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Abstract. The stability problem of the Wonham filter with respect to initial conditions is ad-
dressed. The case of ergodic signals is revisited in view of a gap in the classic work of H. Kunita
(1971). We give new bounds for the exponential stability rates, which do not depend on the ob-
servations. In the nonergodic case, the stability is implied by identifiability conditions, formulated
explicitly in terms of the transition intensities matrix and the observation structure.
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1. Introduction. The optimal filtering estimate of a signal from the record of
noisy observations is usually generated by a nonlinear recursive equation subject to
the signal a priori distribution. If the latter is unknown and the filtering equation is
initialized by an arbitrary initial distribution, the obtained estimate is suboptimal in
general. From an applications point of view, it is important to know whether such an
estimate becomes close to the optimal one at least after enough time elapses. This
property of filters to forget the initial conditions is far from being obvious and in fact
generally remains an open and challenging problem.

In this paper, we consider the filtering setting for signals with a finite state space.
Specifically, let X = (Xt)t≥0 be a continuous time homogeneous Markov chain ob-
served via

Yt =
∫ t

0

h(Xs)ds+ σWt(1.1)

with the Wiener process W = (Wt)t≥0, independent of X, some bounded function h,
and σ 6= 0.

We assume thatXt takes values in the finite alphabet S = {a1, . . . , an} and admits
several ergodic classes. Namely,

S =
{
a1
1, . . . , a

1
n1︸ ︷︷ ︸

S1

, . . . , am1 , . . . , a
m
nm︸ ︷︷ ︸

Sm

}
,

where the subalphabets S1, . . . ,Sm are noncommunicating in the sense that for any
i 6= j and t ≥ s

(1.2) P
(
Xt ∈ Sj |Xs ∈ Si

)
= 0.

So, unless m = 1, Xt is a compound Markov chain with the transition intensities
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matrix

(1.3) Λ =


Λ1 0 0
0 Λ2 0
. . . . . . . . .
0 0 Λm


of m ergodic classes and is not ergodic itself.

The filtering problem consists in computation of the conditional distribution,

πνt (1) = P (Xν
t = a1|Y ν

[0,t]), . . . , π
ν
t (n) = P (Xν

t = an|Y ν
[0,t]),

where Y ν
[0,t] is the filtration, generated by {Y νs , 0 ≤ s ≤ t} satisfying the usual condi-

tions (henceforth, the superscript ν is used to emphasize that the distribution of X0

is ν).
The vector-valued random process πνt with entries πνt (1), . . . , πνt (n) is generated

by the Wonham filter [45] (see also [29, Chap. 9])

πν0 = ν,

dπνt = Λ∗πνt dt+ σ−2
(
diag(πνt )− πνt (π

ν
t )
∗)h(dY νt − h∗πνt dt),

(1.4)

where diag(x) is the scalar matrix with the diagonal x ∈ Rn, h is the column vector
with entries h(a1), . . . , h(an), and ∗ is the transposition symbol. If ν is unknown and
some other distribution β (on S) is used to initialize the filter, the “wrong” conditional
distribution πβνt is obtained:

πβν0 = β,

dπβνt = Λ∗πβνt dt+ σ−2
(
diag(πβνt )− πβνt (πβνt )∗

)
h(dY νt − h∗πβνt dt).

(1.5)

According to the intuitive notion of stability, given at the beginning of this section,
the filter defined in (1.5) is said to be asymptotically stable if

(1.6) lim
t→∞

E‖πνt − πβνt ‖ = 0,

where ‖ · ‖ is the total variation norm.
If the state space of the Markov chain X consists of one ergodic class (m = 1),

our setting is in the framework studied by Ocone and Pardoux [35]. In this case, there
exists the unique invariant distribution µ, so that

(1.7) lim
t→∞

‖Stγ − µ‖ = 0,

where St is the semigroup corresponding to X and γ is an arbitrary probability
distribution on S. Moreover,

lim
t→∞

∫
S
|Stf(x)− µ(f)|dµ(x) = 0(1.8)

holds for any bounded f : S 7→ R. So, it may seem that it remains only to assume

(1.9) ν � β

and allude to [35]. However, the proof of (1.6) given in [35] uses as its central argument
the uniqueness theorem for the stationary measure of the filtering process πνt which
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appeared in the work of H. Kunita [22]. Unfortunately, the proof of this theorem
(Theorem 3.3 in [22]) contains a serious gap, as elaborated in the next section.

A different approach to the stability analysis of the filters for ergodic signals
was initiated by Delyon and Zeitouni [19]. The authors studied the top Lyapunov
exponent of the filtering equation

γσ(β′, β′′) = lim
t→∞

1
t

log
∥∥πβ′νt − πβ

′′ν
t

∥∥, β′ and β′′ distributions on S,

and showed that γσ(β′, β′′) < 0 too when Λ and h satisfy certain conditions. Moreover,
the filter is found to be stable in the low signal-to-noise regime: limσ→∞ γσ(β′, β′′) ≤
<
[
λmax

(
Λ
)
] with λmax(Λ) being the eigenvalue of Λ with the largest nonzero real part.

These results were further extended by Atar and Zeitouni [3], where it is shown
that uniformly in σ > 0 and h

γσ(β′, β′′) ≤ −2 min
p6=q

√
λpqλqp, a.s.,(1.10)

and the high signal-to-noise asymptotics are obtained:

lim
σ→0

σ2γσ ≤ −1
2

d∑
i=1

µi min
j 6=i

[
h(ai)− h(aj)

]2
,

lim
σ→0

σ2γσ ≥ −1
2

d∑
i=1

µi

d∑
j=1

[
h(ai)− h(aj)

]2
,

where µ is the ergodic measure of X.
The method in [3] (and its full development in [2]) does not rely on [22] and is

based on the analysis of the Zakai equation, corresponding to (1.4) (see (5.2) below).
The analysis is carried out by means of the Hilbert projective metric and the Birkhoff
inequality, etc.; see section 5 for more details. This approach proved out its efficiency
in several filtering scenarios (see [1], [9], [11]).

Other results and methods related to the filtering stability can be found in [4], [10],
[12], [13], [14], [16], [17], [18], [15], [24], [25], [26], [27], [36], [37]. The linear Kalman–
Bucy case, being the most understood, is extensively treated by several authors: [5],
[32], [33], [19], [35], [28], [30] (sections 14.6 and 16.2).

In the present paper, we consider both ergodic and nonergodic signals. Apply-
ing the technique from Atar and Zeitouni [2], we show that in the ergodic case the
asymptotic stability holds true without any additional assumptions. In other words,
the conclusion of H. Kunita [22] is valid in the specific case under consideration.

In view of the counterexample given in section 3, it is clear that in general γσ
may vanish at σ = 0. So, it is interesting to find out which ergodic properties of the
signal are inherited by the filter regardless of the specific observation structure. In
this connection we prove the inequality

lim
t→∞

1
t

log ‖πβνt − πνt ‖ ≤ −
n∑
r=1

µr min
i 6=r

λri.

Since µ is the positive measure on S, unlike (1.10), this bound remains negative if at
least one row of Λ has all nonzero entries.

Also we give the nonasymptotic bound (compare with (1.10))

‖πνt − πβνt ‖ ≤ C exp
(
− 2tmin

p6=q

√
λpqλqp

)
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with some positive constant C depending on ν and β only.
For the discrete time case, related results can be found in Del Moral and Guionnet

[18] and Le Gland and Mevel [24]. For example, in [24] the positiveness assumption
for all transition probabilities is relaxed under certain constraints on the observation
process noise density.

In the case of nonergodic signal, m > 1, we show that the filtering stability holds
true if the ergodic classes can be identified via observations and the filter matched to
each class is stable. We formulate explicit sufficient identifiability conditions in terms
of Λ and h.

The paper is organized as follows. In section 2, we introduce the necessary no-
tations and clarify the role of condition ν � β in the filtering stability (Proposition
2.1). This section also gives a link to the gap in Kunita’s proof [22], while in section
3 the filtering setting is described for which the stability fails and the gap becomes
evident.

The main results are formulated in section 4 and proved in sections 5 and 6.

2. Preliminaries and connection to the gap in [22].

2.1. Notations. Throughout, ν � β is assumed.
In order to explain our approach, let us consider a general setting when (X,Y ) is

a Markov process with paths from the Skorokhod space D = D[0,∞)(R2) of right con-
tinuous functions having limits to the left functions. Moreover, the signal component
X is a Markov process itself.

We introduce a measurable space (D,D), where D = σ{(xs, ys), s ≥ 0} is the
Borel σ-algebra on D. Let D = (Dt)t≥0 be the filtration of Dt = σ{(xs, ys), s ≤ t}
and let Dy = (Dy

t )t≥0 be the filtration of Dy
t = σ{ys, s ≤ t}.

As before, we write (Xν
t , Y

ν
t ) and (Xβ

t , Y
β
t ), when the distribution of X0 is ν or

β, respectively, meaning that both pairs are defined on the same probability space,
have the same transition semigroup, but different initial distributions.

For a bounded measurable function f , we introduce πνt (f) := E(f(Xν
t )|Y ν

[0,t])

and πβt (f) := E(f(Xβ
t )|Y β

[0,t]). Since πνt (f) and πβt (f) are Y ν
[0,t]- and Y β

[0,t]-measurable

random variables, respectively, it is convenient to identify πνt (f) and πβt (f) with some
Dy
t -measurable functionals of trajectories Y ν[0,t] = {Y νs , s ≤ t} and Y β[0,t] = {Y βs , s ≤ t}.

