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Abstract: The aim of this work is to study the asymptotic stability of the time-changed stochastic delay

differential equations (SDDEs) with Markovian switching. Some sufficient conditions for the asymptotic

stability of solutions to the time-changed SDDEs are presented. In contrast to the asymptotic stability in

existing articles, we present the new results on the stability of solutions to time-changed SDDEs, which is

driven by time-changed Brownian motion. Finally, an example is given to demonstrate the effectiveness of

the main results.
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1 Introduction

The research on stochastic differential equations (SDEs) plays an important role in modeling dynamic

system areas, such as physics, economics and finance, biological and so forth. Recently, the qualitative

study of the solution of SDEs has received much attention. Particularly, the stability of SDEs has been

considered widely by many researchers [1–4]. It is well known that time delay is unavoidable in practice,

then the corresponding stochastic delay differential equations (SDDEs) are used more widely in systems. It

considers the effects of past behaviors imposed to the current status. The stability results of SDDEs we have

mentioned here can be found in [5–8]. The delay term has main influence on the stability of SDDEs. It could

be regarded as a perturbation to the stable systems, or may be the delay part has a stabilizing effect as well

[8]. Jump system is a new type of SDE with Markovian switching [9–12]. In practice, the system can switch

from one mode to another randomly, and the switching between the modes is governed by a Markov

process. SDDE with Markovian switching is a kind of hybrid system, including both the logical switching

mode and the state of system. It is used widely in many applied areas such as neural networks, traffic

control model, and so on.

Very recently, Chlebak et al. [13] considered a sub-diffusion process in Hilbert space and the associated

fractional Fokker-Planck-Kolmogorov equations. The process is connected with a limit process arising from

continuous-time random walks. In fact, the limit process is a time-changed Lévy process, which is the first
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hitting time process of certain stable subordinator (see [14,15] for details). The existence and stability of

SDEs driven by time-changed Brownian motion attracted lot of attention. Wu [16] established the time-

changed Itô formula of time-changed SDE, and the stability analysis is investigated. Subsequently, Nane

and Ni [17,18] established the Itô formula for time-changed Lévy noise, then discussed the asymptotic

stability and path stability for the solution of time-changed SDEs with jump, respectively. And in [19],

we considered the exponential stability for the time-changed stochastic functional differential equations

with Markov switching.

Motivated strongly by the above, in this paper, we will study the stability of time-changed SDDEs with

Markovian switching. By applying the time-changed Itô formula and Lyapunov function, we present

the LaSalle-Type theorem [6,12] of the time-changed SDDEs with Markovian switching. More precisely,

we consider the following SDDEs driven by time-changed Brownian motions:

x t ρ t E r t x t x t τ t f t E r t x t x t τ E g t E r t x t x t τ Bd , , , , d , , , , d , , , , dt t t t Et( ) ( ( ) ( ) ( )) ( ( ) ( ) ( )) ( ( ) ( ) ( ))= − + − + − (1.1)

on t 0≥ with initial data x θ τ θ ξ C τ: 0 , 0 ;b n
0

�{ ( ) } ([ ] )− ≤ ≤ = ∈ −F , where ρ f g, , are appropriately speci-

fied later.

In the remaining parts of this paper, further needed concepts and related background are presented in

Section 2. In Section 3, the main stability results of the time-changed SDDEs with Markovian switching are

given. Finally, an example is given to illustrate the effectiveness of the main results.

2 Preliminary

Throughout this paper, let PΩ, , ,t 0( { } )≥F F be a complete probability space with the filtration t 0{ } ≥F ,

which satisfies the usual conditions (i.e., t 0{ } ≥F is right continuous andF contains all the P-null sets inF).

Let U t t 0{ ( )} ≥ be a right continuous with left limit (RCLL) increasing Lévy process that is called a subordinator.

In particular, a β-stable subordinator is a strictly increasing process denoted by U tβ( ) and characterized by

Laplace transform

E sU t ts s βexp exp , 0, 0, 1 .β
β[ ( ( ))] ( ) ( )− = − > ∈

For an adapted β-stable subordinator U tβ( ), define its generalized inverse as

E E s U s tinf 0 : ,t t
β

β{ ( ) }≔ = > >

which is called the first hitting time process. And Et is continuous since U tβ( ) is strictly increasing.

Let Bt be a standard Brownian motion independent of Et, define the filtration as

σ B r s σ E r: 0 : 0 ,t
s t

r r{ [ ] [ ]}= ⋂ ≤ ≤ ∨ ≥
>

F

where σ σ1 2∨ denotes the σ-algebra generated by the union of σ-algebras σ1 and σ2. It concludes that the

time-changed Brownian motion BEt is a square integrable martingale with respect to the filtration E t 0t{ } ≥F .

And its quadratic variation satisfies B B E,E E tt t
〈 〉 = [20].

Let B B B, ,E E E
m1

t t t
( )= … be an m-dimensional Brownian motion defined on the probability space. If

K n
�⊂ , let x K x yd , infy K( ) ∣ ∣= −∈ be the distance from x n

�∈ to K . If w is a real-valued function on n
� ,

then its kernel is expressed by w x w xker : 0n
�( ) { ( ) }= ∈ = . We also denote by L ,1

� �( )+ + the family of all

functions r : � �→+ + such that r t td
0

( )∫ < ∞
∞

, r t Ed t
0

( )∫ < ∞
∞

and r t U td
0

( ) ( )∫ < ∞
∞

.

