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Abstract

Using key tools such as Itô’s formula for general semimartingales, Kunita’s moment
estimates for Lévy-type stochastic integrals, and the exponential martingale inequality, we
find conditions under which the solutions to the stochastic differential equations (SDEs)
driven by Lévy noise are stable in probability, almost surely and moment exponentially
stable.
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1. Introduction

There has recently been increasing interest in stochastic differential equations (SDEs) driven
by noise that has discontinuous jumps. The case where the noise is obtained from a Lévy process
via its Lévy–Itô decomposition into a Brownian motion (continuous part) and independent
Poisson random measure (jump part) has attracted particular interest; see [1] for a recent
monograph devoted to this topic. Indeed, such SDEs are finding a considerable range of
applications, including financial economics (see, e.g. [5] and the references therein), stochastic
filtering and control [18], CARMA time series models [3], and stochastic resonance in nonlinear
signal processing [19].

The long-time asymptotic behaviour of solutions to SDEs is very important. In particular,
we would like to know if a stationary solution exists and to be able to estimate the rate of
convergence to it. In the literature, particular attention has focused on the case where there is
a trivial solution and Lyapunov exponents can be calculated. In the case of SDEs driven by
Brownian motion, the linear case was first investigated by Khasminski [9]. The extension to
nonlinear SDEs driven by continuous semimartingales and also to stochastic delay and more
general stochastic functional differential equations has been extensively studied by Mao in a
series of books and articles (see [13], [14], [16], and the references therein).

The theory is much less well developed in the case where the driving noise has jumps.
Mao and Rodkina [17] studied a class of SDEs driven by semimartingales with jumps, but the
conditions they imposed are not easily applied in the Lévy noise case. An extensive study of
linear SDEs driven by Lévy noise has been carried out by Li et al. [12], while Grigoriu [6] has
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Asymptotic stability of SDEs driven by Lévy noise 1117

studied some special cases (both linear and nonlinear) for SDEs driven by compound Poisson
processes (see also [7]).

The purpose of this paper is to extend Mao’s techniques to the case of nonlinear SDEs driven
by Lévy noise, i.e. a Brownian motion and an independent (and separately coupled) Poisson
random measure. We focus on the results given in Chapter 4 of [16] and extend these to the
Lévy case. We will omit proofs when these are straightforward generalisations of the Brownian
motion case and concentrate on those results where more careful analysis is needed. We
mainly study two types of stochastic stability in this paper—almost-sure exponential stability
and moment exponential stability. Full definitions of these and related concepts are given
in Section 2. In Section 3 we present our results on almost-sure exponential stability while
moment exponential stability is tackled in Section 4.

In general, there is no obvious relation between exponential and almost-sure stability (see
[10, p. 107]). However, it is possible when moment stability holds to deduce almost-sure
stability under some additional conditions, as shown for the Brownian motion case by Mao
[16]. In the last section we extend this result for SDEs driven by Lévy noise.

Finally, we remark that all our results extend easily to suitable SDEs with time-dependent
coefficients as in Mao [16].

Notation. Throughout this paper, R
+ := [0, ∞). The open ball of radius c > 0 that is

centred on the origin is denoted by Bc and B̂c := Bc − {0}. By Md,m(R) we denote the space
of all real-valued d×m matrices, and if A ∈ Md,m(R) then ‖A‖ := (

∑d
i=1

∑m
j=1 |AijAji |)1/2.

The Euclidean norm of a vector x is denoted by |x| throughout.

2. Preliminaries

Let (�, F , (Ft , t ≥ 0), P) be a filtered probability space that satisfies the usual hypotheses
of completeness and right continuity. Assume that we are given an m-dimensional standard
Ft -adapted Brownian motion B = (B(t), t ≥ 0) with each B(t) = (B1(t), . . . , Bm(t)), and
an independent Ft -adapted Poisson random measure N defined on R

+ × (Rd − {0}) with
compensator Ñ and intensity measure ν, where we assume that ν is a Lévy measure so that
Ñ(dt, dy) := N(dt, dy)− ν(dy) dt and