For this purpose, letQν andQβ denote the distributions of (Xν , Y ν) and (Xβ , Y β)
on (D,D), respectively, and Qνt and Qβt be their restrictions on [0, t], so that Qν0 , Q

β
0

are the distributions of (Xν
0 , Y

ν
0 ), (Xβ

0 , Y
β
0 ). We also assume that

(2.1)
dQν0

dQβ0
(x, y) =

dν

dβ
(x0).

Since (Xν
t , Y

ν
t ) and (Xβ

t , Y
β
t ) have the same transition law, we have Qν � Qβ with

dQν

dQβ
(x, y) =

dν

dβ
(x0).

Without loss of generality, we assume that the filtrations D and Dy satisfy the
general conditions with respect to (Qν +Qβ)/2.

For fixed t, let Hβ
t (y) be a Dy

t -measurable functional so that Hβ
t (Y β) = πβt (f) a.s.

Moreover, due to Qν � Qβ , a version of Hβ
t (y) can be chosen such that the random

variable Hβ
t (Y ν) is well defined. Then we identify πβνt (f) with Hβ

t (Y ν).
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We do not assume that β � ν (and thus Qβ 6� Qν), so this construction fails for
πνβt (f). Nevertheless, a version of Hν

t (y) can be chosen such that Hν
t (Y ν) = πνt (f)

a.s. and used for the definition of πνβt (f). Indeed, let Q
β

and Q
ν

be the distributions
of Y ν and Y β , respectively, i.e., the marginal distributions of Qβ and Qν , obviously,
Q
ν � Q

β
as well as Q

ν

t � Q
β

t ; the restrictions of Q
ν

and Q
β

on the interval [0, t].
Moreover, dQ

ν
t

dQ
β
t

(Y β) = E( dνdβ (Xβ
0 )
∣∣Y β

[0,t]). Now define

πνβt (f) := Hν
t (Y β)I

(
dQ

ν

t

dQ
β

t

(Y β) > 0

)
.

We introduce the decreasing filtration X β
[t,∞) = σ{Xβ

s , s ≥ t}, the tail σ-algebra

(2.2) T (Xβ) =
⋂
t≥0

X β
[t,∞),

and σ-algebras X β
t = σ{Xβ

t }, Y β
[0,∞) =

∨
t≥0 Y β

[0,t].
Set

(2.3) πβ0
t (f) = E

(
f(Xβ

t )|Y β
[0,t] ∨X β

0

)
.

2.2. Filter stability. For bounded and measurable f , the estimate πνt (f) is
asymptotically stable with respect to β if

(2.4) lim
t→∞

E
∣∣πνt (f)− πβνt (f)

∣∣ = 0.

Note that, when the signal process takes values in a finite alphabet and (2.4) holds
for any bounded f , then (2.4) and (1.6) are equivalent.

We establish below that (2.4) holds if for large values of t the additional measure-
ment Xβ

0 is useless for estimation of f(Xβ
t ) via Y β[0,t] or, analogously, if the additional

measurement Xβ
t is useless for estimation of dν

dβ (Xβ
0 ) via Y β[0,∞).

Proposition 2.1. Assume ν � β. Then, any of the conditions
1.

(2.5) lim
t→∞

E
∣∣πβt (f)− πβ0

t (f)
∣∣ = 0,

2.

(2.6) E
(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞)

)
= lim
t→∞

E
(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)
provides (2.4).

Proof. Let us first show that, under ν � β, for any bounded f

(2.7)
E
∣∣πβνt (f)− πνt (f)

∣∣
= E

∣∣∣E(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)
E
(
f(Xβ

t )|Y β
[0,t]

)
− E

(dν
dβ

(Xβ
0 )f(Xβ

t )
∣∣Y β

[0,t]

)∣∣∣.
Write

E
∣∣πβνt (f)− πνt (f)

∣∣ = E
dν

dβ
(Xβ

0 )
∣∣πβt (f)− πνβt (f)

∣∣
= EE

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)∣∣πβt (f)− πνβt (f)
∣∣ = E

∣∣∣E(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)(
πβt (f)− πνβt (f)

)∣∣∣
= E

∣∣∣E(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)
E
(
f(Xβ

t )
∣∣Y β

[0,t]

)
− E

(dν
dβ

(Xβ
0 )πνβt (f)

∣∣Y β
[0,t]

)∣∣∣.
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So, it remains to show

(2.8) E
(dν
dβ

(Xβ
0 )πνβt (f)

∣∣Y β
[0,t]

)
= E

(dν
dβ

(Xβ
0 )f(Xβ

t )
∣∣Y β

[0,t]

)
.

With Dy
t -measurable and bounded function Ψt(y) we get

E
{

Ψt(Y β)E
(dν
dβ

(Xβ
0 )πνβt (f)

∣∣Y β
[0,t]

)}
= E

(
Ψt(Y β)

dν

dβ
(Xβ

0 )πνβt (f)
)

= E
(
Ψt(Y ν)πνt (f)

)
= E

(
Ψt(Y ν)f(Xν

t )
)

= E
(
Ψt(Y β)

dν

dβ
(Xβ

0 )f(Xβ
t )
)

and notice that (2.8) is valid by the arbitrariness of Ψt.

The proof of (2.5)⇒(2.4). Using (2.7) and

E
(dν
dβ

(Xβ
0 )f(Xβ

t )
∣∣Y β

[0,t]

)
= E

(dν
dβ

(Xβ
0 )πβ0

t (f)
∣∣Y β

[0,t]

)
,

we derive

E
∣∣πβνt (f)− πνt (f)

∣∣ = E
∣∣∣E(dν

dβ
(Xβ

0 )
∣∣Y β

[0,t]

)
πβt (f)− E

(dν
dβ

(Xβ
0 )πβ0(f)

∣∣Y β
[0,t]

)∣∣∣
= E

∣∣∣E(dν
dβ

(Xβ
0 )
(
πβt (f)− πβ0(f)

)∣∣Y β
[0,t]

)∣∣∣ ≤ E
dν

dβ
(Xβ

0 )
∣∣πβt (f)− πβ0

t (f)
∣∣,

where the Jensen inequality has been used. Let for definiteness |f | ≤ K with some
constant K. Then πβt (f), πβ0

t (f) can also be chosen such that |πβt (f)| and |πβ0
t (f)|

are bounded by K. Hence, for any C > 0, we have

E
∣∣πβνt (f)− πνt (f)

∣∣ ≤ CE
∣∣πβt (f)− πβ0

t (f)
∣∣+ 2KP

(dν
dβ

(Xβ
0 ) > C

)
.

Therefore, limt→∞E
∣∣πβνt (f) − πνt (f)

∣∣ ≤ 2KP
(
dν
dβ (Xβ

0 ) > C
)

and by the Chebyshev

inequality P
(
dν
dβ (Xβ

0 ) > C
)
≤ C−1 → 0, C →∞.

The proof of (2.6)⇒(2.4). By (2.7)

E
∣∣πβνt (f)− πνt (f)

∣∣
= E

∣∣∣∣∣E(f(Xβ
t )E

[dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

]∣∣∣Y β
[0,t]

)
− E

(
f(Xβ

t )
dν

dβ
(Xβ

0 )|Y β
[0,t]

)∣∣∣∣∣.
Notice also

E
(
f(Xβ

t )
dν

dβ
(Xβ

0 )|Y β
[0,t]

)
= E

(
f(Xβ

t )E
[dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

]∣∣Y β
[0,t]

)
.

Since |f | ≤ K, by the Jensen inequality we have

(2.9) E
∣∣πβνt (f)− πνt (f)

∣∣
≤ KE

∣∣∣E(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)
− E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)∣∣∣.
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Both random processes E( dνdβ (Xβ
0 )
∣∣Y β

[0,t]) and E( dνdβ (Xβ
0 )
∣∣Y β

[0,∞) ∨ X β
[t,∞)) are uni-

formly integrable forward and backward martingales with respect to the filtrations
(Y β

[0,t])t≥0 and (Y β
[0,∞) ∨ X β

[t,∞))t≥0. Therefore, they admit limits a.s. in t → ∞:

E( dνdβ (Xβ
0 )
∣∣Y β

[0,∞)) and lim
t→∞

E( dνdβ (Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)), respectively. By (2.6)

lim
t→∞

∣∣∣E(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)
− E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)∣∣∣ = 0.

We show also that

(2.10) lim
t→∞

E
∣∣∣E(dν

dβ
(Xβ

0 )
∣∣Y β

[0,t]

)
− E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)∣∣∣ = 0.

Denote by αt any of E
(
dν
dβ (Xβ

0 )
∣∣Y β

[0,t]

)
and E

(
dν
dβ (Xβ

0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)
and

α∞ = lim
t→∞

αt.

It is clear that (2.10) holds true if limt→∞E|αt − α∞| = 0. Since limt→∞ αt = α∞,
αt ≥ 0, and Eαt ≡ Eα∞ = 1, by the Scheffe theorem we get the desired property.

Thus the right-hand side of (2.9) converges to zero and the result follows.

2.3. Connection to the gap in [22]. In [22], H. Kunita studies1 ergodic prop-
erties of the filtering process πνt . He considers πνt as a Markov process with values in
the space of probability measures and claims (in Theorem 3.3) that there exists the
unique invariant measure being “limit point” of marginal distributions of πνt , t↗∞.
As was later shown in [35], this result is the key to the stability analysis under (1.8).

