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Abstract

We establish an asymptotic stability result for Toda lattice soliton solutions, by making
use of a linearized Bäcklund transformation whose domain has codimension one. Com-
bining a linear stability result with a general theory of nonlinear stability by Friesecke
and Pego for solitary waves in lattice equations, we conclude that all solitons in the Toda
lattice are asymptotically stable in an exponentially weighted norm. In addition, we deter-
mine the complete spectrum of an operator naturally associated with the Floquet theory
for these lattice solitons.

1 Introduction

In this article we establish an asymptotic stability result for all 1-soliton solutions to the Toda
lattice equations

(1) Q̈n = e−(Qn−Qn−1) − e−(Qn+1−Qn), n ∈ Z.

Here ˙= d/dt. Let Pn = Q̇n and Rn = Qn+1 −Qn. The Toda lattice is an integrable system
with Hamiltonian

(2) H =
∑
n∈Z

(
1
2
P 2

n + V (Rn)
)

, V (R) = e−R − 1 + R.

In terms of P = (Pn)n∈Z, Q = (Qn)n∈Z, R = (Rn)n∈Z and U = t(R,P), the governing
equations can be rewritten in the form (see [4])

(3)
dU
dt

= JH ′(U), J =
(

0 e∂ − 1
1− e−∂ 0

)
where H ′ is the Fréchet derivative of H in l2 × l2, and e∂ is the shift operator given by
e∂R = (Rn+1)n∈Z. Here l2 is the Hilbert space of complex sequences x = (xn)n∈Z equipped
with norm ‖x‖ =

(∑
n∈Z |xn|2

)1/2.
The Toda lattice has a well-known two-parameter family of right-moving solitary waves

(1-solitons)
{
Qc(t + δ)

∣∣ c > 1, δ ∈ R
}
, where

(4) Qc(t) =
(
Q̃c(n− ct)

)
n∈Z

, Q̃c(x) = log
cosh{κ(x− 1)}

coshκx
,
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with κ = κ(c) the unique positive solution of sinhκ/κ = c. Regarding the question of
stability for these waves, two things are worth pointing out. In general, stability of soli-
tons is not automatic in integrable systems. For example, solitons in the “good” Boussinesq
equation are unstable if the traveling speed is sufficiently slow ([2]), and line solitons for
Kadomtsev-Petviashvili equation (KP-I) in 2+1 dimensions are unstable to long-wave trans-
verse perturbations [17, 1, 11]. Moreover, for lattice equations such as the Toda lattice,
it does not appear possible to study stability by using variational methods based on the
Vakhitov-Kolokolov condition, such as the theory of Grillakis, Shatah and Strauss [9]. Such
methods are based on characterizing traveling waves as critical points of a time-invariant
energy-momentum functional, but the existence of momentum functionals is usually due to
the continuous translational invariance of the Hamiltonian, which does not hold in the dis-
crete setting here. This differs from discrete nonlinear Schrödinger lattice equations, for which
charge (l2-norm) is conserved (see e.g. [13]).

Instead, we will study the stability of Toda lattice solitons by using the nonlinear stability
theory of [6], which is based on obtaining suitable conditional asymptotic stability estimates
for a linearized problem. We will write e−x = (e−xn)n∈Z and xy = (xnyn)n∈Z for x = (xn)n∈Z
and y = (yn)n∈Z. For a ∈ R, we denote by l2a the Hilbert space of complex sequences equipped
with the weighted norm

(5) ‖x‖l2a
= ‖eanx‖ =

(∑
n∈Z

e2an|xn|2
)1/2

, n = (n)n∈Z.

Then 〈x,y〉 :=
∑

n∈Z xnyn is well-defined whenever x ∈ l2a and y ∈ l2−a. For u = (u1,n, u2,n)n∈Z
∈ l2a × l2a and v = (v1,n, v2,n)n∈Z ∈ l2−a × l2−a, we use the same notation

〈u,v〉 :=
∑
n∈Z

(u1,nu2,n + v1,nv2,n) .