∫
Rd−{0}(|y|2 ∧ 1)ν(dy) < ∞. We call the pair (B, N)

a Lévy noise.
Let 0 ≤ t0 ≤ T ≤ ∞. Assume that the mappings f : R

d → R
d , g : R

d → Md,m(R),
and H : R

d × R
d → R

d satisfy the usual global Lipschitz and growth conditions (see [1,
Theorem 6.2.3, p. 304]). We consider SDEs driven by Lévy noise of the form

dx(t) = f (x(t−)) dt + g(x(t−)) dB(t) +
∫

|y|<c

H(x(t−), y)Ñ(dt, dy) on t ≥ t0 (2.1)

with initial value x(t0) = x0, such that x0 ∈ R
d . Here c ∈ (0, ∞] is the maximum allowable

jump size. We remark that all the results in the sequel can alternatively be established under
local Lipschitz conditions and a suitable monotone growth condition, as in [20, p. 52] (see also
[16, Section 2.3]).

We assume that f (0) = 0, g(0) = 0, and H(0, y) = 0 for all |y| < c. Then (2.1) has a
unique solution x(t) = 0 for all t ≥ t0 corresponding to the initial value x(t0) = 0, which is
called the trivial solution.

We will consider three types of stability, these being stability in probability, almost-sure and
moment exponential stability.
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Definition 2.1. The trivial solution of (2.1) is said to be stable in probability if, for every pair
of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, t0) such that

P[|x(t)| < r for all t ≥ t0] ≥ 1 − ε

whenever |x0| < δ.

Definition 2.2. The trivial solution of (2.1) is said to be almost-surely (a.s.) exponentially
stable if

lim sup
t→∞

1

t
log |x(t)| < 0 a.s. (2.2)

for all x0 ∈ R
d . The quantity on the left-hand side of (2.2) is called the sample Lyapunov

exponent.

Definition 2.3. Assume that p > 0. The trivial solution of (2.1) is said to be pth moment
exponentially stable if there is a pair of constants λ > 0 and C > 0 such that

E[|x(t)|p] ≤ C|x0|p exp(−λ(t − t0)) for all t ≥ t0

for all x0 ∈ R
d . In this case we call the quantity lim supt→∞(1/t) log(E[|x(t)|p]) the pth

moment Lyapunov exponent.

In this paper we will need Kunita’s estimates (see [11]) for the solution of an SDE of the
form (2.1).

Theorem 2.1. (Kunita.) For all p ≥ 2, there exists C(p, t) > 0 such that, for each t > t0 ≥ 0,

E
[

sup
t0≤s≤t

|x(s)|p
]

≤ C(p, t)

{
|x0|p + E

[∫ t

t0

|f (x(r−))|p dr

]
+ E

[∫ t

t0

‖g(x(r−))‖p dr

]

+ E

[∫ t

t0

(∫
|y|<c

|H(x(r−), y)|2ν(dy)

)p/2

dr

]

+ E

[∫ t

t0

∫
|y|<c

|H(x(r−), y)|pν(dy) dr

]}
,

where x(t0) = x0 ∈ R
d is the initial condition.

The proof can be found in [11, pp. 332–335] (see also Corollary 4.2.44 of [2]).
We will also need the following technical exponential martingale inequality for stochastic

integrals involving both Brownian motion and Poisson random measures. In the former case
the integrand lives in the space P2(T ), which is the linear space of all predictable mappings
F : [0, T ] × � → R

d for which P[∫ T

0 |F(t)|2 dt < ∞] = 1, and in the latter case we require
integrands that belong to the space P2(T , E) which comprises predictable mappings (in the
sense of [1, Chapter 4]) H : [0, T ] × E × � → R

d which satisfy

P

[∫ T

0

∫
E

|H(s, y)|2ν(dy) ds < ∞
]

= 1,

where E is a given Borel set in R
d − {0}.
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Theorem 2.2. (Exponential martingale inequality.) Let T , α, and β be any positive numbers.
Assume that g ∈ P2(T ) and H ∈ P2(T , E). Then

P

[
sup

0≤t≤T

{∫ t

0
g(s) dB(s) − α

2

∫ t

0
|g(s)|2 ds +

∫ t

0

∫
|y|<c

H(s, y)Ñ(ds, dy)

− 1

α

∫ t

0

∫
|y|<c

[exp (αH(s, y)) − 1 − αH(s, y)]ν(dy) ds

}
> β

]

≤ exp (−αβ). (2.3)

For the proof, see [2, pp. 287–288] or [20].