Below we demonstrate that the main argument, used in the proof of Theorem 3.3
of [22], cannot be taken for granted. We discuss this issue in the context of Propo-
sition 2.1. Suppose the Markov process X is ergodic in the sense of (1.7) and (1.8).
It is well known that its tail σ-algebra T (Xβ) (see (2.2) for definition) is empty a.s.
It is very tempting in this case to change the order of intersection and supremum as
follows:

(2.11)
⋂
t≥0

Y β
[0,∞) ∨X β

[t,∞) = Y β
[0,∞) ∨T (Xβ) a.s.

Then, the right-hand side of (2.6) is transformed to

lim
t→∞

E
(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)
= E

dν

dβ
(Xβ

0 )
∣∣ ⋂
t≥0

{
Y β

[0,∞) ∨X β
[t,∞)

}
= E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨T (Xβ)
)

= E
(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞)

)
and (2.6) would be correct, regardless (!) of any other ingredients of the problem
(e.g., with σ = 0 in (1.1)).

In [22], the relation of (2.11) type plays the key role in verification of the unique-
ness for the invariant measure corresponding to πνt , t ≥ 0. However, the validity of
(2.11) is far from being obvious. According to Williams [44], it “...tripped up even

1The notations of this paper are used here.
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Kolmogorov and Wiener” (see Sinai [39, p. 837] for some details). The reader can find
a discussion concerning (2.11) in von Weizsäcker [43]; unfortunately, the counterex-
ample there is incorrect. A proper counterexample to (2.11) is given in Exercise 4.12
in Williams [44], which, however, seems somewhat artificial in the filtering context.
It turns out that the example, considered by Delyon and Zeitouni in [19] (see [21] by
Kaijser for its earlier discrete time version), is nothing but another case when (2.11)
fails.

For the reader’s convenience, we give below a detailed analysis of this example.
It is important to note that the counterexamples mentioned above do not fit

exactly into the setup considered by Kunita. They merely indicate that (2.11) is not
evident and so the claim of Theorem 3.3 in [22] remains a conjecture.

Generally, the stability of nonlinear filters for ergodic Markov processes remains
an open problem, and some results [23], [40], [41], [6], [8], [7], [35] based on [22] have
to be revised.

3. Counterexample. Below we give a detailed discussion of one counterexample
to (2.11). Consider Markov process X with values in S = {1, 2, 3, 4}, with the initial
distribution ν and the transition intensities matrix

(3.1) Λ =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

 .

All states of Λ communicate, and so X is an ergodic Markov process (see, e.g., [34])
with the unique invariant measure µ =

(
1/4 1/4 1/4 1/4

)
. Let h(x) = I(x =

1) + I(x = 3), that is,

Yt =
∫ t

0

[
I(Xs = 2) + I(Xs = 3)

]
ds+ σWt.

By Theorem 4.1 below, the filter is stable in this case for any σ > 0.

3.1. Noiseless observation. Consider the case σ = 0.
It will be convenient to redefine the observation process as follows:

Yt = [I(Xt = 1) + I(Xt = 3)].

We assume ν � β and notice that (2.1) holds true. We omit the superscripts ν and
β when the initial condition does not play a significant role. Since X is an ergodic
Markov process, satisfying (1.8), T (X) = (Ω,∅) a.s.

Proposition 3.1.

(3.2)
⋂
t≥0

(
Y[0,∞) ∨X[t,∞)

)
! Y[0,∞) a.s.

Proof. It suffices to show that X0 is a
⋂
t≥0(Y[0,∞) ∨X[t,∞))-measurable random

variable and at the same time X0 /∈ Y[0,∞).
The structure of matrix Λ admits only cyclic transitions in the following order:

· · · → {3} → {4} → {1} → {2} → {3} → · · · .
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Table 3.1
Typical trajectory of πt for Y0 = 1.

t [0, τ1) [τ1, τ2) [τ2, τ3) [τ3, τ4) [τ4, τ5) . . .
Yt 1 0 1 0 1 . . .

πt(1) ν1
ν1+ν3

0 ν3
ν1+ν3

0 ν1
ν1+ν3

. . .

πt(2) 0 ν1
ν1+ν3

0 ν3
ν1+ν3

0 . . .

So, since Y and X jump simultaneously, X0 can be recovered exactly from the tra-
jectory Ys, s ≤ t, and Xt for any t > 0, i.e., X0 is Xt ∨ Y[0,t]-measurable. Owing to
Xt ∨ Y[0,t] ⊂ X[t,∞) ∨ Y[0,∞), X0 is measurable with respect to⋂

t≥0

(
Y[0,∞) ∨X[t,∞)

)
.

Denote by (τi)i≥1 the time moments where Y jumps. It is not hard to check that
(τi)i≥0 is independent of (X0, Y0) and, moreover,

Y[0,t] =
∨
i≥0

σ{τi ≤ t} ∨ σ{Y0}.

Thus for any t ≥ 0

P
(
X0 = 1|Y[0,t]

)
= P

(
X0 = 1|

∨
i≥0

σ{τi ≤ t} ∨ σ{Y0}

)
= P

(
X0 = 1|Y0

)
=

ν1
ν1 + ν3

Y0.

(3.3)

Since (3.3) is valid for any t ≥ 0, we conclude that

P
(
X0 = 1|Y[0,∞)

)
=

ν1
ν1 + ν3

Y0.

Obviously I(X0 = 1) 6= ν1
ν1+ν3

Y0 and thus X0 is not Y[0,∞)-measurable.

3.2. Invariant measures of πt and the filter instability. Since It(2) +
It(4) = 1 − Yt and It(1) + It(3) = Yt, only It(1) and It(2) have to be filtered while
πt(3) = Yt−πt(1) and πt(4) = (1−Yt)−πt(2). The derivation of the filtering equations
is sketched in the appendix.

Proposition 3.2. The optimal filtering estimate satisfies

dπt(1) =
(
1− πt−(2)

)
(1− Yt−)dYt + πt−(1)Yt−dYt,

dπt(2) = −πt−(2)(1− Yt−)dYt − πt−(1)Yt−dYt

subject to π0(1) = ν1
ν1+ν3

Y0, π0(2) = ν2
ν2+ν4

(1− Y0).
Let us examine the behavior of the filter from Proposition 3.2. A pair of typical

trajectories are given in Table 3.1 (for Y0 = 1) and Table 3.2 (for Y0 = 0).
It is not hard to see that Y is itself a Markov chain with values in {0, 1} and

the transition intensities matrix
(−1 1

1 −1

)
, and thus its invariant measure is µ′ =(

1/2 1/2
)
. Hence, the invariant measure Φ of the filtering process (πt(1), πt(2)) is
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Table 3.2
Typical trajectory of πt for Y0 = 0.

t [0, τ1) [τ1, τ2) [τ2, τ3) [τ3, τ4) [τ4, τ5) . . .
Yt 0 1 0 1 0 . . .

πt(1) 0 ν2
ν2+ν4

0 ν4
ν2+ν4

0 . . .

πt(2) ν2
ν2+ν4

0 ν4
ν2+ν4

0 ν2
ν2+ν4

. . .

concentrated on eight vectors

φ1 =
( ν1
ν1+ν3

0

)
, φ2 =

(
0
ν1

ν1+ν3

)
, φ3 =

( ν3
ν1+ν3

0

)
, φ4 =

(
0
ν3

ν1+ν3

)
,

φ5 =
( ν2
ν2+ν4

0

)
, φ6 =

(
0
ν2

ν2+ν4

)
, φ7 =

( ν4
ν2+ν4

0

)
, φ8 =

(
0
ν4

ν2+ν4

)
with

Φ(φi) = (ν1 + ν3)/4, i = 1, 2, 3, 4,
Φ(φi) = (ν2 + ν4)/4, i = 5, 6, 7, 8,

and, consequently, Φ is not unique. Moreover, the optimal filter is not stable in
the sense of (1.6). In fact, for different initial conditions, the filtering distribution
πt, t > 0, can “sit” on different vectors!

4. Main results.

4.1. Ergodic case. Markov chain X is ergodic if and only if all entries of its
transition intensities matrix Λ communicate, i.e., for any pair of indices i and j, a
string of indices {`1, . . . , `m} can be found so that λi`1λ`1`2 . . . λ`mj 6= 0 (see, e.g., [34]).
In this case, the distribution of Xt converges to the positive invariant distribution µ
being the unique solution of Λ∗µ = 0 in the class of vectors with positive entries the
sum of which is equal to one.

Theorem 4.1. If all states of Λ communicate, then there exists a positive con-
stant c such for any ν and β

lim
t→∞

1
t

log ‖πβνt − πνt ‖ < −c a.s.

Remark 1. Clearly, Theorem 4.1 provides (1.6). Also it allows us to conclude
that lim

t→∞
‖πβνt − πνt ‖ = 0 a.s. for β concentrated in a single state of S. Then, in

particular, we have

lim
t→∞

‖πµ0
t − πµt ‖ = 0

which is the main argument in the proof of existence of the unique invariant measure
for the process (πt)t≥0. This fact corroborates Kunita’s result from [22] in the finite
state space setup of Theorem 4.1.