In l2−a × l2−a with a > 0, the operator J has a bounded inverse, given by

J−1 =
(

0
∑0

k=−∞ ek∂∑−1
k=−∞ ek∂ 0

)
.

Let Pc = Q̇c, Rc = (e∂ − 1)Qc and Uc = t(Rc,Pc). Writing U = Uc + u and linearizing
(3), we get

(6)
du
dt

= JH ′′(Uc(t))u.

For a class of lattice equations that includes the Toda lattice equations (3), Friesecke and Pego
have proved [6, Theorem 1.1] that solitary waves are asymptotically stable in a weighted norm
(5), provided that two conditions hold: first, the nondegeneracy condition

(7)
d

dc
H(Uc) 6= 0,

and second, the following exponential linear stability property, for some a with 0 < a < ac :=
2κ:
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(L) Every solution of (6) in l2a × l2a, that satisfies the secular term condition

(8) 〈u, J−1U̇c〉 = 〈u, J−1∂cUc〉 = 0

for some (hence every) t ∈ R, decays exponentially in the weighted norm, in the sense
that there exist positive constants K and β independent of u, such that whenever t ≥ s,

(9) ‖ea(n−ct)u(t)‖ ≤ Ke−β(t−s)‖ea(n−cs)u(s)‖.

Our main result is that both of these conditions hold for all Toda-lattice 1-solitons, of
arbitrarily large amplitude and for arbitrary a ∈ (0, ac). (The results of [7] and [8] imply that
both conditions hold for waves of small amplitude for a > 0 sufficiently small.) In particular,
we find

(10) H(Uc) = sinh 2κ− 2κ,

(as asserted by Toda [14], see Lemma 4 below) and it follows (d/dc)H(Uc) > 0 for all c > 1,
so that (7) holds. Second, we shall check that (L) holds, by using a linearized Bäcklund
transformation which turns out to be well-defined, not for all solutions of (6), but exactly for
solutions of (6) that satisfy the secular term condition in (8). The transformation also allows
us to identify precisely the optimal β in (L).

As a consequence of (7), (L) and the main theorem of [6], we have the following asymptotic
stability result for the family of Toda 1-solitons.

Theorem 1. Let c > 1, 0 < a < 2κ(c) and β = ca− 2 sinh(a/2). Then for every β′ ∈ (0, β),
there exist positive numbers δ0 and C such that, if for some t0 ∈ R we have

δ := ‖U(0)−Uc(−t0)‖2 + ‖ea(n+ct0)(U(0)−Uc(−t0))‖ ≤ δ0,

then the solution to (3) satisfies, for every t ≥ t0,

‖U(t)−Uc∗(t− t∗)‖ ≤ C
√

δ,

‖ea(n−c∗(t−t∗))(U(t)−Uc(t− t∗))‖ ≤ Cδe−β′(t−t0),

where c∗ > 1 and t∗ are constants with |c− c∗|+ |t0 − t∗| ≤ Cδ.

In Section 2 below, we verify (10) and (L) using a Bäcklund transformation as we have
mentioned. In Section 3, we extend this analysis to obtain more complete spectral information
regarding a linear operator naturally associated with the linearized evolution equation (6).
Equation (6) is non-autonomous, but admits a type of Floquet theory, due to the fact that
solitary waves on a lattice are really time-periodic solutions up to a shift. If one looks for
solutions of (6) having the form of “traveling Floquet modes”

(11) u(t) =
(
eλtW (n− ct)

)
n∈Z

,

then one requires that the function W : R → R2 satisfies

(12) LcW = λW,
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where

Lc = c∂x + J

(
e−

eRc(x) 0
0 1

)
, R̃c(x) = Q̃c(x + 1)− Q̃c(x).