In this paper we will mainly be concerned with almost-sure asymptotic stability and moment
exponential stability. However, we will include one result on stability in probability. For this,
we need the linear operator L : C2(Rd) → C(Rd) associated to the SDE (2.1):

(LV )(x) = f i(x)(∂iV )(x) + 1
2 [g(x)g(x)	]ik(∂i∂kV )(x)

+
∫

|y|<c

[V (x + H(x, y)) − V (x) − Hi(x, y)(∂iV )(x)]ν(dy), (2.4)

where V ∈ C2(Rd) and x ∈ R
d .

Theorem 2.3. Let c ∈ (0, ∞), and let Bh be the open ball of radius h ≥ 2c that is centred on
the origin in R

d . Assume that there exists a positive definite function V ∈ C2(Bh; R
+) such

that

LV (x) ≤ 0

for all x ∈ Bh. Then the trivial solution of (2.1) is stable in probability.

We omit the proof as it is very similar to the Brownian motion case presented in [16,
Theorem 2.2, Chapter 4]. For full details, see [20, Section 3.3]. We will however point out that
there is a slight variation in the statement of Theorem 2.3 from the Brownian motion case which
involves the jump size c. This is because a stopping time argument in [16] needs to be slightly
adapted to take account of the jumps of the solution. We also point out that positive definiteness
here is in the sense of Lyapunov, i.e. we require that V (0) = 0 and that V (x) ≥ κ(|x|) for all
x ∈ Bh for some continuous nondecreasing function κ : R

+ → R
+.

3. Almost-sure asymptotic stability

In order to be able to develop the theory in this section, we need the following technical
inequality.

Lemma 3.1. If x, y ∈ R
d , x, x + y 
= 0, then

1

|x + y| − 1

|x| + 〈x, y〉
|x|3 ≤ 2|y|

|x|2
( |y| + |x|

|x + y|
)

.
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Proof. Using the Cauchy–Schwarz inequality, we find that

1

|x + y| − 1

|x| + 〈x, y〉
|x|3 = |x|3 − |x|2|x + y| + |x + y|〈x, y〉

|x|3|x + y|
≤ |x|3 − |x|2|x + y| + (|x + y|)|x||y|

|x|3|x + y|
≤ |x|2 − |x|(|x| − |y|) + |y|(|x| + |y|)

|x|2|x + y|
= |y|2 + 2|x||y|

|x|2|x + y|
≤ 2|y|

|x|2
( |y| + |x|

|x + y|
)

.

The main result of this section depends critically on the result of the lemma below, which is
a generalisation of Mao’s work in the Brownian motion case (see [15, pp. 280–281] and [16,
pp. 120–121]). We will prove that, under some conditions, the solution of (2.1) can never reach
the origin provided that x0 
= 0.

Assumption 3.1. We suppose that H is always such that

ν{y ∈ B̂c, there exists x 
= 0 such that x + H(x, y) = 0} = 0.

We require that Assumption 3.1 holds for the rest of this section.

Lemma 3.2. Assume that, for any θ > 0, there exists Kθ > 0 such that

|f (x)| + ‖g(x)‖ + 2
∫

|y|<c

|H(x, y)|
( |x| + |H(x, y)|

|x + H(x, y)|
)

ν(dy) ≤ Kθ |x| if |x| ≤ θ. (3.1)

If x0 
= 0 then
P[x(t) 
= 0 for all t ≥ t0] = 1. (3.2)

Proof. Assume that (3.2) is false. This implies that, for some x0 
= 0, there will be a stopping
time τ with P[τ < ∞] > 0 when the solution will be zero for the first time:

τ = inf{t ≥ t0 : |x(t)| = 0}.
Since the paths of x are almost-surely right continuous with left limits (see, e.g. [1, Theo-
rem 6.2.3, p. 304]), there exist T > t0 and θ > 1 such that P[B] > 0, where

B = {ω ∈ � : τ(ω) ≤ T and |x(t)(ω)| ≤ θ − 1 for all t0 ≤ t ≤ τ(ω)}.
Let V (x) = |x|−1. If 0 < |x| ≤ θ , it follows from (2.4) and Lemma 3.1 that