Let r t t, 0( ) ≥ be a right continuous Markov chain on the probability space taking values in a finite state

space S N1, 2, ,{ }= … with generator γΓ ij N N( )= × by

⎧
⎨
⎩

P r t j r t i
r o i j

r o i j
Δ

Δ Δ if ,

1 Δ Δ if ,

ij

ij

{ ( ) ∣ ( ) }
( )

( )
+ = = =

+ ≠
+ + =
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where Δ 0> , γij is the transition rate from i to j if i j≠ and γ γii i j ij= −∑ ≠ . We assume that the Markov chain

r t( ) is independent of Brownian motion, it is well known that almost each sample path of r t( ) is a right-

continuous step function.

LetC S;n1,1,2
� � � �( )× × ×+ + + denote the family of all continuous nonnegative functionsV t E x t i, , ,t( ( ) )

defined on Sn
� � �× × ×+ + , such that for each i S∈ , they are continuously once differentiable in t

and Et and twice differentiable in x. For each V C S;n1,1,2
� � � �( )∈ × × ×+ + + , define the Itô operator

L V S:l
n n

� � � � �( )× × × × →+ + , (l 1, 2= ) by

L V t E x y i V t E x i V t E x i ρ t E x y i γ V t E x j, , , , , , , , , , , , , , , , ,t t t x t t

j

N

ij t1

1

( ) ( ) ( ) ( ) ( )∑= + +
=

and

L V t E x y i V t E x i V t E x i f t E x y i g V t E x i g t E x y i, , , , , , , , , , , , , ,
1

2
trace , , , , , , , ,t E t x t t

T
xx t t2 t

( ) ( ) ( ) ( ) [ ( ) ( )]= + +

where

⎛

⎝
⎜

⎞

⎠
⎟

V t E x i
V t E x i

t
V t E x i

V t E x i

E

V t E x i
V t E x i

x

V t E x i

x

V t E x i

x

, , ,
, , ,

, , , ,
, , ,

,

, , ,
, , ,

,
, , ,

, ,
, , ,

t t
t

E t
t

t

x t
t t t

n

T

1 2

t
( )

( )
( )

( )

( )
( ) ( ) ( )

= ∂
∂

= ∂
∂

= ∂
∂

∂
∂

… ∂
∂

and

⎛

⎝
⎜

⎞

⎠
⎟V t E x i

V t E x i

x x
, , ,

, , ,
.xx t

t

l m n n

2

( )
( )= ∂
∂ ∂ ×

At first, we introduce the important generalized time-changed Itô formula convenient for the subse-

quent stochastic calculation.

Lemma 2.1. (The generalized time-changed Itô formula) [19] Suppose that U tβ( ) is a β-stable subordinator

and Et is its associated inverse subordinator. Let x t( ) be a EtF adapted process defined in (1.1). If

V S: n
� � � �× × × →+ + is a C S;n1,1,2

� � � �( )× × ×+ + function, then with probability one

V t E x t r t V x r L V s E x s x s τ r s s

L V s E x s x s τ r s E

V s E x s r s g s E x s x s τ r s B

V s E x s i h r s l V s E x s r s μ s l

, , , 0, 0, , 0 , , , , d

, , , , d

, , , , , , , d

, , , , , , , d , d ,

t

t

s

t

s s

t

x s s E

t

R

s s

0

0

1

0

2

0

0

0

s

( ( ) ( )) ( ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( ( ) ( )) ( ( ) ( ) ( ))

[ ( ( ) ( ( ) )) ( ( ) ( ))] ( )

∫

∫

∫

∫∫

= + −

+ −

+ −

+ + −

where μ s l ν s l m l sd , d d , d d d( ) ( ) ( )= − is a martingale measure.

In this paper, the following hypothesis is imposed on the coefficients ρ f, and g .

(H1) Both ρ f S, : n n n
� � � � �× × × × →+ + and g S: n n n m

� � � � �× × × × →+ + × are Borel-measur-

able functions. They satisfy the local Lipschitz condition. That is, for each k 1, 2,= … , there is c 0k >
such that
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ρ t E x y i ρ t E x y i f t E x y i f t E x y i

g t E x y i g t E x y i c x x y y

, , , , , , , , , , , , , , , ,

, , , , , , , ,

t t t t

t t k

∣ ( ) ( )∣ ∣ ( ) ( )∣

∣ ( ) ( )∣ (∣ ∣ ∣ ∣)

− ∨ −
∨ − ≤ − + −

for all t 0≥ , i S∈ and x y x y, , , n
�∈ with x y x y k∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∨ ∨ ∨ ≤ . Moreover,

ρ t E i f t E i g t E i tsup , , , 0, 0 , , , 0, 0 , , , 0, 0 : 0 .t t t{∣ ( )∣ ∣ ( )∣ ∣ ( )∣ }∨ ∨ ≥ < ∞

(H2) If x t( ) is an RCLL and EtF -adapted process, then

ρ t E x t x t τ r t f t E x t x t τ r t g t E x t x t τ r t, , , , , , , , , , , , , , ,t t t Et�( ( ) ( ) ( )) ( ( ) ( ) ( )) ( ( ) ( ) ( )) ( )− − − ∈ F

where Et�( )F denotes the class of RCLL and EtF -adapted process.

We will need the useful semimartingale convergence theorem, which is cited here as a lemma.

Lemma 2.2. (Semimartingale convergence theorem [3]) Let At t 0{ } ≥ and Ut t 0{ } ≥ be two continuous adapted

increasing processes with A U 00 0= = a.s. Let Mt t 0{ } ≥ be a real-valued condition local martingale withM 00 =
a.s. Let ξ be a nonnegative 0F -measurable random variable. Define

X ξ A U M for t 0.t t t t= + − + ≥

If Xt is nonnegative, then

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

A X exists and is finite U a.s.lim lim lim ,
t

t
t

t
t

t< ∞ ⊂ ∩ < ∞
→∞ →∞ →∞

where B D⊂ a.s. means P B D 0c( )∩ = . In particular, if Alimt t < ∞→∞ a.s., then for almost all ω Ω∈ ,

X ω exists and is finite and U ωlim , lim .
t

t
t

t( ) ( ) < ∞
→∞ →∞

3 Main results and discussion

In this section, we aim to establish the stability results of the system equation.