As shown in [7], the linear stability condition (L) is equivalent to a pair of conditions that
relate to the spectrum of Lc, regarded as a closed operator on L2(R; e2axdx)2 with domain
H1(R; e2axdx)2. In Section 3, we identify the entire spectrum of Lc for 0 < a < 2κ, showing
that it consists only of essential spectrum (determined in [7] by Fourier analysis) and the
eigenvalues 2πicn for n ∈ Z that are naturally associated with tangent vectors to the manifold
of traveling-wave states.

Theorem 2. Let c > 1 and suppose 0 < a < 2κ(c). Then the spectrum of Lc in L2(R; e2axdx)2

consists of essential spectrum, given by

σess(Lc) = {c(ik − a)± 2 sinh((ik − a)/2) | k ∈ R}

and contained in the left half of the complex plane, and point spectrum σp(Lc) = 2πicZ. Each
eigenvalue has geometric multiplicity one and algebraic multiplicity two.

As shown in [7, Theorem 4.4], given c > 1, 0 < a < ac = 2κ and (7), the part of this
assertion regarding the location and multiplicity of eigenvalues in the closed right half plane
is equivalent to the linear stability condition (L). In addition, however, Theorem 2 shows that
there are no other eigenvalues anywhere.

We remark that by the theory of [7], the spectral stability and linear stability condition
(L) are properties of lattice solitary waves that are robust under perturbations that are small
in a suitable sense. As a consequence, for Fermi-Pasta-Ulam lattices with smoothly perturbed
Toda potentials, solitary waves sufficiently close to Toda solitons will be asymptotically stable
by the theory of [6].

2 Bäcklund transformation and linear stability

First, we establish a decay estimate corresponding to (9) for the system linearized about zero,

(13)
du
dt

= JH ′′(0)u.

Lemma 3. Let a > 0 and c > 1 be constants and let β = ca− 2 sinh(a/2). Then there exists
a positive constant K such that, for any solution u(t) to (13) and any t ≥ s,

‖ea(n−ct)u(t)‖l2 ≤ Ke−β(t−s)‖ea(n−cs)u(s)‖l2 .

Note that β > 0 if and only if a < 2κ.

Proof. Let ua(t) = (ua,n(t))n∈Z := (ea(n−ct)un(t))n∈Z. Then

dua

dt
=
(

−ca e∂−a − 1
1− e−∂+a −ca

)
ua.

Now, we put ua(t, x) = ua,n(t) for x ∈ [n, n+1) and thus extend ua(t) to a piecewise constant
function on R. Obviously,

(14) ‖ua(t, ·)‖L2(R) = ‖ua(t)‖l2 .
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Taking the Fourier transform of ua, we have

∂ûa

∂t
(t, ξ) = A(ξ)ûa, A(ξ) =

(
−ca eiξ−a − 1

1− e−iξ+a −ca

)
.

Let µ±(ξ) = −ca± 2 sinh(1
2(iξ − a)) and

P (ξ) =
(

e(iξ−a)/2 1
1 −e(−iξ+a)/2

)
, D(ξ) =

(
µ+(ξ) 0

0 µ−(ξ)

)
.

Then P (ξ)−1AP (ξ) = D(ξ). Observe that

(15) µ±(ξ) = −ca∓ 2 cos
ξ

2
sinh

a

2
± 2i sin

ξ

2
cosh

a

2
,

hence supξ∈R<µ±(ξ) = −β. Since P (ξ) and P (ξ)−1 are uniformly bounded with respect to
ξ ∈ R, there exists K > 0 such that for any t ≥ s,

‖ûa(t, ·)‖L2 ≤ Ke−β(t−s)‖ûa(s, ·)‖L2 .

Using Plancherel’s identity and (14), we have

‖ua(t)‖l2 ≤ Ke−β(t−s)‖ua(s)‖l2 .

This completes the proof.