Actually, Theorem 4.1 verifies the logarithmic rate in t→∞ which is in general
a function of Λ, h and σ. However, stronger assumptions on Λ guarantee exponential
or logarithmic rates, regardless of h and σ (σ is only required to be nonzero).
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Theorem 4.2. Assume all states of Λ communicate. Then

(4.1) lim
t→∞

1
t

log ‖πβνt − πνt ‖ ≤ −
n∑
r=1

µr min
i 6=r

λri.

Remark 2. The bound (4.1) is negative if at least one row of Λ has all nonzero
entries.

Theorem 4.3. Assume all entries of Λ are nonzero.
1. If ν � β, then

(4.2) E‖πβνt − πνt ‖ ≤ n
n∑
j=1

dν

dβ
(aj) exp

(
− 2tmin

p6=q

√
λpqλqp

)
, t > 0.

2. If ν ∼ β, then

(4.3) ‖πβνt − πνt ‖ ≤ n2 max
j

dν

dβ
(aj) max

j

dβ

dν
(aj) exp

(
− 2tmin

p6=q

√
λpqλqp

)
, t > 0.

4.2. Nonergodic case. Let m ≥ 2 and Λ be given in (1.3). If X0 ∈ Sj , then X
is a Markov process with values in Sj with transition intensities matrix Λj . We denote
this process by Xj . In addition to h, introduce column vectors hj , j = 1, . . . ,m, with
entries h(aj1), . . . , h(a

j
nj

), respectively.
Theorem 4.4. Assume the following.

A-1. For any j, all states of Λj communicate.
A-2. For each j, k with j 6= k, either

h∗jµ
j 6= h∗kµ

k

or
h∗j diag(µj)Λqjhj 6= h∗k diag(µk)Λqkhk, for some 0 ≤ q ≤ nj + nk − 1.

Then the asymptotic stability (1.6) holds true.
The condition A-1 is inherited from Theorem 4.1 to ensure the stability within

each ergodic class, while under A-2, Y[0,∞) completely identifies the class in which X
actually resides.

5. Proofs for the ergodic case. Recall that under m = 1, X is a homogeneous
ergodic Markov chain with values in the finite alphabet S = {a1, . . . , an} with the
transition intensities matrix Λ. The unique invariant measure µ = (µ1, . . . , µn) is the
positive distribution on S. Let ν be the distribution of X0 and β a probability measure
on S. The observation process Y is defined in (1.1). Recall that the entries of πνt and
πβνt are the true and “wrong” conditional probabilities, respectively, as defined in the
introduction.

5.1. The proof of Theorem 4.1. We use the method proposed by Atar and
Zeitouni in [2], which is elaborated for the considered filtering setup for the reader’s
convenience.

Recall the following facts from the theory of nonnegative matrices. For a pair
(p, q) of nonnegative measures on S (i.e., vectors with nonnegative entries), the Hilbert
projective metric H(p, q) is defined as the following (see, e.g., [38]):

(5.1) H(p, q) =

 log
max

j:qj>0
(pj/qj)

min
i:qi>0

(pi/qi)
, p ∼ q,

∞, p 6∼ q.
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The Hilbert metric is known to satisfy the following properties:
1. H(c1p, c2q) = H(p, q) for any positive constants c1 and c2.
2. For matrix A with nonnegative entries (Aij),

H
(
Ap,Aq

)
≤ τ(A)H

(
p, q
)

(see, e.g., [38]),

where τ(A) = 1−
√
ψ(A)

1+
√
ψ(A)

is the Birkhoff contraction coefficient with

ψ(A) = min
i,j,k,`

AikAj`
Ai`Ajk

.

3. ‖p− q‖ ≤ 2
log 3H(p, q) (Lemma 1 in [2]).

Returning to the filtering problem, let us first consider the special case when
ν = µ, and thus the signal Xµ is the stationary Markov chain. It is well known that
πµt = ηµt /〈1, η

µ
t 〉, where 1 denotes the vector with unit entries, 〈·, ·〉 is the usual inner

product, and ηµt solves the Zakai equation

(5.2) dηµt = Λ∗ηµt dt+ σ−2 diag(h)ηµt dY
µ
t

subject to ηµ0 = µ. Similarly, πβµt = ηβµt /〈1, ηβµt 〉, where ηβµt is the solution of (5.2)
subject to ηβµ0 = β.

The Zakai equation possesses the unique strong solution which is linear with
respect to the initial condition. Hence, ηµt = J[0,t]µ and ηβµt = J[0,t]β, t > 0, where
J[0,t] is the random Cauchy matrix corresponding to (5.2).

The matrix J[0,t] can be factored (here btc is the integer part of t):

J[0,t] = J[btc,t]

 btc∏
n=2

J[n−1,n]

 J[0,1].

The properties of the Hilbert metric, listed above, provide∥∥πµt − πβµt
∥∥ ≤ 2

log 3
H
(
πµt , π

βµ
t

)
=

2
log 3

H
(
J[0,t]µ, J[0,t]β

)
≤ 2

log 3
τ
(
J[btc,t]

) btc∏
n=2

τ
(
J[n−1,n]

)
H
(
J[0,1]µ, J[0,1]β

)
.

Assume for a moment that H
(
J[0,1]µ, J[0,1]β

)
<∞ a.s. Then

(5.3) lim
t→∞

1
t

log
∥∥πµt − πβµt

∥∥ ≤ lim
t→∞

1
btc

btc∑
n=2

log τ
(
J[n−1,n]

)
≤ lim
t→∞

1
btc

btc∑
n=2

{
− 1 ∨ log τ

(
J[n−1,n]

)}
= E

[
− 1 ∨ log τ

(
J[0,1])

]
≤ 0.

The equality is implied by the law of large numbers, which is valid since −1 ≤{
− 1 ∨ log τ

(
J[n−1,n]

)}
≤ 0 and log τ

(
J[n−1,n]

)
is generated by

{Xµ
s −Xµ

n−1, Ws −Wn−1}, n− 1 ≤ s < n,

where the processes Xµ and W are independent and Xµ is an ergodic Markov chain.
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Let Jν[n−1,n] be the matrices defined similarly to J[n−1,n] with Y µ replaced by Y ν .

Recall that µ is the positive measure on S, so that ν � µ and, in turn, Q
ν � Q

µ

(here Q
µ

is the distribution of Y µ).
Since (5.3) holds Q

µ
-a.s., it also holds Q

ν
-a.s., i.e., with J[n−1,n] replaced by

Jν[n−1,n] which gives the following theorem.
Theorem 5.1. (version of Theorem 1(a) in Atar and Zeitouni [2]). Assume that

all states of Λ communicate, i.e., X is an ergodic Markov chain. Assume J[0,1]β and
J[0,1]ν have positive entries a.s. Then,

(5.4) lim
t→∞

1
t

log
∥∥πνt − πβνt

∥∥ ≤ E
[
− 1 ∨ log τ

(
J[0,1]

)]
a.s.

Now the statement of Theorem 4.1 follows from the lemma below.
Lemma 5.2. The right-hand side of (5.4) is strictly negative.
Proof. It suffices to show that all entries of J[0,1] are positive a.s. For fixed i, j,

we have

J[0,t](i, j) = δij +
∫ t

0

J[0,s](i, j)
[
λiids+ σ−2h(ai)dY µs

]
+
∫ t

0

∑
r 6=i

λriJ[0,s](r, j)ds.

With the help of the Itô formula and with

φt(i) = exp
{
λiit+ σ−2h(ai)Y

µ
t − (1/2)σ−2h2(ai)t

}
we derive

(5.5)

J[0,t](j, j) = φt(j)
(
1 +

∫ t

0

φ−1
s (j)

∑
r 6=j

λrjJ[0,s](r, j)ds
)
,

J[0,t](i, j) = φt(i)
∫ t

0

φ−1
s (i)

∑
r 6=i

λriJ[0,s](r, j)ds, i 6= j.

Also notice that the entries of J[0,t] are unnormalized conditional probabilities and so
nonnegative a.s. Since all states of Λ communicate, for a pair of indices (i, j) there is
a string of indexes j = i`, . . . , i1 = i such that λi`i`−1 , . . . , λi2i1 > 0. So from (5.5), it
follows that a.s.

J[0,t](i`, i`) ≥ φt(i`) > 0,

J[0,t](i`−1, i`) ≥ φt(i`−1)
∫ t

0

φ−1
s (i`−1)λi`i`−1J[0,s](i`, i`)ds > 0,

J[0,t](i`−2, i`) ≥ φt(i`−2)
∫ t

0

φ−1
s (i`−2)λi`−1i`−2J[0,s](i`−1, i`)ds > 0

for any t > 0, and so on until we get J[0,t](i1, i`) > 0, t > 0.

5.2. The proof of Theorem 4.2. Denote ρji(t) = P
(
Xβ

0 = aj |Y β
[0,t], X

β
t = ai

)
.

If β is a positive distribution, then by Lemma 9.5 in [29, Chap. 9] we have

ρji(0) =

{
1, j = i,

0, j 6= i,

dρji(t)
dt

=
∑
r 6=i

λriπ
β
t (r)

πβt (i)

(
ρjr(t)− ρji(t)

)
, i = 1, . . . , n.

(5.6)
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Remark 3. By the arguments used in the proof of Lemma 5.2, it can be readily
shown that πβt (i) > 0 a.s., i = 1, . . . , n, for any t > 0. Then (5.6) remain valid for
t > t0 for any t0 > 0 initialized by

ρji(t0) = P
(
Xβ

0 = aj |Y β
[0,t0]

, Xβ
t0 = ai

)
.