Theorem 3.1. Let conditions H1( ) and H2( ) hold. Assume that there are functions V C n1,1,2
� � �(∈ × × ×+ +

S r L, , ,ij
1

� � �) ( )∈+ + + and w C ,ij
n
� �( )∈ + , i j, 1, 2= such that

L V t E x y i r t r E w x w y, , , , ,t t1 11 12 11 12( ) ( ) ( ) ( ) ( )≤ + − + (3.1)

L V t E x y i r t r E w x w y, , , , ,t t2 21 22 21 22( ) ( ) ( ) ( ) ( )≤ + − + (3.2)

w x w x i, 1, 2i i1 2( ) ( )≥ = (3.3)

and

V t E x ilim inf , , , ,
x t

t
0

( )
∣ ∣

= ∞
→∞ ≤ <∞ (3.4)

where t E x y i S, , , ,t
n n

� � � �( ) ∈ × × × ×+ + . Then w wKer 1 2( )− ≠ ∅ and

x t ξ w wlim d ; , Ker 0 a.s.
t

1 2( ( ) ( ))− =
→∞ (3.5)

for every ξ C τ, 0 ;b n
0

�([ ] )∈ −F , where w w wi i i1 2= + , i 1, 2.=

To prove this result, let us present an existence lemma at first.

Lemma 3.1.Under the conditionsof Theorem3.1, for any initial data x θ τ θ ξ C τ: 0 , 0 ;b n
0

�{ ( ) } ([ ] )− ≤ ≤ = ∈ −F ,

equation (1.1) has a unique global solution.
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Proof. Under conditions H1( ) and H2( ), equation (1.1) has a unique maximal local solution x t( ) on

t τ σ,[ )∈ − ∞ for any initial data x θ τ θ ξ C τ: 0 , 0 ;b n
0

�{ ( ) } ([ ] )− ≤ ≤ = ∈ −F , where σ∞ is the explosion time

[15,21]. So we only need to show that σ = ∞∞ a.s. For any k 1≥ , define the following stopping time

τ σ t σ x t kinf 0, : .k { [[ [[ ∣ ( )∣ }= ∧ ∈ ≥∞ ∞

By the generalized time-changed Itô formula in Lemma 2.1,

V t τ E x t τ r t τ

V x i L V s E x s x s τ r t s L V s E x s x s τ r t E

, , ,

0, 0, 0 , , , , , d , , , , d .

k t τ k k

t τ

s

t τ

s s0

0

1

0

2

k

k k

�

� � �

( ) ( )

( ( ) ) ( ( ) ( ) ( )) ( ( ) ( ) ( ))

( )
∫ ∫

∧ ∧ ∧

= + − + −

∧
∧ ∧

By using conditions (3.1) and (3.2), we can see that

L V s E x s x s τ r s s r s r E w x s w x s τ s

r s r E s w x s s w x s w x s s

, , , , d d

d d d

t τ

s

t τ

s

t

s

τ

t τ

0

1

0

11 12 11 12

0

11 12

0

12

0

11 12

k k

k

( ( ) ( ) ( )) [ ( ) ( ) ( ( )) ( ( ))]

[ ( ) ( )] ( ( )) [ ( ( )) ( ( ))]

∫ ∫

∫ ∫ ∫

− ≤ + − + −

≤ + + − −

∧ ∧

−

∧

and

L V s E x s x s τ r s E r s r E w x s w x s τ E

r s r E E w x s E w x s w x s E

, , , , d d

d d d ,

t τ

s s

t τ

s s

t

s s

τ

s

t τ

s

0

2

0

21 22 21 22

0

21 22

0

22

0

21 22

k k

k

( ( ) ( ) ( )) [ ( ) ( ) ( ( )) ( ( ))]

[ ( ) ( )] ( ( )) [ ( ( )) ( ( ))]

∫ ∫

∫ ∫ ∫

− ≤ + − + −

≤ + + − −

∧ ∧

−

∧

where we extend E s( ) to τ, 0[ )− by setting E s E 0( ) ( )= , then

V t τ E x t τ r t τ

V x i L V s E x s x s τ r s s L V s E x s x s τ r s E

V x i r s r E s r s r E E w ξ θ θ w ξ s E A

, , ,

0, 0, 0 , , , , , d , , , , d

0, 0, 0 , d d d d .

k t τ k k

t τ

s

t τ

s s

t

s

t

s s

τ τ

s

0

0

1

0

2

0

0

11 12

0

21 22

0

12

0

22

k

k k

�

� � �

�

( ) ( )

( ( ) ) ( ( ) ( ) ( )) ( ( ) ( ) ( ))

( ( ) ) [ ( ) ( )] [ ( ) ( )] ( ( )) ( ( ))

( )
∫ ∫

∫ ∫ ∫ ∫

∧ ∧ ∧

= + − + −

≤ + + + + + + ≔

∧
∧ ∧

− −

This yields that

P τ t
A

V t E x iinf , , ,
.k

x k t i S t, 0,

( )
( )

≤ ≤
∣ ∣≥ ≥ ∈

Taking k → ∞, we can see from (3.4) that P τ t 0( )≤ =∞ . Since t is arbitrary, it follows that P τ 1( )= ∞ =∞ ,

this completes the proof. □

Now, let us prove our main results.