The Toda lattice admits a Bäcklund transformation determined by the equations

Q̇n + e−(Q′
n−Qn) + e−(Qn−Q′

n−1) = α,

Q̇′
n + e−(Q′

n−Qn) + e−(Qn+1−Q′
n) = α,

(16)

where α is a constant [16]. Presuming (16) holds, if Q(t) = (Qn(t))n∈Z is a solution to (1), then
Q′(t) = (Q′

n(t))n∈Z becomes a solution to (1) and vice-versa (see [3, 15]). In particular, the
Bäcklund transformation connects the zero solution to 1-solitons: if Q′(t) = (Q′

n(t))n∈Z ≡ 0
and α = 2 coshκ, then

Q̇n(t) + eQn(t) + e−Qn(t) = 2 coshκ,(17)
e−Qn+1(t) + eQn(t) = 2 coshκ,(18)

whence Q(t) = Qc(t+ δ), where c = sinh κ/κ and δ ∈ R is an arbitrary constant independent
of t. At this point it is convenient to establish (10).

Lemma 4. Let κ > 0 and c = sinh κ/κ. Then H(Uc) = sinh 2κ− 2κ.

Proof. Since H(Uc(t)) does not depend on t,

H(Uc) = c
∫ 1/c
0 H(Uc(t)) dt =

∫
R

(
c2

2 (∂xQ̃c(x))2 + V (R̃c(x))
)

dx.

By (17) and (18) we have

c∂xQ̃c(x) = e
eQc(x) + e−

eQc(x) − 2 coshκ, ce
eQc(x)∂xQ̃c(x) = 1− e−

eRc(x).
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Using the above, we compute

c2

2

∫
R
(∂xQ̃c(x))2 = c

∫
R

(
cosh

(
Q̃c(x)

)
− coshκ

)
∂xQ̃c(x) dx

= sinh 2κ− 2 sinh2 κ
κ ,

and ∫
R

(
e−

eRc(x) − 1
)

dx =
2 sinh2 κ

κ
.

By Fubini’s theorem and the fundamental theorem of calculus,∫
R

R̃c(x) dx =
∫

R

(∫ x+1
x ∂yQ̃c(y) dy

)
=
[
Q̃c(x)

]x=∞

x=−∞
= −2κ.

Combining these results, we obtain H(Uc(t)) = sinh 2κ− 2κ.

Now, let us linearize (16) around Q(t) = Qc(t) and Q′(t) = 0. This yields

p(t) + eQc(t)(q(t)− q′(t))− e−Qc(t)(q(t)− e−∂q′(t)) = 0,(19)
p′(t) + eQc(t)(q(t)− q′(t))− e∂e−Qc(t)(q(t)− e−∂q′(t)) = 0.(20)

Our aim is to show that this linearized Bäcklund transformation defines a uniformly bounded
mapping with respect to t which pulls back every solution of (6) satisfying (8) to a solution
of (13). To begin with, we note that linearized Toda equations are well-posed in l2a × l2a.

Lemma 5. Let a ∈ R and (q0,p0) ∈ l2a × l2a. Then the initial value problems

(21)
{

q̈ = (1− e−∂){e−Rc(e∂ − 1)q},
q(0) = q0, p(0) = p0,

and

(22)
{

q̈′ = (e∂ − 2 + e−∂)q′

q′(0) = q′0, p′(0) = p′0,

have a unique solution in the class C2(R; l2a × l2a), respectively.

Proof. The shift operators e∂ and e−∂ and the multiplication operator e−Rc are bounded on
l2a and smooth in time. Existence and uniqueness for these linear equations is standard.

Next we show that the flows generated by (21) and (22) leave the linearized Bäcklund
transformation invariant.

Lemma 6. Let t0 ∈ R and let q(t) and q′(t) be solutions to (21) and (22), respectively. Let
p = q̇ and p′ = q̇′. Suppose that the linearized Bäcklund transformation (19) and (20) holds
at t = t0. Then (19) and (20) hold for every t ∈ R.