LV (x) ≤ |f (x)|
|x|2 + ‖g(x)‖2

|x|3 + 2
∫

|y|<c

[ |H(x, y)|
|x|2

( |H(x, y)| + |x|
|x + H(x, y)|

)]
ν(dy). (3.3)

Applying (3.1) to (3.3) then

LV (x) ≤ αV (x) if 0 < |x| ≤ θ,

where α is a positive constant.
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Now define the following family of stopping times:

τε = inf{t ≥ t0 : |x(t)| ≤ ε or |x(t)| ≥ θ}
for each 0 < ε < |x0|. Following exactly the same arguments as in [15, pp. 280–281] and [16,
pp. 120–121] we have

E[e−α(τε∧T −t0)V (x(τε ∧ T ))] ≤ V (x0).

If ω ∈ B then τε(ω) ≤ T and |x(τε(ω))| ≤ ε. Then,

E[e−α(T −t0)ε−1 1B ] ≤ E[e−α(τε−t0)|x(τε(ω))|−1 1B ]
= E[e−α(τε∧T −t0)V (x(τε ∧ T )) 1B ]
≤ E[e−α(τε∧T −t0)V (x(τε ∧ T ))]
≤ V (x0).

Hence,
P[B] ≤ ε exp(α(T − t0))|x0|−1 for all ε ≥ 0.

Now let ε → 0. Then it follows that P[B] = 0, which contradicts the definition of the set B

and the required result follows.

Remark 3.1. Condition (3.1) in Lemma 3.2 seems quite complicated. We will now show that
there is a natural class of mappings H for which this is satisfied, at least in the case d = 1. To
begin, suppose that we can find a mapping H1 for which

∫
|y|<c

|H1(x, y)|ν(dy) < Kθ |x| for all x ∈ R.

Now let A = {(x, y) ∈ R
2 : x ≥ 0, H1(x, y) ≥ 0} ∪ {(x, y) ∈ R

2 : x ≤ 0, H1(x, y) ≤ 0}, and
so Ac = {(x, y) ∈ R

2 : x ≥ 0, H1(x, y) < 0} ∪ {(x, y) ∈ R
2 : x ≤ 0, H1(x, y) > 0}.

Define H(x, y) = (1A(x, y) − 1Ac(x, y))H1(x, y). Hence,

|H1(x, y)| = |H(x, y)| and |x + H(x, y)| = |x| + |H1(x, y)|.
Then we find that
∫

|y|<c

|H(x, y)|
( |x| + |H(x, y)|

|x + H(x, y)|
)

ν(dy) =
∫

|y|<c

|H1(x, y)|ν(dy) < Kθ |x| for all x ∈ R.

To construct specific examples of mappings of the form H1, we can take, e.g. H1(x, y) =
H2(x)y2, where H2(x)/x is bounded.

For the next two results, we require that the following local boundedness constraint on the
jumps holds.

Assumption 3.2. For all bounded sets M in R
d ,

sup
x∈M

sup
0<|y|<c

|H(x, y)| < ∞.
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In the sequel conditions for almost-sure exponential stability of the trivial solution of (2.1)
will be obtained. First we need a useful technical result.

Let V ∈ C2(Rd; R
+) be such that V (x) 
= 0 for every x ∈ R

d . Define the processes
I1 = (I1(t), t ≥ t0), I2 = (I2(t), t ≥ t0), and I = (I (t), t ≥ t0), where, for each t ≥ t0,

I1(t) =
∫ t

t0

∫
|y|<c

(
V (x(s−) + H(x(s−), y) − V (x(s−)))

V (x(s−))

− Hi(x(s−), y)

V (x(s−))
∂iV (x(s−))

)
ν(dy) ds, (3.4)

I2(t) =
∫ t

t0

∫
|y|<c

(
log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)
+ 1

− V (x(s−) + H(x(s−), y))

V (x(s−))

)
ν(dy) ds, (3.5)

I (t) =
∫ t

t0

∫
|y|<c

(
log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)
− Hi(x(s−), y)

V (x(s−))
∂iV (x(s−))

)
ν(dy) ds.

(3.6)

Note that, for each t ≥ t0, I (t) = I1(t) + I2(t).