Set i�(t) = argmaxi∈S ρji(t) and i�(t) = argmini∈S ρji(t) (if the maximum or
the minimum is attained at several indices, the lowest one is taken by convention).
Set

(5.7) ρ�(t) := ρji�(t)(t) and ρ�(t) := ρji�(t)(t).

Lemma 5.3. The processes ρ�(t) and ρ�(t) have absolutely continuous paths
with

(5.8)

dρ�(t) =
n∑
i=1

I(i�(t) = i)ρ̇ji(t)dt,

dρ�(t) =
n∑
i=1

I(i�(t) = i)ρ̇ji(t)dt.

The proof of this lemma uses two results formulated in Propositions 5.4 and 5.5
below.

Proposition 5.4 (Theorem A.6.3 in Dupuis and Ellis [20]). Let g = g(t) be an
absolutely continuous function mapping of [0, 1] into R. Then for each real number a
the set {t : g(t) = a, ġ(t) 6= 0} has Lebesgue measure 0.

Proposition 5.5. Let X(t, ω) be a random process with absolutely continuous
paths with respect to dt in the sense that there exists a measurable random process
x(t, ω) such that

∫ t
0
|x(s, ω)|ds <∞ a.s., t > 0, and

(5.9) X(t, ω) = X(0, ω) +
∫ t

0

x(s, ω)ds.

Then

|X(t, ω)| = |X(0, ω)|+
∫ t

0

sign(X(s, ω))x(s, ω)ds,

where sign(0) = 0.
Proof. Set Vt(ω) =

∫ t
0
|x(s, ω)|ds and notice that for any t′ ≤ t′′ it holds that∣∣|X(t′′, ω)| − |X(t′, ω)|

∣∣ ≤ |X(t′′, ω)−X(t′, ω)| ≤ (Vt′′(ω)− Vt′(ω)).

Hence, for fixed ω, the function |X(t, ω)| possesses bounded total variation for any
finite time interval. Denote by Ut(ω) this total variation corresponding to [0, t]. Ob-
viously, dUt(ω) � dVt(ω) � dt. Recall that Ut(ω) = U ′t(ω) + U ′′t (ω), where U ′t(ω),
U ′′t (ω) are increasing continuous in t functions such that for any t > 0 and measur-
able set A from R+,

∫
A∩[0,t]

dU ′′s (ω) = 0 and
∫
(R+\A)∩[0,t]

dU ′s(ω) = 0, and at the same
time |X(t, ω)| = U ′′t (ω)− U ′t(ω). Since dU ′t � dUt(ω), dU ′′t � dUt(ω), it follows that
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d|X(t, ω)| � dUt(ω) � dVt(ω) � dt and so that

(5.10) |X(t, ω)| = |X(0, ω)|+
∫ t

0

g(s, ω)ds

though we may not claim that g(t, ω) is measurable in (t, ω).
Now, we show that sign(X(s, ω))x(s, ω) is a measurable version of g(s, ω). By

(5.9), we have X2(t, ω) = X2(0, ω)+2
∫ t
0
X(s, ω)x(s, ω)ds. At the same time, by (5.10)

it holds that |X(t, ω)|2 = |X(0, ω)|2 + 2
∫ t
0
|X(s, ω)|g(s, ω)ds. Hence, the following

identity is valid: For any t ≥ 0∫ t

0

|X(s, ω)|g(s, ω)ds ≡
∫ t

0

X(s, ω)x(s, ω)ds.

Therefore, |X(s, ω)|g(s, ω) = X(s, ω)x(s, ω) for almost all s with respect to Lebesgue
measure. Consequently, we have I(|X(s, ω)| 6= 0)g(s, ω) = sign(X(s, ω))x(s, ω) for
almost all s with respect to Lebesgue measure. It remains to show that

I(X(s, ω) = 0)g(s, ω) = 0

for almost all s with respect to Lebesgue measure. Taking into account (5.10), it
suffices to prove that

∫∞
0
I(X(s, ω) = 0)d|X(s, ω)| = 0 a.s. On the other hand,

whereas d|X(t, ω)| � dVt(ω), it suffices to show that
∫∞
0
I(X(s, ω) = 0)dVs(ω) = 0

a.s. The latter holds by Proposition 5.4.
Now we give the proof for Lemma 5.3.
Proof. Let us introduce ρ�,i(t) = ρj1∨ρj2∨· · ·∨ρji and ρ�,i(t) = ρj1∧ρj2∧· · ·∧ρji

and notice that ρ�,n(t) = ρ�(t), ρ�,n(t) = ρ�(t).
The use of obvious identities

ρ�,2(t) + ρ�,2(t) = ρj1(t) + ρj2(t),

ρ�,2(t)− ρ�,2(t) = |ρj1(t)− ρj2(t)|

and the fact, provided by Proposition 5.5, that d|ρj1(t) − ρj2(t)| = p(t, ω)dt with
measurable derivative p(ω, t), allow us to claim that ρ�,2(t) and ρ�,2(t) are absolutely
continuous with respect to dt with measurable derivatives.

Further, taking into account ρ�,i(t) = ρ�,i−1(t)∨ρji and ρ�,i(t) = ρ�,i−1(t)∧ρji(t)
and consequent identities

ρ�,i(t) + ρ�,i−1(t) ∧ ρji(t) = ρ�,i−1(t) + ρji(t),

ρ�,i(t)− ρ�,i−1(t) ∧ ρji(t) = |ρ�,i−1(t)− ρji(t)|,
ρ�,i−1(t) ∨ ρji(t) + ρ�,i(t) = ρ�,i−1(t) + ρji(t),
ρ�,i−1(t) ∨ ρji(t)− ρ�,i(t) = |ρ�,i−1(t)− ρji(t)|,

absolute continuity for ρ�(t) and ρ�(t) is verified by the induction method.
Thus, dρ�(t) = u(t)dt with some density u(t) such that

∫ t
0
|u(s)|ds < ∞ a.s.,

t > 0. On the other hand, since
∑n
i=1 I(i

�(t) = i) = 1, we have

ρ�(t) = ρ�(0) +
∫ t

0

n∑
i=1

I(i�(s) = i)u(s)ds.
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So, it suffices to show that for any t > 0 and any i = 1, 2, . . . , n∫ t

0

I(i�(s) = i)|u(s)− ρ̇ji(s)|ds = 0 a.s.

The latter holds true by Proposition 5.4, since∫ t

0

I(i�(s) = i)|u(s)− ρ̇ji(s)|ds

=
∫ t

0

I(ρ�(s)− ρji(s) = 0)|u(s)− ρ̇ji(s)|ds

=
∫ t

0

I
(
ρ�(s)− ρji(s) = 0, u(s)− ρ̇ji(s) 6= 0

)
|u(s)− ρ̇ji(s)|ds = 0.

Lemma 5.6. Under the assumptions of Theorem 4.2,

lim
t→∞

1
t

log max
1≤j,k,`≤n

∣∣ρjk(t)− ρj`(t)
∣∣ ≤ −

n∑
r=1

µr min
i 6=r

λri.(5.11)

Proof. By (5.6) and (5.8), we have2

dρ�(t)
dt

=
∑

r 6=i�(t)

λri�(t)π
β
t (r)

πβt (i�(t))

(
ρjr(t)− ρ�(t)

)
,

dρ�(t)
dt

=
∑

r 6=i�(t)

λri�(t)π
β
t (r)

πβt (i�(t))

(
ρjr(t)− ρ�(t)

)
.

(5.12)

In what follows, we will omit the time variable in i�(t) and i�(t) for brevity.
Set 4t = ρ�(t)− ρ�(t). By (5.12) we have

d4t

dt
= −

∑
r 6=i�

λri�π
β
t (r)

πβt (i�)

(
ρ�(t)− ρjr(t)

)
−
∑
r 6=i�

λri�π
β
t (r)

πβt (i�)

(
ρjr(t)− ρ�(t)

)

= −4t

(
λi�i�π

β
t (i�)

πβt (i�)
+
λi�i�π

β
t (i�)

πβt (i�)

)
(5.13)

−4t

 ∑
r 6=i�(t)
r 6=i�(t)

[
λri�π

β
t (r)

πβt (i�)

(
ρ�(t)− ρjr(t)

4t

)
+
λri�π

β
t (r)

πβt (i�)

(
ρjr(t)− ρ�(t)

4t

)] .

Letting 0/0 = 1/2, set αr(t) = ρ�(t)−ρjr(t)
4t

. Then, we get 1− αr(t) = ρjr(t)−ρ�(t)
4t

2In (5.12)–(5.14) we use for brevity a form of differential equalities (inequalities) which are valid
for any ω and almost all t with respect to Lebesgue measure.
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and 0 ≤ αr(t) ≤ 1 and (5.13) implies

d4t

dt
=−4t

(
λi�i�π

β
t (i�)

πβt (i�)
+
λi�i�π

β
t (i�)

πβt (i�)

)

−4t

 ∑
r 6=i�(t)
r 6=i�(t)

[
αr(t)

λri�π
β
t (r)

πβt (i�)
+
(
1− αr(t)

)λri�πβt (r)

πβt (i�)

]
≤−4t

(
λi�i�π

β
t (i�) + λi�i�π

β
t (i�)

)

−4t

 ∑
r 6=i�(t)
r 6=i�(t)

[
αr(t)λri� +

(
1− αr(t)

)
λri�

]
πβt (r)



≤−4t

λi�i�πβt (i�) + λi�i�π
β
t (i�) +

∑
r 6=i�(t)
r 6=i�(t)

[
λri� ∧ λri�

]
πβt (r)

 .