Proof. Let

F1(t) = p(t) + eQc(t)(q(t)− q′(t))− e−Qc(t)(q(t)− e−∂q′(t)),
F2(t) = p′(t) + eQc(t)(q(t)− q′(t))− e∂e−Qc(t)(q(t)− e−∂q′(t)).
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By (17) and (18), we have

(23) Q̇c = e∂e−Qc − e−Qc = e−∂eQc − eQc .

Differentiating F1 with respect to t and substituting (21) and (23), we find

(24)
dF1

dt
= eQc(F1 − F2)− e−Qc(F1 − e−∂F2).

Similarly, we find

(25)
dF2

dt
= eQc(F1 − F2)− e∂e−Qc(F1 − e−∂F2).

Applying Gronwall’s inequality to (24) and (25), we have that for some C > 0,

‖F1(t)‖l2a
+ ‖F2(t)‖l2a

. eC|t−t0|(‖F1(t0)‖l2a
+ ‖F2(t0)‖l2a

) = 0.

This proves Lemma 6.

Let Λ := diag (e∂ − 1, 1). Given t ∈ R, we let

(26) Xt = {(q,p) ∈ l2a × l2a : u = Λ(q,p) satisfies (8)}.

This is a subspace corresponding to states u satisfying the secular term condition (8). Now
we proceed to show that for each fixed t, the linearized Bäcklund transformation defines an
isomorphism between Xt and l2a × l2a, provided 0 < a < 2κ.

Proposition 7. Suppose 0 < a < 2κ. Let t ∈ R. For every (q,p) ∈ Xt, there exists a unique
(q′,p′) ∈ l2a × l2a satisfying

p + eQc(t)(q− q′)− e−Qc(t)(q− e−∂q′) = 0,(27)
p′ + eQc(t)(q− q′)− e∂e−Qc(t)(q− e−∂q′) = 0.(28)

Furthermore, the map (q,p) 7→ (q′,p′) defines an isomorphism Φc(t) : Xt → l2a × l2a.

An easy consequence of the fact that Qc(t + c−1) = e−∂Qc(t) is the following.

Corollary 8. It holds that Φc(t + c−1) = e−∂Φc(t)e∂ for every t ∈ R.

To prove Proposition 7, we need the following.

Lemma 9. Let −2κ < a < 2κ and t ∈ R. Let C(t) = eQc(t) − e−Qc(t)e−∂ be an operator
on l2a, with adjoint C∗(t) = eQc(t) − e∂e−Qc(t) acting on l2−a = (l2a)

∗. Then C(t) is Fredholm,
kerC(t) = {0}, kerC∗(t) = span {Pc(t)} and RangeC(t)∗ = l2−a.

Proof of Lemma 9. Suppose that r = (rn)n∈Z ∈ l2a satisfies C(t)r = 0. Then it holds

rn = e−2 eQc(n−ct)rn−1 for every n ∈ Z.

By (4), we have e−2 eQc(n−ct) ∼ e2κ > 1 as n → ∞. Since r ∈ l2a, it follows that r = 0. This
proves kerC(t) = {0}.
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Now suppose C(t)∗r = 0. Then

rn+1 = e
eQc(n+1−ct)+ eQc(n−ct)rn for every n ∈ Z.

Because e
eQc(n+1−ct)+ eQc(n−ct) ∼ e∓2κ as n → ±∞, and e−a+2κ > 1 > e−a−2κ, we see that

kerC(t)∗ is a 1-dimensional subspace of l2−a. Differentiating (18) with respect to t, we have

−e∂e−Qc(t)Pc(t) + eQc(t)Pc(t) = 0.

Thus we have kerC(t)∗ = span {Pc(t)}.
Finally, given any f ∈ l2−a it is easy to determine r = (rn)n∈Z so that C(t)∗r = f , by fixing

r0 = 0 for example. Then, for any ε > 0, there exists an n0 ∈ N such that

|rn+1| ≤ eε(e−2κ|rn|+ e−κ|fn|) for n ≥ n0,
|rn| ≤ eε(e−2κ|rn+1|+ e−κ|fn|) for n ≤ −n0.