Lemma 3.3. Let I1 = (I1(t), t ≥ t0), I2 = (I2(t), t ≥ t0), and I = (I (t), t ≥ t0) be defined
for each t ≥ t0 as in (3.4), (3.5), and (3.6), respectively. Then, for each t ≥ t0, it holds that

(i) |I1(t)| < ∞ a.s.,

(ii) |I (t)| < ∞ a.s., and

(iii) |I2(t)| < ∞ a.s.

Proof. (i) Following Kunita’s arguments in [11, p. 317], by using a Taylor’s series expansion
with integral remainder term (see [4, Theorem 7.7]) we obtain, for each y ∈ B̂c and x ∈ R

d ,

V (x + H(x, y)) − V (x) − Hi(x, y)∂iV (x)

=
∫ 1

0
∂i∂jV (x + θH(x, y))(1 − θ) dθH i(x, y)Hj (x, y).

Hence,

|I1(t)| ≤
∫ t

t0

∫
|y|<c

∣∣∣∣ 1

V (x(s−))
[V (x(s−) + H(x(s−), y)) − V (x(s−))

− Hi(x(s−), y)∂iV (x(s−))]
∣∣∣∣ν(dy) ds

≤ 1

2

∫ t

t0

∫
|y|<c

∣∣∣∣ sup
0≤θ≤1

∂i∂jV (x(s−) + θH(x(s−), y))

V (x(s−))

∣∣∣∣
× |Hi(x(s−), y)Hj (x(s−), y)|ν(dy) ds. (3.7)

For each z ∈ R
d , y ∈ B̂c, and 1 ≤ i, j ≤ d , define

f V
ij (z, y) = sup

0≤θ≤1

∂i∂jV (z + θH(z, y))

V (z)
.
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By Assumption 3.2, it follows that

sup
t0≤s≤t

sup
0<|y|<c

|f V
ij (x(s−), y)| < ∞ a.s.

Using the Cauchy–Schwarz inequality, it follows from (3.7) that

|I1(t)| ≤ 1

2
sup

t0≤s≤t
sup

0<|y|<c

|f V
ij (x(s−), y)|

∫ t

t0

∫
|y|<c

|Hi(x(s−), y)Hj (x(s−), y)|ν(dy) ds

≤ 1

2

( d∑
i,j=1

sup
t0≤s≤t

sup
0<|y|<c

|f V
ij (x(s−), y)|2

)1/2 ∫ t

t0

∫
|y|<c

|H(x(s−), y)|2ν(dy) ds

< ∞ a.s.

Part (ii) follows by the same arguments as in (i), and (iii) is then immediate.

The following is a generalisation of Mao’s work [16, Chapter 4, Theorem 3.3].

Theorem 3.1. Let V ∈ C2(Rd; R
+), and let p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0, and c4 ≥ 0 be

such that, for all x 
= 0,

(i) c1|x|p ≤ V (x),

(ii) LV (x) ≤ c2V (x),

(iii) |(∂V (x))	g(x)|2 ≥ c3(V (x))2,

(iv)
∫

|y|<c

[
log

(
V (x + H(x, y))

V (x)

)
− V (x + H(x, y)) − V (x)

V (x)

]
ν(dy) ≤ −c4.

Then

lim sup
t→∞

1

t
log |x(t)| ≤ −c3 + 2c4 − 2c2

2p
a.s., (3.8)

and, furthermore, if c3 > 2c2 − 2c4 then the trivial solution of (2.1) is a.s. exponentially stable
for all x0 ∈ R

d .

Remark 3.2. Using the logarithmic inequality log(x) ≤ x − 1 for x > 0, then

∫
|y|<c

[
log

(
V (x + H(x, y))

V (x)

)
− V (x + H(x, y)) − V (x)

V (x)

]
ν(dy) ≤ 0.

Hence, condition (iv) of Theorem 3.1 is a reasonable constraint to require.