Proof of Theorem 3.1. We divide the proof into three steps.

Step 1. For any ξ and i0 we write x t i ξ x t; ,0( ) ( )= for simply. It is well known that a continuous time Markov

chain r t( ) with generator γΓ ij N N{ }= × can be expressed as a stochastic integral with respect to a Poisson

618  Xiaozhi Zhang et al.



random measure. In fact, let Δij be consecutive, left closed, right open intervals of the real line each having

length γij such that

⎡

⎣
⎢
⎢

⎞

⎠

⎟
⎟

⎡

⎣
⎢
⎢

⎞

⎠

⎟
⎟

⎡

⎣
⎢
⎢

⎞

⎠

⎟
⎟

⎡

⎣
⎢
⎢

⎞

⎠

⎟
⎟

γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ

Δ 0, , Δ , , , Δ , ,

Δ , , Δ , , ,

Δ ,

N

j

N

j
j

N

j

j

N

j
j

N

j
j

N

j
j

N

j

N

j

N

j
j j

N

j
j

N

j
j j

N

j

12 12 13 12 12 13 1

2

1

1

2

1

21

2

1

2

1 21 23

2

1 21

2

1 21 23

2

2

1

1, 2

1

2

2

1

1, 2

2

[ ) [ ) ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

= = + … =

= + = + + + …

= + +

=

−

=

= = = =

= = ≠

−

= = ≠

and so on. Define the function h S: � �× → by

⎧
⎨
⎩

h i y
j i y

,
, if Δ ,

0, otherwise.

ij
( ) = − ∈

Then r t h r t y ν t yd , d , d
R

( ) ( ( ) ) ( )∫= − with initial condition r r0 0( ) = , where ν t yd , d( ) is a Poisson random

measure with intensity t m yd d( )× , where m is the Lebesgue measure on � . In what follows, we use the

generalized time-changed Itô formula in Lemma 2.1: ifV C S;n1,1,2
� � � �( )∈ × × ×+ + + , then for any t 0≥ ,

V t E x t r t V x r L V s E x s x s τ r s s

L V s E x s x s τ r s E

V s E x s r s g s E x s x s τ r s B

V s E x s i h r s l V s E x s r s μ s l

, , , 0, 0, , 0 , , , , d

, , , , d

, , , , , , , d

, , , , , , , d , d ,

t

t

s

t

s s

t

x s s E

t

R

s s

0

0

1

0

2

0

0

0

s

( ( ) ( )) ( ( )) ( ( ) ( ) ( ))

( ( ) ( ) ( ))

( ( ) ( )) ( ( ) ( ) ( ))

[ ( ( ) ( ( ) )) ( ( ) ( ))] ( )

∫

∫

∫

∫∫

= + −

+ −

+ −

+ + −

where μ s l ν s l m l sd , d d , d d d( ) ( ) ( )= − is a martingale measure. By using conditions (3.1) and (3.2), we can

see that

V t E x t r t V ξ r w ξ s s w ξ s E r s r E s

r s r E E w x s w x s s

w x s w x s E V s E x s g s E x s x s τ r s B

V s E x s i h r s l V s E x s r s μ s l

, , , 0, 0, 0 , 0 d d d

d d

d , , , , , , d

, , , , , , , d , d .

t

τ τ

s

t

s

t

s s

t

t

s

t

x s s E

t

R

s s

0

12

0

22

0

11 12

0

21 22

0

11 12

0

21 22

0

0

0

s

( ( ) ( )) ( ( ) ( )) ( ( )) ( ( )) [ ( ) ( )]

[ ( ) ( )] [ ( ( )) ( ( ))]

[ ( ( )) ( ( ))] ( ( )) ( ( ) ( ) ( ))

[ ( ( ) ( ( ) )) ( ( ) ( ))] ( )

∫ ∫ ∫

∫ ∫

∫ ∫

∫∫

≤ + + + +

+ + − −

− − + −

+ + −

− −

Applying Lemma 2.2, the semimartingale convergence theorem yields that

V t E x t r tlim sup , , , a.s.
t

t( ( ) ( )) < ∞
→∞ (3.6)
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Moreover,

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

w x s w x s s w x s w x s E

V ξ r w ξ s s w ξ s E r s r E s r s r E E

d d

0, 0, 0 , 0 d d d d

.

t t

s

τ τ

s s s s

0

11 12

0

21 22

0

12

0

22

0

11 12

0

21 22

� �

�

[ ( ( )) ( ( ))] [ ( ( )) ( ( ))]

( ( ) ( )) ( ( )) ( ( )) [ ( ) ( )] [ ( ) ( )]

∫ ∫

∫ ∫ ∫ ∫

− + −

≤ + + + + + +

< ∞
− −

∞ ∞

Taking t → ∞ we obtain that

w x s w x s s w x s w x s Ed , d ,s

0

11 12

0

21 22� �[ ( ( )) ( ( ))] [ ( ( )) ( ( ))]∫ ∫− < ∞ − < ∞
∞ ∞

this means

w x s w x s s w x s w x s Ed , d a.s.s

0

11 12

0

21 22[ ( ( )) ( ( ))] [ ( ( )) ( ( ))]∫ ∫− < ∞ − < ∞
∞ ∞

(3.7)

Step 2. If we setw w w1 2= − , wherew w wi i i1 2= + , i 1, 2= . Clearly,w C ,n� �( )∈ + . It is straightforward to see

from (3.7) that

w x tlim inf 0 a.s.
t

( ( )) =
→∞ (3.8)

We now claim that

w x tlim 0 a.s.
t

( ( )) =
→∞ (3.9)

