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Asymptotic Stability versus Exponential Stability
in Linear Volterra Difference Equations of
Convolution Type

Trinity K% Saber Elaydi
LK - H #HE f& (Satoru Murakami)

§1. INTRODUCTION.

Volterra difference equations of convolution type have been investigated by the first
author in [3,4,5]. In particular, the resolvent matrix was defined and used to establish
a variation of constants formula. These results constitute the discrete analogue of the
theory of Volterra integrodifferential equations [1,6,7,8]. A question was raised by Cor-
duneanu and Lakshmikantham [1] of whether or not uniform asymptotic stability implies
exponential stability in linear Volterra integrodifferential equations. In [8] Murakami
answered this question negatively. In this paper we will extend Murakami’s result to
Volterra difference equations. It will be shown that if the zero solution is uniformly
asymptotically stable, then it is exponentially stable if and only if the kernel decays
exponentially (Theorem 5).

Consider the linear Volterra difference system of convolution type

z(n+1) =A$(n)+ZOB(n~j)$(j)7 (L)
=

where A is a k x k constant matrix and B(n) € I'(Z%) is a k x k matrix-valued function
defined on the set of nonnegative integers Z7.

The resolvent matrix R(n) of (L) is defined as the unique solution of the matrix

equation

R(n +1) = AR(n) + ijB(n — R(j), RO)=1I, ne Z*. (R)

=0
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Let y(n) denote the solution of the equation
y(n+1) = Ay(n) + 3 B(n — j)y(j) + g(n). (1)
7=0
Then by the variation of constants formula [4,5], we obtain
n—1
y(n) = R(n)y(0) + X_ R(n —j — 1)g(5). (2)
7=0
For any s € Z* and initial function ¢ : [0, s] — R*, there is only one solution z(n, s, ¢) =
z(n) which satisfies Equation (L) on [s,00) and z(n) = ¢(n) on [0,s]. Here all our
intervals are discrete, e.g. [0,s] = {0,1,2,...s}.
Although our stability definitions are standard, we will state them here for the con-

venience of the reader. If ¢ : [0,s] — RF, then |j¢|jo., = sup{|p(j)| : j € [0,]}.

Definition 1. The zero solution of (L) is said to be:
(i) uniformly stable (US) if for any e > 0 there exists 6 = §(e) > 0 such that if s € Z+
and @ is an initial function on [0, s] with ||¢||,s < 6 then |z(n,s, )| < e for alln > s;
(i) uniformly attractive (UA) if there exists p > 0 such that for any e > 0 there ezists
N = N(e) € Z* such that if s € Z* and p is an initial function on [0, s] with ||¢|loq < s
then |x(n,bs,<p)[ <e€ foralln>s+ N;
(iii) uniformly asymptotically stable (UAS) if it is both US and UA;
(iv) exponentially stable (ES) if there exist positive constants K and n with n € (0,1)
such that

2(m,5,0) < K" ellpass 7> 520

for any initial function ¢ on [0, s].

§2.. UNIFORM ASYMPTOTIC STABILITY.

In this section we will establish some necessary and sufficient conditions for UAS. One

of the main tools used here is the Z-transform method [2,3,4,5]. Recall that the Z-
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transform Z(z) of a sequence z(n) is defined as

i‘(z) = i x(n)z‘"
Let ;)
h(n) =3 |3 R(n—j—1)B(j +r+1)|. (3)

r=0 3=0
The main result-in this section now follows.

Theorem 2. For equation (L) the following statements are equivalent.
(I)  det(z] —A—B(2))#0 for |z| > 1.
(I)  R(n) € IM(ZT).
(III)  The zero solution of (L) is UAS.
(IV)  Both R(n) and h(n) of (8) tend to zero as n — oco.

Proof. (I)= (II): Define the matrix function B(n) by letting B(r) = B(r) for all
r # 0 and B(0) = B(0) + A. Then Equation (R) may be now written in the form

R(n+1)= B(n) + 3 Bln = RG). (@)

i=1

By the discrete Gronwall’s inequality [5], Equation (4) yields
|B(n)] < (14 a)" =p"
where a = $°% | B(n)|. Hence
R(z) = z(z2I—A—B(z2))™}
= (I-TA-1BE), >8> 1 (5)
For sufficiently large ~,

1.
inf |det(] — —i—A - ;B(z))] >

[z]>~

N | —
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Furthermore, also on the compact annulus 1 < |z| <+, infdet(] — 1A - %B(z)) # 0.