Proof of Theorem 3.1. For x0 = 0, then x = 0; hence, (3.8) holds trivially. For the rest of
the proof, we assume that x0 
= 0. We first assume that (3.1) holds. Owing to Lemma 3.2,
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x(t) 
= 0 for all t ≥ t0 a.s. Apply Itô’s formula to Z(t) = log(V (x(t))). Then, for each t ≥ t0,

log(V (x(t))) = log(V (x0))

+
∫ t

t0

1

V (x(s−))
∂iV (x(s−))[f i(x(s−)) ds + gij (x(s−)) dBj (s)]

+ 1

2

∫ t

t0

[
1

V (x(s−))
∂i∂kV (x(s−))[g(x(s−))g(x(s−))	]ik

− 1

(V (x(s−)))2 |(∂V (x(s−)))	g(x(s−))|2
]

ds

+
∫ t

t0

∫
|y|<c

[log(V (x(s−) + H(x(s−), y))) − log(V (x(s−)))]Ñ(ds, dy)

+
∫ t

t0

∫
|y|<c

[
log(V (x(s−) + H(x(s−), y))) − log(V (x(s−)))

− 1

V (x(s−))
∂iV (x(s−))H i(x(s−), y)

]
ν(dy) ds. (3.9)

Note that the last integral in (3.9) is a.s. finite by Lemma 3.3.
Now, using the linear operator L defined in (2.4), we obtain

log(V (x(t))) ≤ log(V (x0)) +
∫ t

t0

LV (x(s−))

V (x(s−))
ds + M(t)

− 1

2

∫ t

t0

1

(V (x(s−)))2 |(∂V (x(s−)))	g(x(s−))|2 ds + I2(t), (3.10)

where, for each t ≥ t0,

M(t) =
∫ t

t0

1

V (x(s−))
∂iV (x(s−))gij (x(s−)) dBj (s)

+
∫ t

t0

∫
|y|<c

log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)
Ñ(ds, dy).

We now apply the exponential martingale inequality, (2.3), for T = n, α = ε, and β = εn,
where ε ∈ (0, 1) and n ∈ N. Then, for every integer n ≥ t0, we find that

P

[
sup

t0≤t≤n

{
M(t) − ε

2

∫ t

t0

1

(V (x(s−)))2 |(∂V (x(s−)))	g(x(s−))|2 ds

− 1

ε

∫ t

0

∫
|x|<c

[
exp

(
log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε)
− 1

− ε log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)]
ν(dy) ds

}
> εn

]

≤ e−ε2n.

Since
∑∞

n=1 e−ε2n < ∞, an application of the Borel–Cantelli lemma and elementary probability
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calculations yield

P

[
lim inf
n→∞

{
sup

t0≤t≤n

(
M(t) − ε

2

∫ t

t0

1

(V (x(s−)))2 |(∂V (x(s−)))	g(x(s−))|2 ds

− 1

ε

∫ t

0

∫
|x|<c

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)
ν(dy) ds

)
≤ εn

}]

= 1.

Hence, for almost all ω ∈ �, there is a random integer n0 = n0(ω) such that, for n ≥ n0 and
t0 ≤ t ≤ n,

M(t) ≤ ε

2

∫ t

t0

1

(V (x(s−)))2 |(∂V (x(s−)))	g(x(s−))|2 ds + εn

+ 1

ε

∫ t

t0

∫
|y|<c

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)]
ν(dy) ds. (3.11)

Substituting (3.11) into (3.10) and using conditions (ii) and (iii), it follows immediately that

log(V (x(t))) ≤ log(V (x0)) − 1
2 [(1 − ε)c3 − 2c2](t − t0) + εn

+
∫ t

t0

∫
|y|<c

[
log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)
+ 1

− V (x(s−) + H(x(s−), y))

V (x(s−))

]
ν(dy) ds

+ 1

ε

∫ t

t0

∫
|y|<c

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)]
ν(dy) ds (3.12)

for n ≥ n0 and t0 ≤ t ≤ n.
Fix x ∈ R

d , and define, for y ∈ B̂c,

hε(y) = 1

ε

∣∣∣∣
(

V (x + H(x, y))

V (x)

)ε

−1 − ε log

(
V (x + H(x, y))

V (x)

)∣∣∣∣.
We easily deduce that (V (x + H(x, y))/V (x))ε − 1 − ε log(V (x + H(x, y))/V (x)) ≥ 0 for
all y ∈ B̂c, by using the elementary inequality eb − 1 − b ≥ 0 for b ∈ R. Since ε ∈ (0, 1),
then we can use the inequality bc < 1 + c(b − 1) for 0 < c < 1 and b > 0 (see [8, p. 40]) to
deduce that, for all y ∈ B̂c,

hε(y) ≤ 1

ε

[
1 + ε

(
V (x + H(x, y))