If it is false, then

⎧
⎨
⎩

⎫
⎬
⎭

P w x tlim sup 0 0;
t

( ( )) > >
→∞

therefore, there exists a number ε 0> such that

P εΩ 3 ,1( ) ≥ (3.10)

where

⎧
⎨
⎩

⎫
⎬
⎭

w x t εΩ lim sup 2 .
t

1 ( ( ))= >
→∞

Since Et is continuous, by means of (3.6) and the continuity of both the solution x t( ) and the function

V t E x r t, , ,t( ( )) [6,12], we can see that

V t E x t r tsup , , , a.s.
τ t

t( ( ) ( )) < ∞
− ≤ <∞

Define the function μ : � �→+ + by

μ k V t E x i kinf , , , for 0.
x k t i S

t
,0 ,

( ) ( )
∣ ∣
= ≥
≥ ≤ <∞ ∈

Clearly μ x t V t E x t r t, , ,t(∣ ( )∣) ( ( ) ( ))≤ , hence,

μ x t V t E r t x tsup sup , , , a.s.
τ t τ t

t(∣ ( )∣) ( ( ) ( ))≤ < ∞
− ≤ <∞ − ≤ <∞

On the other hand, by (3.4) we have

μ klim .
k

( ) = ∞
→∞
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Therefore, it follows that

x tsup a.s.
τ t

∣ ( )∣ < ∞
− ≤ <∞

(3.11)

Since the initial data ξ is bounded, we can find a positive number h sufficiently large, which depends on ε,

satisfying ξ θ h∣ ( )∣ < for all τ θ 0− ≤ ≤ almost surely, while

P εΩ 1 ,2( ) ≥ − (3.12)

where

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

x t hΩ sup .
τ t

2 ∣ ( )∣= <
− ≤ <∞

It is easy to see from (3.10) and (3.12) that

P εΩ Ω 2 .1 2( )∩ ≥ (3.13)

In what follows, we define a sequence of stopping times,

σ t w x t ε σ t σ w x t ε i

σ t σ w x t ε τ t x t h i

inf 0 : 2 , inf : , 1, 2, ,

inf : 2 , inf 0 : , 1, 2, .

i i

i i h

1 2 2 1

2 1 2

{ ( ( )) } { ( ( )) }

{ ( ( )) } { ∣ ( )∣ }

= ≥ ≥ = ≥ ≥ = …
= ≥ ≥ = ≥ ≥ = …

−

+

Throughout this paper we set inf∅ = ∞, note from (3.8) and the definitions ofΩi (i 1, 2= ) that ifω Ω Ω1 2∈ ∩ ,

then

τ ω σ ω iand for all 1.h i( ) ( )= ∞ < ∞ ≥ (3.14)

Let I be the indicator function of set A, by means of the fact that σ i2 < ∞ whenever σ i2 1 < ∞− and (3.8),

we obtain that

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

w x t t

I w x t t

ε I σ σ

d

d

.

i

σ σ τ

σ

σ

i

σ τ i i

0

1

, ,

1

, 2 2 1

i i h

i

i

i h

2 1 2

2 1

2

2 1

�

�

�

( ( ))

( ( ))

[ ( )]

{ }

{ }

∫

∫∑

∑

∞>

≥

≥ −

∞

=

∞

<∞ <∞ =∞

=

∞

<∞ =∞ −

−

−

−

(3.15)

On the other hand, by the hypothesis (H1), there exists a constant Kh such that

ρ t t x y i f t t x y i g t t x y i K, , , , , , , , , , , , ,h1 2 1 2 1 2∣ ( )∣ ∣ ( )∣ ∣ ( )∣∨ ∨ ≤

whenever x y h∣ ∣ ∣ ∣∨ ≤ and t 0> . By the Hölder inequality and the martingale property of the indefinite Itô

integral [3], one can compute that

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

I x τ σ t x τ σ

I ρ s E x s x s τ r s s

I f s E x s x s τ r s E

I g s E x s x s τ r s B

sup

3 sup , , , , d

3 sup , , , , d

3 sup , , , , d

τ σ
t T

h i h i

τ σ
t T

τ σ

τ σ t

s

τ σ
t T

τ σ

τ σ t

s s

τ σ
t T

τ σ

τ σ t

s E

0
2 1 2 1

2

0

2

0

2

0

2

h i

h i

h i

h i

h i

h i

h i

h i

h i

h i

s

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

�

�

�

�

[ ∣ ( ( )) ( )∣ ]

( ( ) ( ) ( ))

( ( ) ( ) ( ))

( ( ) ( ) ( ))

( )

( )

( )

∫

∫

∫

∧ + − ∧

≤ −

+ −

+ −

∧ <∞
≤ ≤

− −

∧ <∞
≤ ≤

∧

∧ +

∧ <∞
≤ ≤

∧

∧ +

∧ <∞
≤ ≤

∧

∧ +

−

−

−

−

−

−

−

−

−

−

(3.16)
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⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

T I ρ s E x s x s τ r s s

T I f s E x s x s τ r s E

I g s E x s x s τ r s E

K T T E E

3 , , , , d

3 , , , , d

12 , , , , d

3 4 .

τ σ

τ σ

τ σ T

s

τ σ

τ σ

τ σ T

s s

τ σ

τ σ

τ σ T

s s

h σ T σ

2

2

2

2 2

h i

h i

h i

h i

h i

h i

h i

h i

h i

i i

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1

2 1 2 1

�

�

�

�

∣ ( ( ) ( ) ( ))∣

∣ ( ( ) ( ) ( ))∣

∣ ( ( ) ( ) ( ))∣

( )

( )

( )

( )

∫

∫

∫

( )

≤ −

+ −

+ −

≤ + + −

∧ <∞

∧

∧ +

∧ <∞

∧

∧ +

∧ <∞

∧

∧ +

+

−

−

−

−

−

−

−

−

−

− −

Since w( )⋅ is continuous in n
� , it must be uniformly continuous in the closed ball S x x h:h

n
�{ ∣ ∣ }= ∈ ≤ .