(5.14)

Recall that all offdiagonal entries of Λ are nonnegative and
∑n
r=1 λir = 0 for any i.

Then,
∣∣λi�i� | ∧ |λi�i� ∣∣ ≥ λi�i� ,

∣∣λi�i� | ∧ |λi�i� ∣∣ ≥ λi�i� , and (5.14) provides

d4t

dt
≤ −4t

n∑
r=1

(
|λri� | ∧ |λri� |

)
πβt (r) ≤ −4t

n∑
r=1

min
1≤i≤n

|λri|πβt (r)

= −4t

n∑
r=1

πβt (r)min
i 6=r

λri.

Since the derivative d4t

dt is defined for each ω and almost everywhere (a.e.) in t with
respect to dt, the above inequality d4t

dt ≤ −4t

∑n
r=1 π

β
t (r) mini 6=r λri is also valid a.e.

So, it allows us to define a.e. the function

H(t) = −4t

n∑
r=1

πβt (r) min
i 6=r

λri −
d4t

dt
.

Moreover, for definiteness, we may redefine H(t) everywhere so as H(t) ≥ 0. Then
we have

d4t = −

[
4t

n∑
r=1

πβt (r) min
i 6=r

λri +H(t)

]
dt.

Notice also that
∫ t
0
|H(s)|ds <∞ a.s. for any t > 0 and recall that 40 = 1. Then, we

get

4t = exp

(
−
∫ t

0

n∑
r=1

πβs (r) min
i 6=r

λrids

)
−
∫ t

0

exp

(
−
∫ t

s

n∑
r=1

πβu(r) min
i 6=r

λridu

)
H(s)ds

and in turn

1
t

log4t ≤ −
n∑
r=1

(
min
i 6=r

λri

)1
t

∫ t

0

πβs (r)ds.
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So, it is left to verify that

lim
t→∞

1
t

∫ t

0

πβs (r)ds = µr a.s.(5.15)

Similarly to (1.4), πβt satisfies

πβ0 =β,

dπβt =Λ∗πβt dt+ σ−2
(
diag(πβt )− πβt (πβt )∗

)
h(dY βt − h∗πβt dt).

Recall that σ−1
(
Y βt −

∫ t
0
h∗πβs ds

)
is the innovation Wiener process (see, e.g., Theorem

9.1 in Chapter 10 in [30]). Hence Mt =
∫ t
0

(
diag(πβs )−πβs (πβs )∗

)
h(dY βs −h∗πβs ds) is a

vector-valued continuous martingale. Its entries Mt(i), i = 1, . . . , n, have predictable
quadratic variation processes 〈M(i)〉t with the following property: For some positive
constant c, d〈M(i)〉t ≤ cdt. Then by Theorem 10, Chapter 3 in [31], limt→∞

1
tMt(i) =

0 a.s. This fact and the boundedness of πβt provide Λ∗ limt→∞
1
t

∫ t
0
πβs ds = 0. The

vector Zt = 1
t

∫ t
0
πβs ds has nonnegative entries, whose sum equals 1. Therefore the

limit vector Z∞, obeying the same property, is the unique solution of the linear
algebraic equation Λ∗Z∞ = 0, i.e., Z∞ = µ.

To prove Theorem 4.2, without loss generality, due to Remark 3, we may assume
that ν ∼ β. Then, we show that for any t ≥ 0 and i = 1, . . . , n

(5.16)
∣∣πνt (i)− πβνt (i)

∣∣ ≤ nmax
j

dν

dβ
(aj) max

j

dβ

dν
(aj) max

1≤i,j,k≤d

∣∣ρji(t)− ρjk(t)
∣∣.

Recall that Qν and Qβ are distributions of (Xν , Y ν) and (Xβ , Y β), respectively,
which are equivalent, by virtue of ν ∼ β, with

dQβ

dQν
(Xν , Y ν) ≡ dβ

dν
(Xν

0 ) and
dQν

dQβ
(Xβ , Y β) ≡ dν

dβ
(Xβ

0 ).

Now, we show that for any i = 1, . . . , d and t > 0, Qν- and Qβ-a.s.

πβνt (i) =

∑n
j=1

(
dβ
dν (aj)P

(
Xν

0 = aj), Xν
t = ai|Y ν

[0,t]

)
E
(
dβ
dν (Xν

0 )|Y ν
[0,t]

) .(5.17)

To this end, with any bounded Dy
t -measurable function ψt(y), write

Eψt(Y ν)π
βν
t (i)E

(dβ
dν

(Xν
0 )|Y ν

[0,t]

)
= Eψt(Y ν)π

βν
t (i)

dβ

dν
(Xν

0 )

= Eψt(Y ν)π
βν
t (i)

dQβ

dQν
(Xν , Y ν) = Eψt(Y β)π

β
t (i)

= Eψt(Y β)I(X
β
t = ai) = Eψt(Y ν)I(Xν

t = ai)
dQβ

dQν
(Xν , Y ν)

= Eψt(Y ν)I(Xν
t = ai)

dβ

dν
(Xν

0 ) = Eψt(Y ν)E
(
I(Xν

t = ai)
dβ

dν
(Xν

0 )
∣∣Y ν

[0,t]

)
.

Hence, by the arbitrariness of ψt(y),

πβνt (i)E
(dβ
dν

(Xν
0 )|Y ν

[0,t]

)
= E

(
I(Xν

t = ai)
dβ

dν
(Xν

0 )|Y ν
[0,t]

)
.
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Further, Qν ∼ Qβ provides E
(
dβ
dν (Xν

0 )|Y ν
[0,t]

)
> 0, Qν- and Qβ-a.s., so that

πβνt (i) =
E
(
I(Xν

t = ai)dβdν (Xν
0 )|Y ν

[0,t]

)
E
(
dβ
dν (Xν

0 )|Y ν
[0,t]

)
and it remains to notice that

E

(
I(Xν

t = ai)
dβ

dν
(Xν

0 )|Y ν
[0,t]

)
=

n∑
j=1

dβ

dν
(aj)P

(
Xν
t = ai, X

ν
0 = aj |Y ν

[0,t]

)
.

Taking into consideration (5.17), we find

∣∣πνt (i)− πβνt (i)
∣∣ = ∣∣∣∣∣πνt (i)−

∑n
j=1

(
dβ
dν (aj)P

(
Xν

0 = aj , X
ν
t = ai|Y ν

[0,t]

))
E
(
dβ
dν (Xν

0 )|Y ν
[0,t]

) ∣∣∣∣∣
=

∣∣∣∑n
j=1

dβ
dν (aj)

(
πνt (i)P

(
Xν

0 = aj |Y ν
[0,t]

)
− P

(
Xν

0 = aj , X
ν
t = ai|Y ν

[0,t]

))∣∣∣
E
(
dβ
dν (Xν

0 )|Y ν
[0,t]

) .

Then, since by the Jensen inequality 1
/
E
(
dβ
dν (Xν

0 )|Y ν
[0,t]

)
≤ E

(
dν
dβ (Xν

0 )|Y ν
[0,t]

)
, we get

the chain of estimates∣∣πνt (i)− πβνt (i)
∣∣ ≤ max

aj∈S

dβ

dν
(aj) max

aj∈S

dν

dβ
(aj)

×

∣∣∣∣∣
n∑
j=1

πνt (i)
(
P
(
Xν

0 = aj |Y ν
[0,t]

)
− P

(
Xν

0 = aj
∣∣Xν

t = ai,Y
ν

[0,t]

))∣∣∣∣∣
≤ max

aj∈S

dβ

dν
(aj) max

aj∈S

dν

dβ
(aj)

×
n∑
j=1

πνt (i)
∣∣∣P (Xν

0 = aj |Y ν
[0,t]

)
− P

(
Xν

0 = aj |Xν
t = ai,Y

ν
[0,t]

)∣∣∣(5.18)

≤ max
aj∈S

dβ

dν
(aj) max

j∈S

dν

dβ
(aj)

×
n∑
j=1

∣∣∣P (Xν
0 = aj |Y ν

[0,t]

)
− P

(
Xν

0 = aj |Xν
t = ai,Y

ν
[0,t]

)∣∣∣
= max

aj∈S

dβ

dν
(aj) max

aj∈S

dν

dβ
(aj)

n∑
j=1

∣∣∣P (Xν
0 = aj |Y ν

[0,t]

)
− ρji(t)

∣∣∣.
The obvious formula P

(
Xν

0 = aj |Y ν
[0,t]

)
=
∑n
k=1 π

ν
t (k)ρjk(t), and (5.18) provide

∣∣πνt (i)− πβνt (i)
∣∣ ≤ max

aj∈S

dβ

dν
(aj) max

aj∈S

dν

dβ
(aj)

n∑
j=1

∣∣∣ n∑
k=1

πνt (k)ρjk(t)− ρji(t)
∣∣∣

≤ max
aj∈S

dβ

dν
(aj) max

aj∈S

dν

dβ
(aj)

n∑
j=1

n∑
k=1

πνt (k)
∣∣ρjk(t)− ρji(t)

∣∣(5.19)

and (5.16). Thus, by Lemma 5.6, the desired statement (4.1) holds true.
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5.3. The proof of Theorem 4.3. We start with the following lemma.