Hence it follows that
, 1. 1- "
inf |det(I — ;A - ;B(z))l >0 for all |z| > 1. (6)

Applying a theorem due to Wiener (cf. {2, p.251]), we conclude by (6) that there exists
an H(n) € I*(Z*) such that |

A1 -ta- éé(z)) — T for |2| > 1.

z
Then it follows from (5) that H(z) = R(z) for |z| > A, and hence R(n) = H(n) € }(Z7)
as required.
(II)=> (III): Assume that R(n) € I'(Z*). Then from Equation (L),
n+7

znt+r+lme) = Az(nt71,m)+ Y B+ —j5)(j,7,0)

i=0

= Az(n+77,0)+ 3 B(n—j)z(j +7,7,0)

§=0

£ B(n+ i)l - j).

i=1

It follows by the variation of constants formula that
n—1 T ,
z(n +7,7,¢) = R(n)p(1) + D R(n —j = 1) B(j + s)e(r — s)
7=0 s=1

or

|z(n + 7, 7,0)| < el R(n I+Z|Rn—1—1| Z |B(s) (7)

s=j+1

In Equation (7), the first term |R(n)| — 0 as n — oo; the second term also tends to
zero as n — oo since it is the convolution of an ! function with one which tends to zero
as n — 00. Therefore the quantity

|+21Rn~y-—uz [B(s)

s=j+1
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is bounded and tends to zero as n — 0o, and hence the zero solution of (L) is UAS.

(IIl)=> (IV): Assume that the zero solution of (L) is UAS. Then |z(n 4 7,7,¢)| — 0
as n — oo. If 7 = 0, then |z(n,0,¢(0))| = |R(n)p(0)] — 0 as n — oo. Consequently,
|R(n)| — 0 as n — oco. Now

n+T1

znt+1+1,7m,0) = Az(n+7,7,0)+ Y B(n+71—j)z(5,7,¢)
i 7=0
n 7—1
= Az(n+7,7,0)+ Y B(n—r)z(r+7,7,0) + > B(n+1 = j))e(j).
r=0 Jj=0

By the variation of constant formula we have

2(n +7,7,0) = R(n)p(r) + 3 R(n — j — 1) 3" B + 7 — r)o(r)

o+ 7,7y) = Rl = | 3 (3 Rn = DB 47+ Dgtr =r = ).

Since z(n + 7,7,¢) — 0 and R(n)p(r) — 0 uniformly for 7 > 0 as n — oo, it follows

that
7—1 n-~1

sup| S R(n—j—1)B(G +r+1))p(r —r —1)] = 0 as n— co.

720 r=0 j=0

Consequently, sup, o Yo | X0Zs R(r—j — 1)B(j +r 4 1)| = 0 as n — oco. Therefore,
the limit lim, o Y720 | 720 R(n — j — 1)B(j +r + 1)| = h(n) exists for n € Z*, and
it satisfies the relation that A(n) — 0 as n — oo.

(IV)= (I): Assume that the condition (IV) holds. Claim that det[z] — A-B(z)]#0

for all |z] > 1. If this claim is false, then there exist a complex number zy with |z| > 1

and a unit vector yo € R* such that

(zo] — A — B(20))yo = 0.
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Hence

20Y0 = Ayo + Z B(n)yozs™. (8)

n=0

Set y(n) = z3yo. Then y(n) is bounded for n € (—o0,0], and
ly(r)] = [yo| = 1, for n € Z*. (9)

Now using Equation (8) we get

y(n+1) = 25ty

— =flAw+ 3 Bl
Thus
y(n+1) = Ay(n) + Z:B(j)y(n i)+ > B()y(n—j).

7=n+1

By the variation of constants formula, it follows that

y(n) = Rinyo+ Y Rn—j—=1)( Y Bl )
7=0 s=j+1
= R(n)yo+ i(Z R(n—j B +r+ D)y(—r - 1).

Since R(n) — 0 and h(n) — 0 as n — oo, it follows that y(n) — 0 as n — oo, which

contradicts (9). The proof of the claim is now complete.