We can therefore choose δ δ ε 0( )= > so small that

w x w y ε x y δ x y Swhenever , , .h∣ ( ) ( )∣ ∣ ∣− < − < ∈ (3.17)

Furthermore, since Et is continuous at t σ i2 1= − , we choose T T ε δ h, , 0( )= > sufficiently small such that

K T T E E δ ε3 4 .h σ T σ
2 2 2

i i2 1 2 1
�[ ( )( )]+ + − <+− −

It follows from (3.16) that

P τ σ x τ σ t x τ σ δ
K T T E E

δ
εsup

3 4
.h i

t T
h i h i

h σ T σ
2 1

0
2 1 2 1

2 2

2

i i2 1 2 1
�

({ } { ∣ ( ( )) ( )∣ })
[ ( ) ]( )∧ < ∞ ∩ ∧ + − ∧ ≥ ≤ + + − <−

≤ ≤
− −

+− −

This yields that

⎛

⎝

⎜
⎜
⎜

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⎞

⎠

⎟
⎟
⎟

P σ τ x σ t x σ δ

P τ σ τ x τ σ t x τ σ δ

P τ σ x τ σ t x τ σ δ ε

, sup

, sup

sup .

i h
t T

i i

h i h
t T

h i h i

h i
t T

h i h i

2 1
0

2 1 2 1

2 1
0

2 1 2 1

2 1
0

2 1 2 1

{ } ∣ ( ) ( )∣

{ } ∣ ( ( )) ( )∣

{ } ∣ ( ( )) ( )∣

< ∞ = ∞ ∩ + − ≥

= ∧ < ∞ = ∞ ∩ ∧ + − ∧ ≥

≤ ∧ < ∞ ∩ ∧ + − ∧ ≥ ≤

−
≤ ≤

− −

−
≤ ≤

− −

−
≤ ≤

− −

Recalling (3.17), we further compute

⎛

⎝

⎜
⎜
⎜

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⎞

⎠

⎟
⎟
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

⎞

⎠

⎟
⎟
⎟

P σ τ w x σ t w x σ ε

P σ τ x σ t x σ δ

P σ τ P σ τ x σ t x σ δ

ε ε ε

, sup

, sup

, , sup

2 .

i h
t T

i i

i h
t T

i i

i h i h
t T

i i

2 1
0

2 1 2 1

2 1
0

2 1 2 1

2 1 2 1
0

2 1 2 1

{ } ∣ ( ( )) ( ( ))∣

{ } ∣ ( ) ( )∣

{ } ({ } ∣ ( ) ( )∣

< ∞ = ∞ ∩ + − <

≥ < ∞ = ∞ ∩ + − <

≥ < ∞ = ∞ − < ∞ = ∞ ∩ + − ≥

≥ − =

−
≤ ≤

− −

−
≤ ≤

− −

− −
≤ ≤

− −(

(3.18)

Set

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

w x σ t w x σ εΩ sup ,i
t T

i i
0

2 1 2 1∣ ( ( )) ( ( ))∣= + − <
≤ ≤

− −

noting that

σ ω σ ω T ω σ τif , Ω ,i i i h i2 2 1 2 1( ) ( ) { }− ≥ ∈ < ∞ = ∞ ∩− −
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we can derive from (3.15) and (3.18) that

ε I σ σ

ε I σ σ

εT P σ τ

εT ε

, Ω

,

i

σ τ i i

i

σ τ i i

i

i h i

i

1

, 2 2 1

1

, Ω 2 2 1

1

2 1

1

i h

i h i

2 1

2 1

�

�

[ ( )]

[ ( )]

({ } )

{ }

{ }

∑

∑

∑

∑

∞> −

≥ −

≥ < ∞ = ∞ ∩

≥ = ∞

=

∞

<∞ =∞ −

=

∞

<∞ =∞ ∩ −

=

∞

−

=

∞

−

−

it is a contradiction. So (3.9) must be hold.

Step 3. We first show that wKer( ) ≠ ∅. Note from (3.9) and (3.11) that there exists a Ω Ω0 ⊂ with P Ω 10( ) =
such that

w x t ω x t ω ωlim , 0 and sup , for all Ω .
t t0

0( ( )) ∣ ( )∣= < ∞ ∈
→∞ ≤ <∞

(3.19)

For anyω Ω0∈ , since x t ω, t 0{ ( )} ≥ is bounded, there exists an increasing sequence ti i 1{ } ≥ such that x t ω,i i 1{ ( )} ≥
converges to some y n

�∈ . Hence,

w y w x t ωlim , 0,
t

i( ) ( ( ))= =
→∞ (3.20)

which implies y wKer( )∈ , that is, wKer( ) ≠ ∅.
Now, we claim that

x t ω w ωlim d , , Ker 0 for all Ω .
t

0( ( ) ( )) = ∈
→∞ (3.21)

If it is not true, there exist some ω Ω0∈ such that

x t ω wlimsup d , , Ker 0;
t

( ( ) ( )) >
→∞

therefore, there is a subsequence x t ω,i i 1{ ( )} ≥ of x t ω, t 0{ ( )} ≥ such that

x t ω w ε id , , Ker , 1,i( ( ) ( )) ≥ ∀ ≥

for some ε 0> . Since x t ω,i i 1{ ( )} ≥ is bounded, we can find a subsequence x t ω,i i 1{ ( )} ≥ , which converges to z .