V (x)
− 1

)
− 1 − ε log

(
V (x + H(x, y))

V (x)

)]

= V (x + H(x, y))

V (x)
− 1 − log

(
V (x + H(x, y))

V (x)

)
. (3.13)
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Now let ε → 0. Using (3.13) and Lemma 3.3(iii), we apply the dominated convergence theorem
to deduce that, for all t ≥ t0,

lim
ε→0

∫ t

t0

∫
|y|<c

1

ε

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

− ε log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)]
ν(dy) ds

=
∫ t

t0

∫
|y|<c

(
lim
ε→0

1

ε

[(
V (x(s−) + H(x(s−), y))

V (x(s−))

)ε

− 1

]

− log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

))
ν(dy) ds

= 0. (3.14)

Hence, by (3.14), for n ≥ n0 and t0 ≤ t ≤ n, (3.12) becomes

log(V (x(t))) ≤ log(V (x0)) − 1
2 (c3 − 2c2)(t − t0)

+
∫ t

t0

∫
|y|<c

[
log

(
V (x(s−) + H(x(s−), y))

V (x(s−))

)
+ 1

− V (x(s−) + H(x(s−), y))

V (x(s−))

]
ν(dy) ds. (3.15)

Now substituting condition (iv) into (3.15), we see that, for almost all ω ∈ �, t0 + n− 1 ≤ t ≤
t0 + n and n ≥ n0,

1

t
log(V (x(t))) ≤ − t − t0

2t
(c3 − 2c2) + log(V (x(t0)))

t0 + n − 1
− t − t0

t
c4.

Now applying condition (i), the required result follows. In the case where (3.1) fails to hold
we may assume without loss of generality that H 
= 0 and that the process x(t) hits the origin
infinitely many times (with probability 1). Define an increasing sequence of stopping times
(Tn, n ∈ N) by T1 = inf{t > t0, x(t) = 0} and, for n > 1, Tn = inf{t > Tn−1, x(t) = 0}.
We now argue as above, but with x(t) replaced throughout by y(t), where

y(t) = x(t) 1[t0,T1)(t) +
∞∑

n=1

x(t) 1(Tn,Tn+1)(t).

4. Moment exponential stability

The main aim of this section is to introduce criteria for the solution of an SDE driven by
Lévy noise to be moment exponentially stable, and to derive a relation between moment and
almost-sure exponential stability.

Theorem 4.1. Let p, α1, α2, and α3 be positive constants. If V ∈ C2(Rd; R
+) satisfies

(i) α1|x|p ≤ V (x) ≤ α2|x|p,

(ii) LV (x) ≤ −α3V (x),
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for all x ∈ R
d , then

E[|x(t)|p] ≤ α2

α1
|x0|p exp(−α3(t − t0)) for all t ≥ t0

for all x0 ∈ R
d . As a result, the trivial solution of (2.1) is pth moment exponentially stable

under conditions (i) and (ii), and the pth moment Lyapunov exponent should not be greater
than −α3.

The proof is omitted as it is a straightforward extension of the Brownian motion case that
can be found in [16, Chapter 4, Theorem 4.4]. We will however give a simple (linear) example
to confirm that conditions (i) and (ii) can be verified in the jump case. We take d = 1 and
also c = 1. Let V (x) = x2, so that (i) is automatically satisfied with p = 2. Now choose
f (x) = bx, where b ∈ R, g(x) = x, and H(x, y) = xy. Then (2.4) yields LV (x) =
(2b + 1 + ∫

|y|<1 |y|2ν(dy))V (x), and so (ii) is satisfied provided that b is chosen to satisfy

b ≤ − 1
2 (1 + ∫

|y|<1 |y|2ν(dy)).
We note that if the hypotheses of Theorem 4.1 hold then the trivial solution of (2.1) is a.s.

exponentially stable, as can be seen by taking c3 = c4 = 0 in Theorem 3.1. In the last part of
the paper we will give conditions under which the pth moment exponential stability for p ≥ 2
always implies almost-sure exponential stability for our equation.

Assumption 4.1. For all 2 ≤ q ≤ p and K > 0,∫
|y|<c

|H(x, y)|qν(dy) ≤ K|x|q .