Remark. In both Volterra integrodifferential equations and Volterra difference equa-
tions, 1t is widely believed that the resolvent matrix R(n) of Equation (E) possesses
the same properties of a fundamental matrix of an ordinary difference or differential

equation. In particular, it is assumed that
R(n — s)R(s) = R(n). (10)

The false statement (10) leads to the false claim that UAS implies ES for Equation (L).

The next lemma shows that (10) is possessed only by ordinary difference equations.
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Lemma 3. R(n — s)R(s) = R(n) for alln > s > 0 if and only if B(n) = 0 for all
n=12,...

Proof. Sufficiency is trivial.
Necessity. Suppose that R(n — s)R(s) = R(n) for all n > s > 0. Then from Equation
(R) we have

n—s

R(n—s+1)= AR(n—-s)+ZB(n—s—j)R(j).

Multiply both sides by R(s) and change the indexing to obtain

R(n — s+ 1)R(s) = AR(n — s)R(s) + 3" B(n — ))R(j — s)R(s)

J=s

or
n

R(n+1) = AR(n) +_ B(n — j)R()). (11)

Jj=s
Subtracting (11) from (R) gives
s—1 .
> B(n—j)R(j)=0 for all n>s>0. (12)
=0
Letting s = 1 in (12) yields B(n) =0 for all n = 1,2,3,.... Consequently, Equation (L)

must have the form z(n + 1) = [A + B(0)]z(n).

§3. EXPONENTIAL STABILITY.

A matrix-valued function C(n) on Z is said to decay exponentially whenever it satisfies

|IC(n)| < Mv™ (n € Z%) for some M >0 and v € (0,1).

Theorem 4. Suppose |R(n)| — 0 as n — oco. Then R(n) decays exponentially if and
only if B(n) is so.

Proof of “only if ” part. We assume that |R(n)| < Mv" (n € Z*) for some M > 0

and v € (0,1). Then R(z) = £22 R(n)z™" absolutely converges on |z| > v. Moreover,
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B(z) = ©2,B(n)z"" absolutely converges on |z| > 1. Taking the Z-transform of

Equation (R), we obtain
(21 — A— B(2))R(z) = 21, |z| > 1.

Hence R(z) is nonsingular and zI — A — B(z) = zR(z)™! for all z with |z| > 1. Since
R(z) is continuous on |z| > v, the fact that R(z) is nonsingular for z with |z] = 1 implies
inf{|det R(z)| : |z] = 1} > 0. Then inf{|det R(z)| : 1 — 26 < |2| < 1} > 0 for some
6 € (0,(1 —v)/2), and hence R(z) is nonsingular for z with |z| > 1 — 26. Since R(z) is

analytic on the annulus |z| > 1 — 26, so is R(z)™!. Consider a function F(z) defined by
F(z)=zI — A—2R(2)7}, lz| > 1 — 26,

which is analytic on the annulus |z| > 1 — 26, and let

F(z) = i a(n)z" (1 =26 <z < o0)

be Laurent’s expansion of F(z). Since F((z) = B(z) on |z| > 1, we obtain supy,»; |F(z)| =
SUP|, 151 | Lmeo B(n)27"| < X050 | B(n)| =: My < co. Then

) = o= [ g

271 Jjz|=L 2"

1 M M,
< — 2L = —
= op LTV T I

for all L > 1. Let L — oo in the above to get |a(n)| = 0 for n > 1. Consequently,
F(z)=)_a(-n)z"", 1—-26 < |z| < 0.

In particulr, we get
> la(=n)|(1 = 6)™ < oo. (13)
n=0

Since Y02 o B(n)z™" = B(z) = F(z) = % ,a(—n)z" on |z| > 1, it follows from the

uniqueness of Laurent’s expansion that B(n) = a(~n) for all n € Z*. Thus we obtain
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% o |B(n)|(1—=8)"" < oo by (13), and hence sup, 54 |B(n)|(1—6)"" =: M, < co. Then
|B(n)| < My(1 — )" for all n € Zt, which shows that B(n) decays exponentially.