Clearly, z wKer( )∈ , that is, w z 0( ) > . However, from (3.19) we can see that

w z w x t ωlim , 0,
i

i( ) ( ( ))= =
→∞

which contradicts withw z 0( ) > . Hence, (3.21) holds and the required assertion (3.5) follows since P Ω 10( ) = .

This completes the proof. □

Corollary 3.1. Let conditions H1( ) and H2( ) hold. Assume that there are functions V C n1,1,2
� � �(∈ × × ×+ +

S r L, , ,ij
1

� � �) ( )∈+ + + and w C ,ij
n
� �( )∈ + , i j, 1, 2= such that

L V t E x y i r t r E w x w y

L V t E x y i r t r E w x w y

w x w x x i

, , , , ,

, , , , ,

, 0, 1, 2

t t

t t

i i

1 11 12 11 12

2 21 22 21 22

1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

≤ + − +
≤ + − +
> ∀ ≠ =

(3.22)

and

V t E x ilim inf , , , .
x t

t
0

( )
∣ ∣

= ∞
→∞ ≤ <∞
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Then

x t ξlim ; 0 a.s.
t

( ) =
→∞ (3.23)

for every ξ C τ, 0 ;b n
0

�([ ] )∈ −F .

Proof. By condition (3.22), x w wKer 1 2( )∉ − if x 0≠ . On the other hand, from Theorem 2.1 we obtain that

w wKer 1 2( )− ≠ ∅, then it must be w wKer 01 2( ) { }− = , and x t ξlim ; 0 a.s.t ( ) =→∞ immediately. □

4 Controllability of linear stochastic differential system

Let us consider the following linear SDE with delay:

x t A r t x t C r t x t τ D r t u t t F r t x t G r t x t τ E

M r t x t N r t x t τ B E

d d d

d

t

k

m

k k k t

1

( ) [ ( ( )) ( ) ( ( )) ( ) ( ( )) ( )] [ ( ( )) ( ) ( ( )) ( )]

[ ( ( )) ( ) ( ( )) ( )] ( )∑
= + − + + + −

+ + −
=

(4.1)

on t 0≥ with the initial data ξ x θ τ θ C τ: 0 , 0 ;b n
0

�{ ( ) } ([ ] )= − ≤ ≤ ∈ −F and r i0 0( ) = . Here u is an tF-mea-

surable and p
� -value control law. For each r t i S( ) = ∈ , we write A i Ai( ) = . A C F G M N, , , , ,i i i i ki ki are all n n×

constant matrices and Di is an n p× matrix.

The aim of this study is to design a delay-independent feedback controller with the form u t( ) =
H r t x t( ( )) ( ), such that the following closed-loop system of (4.1)

x t A r t x t C r t x t τ D r t H r t x t t F r t x t G r t x t τ E

M r t x t N r t x t τ B E

d d d

d

t

k

m

k k k t

1

( ) [ ( ( )) ( ) ( ( )) ( ) ( ( )) ( ( )) ( )] [ ( ( )) ( ) ( ( )) ( )]

[ ( ( )) ( ) ( ( )) ( )] ( )∑
= + − + + + −

+ + −
=

becomes almost surely asymptotically stable. Here for each mode r t i S( ) = ∈ , H i Hi( ) = is a p n× matrix.

Lemma 4.1. (The Schur complement [22]) Let M N R, , be constant matrices with appropriate dimensions

such that R R 0T= > and M MT= . Then M NR N 0T1+ <− iff

⎡

⎣⎢
⎤

⎦⎥
M N

N R
0.

T − <

(Here, as usual, by R RT= we mean R is a symmetric matrix while by R 0> or R 0< we mean R is a positive-

definite or negative matrix, respectively.)

Theorem 4.1. If the following linear matrix inequalities (LMIs)

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

P Q C

C Q I
and

P Q G

G Q I
i S0 0,

i i i

i
T

i

i i i

i
T

i

1 2

−
<

−
< ∈

have the solutions Qi and Hi such that Q Q 0i i
T= > , where I is the n n× identity matrix and

P Q A A Q Q D H D H Q γ Q I

P Q F F Q M QM N QN I

,

2 2 .

i i i i
T

i i i i i i
T

i

l

N

il l

i i i i
T

i

k

m

ki
T

i ki

k

m

ki
T

i ki

1

1

2

1 1

( ) ∑

∑ ∑

= + + + + +

= + + + +

=

= =

Then system (4.1) is almost surely asymptotically stable with the controller u t H r t x t( ) ( ( )) ( )= .
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Proof. Let V x i x Q x, T
i( ) = , then by the generalized time-changed Itô formula in Lemma 2.1,

L V x y i x Q A D H x x Q C y x γ Q x

L V x y i x Q Fx G y M x N y Q M x N y

, , 2 2 ,

, , 2 .