Lemma 5.7. Under the assumptions of Theorem 4.3, for any t > 0

(5.20) max
1≤j,k,`≤n

∣∣ρjk(t)− ρj`(t)
∣∣ ≤ exp

(
− 2tmin

p6=q

√
λpqλqp

)
.

Proof. Here we follow the notations from Lemma 5.6. From (5.14), it follows that

d4t

dt
≤ −4t

(
λi�i�π

β
t (i�)

πβt (i�)
+
λi�i�π

β
t (i�)

πβt (i�)

)
(5.21)

subject to40 = 1. Set τ = inf{t : i�(t) = i�(t)}. Since4t is a nonincreasing function,
4t ≡ 0 for t ≥ τ , and (5.20) holds trivially. For t < τ , as previously we find

4t ≤ exp

{
−
∫ t

0

(
λi�i�π

β
s (i�)

πβs (i�)
+
λi�i�π

β
s (i�)

πβs (i�)

)
ds

}

≤ exp

{
−
∫ t

0

min
x≥0

(
λi�i�x+ λi�i�

1
x

)
ds

}

= exp
{
−
∫ t

0

2
√
λi�i�λi�i�ds

}
≤ exp

(
− 2tmin

p6=q

√
λpqλqp

)
,

and (5.20) follows.
To prove the first statement of the theorem, taking into account ν � β we

replicate a fragment from the proof of Proposition 2.1.
Using the notations introduced in section 2.1, write πνt (i) := πνt (f) and πβνt (i) :=

πβνt (f) for f(x) = I(x = ai). Then,

(5.22) E
∣∣πβνt (i)− πνt (i)

∣∣ ≤ E
∣∣∣E(dν

dβ
(Xβ

0 )
∣∣Y β

[0,t]

)
− E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)∣∣∣
and, since (Xβ , Y β) is a Markov process,

E
(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)
= E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t] ∨X β
t

)
.

Then,

E
(dν
dβ

(Xβ
0 )
∣∣Y β

[0,t]

)
− E

(dν
dβ

(Xβ
0 )
∣∣Y β

[0,∞) ∨X β
[t,∞)

)
=

n∑
j=1

dν

dβ
(aj)

(
P
(
Xβ

0 = aj |Y β
[0,t]

)
− P

(
Xβ

0 = aj |Y β
[0,t] ∨X β

t

))
=

n∑
j=1

n∑
`=1

I(Xβ
t = a`)

dν

dβ
(aj)

(
P
(
Xβ

0 = aj |Y β
[0,t]

)
− ρj`(t)

)
(5.23)

=
n∑
j=1

n∑
`=1

n∑
k=1

πβt (k)I(Xβ
t = a`)

dν

dβ
(aj)

(
ρjk(t)− ρj`(t)

)
≤ max

1≤j,k,`≤n

∣∣ρjk(t)− ρj`(t)
∣∣ n∑
j=1

dν

dβ
(aj).

The first statement of Theorem 4.3 follows from (5.22), (5.23), and Lemma 5.7.
The second statement follows from (5.16) and Lemma 5.7.
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6. Proofs for the nonergodic case. Recall that in the nonergodic setting
under consideration

S =
{
a1
1, . . . , a

1
n1︸ ︷︷ ︸

S1

, . . . , am1 , . . . , a
m
nm︸ ︷︷ ︸

Sm

}
, m ≥ 2,

with subalphabets S1, . . . ,Sm noncommunicating in the sense of (1.2).

6.1. Auxiliary lemmas. In this subsection, X̃j
t is an independent copy of Xj

t

with the initial distribution µj , defined on some auxiliary probability space (Ω̃, F̃ , P̃ ),
and Ẽ is the expectation with respect to P̃ . Recall that µj is the invariant measure,
so that X̃j

t is a stationary process.
Lemma 6.1. Fix r > 0 and define Zn =

∑n
i=1

(
Y βir−Y

β
(i−1)r

)2
. Then with n→∞

1
n
Zn → r +

m∑
j=1

I(Xβ
0 ∈ Sj)Ẽ

(∫ r

0

h(X̃j
s ) ds

)2

.

Proof. Define

F (i) = E

[(∫ r

0

h(Xβ
s ) ds

)2 ∣∣∣Xβ
0 = ai

]

and Gn = σ{Y[0,nr]} ∨ σ{X[0,nr]}. Then E[(Y β(n+1)r − Y βnr)
2|Gn] = r + F (Xβ

nr) so

that the sequence Mn = Zn − nr −
∑n−1
i=0 F (Xβ

ir) is a martingale with respect to the
filtration (Gn)n≥1. It is easy to verify that there exists K <∞ such that for all n we
have E(Mn+1 −Mn)2 ≤ K. It follows that (1/n)Mn → 0 a.s. as n → ∞ (see, e.g.,
Chapter VII, Section 5, Theorem 4 in [42]).

Now consider (1/n)
∑n−1
i=0 F (Xβ

ir). If X0 ∈ Sj , then Xt ∈ Sj for all t ≥ 0 and the
process is ergodic in Sj with stationary distribution µj . Applying the ergodic theorem
for each class Sj we obtain

1
n

n−1∑
i=0

F (Xβ
ir) →

m∑
j=1

Ẽ(F (X̃0))I(X0 ∈ Sj) =
m∑
j=1

Ẽ

(∫ r

0

h(X̃j
s ) ds

)2

I(Xβ
0 ∈ Sj)

as n→∞ a.s. Finally

lim
n→∞

1
n
Zn = lim

n→∞

1
n
Mn + r + lim

n→∞

1
n

n−1∑
i=0

F (Xβ
ir)

= r +
m∑
j=1

Ẽ

(∫ r

0

h(X̃j
s ) ds

)2

I(Xβ
0 ∈ Sj)

and we are done.
With X̃j

t defined as in Lemma 6.1 and r ≥ 0 let dj(r) = Ẽ(
∫ r
0
h(X̃j

s ) ds)
2.

Lemma 6.2. For any k 6= j the following are equivalent:
i. dk(r) = dj(r) for all r ≥ 0;
ii. h∗k diag(µk)Λ

q
khk = h∗j diag(µj)Λ

q
jhj for all 0 ≤ q ≤ ni + nj − 1.
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Proof. Notice first that

dj(r) = 2Ẽ
∫ r

0

∫ s

0

h(X̃j
u)h(X̃

j
s ) du ds = 2

∫ r

0

∫ s

0

Ẽh(X̃j
u)h(X̃

j
s ) du ds

= 2
∫ r

0

∫ s

0

Ẽh(X̃j
0)h(X̃j

s−u) du ds = 2
∫ r

0

∫ s

0

Ẽh(X̃j
0)h(X̃j

v) dv ds.

Now, introduce the vector Ĩjt with entries I(X̃j
t = aj1), . . . , I(X̃

j
t = ajnj

) and notice
also that

Ẽh(X̃j
0)h(X̃j

v) = Ẽh∗j Ĩ
j
0(Ĩjv)

∗hj = Ẽh∗j Ĩ
j
0(Ĩj0)∗eΛjvhj

= h∗j Ẽ diag(Ĩj0)eΛjvhj = h∗j diag(µj)eΛjvhj .

Therefore dj(r) = 2
∫ r
0

∫ s
0
h∗j diag(µj)eΛjvhjdvds, so dj(0) = dj

′(0) = 0 and

dj
′′(r) = 2h∗j diag(µj)eΛjrhj .

Differentiating with respect to r a further q times and then putting r = 0 we get

d
(2+q)
j (0) = 2h∗j diag(µj)Λqjhj .

It follows immediately that if dk(r) = dj(r) for all r ≥ 0, then

h∗k diag(µk)Λqkhk = h∗j diag(µj)Λqjhj

for all q ≥ 0 and so in particular for all 0 ≤ q ≤ nk + nj − 1.
Suppose conversely that h∗j diag(µj)Λqjhj = h∗k diag(µk)Λqkhk for all 0 ≤ q ≤

nk+nj−1. The Cayley–Hamilton theorem applied to the (nk+nj)× (nk+nj) block
diagonal matrix (Λk

0
0
Λj

) gives constants c0, c1, . . . , cnk+nj−1 so that

Λnk+nj

k =
nk+nj−1∑
q=0

cqΛ
q
k and Λni+nj

j =
nk+nj−1∑
q=0

cqΛ
q
j .

Therefore we have h∗k diag(µk)Λqkhk = h∗j diag(µj)Λqjhj for all q > nj +nk− 1 as well.

Using the fact that eΛjr =
∑∞
q=0

rqΛq
j

q! , we see that dk′′(r) = dj
′′(r) for all r ≥ 0, and

hence dk(r) = dj(r) for all r ≥ 0.
Lemma 6.3. Assume A-2. For any β

lim
t→∞

E
∣∣∣P (Xβ

0 ∈ Sj |Y β
[0,t]

)
− I(Xβ

0 ∈ Sj)
∣∣∣ = 0, j ≥ 1.

Proof. We use the notation Z
(r)
n to express the dependence on r of the function

Zn in Lemma 6.1. We have 1
nY

β
n →

∑m
j=1 h

∗
jµ

jI(Xβ
0 ∈ Sj) and

1
n
Z(r)
n → r +

m∑
j=1

dj(r)I(X
β
0 ∈ Sj)

as n → ∞ a.s. Using assumption A-2 and Lemma 6.2 we can find an integer ` and
numbers ri > 0, i = 1, . . . , `, and construct a random variable of the form Vn =
(Y βn , Z

(r1)
n − nr1, . . . , Z

(r`)
n − nr`) so that 1

nVn →
∑m
j=1 vjI(X

β
0 ∈ Sj) as n → ∞,

P -a.s., where the v1, . . . , vm are distinct vectors in R`+1. Therefore {Xβ
0 ∈ Sj} is

Y β[0,∞)-measurable a.s. and the result follows immediately.
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6.2. The proof of Theorem 4.4. By Proposition 2.1, it suffices to show that

lim
t→∞

E
∥∥πβt − πβ0

t

∥∥ = 0.