Proof of “if ”part. Suppose |B(n)| < Msv] (n € Z%) for some M; > 0 and v, €

(0,1). Then B(z) = Y22, B(n)2z" absolutely converges on |z| > 4. On the other
hand, sup,sq|R(n)|d™" (=: ¢) < oo for some constant d > 1, and hence the series
R(z) = Y%  R(n)z™" absolutely converges on |z| > d. Taking the Z-transform of

Equation (R), we obtain
(zI — A— B(2))R(z) = 21, |z| > d.

Thus 2] — A— B(z) is nonsingular and R(z) = z(2I — A— B(2))™" for all z with |z| > d.
We assert that
det[z] — A— B(2)] #0, |2/ >1. (14)

Indeed, since |B(n)| < M3y} for n € Z*, the function h(n) of (3) satisfies

oo n—1

h(n) < M;) 3 |R(n—j =1y
r=0 j=0
n~-1
< My/(1—w) 3 [R(n — j — i,
7j=0

Then h(n) — 0 as n — oo, because of 0 < 1 < 1 and |R(n)| — 0 as n — oco. Hence
the assertion (14) follows from Theorem 2.

Now, since zI — A — B(z) is continuous on |z| > 11, by (14) one can choose a constant
61 € (0,(1—11)/2) so small that inf{|det(z] — A— B(2))| : 1=26; < |2| <1} > 0. Then
2] — A — B(z) is nonsingular for z with |z| > 1 —26;, and (2] — A~ B(z))™! is analytic
on |z| > 1 — 26;. Consider a function G(z) = z(2] — A — B(z))™ on |z| > 1 — 26, aﬁd
let G(z) = 300 _ b(n)z" (1 —26; < |2| < 0o) be Laurent’s expansion of G(z). Since
R(z) = G(z) on |z| > d, we obtain

up{IG(2)] £ |21 2 24} = sup{3 [R(m)=™"] s ¢l 2 24)

n=0
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< 3 |R(n)|(2d)"

n=0

< CZ 27" = 2¢
n=0

By the same reasoning as for F'(z), one can get b(n) = 0 for all n > 1, and

o 16(=n)|(1—61)™" < co. On the other hand, since Y52, R(n)z"" = R(z) = G(z) =
Yo ob(—n)z7" on |z| > d, it follows from the uniqueness of Laurent’s expansion that
R(n) = b(—n) for all n € Z*. Consequently, 3 |R(n)|(1 — 6;)™" < oo, and hence
Sup,>o |R(n)|(1 = é:1)™" < co. This implies that R(n) decays exponentially.

Theorem 5. Suppose that the zero solution of (L) is UAS. Then the zero solution of
(L) is ES if and only if B(n) decays exponentially.

Proof. The “only if ” part follows from Theorem 4, immediately. We will establish the
“if 7 part. Assume that |B(n)| < Myv} (n € Z%) for some M; > 0 and v; € (0,1).
Since R(n) decays exponentially by Theorem 4, there exist some M > 0 and v € (14,1)
such that |R(n)] < Mv™ for all n € Z*. Let any 7 € Z* and any initial function ¢ on
[0,7] be given. By (7), we get

ptntmr )l < lpllonlMom + 5 My 3 My

j=0 s=j4+1

My,
(1—=un)(v—1un)

which shows the exponential stability of the zero solution of (L).

n
v 9

< Mlellpnl +

Example 6. Consider the scalar difference equation

1 .
2n+1)= *Z =) D =) 73

Here A = 1/4, B(n) = 1/{(2n + 1)(2n + 3)] which is in [*(Z*) since 322, B(n) =
Since A + Y2, B(n) < 1, it follows from Corollary 2.4 in [3] that the zero solution is
UAS. By Theorem 5 it follows that the zero solution is not ES.
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Example 7. Consider the scalar difference equation

T

en+1) = az(n)+ 3 (=1/2)"2(5)

7=0
n

= (a+1)z(n) + D_(=1/2)"z(j).
I=1
Here A = a and B(n) = (—1/2)" which deacays exponentially. The equation z — A —
B(z) =0 (|z| > 1) is equivalent to the equation 222 — (2a+1)z—a = 0 (|z| > 1), which
has no roots if and only if —2 < a < 1/3. Therefore, by Theorems 1 and 5, the zero
solution of the above equation is ES if and only if —2 < @ < 1/3. We note that the zero

solution of the equation z(n + 1) = (a 4+ 1)z(n) which has no delay terms is unstable if

0<a<1/3.
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