T
i i i i

T
i i

T

l

N

il l

T
i i i

k

m

ki ki
T

i ki ki

1

1

2

1

( ) ( )

( ) [ ] [ ] [ ]

∑

∑

= + + +

= + + + +

=

=

Note that

x QAx x QA A Q x x QDHx x QDH DH Q x2 , 2 .T T T T T T[ ] [ ( ) ]= + = +

From the following inequality

y x QC y x QC 0,T T T T T( )( )− − ≥

it follows that

x QCy x QCy y C Qx y y x QCC Qx2 .T T T T T T T= + ≤ +

Then

L V x Q A A Q x x Q D H D H Q x x Q CC Q x y y x γ Q x

w x w y ,

T
i i i

T
i

T
i i i i i

T
i

T
i i i

T
i

T T

l

N

il l

i

1

1

11 12

[ ] [ ( ) ]

( ) ( )

∑≤ + + + + + +

≤ − +
=

where

w x x P Q CC Q I x w x x x, .i
T

i i i i
T

i
T

11 1 12( ) [ ] ( )= − − + =

By Lemma 4.1, P Q CC Q 0i i i i
T

i1 + < , it means that, P Q CC Q 0i i i i
T

i1− − > , so we obtain that

w x x x w x x0, 0.i
T

11 12( ) ( )≥ = > ∀ ≠

Let w x w xmini S i11 11( ) ( )= ∈ , clearly w x w x11 12( ) ( )≥ for x 0≠ . Furthermore, note that

Mx Ny Q Mx Ny x M QMx y N QNy2 2 ,T T T T T[ ] [ ]+ + ≤ +

then

L V x Q F F Q x y y x Q GG Q x x M QM x y N Q N y

w x w y

2 2

,

T
i i i

T
i

T T
i i i

T
i

T

k

m

ki
T

i ki
T

k

m

ki
T

i ki

i i

2

1 1

21 22

[ ]

( ) ( )

∑ ∑≤ + + + + +

≤ − +
= =

where

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w x x P Q GG Q I N Q N x2i
T

i i i i
T

i

k

m

ki
T

i ki21 2

1

( ) ∑= − − + +
=

and

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w x x I N Q N x2 .i
T

k

m

ki
T

i ki22

1

( ) ∑= +
=

By Lemma 4.1, P Q GG Q 0i i i i
T

i2 + < , in other words, P Q GG Q 0i i i i
T

i2− − > , so we obtain that

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

w x x I N Q N x w x x2 0, 0.i
T

k

m

ki
T

i ki i21

1

22( ) ( )∑≥ + = > ∀ ≠
=

Let w x w xmini S i21 21( ) ( )= ∈ , w x w xmaxi S i22 22( ) ( )= ∈ , then it is clear that w x w x21 22( ) ( )≥ for x 0≠ . Therefore,

the system is almost surely asymptotically stable with the controller designed above. □
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Remark. If the controller u t( ) applies to the time-changed term Ed t, then system (4.1) becomes the fol-

lowing system:

x t A r t x t C r t x t τ t F r t x t G r t x t τ D r t u t E

M r t x t N r t x t τ B E

d d d

d .

t

k

m

k k k t

1

( ) [ ( ( )) ( ) ( ( )) ( )] [ ( ( )) ( ) ( ( )) ( ) ( ( )) ( )]

[ ( ( )) ( ) ( ( )) ( )] ( )∑
= + − + + − +

+ + −
=

(4.2)

In this case, we can also consider the asymptotic stability by means of the LMIs just renew P i1 and P i2 as

follows:

P Q A A Q γ Q I

P Q F F Q Q D H D H Q M QM N QN I

,

2 2 .

i i i i
T

i

l

N

il l

i i i i
T

i i i i i i
T

i

k

m

ki
T

i ki

k

m

ki
T

i ki

1

1

2

1 1

( )

∑

∑ ∑

= + + +

= + + + + + +

=

= =

In what follows, we shall give an example to show the aforementioned results.

Example 4.1. Let r t( ) be a right-continuous Markov chain taking values in S 1, 2{ }= with the generator

⎡
⎣⎢

⎤
⎦⎥γΓ

1 1
1 1

.ij 2 2( )= = − −×

Let B t( ) be a one-dimensional Brownian motion independent of r t( ). Now, let us consider the following

two-dimensional SDDE with Markovian switching as

x t A r t x t u t t F r t x t E N r t x t τ B td d d d , 0,t Et( ) [ ( ( )) ( ) ( )] ( ( )) ( ) ( ( )) ( )= + + + − ≥ (4.3)

where

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

A F N

A F N

1 1

2 3
,

2 3

3 12
,

1 1

1 0
,

1 2

1 3
,

2 0

2 3
,

1 0
1 1

.

1 1 1

2 2 2

( )
( )

= −− − = −− − =

= − −− − = −− − =

Next, let us design a feedback control u t H r t x t( ) ( ( )) ( )= in order to guarantee the stability of system (4.3).

To the end, we set

P Q A A Q QH H Q γ Q I

P Q F F Q N Q N I

,

2 .

i i i i
T

i i i i
T

i

l
il l

i i i i
T

i i
T

i i

1

1

2

2

∑= + + + + +

= + + +
=

It is easy to verify that the LMIs

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

P Q C

C Q I

P Q G

G Q I
i S0 and 0,

i i i

i
T

i

i i i

i
T

i

1 2

−
<

−
< ∈

have the solution

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Q H Q H
5 2

2 1
,

3 4

4 9
,

4 1

1 2
,

2 1

3 1
.1 1 2 2= = − − = = −− −

Obviously, Q1 and Q2 are positive-definite and symmetric matrices. By Theorem 4.1, we can see that

equation (4.3) is almost surely asymptotically stable with the controller u t H r t x t( ) ( ( )) ( )= . When the initial

condition x t col t t t τ1.1 sin , 1.8 cos ; 0( ) [ ( ) ( )] ( [ ])= ∈ − , τ 2= , r 0 1( ) = , Figure 1 shows the asymptotic beha-

vior in almost sure sense of the global solution for (4.3).
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5 Conclusions

The SDDEs driven by time-changed Brownian motions is a new research area for recent years. In this work,

we have considered the asymptotic stability of the time-changed SDDEs with Markovian switching, by

expanding the time-changed Itô formula and the time-changed semi-martingale convergence theorem.

Our result generalizes that of SDDEs in the literature. Due to the more construction of SDDEs with time

change than the usual SDDEs, our result is not a trivial generalization.
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