It is then not difficult to show that r ∈ l2−a. Now C(t)∗ is Fredholm, so C(t) is Fredholm.

Proof of Proposition 7. Let (q,p) ∈ Xt. Equations (27) and (28) can be rewritten as

(29)
{

C(t)q′ = p + (eQc(t) − e−Qc(t))q,

p′ = (eQc(t) − e∂e−Qc(t)e−∂)q′ − Ĉ(t)q,

where Ĉ(t) = eQc(t) − e∂e−Qc(t) (formally Ĉ(t) = C(t)∗). Since C(t) is Fredholm and
kerC(t)∗ = span {Pc(t)}, (29) has a unique solution (q′,p′) ∈ l2a × l2a if and only if

(30) p + (eQc(t) − e−Qc(t))q ⊥ kerC(t)∗.

Differentiating (17) at t = 0, we have

Ṗc(t) + (eQc(t) − e−Qc(t))Pc(t) = 0.

Thus we have〈
p + (eQc(t) − e−Qc(t))q,Pc(t)

〉
= 〈p,Pc(t)〉+

〈
q, (eQc(t) − e−Qc(t))Pc(t)

〉
= 〈p,Pc(t)〉 −

〈
q, Ṗc(t)

〉
.(31)

On the other hand, with u = (r,p) = ((e∂ − 1)q,p), we find

〈u, J−1U̇c(t)〉 = 〈H ′(Uc(t)),u〉
= 〈1− e−Rc(t), r〉+ 〈Pc(t),p〉

= 〈(1− e−∂)e−Rc(t),q〉+ 〈Pc(t),p〉
= −〈Ṗc(t),q〉+ 〈Pc(t),p〉,(32)

since Uc is a solution to (3). Combining the above with u ∈ ΛXt, we have (30). Thus we
see that (29) is solvable and the map (q,p) 7→ (q′,p′) defines a bounded linear mapping
Φc(t) : Xt → l2a × l2a.
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Because kerC(t) = {0}, we have Φc(t)(q,p) = (0,0) if and only if

p + (eQc(t) − e−Qc(t))q = (eQc(t) − e∂e−Qc(t))q = 0,

which implies u = Λ(q,p) = αU̇c for some α ∈ C. By Lemma 4, we have 〈J−1∂cUc, U̇c〉 =
− d

dcH(Uc) 6= 0 and hence α = 0 follows from the fact that u ∈ ΛXt. This proves that Φc(t)
is injective.

To see that Φc(t) is surjective, let (q′,p′) ∈ l2a × l2a. Applying Lemma 9 with a replaced
by −a, we see that the range of Ĉ(t) is l2a, so a solution (q,p) to (29) exists in l2a × l2a.
Automatically u = Λ(q,p) ⊥ J−1U̇c(t) follows due to (31), (32) and since the range of C(t)
is {Pc(t)}⊥. Adjusting (q,p) by a multiple of Λ−1U̇c(t) if necessary, we get (q,p) ∈ Xt.

Corollary 10. The map Φc(t) and its inverse are uniformly bounded for t ∈ R:

sup
t∈R

(
‖Φc(t)‖B(Xt,l2a×l2a) + ‖Φc(t)−1‖B(l2a×l2a,Xt)

)
< ∞.

Proof. Let U(t, s) denote the evolution operator associated with the evolution equation (6),
U0(t) be the C0-group generated by (13), and let

(33) Û(t, s) = Λ−1U(t, s)Λ, Û0(t) = Λ−1U0(t)Λ.

These are the evolution operators associated with the equations in (21) and (22) respectively.
Since JH ′′(0) and JH ′′(u(t)) are bounded and JH ′′(u(t)) is continuous in t, we see that
U(t, s) and U0(t) are locally uniformly continuous in t and s on l2a × l2a (see [12]).