We require that Assumption 4.1 holds for the remainder of this section.
The following is an extension of Mao’s work [16, Theorem 4.2, Chapter 4] that refers to

SDEs driven by Brownian motion. We will generalise this result and give the relationship
between the pth moment exponential stability and the almost-sure exponential stability for the
trivial solution of (2.1).

Remark 4.1. Recall that in the context of stability theory we are always assuming that f (0) = 0
and g(0) = 0; hence, from the Lipschitz conditions on f and g we deduce that, for all x ∈ R

d ,
there exists L > 0 such that |f (x)| ≤ √

L|x| and ‖g(x)‖2 ≤ L|x|2. Hence,

x	f (x) ∨ ‖g(x)‖2 ≤ |x	f (x)| ∨ ‖g(x)‖2 ≤ |x||f (x)| ∨ ‖g(x)‖2 ≤ L′|x|2, (4.1)

where L′ = max{√L, L}, and this will be used in the proof of the theorem below.

Theorem 4.2. Assume that Assumption 4.1 holds. For p ≥ 2, pth moment exponential stability,
of the trivial solution to (2.1), implies almost-sure exponential stability.

Proof. Fix any x0 
= 0 on R
d , and let n ∈ N. Apply Itô’s formula to Z(t) = |x(t)|p. Then

using (4.1) and taking expectations, it follows that

E
[

sup
t0+n−1≤t≤t0+n

|x(t)|p
]

≤ E[|x(t0 + n − 1)|p] + α

∫ t0+n

t0+n−1
E[|x(s−)|p] ds

+ E

[
sup

t0+n−1≤t≤t0+n

∫ t

t0+n−1
p|x(s−)|p−2x(s−)	g(x(s−)) dB(s)

]
+ I1, (4.2)
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where α = pL′ + (pL′/2)[1 + (p − 2)] and

I1 = E

[
sup

t0+n−1≤t≤t0+n

{∫ t

t0+n−1

∫
|y|<c

(|x(s−) + H(x(s−), y)|p − |x(s−)|p)Ñ(ds, dy)

+
∫ t

t0+n−1

∫
|y|<c

(|x(s−) + H(x(s−), y)|p − |x(s−)|p

− p|x(s−)|p−2x(s−)	H(x(s−), y))ν(dy) ds

}]
.

For the Brownian motion integral, as in [16, p. 129], we apply the Burkholder–Davis–Gundy
inequality:

E

[
sup

t0+n−1≤t≤t0+n

∫ t

t0+n−1
p|x(s−)|p−2x(s−)	g(x(s−)) dB(s)

]

≤ 1

2
E
[

sup
t0+n−1≤t≤t0+n

|x(t−)|p
]

+ 16p2L′
∫ t0+n

t0+n−1
E[|x(s−)|p] ds.

Applying Kunita’s estimates for f = 0 and g = 0, it follows that

I1 ≤ β(p, t)

{
E

[∫ t0+n

t0+n−1

(∫
|y|<c

|H(x(s−), y)|2ν(dy)

)p/2

ds

]

+ E

[(∫ t0+n

t0+n−1

∫
|y|<c

|H(x(s−), y)|pν(dy) ds

)]}
, (4.3)

where β(p, t) is a positive constant that depends only on t and p. Using Assumption 4.1 within
(4.3), we obtain

I1 ≤ γ (p, t) E

[∫ t0+n

t0+n−1
|x(s−)|p ds

]
,

where γ (p, t) = β(p, t)(Kp/2 + K). Then (4.2) becomes

E
[

sup
t0+n−1≤t≤t0+n

|x(t)|p
]

≤ E[|x(t0 + n − 1)|p] + 1

2
E
[

sup
t0+n−1≤t≤t0+n

|x(t−)|p
]

+ (c1 + 16p2L′ + γ (p, t))

(∫ t0+n

t0+n−1
E[|x(s)|p] ds

)
.

Rearranging, for p ≥ 2,

E
[

sup
t0+n−1≤t≤t0+n

|x(t)|p
]

≤ 2 E[|x(t0 + n − 1)|p] + δ(p, t)

∫ t0+n

t0+n−1
E[|x(s)|p] ds, (4.4)

where δ(p, t) is a positive constant depending on p and t . Now we argue as in [16, pp. 129–130]
and the required result follows.
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