2) - à. then the initial value problem (20),

(21) has a unique global solution V e X(0, +oo) satisfying

(54)

r+oo

sup||F(.,í)|¿2(R2 )+/       ||c/'/2F(.,0l|2^
f>0 Jo ' '

+ /o+"°IK^)(-> t)\\2HH^dx< Cf\V(-, 0)11^2,.
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To complete the proof of Theorem 1, by Proposition 8 and (i) of Lemma 2,

it suffices to show that

(55) fUmo||K(.,Olljr-(Ri) = 0.

In order to prove (55), first, we have from the inequality (54) and the equation

(20) that

f{|(w- t)\\2 + £ii<Kv»y<-.o dt < +00,

from which it follows

(56) lim  \\(V     V' )(.,t)\\2 = 0.
t—> + 00 I 2

On the other hand, we can get

(57) ||K(-, 0j~(R2) < 2||F(., Ollll^i-, Oil + 2||FiA. (-, OHII^(-, Oil-

In fact, for any fixed (xx , x2, t) e R  x R+ , we have

2 rY|  d   2 f+o°
V(xx,x2,t) = 2        —V (x,, x2, t)dxx < 2 /       \V\Vx^\(xx,x2,t)dxx

<||F(.,x2,0ll^(R.) + ||t/Xi(-,x2,0llïv)'

thus

IIF(-' 0II"(RJ)< sup ||F(-,x2,i)||22(Rl)+ sup \\V i-,x2,t)\\Ll}(R}).
x2€R> x,€R'

Furthermore we have by using Cauchy inequality that

' ^7IIV(-,x2, 0II^(r')^^2
-oo  CIX

<2JjR2\V\\VX2\(xx,x2,t)dxx, dx2

<2\\V(.,t)\\\\VX2(.,t)\\.

Similarly, one may get

wp||K(.,Jrí,0l&(R.)<2||K    (.,í)||||K(.,í)ll,
x2€R

and (57) is proved. It follows from (56) and (57) that (55) holds, therefore

we have the desired asymptotic behavior (10). This completes the proof of

Theorem 1.    □
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