Because Û(t, s)Xs = Xt and by Lemma 6, we have that for all t, s ∈ R,

(34) Φc(t)Û(t, s)|Xs = Û0(t− s)Φc(s).

Using s = 0 in particular, we get

Φc(t) = Û0(t)Φc(0)Û(0, t)|Xt .

¿From this it follows ‖Φc(t)‖B(Xt,l2a×l2a) + ‖Φc(t)−1‖B(l2a×l2a,Xt) is uniformly bounded for t in
bounded sets.

Let τ ∈ [0, c−1] and k ∈ Z and let t = τ + kc−1 and v = (q,p) ∈ Xt. By Corollary 8,
Φc(t) = e−k∂Φc(τ)ek∂ , so ek∂v ∈ Xτ . Note that since e∂ is an isometry of l2, for any x ∈ l2a
we have

‖ek∂x‖l2a
= ‖(eanxn+k)n∈Z‖ = e−ak‖x‖l2a

.

Now we calculate using the local uniform bound established above that

‖Φc(t)v‖l2a
= ‖e−k∂Φc(τ)ek∂v‖l2a

= eak‖Φc(τ)ek∂v‖l2a

≤ Keak‖ek∂v‖l2a
= K‖v‖l2a

.

Similarly we get a uniform bound for Φc(t)−1.

Now, we are in position to prove (L).

Theorem 11. Let c > 1, a ∈ (0, 2κ(c)) and β = ca−2 sinh(a/2). Let U(t, s) be the evolution
operator associated with (6). Then (L) holds: there exists a constant K > 0 such that for any
u0 ∈ Xs,

‖ea(n−ct)U(t, s)u0‖l2 ≤ Ke−β(t−s)‖ea(n−cs)u0‖l2 for every t ≥ s ∈ R.

Proof. This follows directly using the formulas (33) and (34), Corollary 10 and the bounded-
ness of Λ and Λ−1, and the bound on U0(t− s) coming from Lemma 3.
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3 Characterization of spectrum

The key to determining the point spectrum σp(Lc) is to relate eigenfunctions to traveling
Floquet modes and utilize the linearization of the Bäcklund transformation (16) around
Q(t) = Qc(t) and Q′(t) = 0 to make a correspondence between the linearization of equa-
tion (1) around Q(t) = Qc(t)

(35) q̈ = (1− e−∂){e−Rc(e∂ − 1)q},

and the linearization of equation (1) around Q′(t) = 0

(36) q̈′ = (e∂ − 2 + e−∂)q′.

In view of Lemma 6, it suffices to generate this correspondence between (q0,p0) and (q′0,p′0)
at t = 0.

Lemma 12. Let 0 < a < 2κ, λ ∈ C and let w ∈ H2
a(R). Suppose that q(t) =

(
eλtw̃(n− ct)

)
n∈Z

is a solution to (35) that satisfies (8) and that q(t) and q′(t) satisfy (19) and (20). Then
there exists w̃′ ∈ H2

a(R) such that q′(t) =
(
eλtw̃′(n− ct)

)
n∈Z.

Proof. Proposition 7 implies that there exists a unique (q′(t),p′(t)) satisfying (19) and (20)
for every (q(t),p(t)). By the assumption and the definition of Qc(t), we have

Qc(c−1) = e−∂Qc(0), q(c−1) = eλ/ce−∂q(0), q̇(c−1) = eλ/ce−∂q̇(0).

Combining the above with (19) and (20), we obtain

p(0) + eQc(0)(q(0)− e−λ/ce∂q′(c−1))− e−Qc(0)(q(0)− e−λ/cq′(c−1)) = 0,

p′(0) + eQc(0)(q(0)− e−λ/ce∂q′(c−1))− e∂e−Qc(0)(q(0)− e−λ/cq′(c−1)) = 0.

Thus by Proposition 7, we have

q′(c−1) = eλ/ce−∂q′(0), q̇′(c−1) = eλ/ce−∂q̇′(0).