We introduce a new filter, intermediate between πβt and πβ0
t . Define the random

variable U by U = j on the set {Xβ
0 ∈ Sj}, and then define

πβ,Ut (i) = P (Xβ
t = ai|Y β

[0,t], U).

Then∥∥πβt − πβ,Ut
∥∥ =

n∑
i=1

∣∣∣P (Xβ
t = ai|Y β

[0,t])− P (Xβ
t = ai|Y β

[0,t], U)
∣∣∣

=
n∑
i=1

∣∣∣∣∣∣
m∑
j=1

P (Xβ
t = ai|Y β

[0,t], U = j)
(
P (U = j|Y β

[0,t])− I(U = j)
)∣∣∣∣∣∣

≤
m∑
j=1

∣∣∣P (U = j|Y β
[0,t])− I(U = j)

∣∣∣
and∥∥πβ,Ut − πβ0

t

∥∥ =
n∑
i=1

∣∣∣P (Xβ
t = ai|Y β

[0,t], U)− P (Xβ
t = ai|Y β

[0,t], X
β
0 )
∣∣∣

=
n∑
i=1

m∑
j=1

I(U = j)
∣∣∣P (Xβ

t = ai|Y β
[0,t], U = j)− P (Xβ

t = ai|Y β
[0,t], U = j,Xβ

0 )
∣∣∣

=
m∑
j=1

I(U = j)
∥∥πβj

t − π
βj
0
t

∥∥,
where βj denotes the conditional distribution of β restricted to the subalphabet Sj .
By Lemma 6.3,

m∑
j=1

∣∣∣P (U = j|Y β
[0,t])− I(U = j)

∣∣∣ P−−−→
t→∞

0

while
∑m
j=1 I(U = j)

∥∥πβj

t − π
βj
0
t

∥∥ L1−−−→
t→∞

0 by applying Theorem 4.1 to each Sj .

Appendix. Proof of Proposition 3.2.
Proof (sketch). We use the following construction for X. Let X0 be a random

variable with values in S = {1, 2, 3, 4} and P (X0 = j) = νj , j = 1, . . . , 4. Introduce
independent of X0 the matrix-valued process

(A.1) Nt =


−N12(t) N12(t) 0 0

0 −N23(t) N23(t) 0
0 0 −N34(t) N34(t)

N41(t) 0 0 −N41(t)

 ,

where Nij(t) are independent copies of the Poisson process with the unit rate. Let us
consider the Itô equation

(A.2) It = I0 +
∫ t

0

dN ∗
s Is−
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with I0 the vector with entries I0(j) = I(X0 = j), j = 1, . . . , 4. Since the jumps of
Poisson processes Nij(t)’s are disjoint, for any t > 0 the vector It has only one nonzero
entry. Moreover, whereas the increments of Nt are independent for nonoverlapping
intervals, It is a Markov process. It is readily checked that, with the row vector
g =

(
1 2 3 4

)
, Xt = gIt is a Markov process with values in S and the transition

intensities matrix Λ and It(j) = I(Xt = j), j = 1, . . . , 4.
We will follow Theorem 4.10.1 from [31]. The random process Y has piecewise

constant paths with jumps of two magnitudes, +1 and −1. Due to (A.2), its saltus
measure p(dt, dy) is completely described by

p(dt, {1}) =
{
It−(4)dN41(t) + It−(2)dN23(t)

}
,

p(dt, {−1}) =
{
It−(1)dN12(t) + It−(3)dN34(t)

}
.

So, the compensator q(dt, dy) of p(dt, dy) with respect to the filtration (Y[0,t])t≥0 is
defined as

(A.3)
q(dt, {1}) =

(
πt−(4) + πt−(2)

)
dt = (1− Yt−)dt,

q(dt, {−1}) =
(
πt−(1) + πt−(3)

)
dt = Yt−dt.

Notice also that

(A.4) p(dt, {1}) = (1− Yt−)dYt and p(dt, {−1}) = −Yt−dYt.

Equation (A.2) also gives “drift+martingale” presentation for I1(t), I2(t):

(A.5)
dIt(1) =

(
− It(1) + It(4)

)
dt+ dM1(t),

dIt(2) =
(
It(1)− It(2)

)
dt+ dM2(t)

with martingales

M1(t) =
∫ t

0

(
− Is−(1)d(N12(s)− s) + Is−(4)d(N41(s)− s)

)
,

M2(t) =
∫ t

0

(
Is−(1)d(N12 − s)− Is−(2)d(N23(s)− s)

)
.

Then, by Theorem 4.10.1 in [31], adapted to the case considered, we have

(A.6)
dπ1(t) =

(
− πt(1) + πt(4)

)
dt+

∫
H1(ω, t, y)

[
p(dt, dy)− q(dt, dy)

]
,

dπ2(t) =
(
πt(1)− πt(2)

)
dt+

∫
H2(ω, t, y)

[
p(dt, dy)− q(dt, dy)

]
,

where Hi(ω, t, y), i = 1, 2, are P(Y )⊗B(R)-measurable functions (here B(R) is the
Borel σ-algebra on R and P(Y ) is the predictable σ-algebra on Ω×R+ with respect
to the filtration (Y[0,t])t≥0). Moreover

Hi(ω, t, y) = M
(
4Mi + I−(i)|P(Y)⊗B(R)

)
(ω, t, y)− πt−(i),

where 4Mi and I−(i) are the processes Mi(t) − Mi(t−) and It−(i), respectively,
and M

(
· |P(Y )⊗B(R)

)
is the conditional expectation with respect to the measure

M(dω, dt, dy) = P (dω)p(dt, dy) given P(Y )⊗B(R).
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By (A.5), 4Mi(t) + It−(i) = It(i) and the structure of compensator q provides
(here 4It(i) = It(i)− It−(i))

M
(
I(i)|P(Y )⊗B(R)

)
− πt−(i) = M

(
4I(i)|P(Y )⊗B(R)

)
.

The desired conditional expectation is determined uniquely from the following iden-
tity: For any bounded, compactly supported in t and P(Y) ⊗ B(R)-measurable
function φ(ω, t, y)

E

∫ ∞

0

∫
φ(ω, t, y)4It(i)p(dt, dy)

= E

∫ ∞

0

∫
φ(ω, t, y)M

(
4I(i)|P(Y )⊗B(R)

)
(ω, t, y)q(dt, dy).

By (A.2)

4It(1) = −It−(1)4N12(t) + It−(4)4N41(t),
4It(2) = It−(1)4N12(t)− It−(2)4N23(t),

and so

4It(1)p(dt, {1}) = It−(4)dN41(t),
4It(1)p(dt, {−1}) = −It−(1)dN12(t),
4It(2)p(dt, {1}) = −It−(2)dN23(t),
4It(2)p(dt, {−1}) = It−(1)dN12(t).

Owing to the obvious relations

I4(t) ≡ I4(t)(1− Yt), I2(t) ≡ I2(t)(1− Yt),
I1(t) ≡ I1(t)Yt, I3(t) ≡ I3(t)Yt

we have

(A.7)
πt−(2)dt = πt−(2)(1− Yt−)dt, πt−(2)dt = πt−(2)(1− Yt−)dt,

πt−(1)dt = πt−(1)Yt−dt, πt−(3)dt = πt−(3)Yt−dt.

Taking into account (A.3), we find

H1(ω, t, y) =
{
πt−(4), y = 1,
−πt−(1), y = −1,

H2(ω, t, y) =
{
−πt−(2), y = 1,
πt−(1), y = −1.

In accordance with (A.3), (A.4), the formulae for H1, H2, and (A.7), we transform
(A.6) to

dπ1(t) =
(
− πt(1) + πt(4)

)
dt+ πt−(4)(1− Yt−)(dYt − dt) + πt−(1)Yt−(dYt + dt)

= πt−(4)(1− Yt−)dYt + πt−(1)Yt−dYt
=
(
1− πt−(2)

)
(1− Yt−)dYt + πt−(1)Yt−dYt,

dπ2(t) =
(
πt(1)− πt(2)

)
dt− πt−(2)(1− Yt−)(dYt − dt)− πt−(1)Yt−(dYt + dt)

= −πt−(2)(1− Yt−)dYt − πt−(1)Yt−dYt.



668 PETER BAXENDALE, PAVEL CHIGANSKY, AND ROBERT LIPTSER

Acknowledgments. The authors gratefully acknowledge Boris Tsirelson for
bringing [43] and the example in [44] to their attention, Rami Atar for suggesting
use of Theorem 1 in [2] for the proof of Theorem 4.1, and the anonymous referees
whose comments and advice allowed us to improve the paper significantly.

REFERENCES

[1] R. Atar, Exponential stability for nonlinear filtering of diffusion processes in a noncompact
domain, Ann. Probab., 26 (1998), pp. 1552–1574.

[2] R. Atar and O. Zeitouni, Exponential stability for nonlinear filtering, Ann. Inst. H. Poincaré
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