Since (36) is autonomous, it follows from Lemma 5 that

q′(t + c−1) = eλ/ce−∂q′(t)

for every t ∈ R and that q′(t) =
(
eλtw̃′(n− ct)

)
n∈Z for some w̃′ ∈ H2

a(R). This completes the
proof of Lemma 12.

Now, we are in position to prove Theorem 2.

Proof of Theorem 2. The characterization of the essential spectrum follows from [7, Lemma
4.2]. Suppose that λ is an eigenvalue of Lc and W̃ is an eigenfunction belonging to λ. Suppose
(a) λ 6∈ 2πicZ or (b) λ = 2πimc (m ∈ Z) and W̃ is linearly independent of the eigenfunction
e2πimx∂xŨc. In the case (b), we can choose W̃ (x) so that∫

R
W̃ (x) · e−2πimxJ−1∂xŨc(x)dx =

∫
R

W̃ (x) · e−2πimxJ−1∂cŨc(x)dx = 0.
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Then u(t) = (eλtW̃ (n − ct)))n∈Z is a solution to (6) that satisfies (8). Indeed, noting that
W̃ ⊥ kerg(L∗c + 2πinc) for every n ∈ Z (n 6= m in case (b)), we have that for every n ∈ Z,∫

R W̃ (x) · e−2πinxJ−1∂xŨc(x)dx = 0,∫
R W̃ (x) · e−2πinxJ−1∂cŨc(x)dx = 0.

This yields (8), by (2.17) of [7].
Let (q(t),p(t)) = Λ−1u(t). Then q(t) is a solution to (21) such that (q0,p0) = Λ−1u(0) ∈

X0 ⊂ l2a × l2a, and q(t) =
(
eλtw(n− ct)

)
n∈Z where w ∈ H2

a(R).
By Proposition 7 and Lemma 12, there exists a solution q′(t) to (22) and a w̃′ ∈ H2

a(R)
such that (q′0,p′0) = Φc(0)(q0,p0) and q′(t) =

(
eλtw̃′(n− ct)

)
n∈Z. Put ϕ(x) = eaxw̃′(x).

Then ϕ ∈ L2(R) and
(c(∂ − a)− λ)2ϕ = (e∂−a − 2 + e−∂+a)ϕ.

Hence it follows that K(ξ, λ)ϕ̂(ξ) = 0, where ϕ̂ denotes Fourier transform and

K(ξ, λ) := (c(iξ − a)− λ)2 − 4 sinh2
(

iξ−a
2

)
= (λ− k+(ξ))(λ− k−(ξ)),

with

k±(ξ) = c(iξ − a)± 2 sinh
(

iξ − a

2

)
= icξ + µ±(ξ).

For each λ ∈ C we have K(ξ, λ) 6= 0 for a.e. ξ ∈ R. In fact, we have k+(ξ) = λ or k−(ξ) = λ
if K(ξ, λ) = 0. By (15),

=k±(ξ) = cξ ± 2 cosh
a

2
sin

ξ

2
,

and =k±(ξ) = =λ has at most a finite number of solutions. This is a contradiction. This
proves σp(Lc) = 2πicZ and that each eigenvalue is geometrically simple.

Since Lc(e2πinxW (x)) = e2πinx(Lc + 2πinc)W (x) for any W : R → C2, every generalized
eigenspace belonging to λ ∈ 2πicZ has the same structure. Now we will show that the
algebraic multiplicity of λ = 0 is two. In fact, we have Range Lc ⊂ ker(L∗c)

⊥. Because
J−1∂xŨc ∈ ker(L∗c) and∫

R
∂cŨc(x) · J−1∂xŨc(x)dx = −1

c

d

dc
H(Uc) 6= 0,

it follows from the Fredholm alternative that LcW = ∂cŨc has no solution in L2(R; e2axdx)
and that the algebraic multiplicity of λ = 0 is two. This completes the proof.
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