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a b s t r a c t

We compare the asymptotic structure of the time-dependent attractor At generated by the
partial differential equation

εutt + αut − ∆u + f (u) = g,

where the positive function ε = ε(t) tends to zero as t → ∞, with the global attractor A∞

of its formal limit

αut − ∆u + f (u) = g.

We establish an abstract result and we apply it to the proof of the convergence At → A∞.
© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This article is motivated by the asymptotic analysis of the semilinear wave equation on a bounded domain Ω ⊂ R3

εutt + αut − ∆u + f (u) = g, (1.1)

where f is a suitable nonlinearity and g an external force. Here α is a strictly positive damping coefficient, while ε = ε(t) is
a positive function of t fading to zero as time goes to infinity. Accordingly, we can formally interpret the parabolic equation

αut − ∆u + f (u) = g (1.2)

as the limit situation in the longtime of (1.1). The model above, which can be seen as a nonlinear damped wave equation
with time-dependent speed of propagation 1/ε(t), has been studied in detail in [1]. In that work, problem (1.1) is shown
to generate a process U(t, τ ), acting on a family of time-dependent spaces {Zt}, possessing the time-dependent global at-
tractor in the sense of [2]. Loosely speaking, this is the smallest family {At} (where each At lies in its own t-indexed space
Zt ) which attracts bounded subsets in a pullbackway. At the same time, Eq. (1.2) generates a semigroup S(t) possessing the
global attractor A∞, according to the classical definition [3–6]. It is then a natural question to investigate whether there is a
closeness of At to A∞ as t → ∞. Indeed, although this is formally suggested by the very structure of the equations, A∞ is a
forward attractor, that is, in principle, quite a different object from the pullback family {At}. Nonetheless, we may subsume
the main result of the present paper by saying that

At → A∞ as t → ∞.
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Of course, the type of convergence has to be properly defined, as we will see later. This somehow tells that (1.2) provides
an accurate description of the longterm dynamics of the solutions to (1.1). More interestingly, the limit procedure is auto-
matically built-in, for we do not let any parameter go to zero artificially (e.g. like in [7]). As far as we can say, this is the first
considered instance of limiting procedure not induced by an actual limit.

The first part of this work is devoted to the general theory of attractors for processes in time-dependent spaces, specifi-
cally developed in [1,2,8] to handle evolution problemswhere the coefficients of the differential operators depend explicitly
on time. Due to the presence of time-dependent terms at a functional level, the standard theory of attractors fails to capture
the dissipation mechanism involved in the dynamical system, and thus it is not suitable to study its longterm behavior. The
phenomenon is quite evident in the model equation (1.1) under consideration, where what is really dissipated is the weak
energy

E(t) =

∫

Ω

|∇u(x, t)|2 dx + ε(t)
∫

Ω

|ut(x, t)|2 dx.

Hence, it seems convenient to frame the equation in the usual Sobolev space

Zt = H1
0 (Ω) × L2(Ω),

but endowed with the norm

‖(u, v)‖2
Zt

= ‖u‖2
H1
0

+ ε(t)‖v‖
2
L2 ,

depending on time through the weight function ε(t). This leads us quite naturally to adopt a new point of view, namely, to
describe the solution operator as a family of maps acting on the time-dependent family of spaces {Zt}. After a brief review
of the main definitions of processes on time-dependent spaces and their attractors, we supplement the general theory with
two new results. The first gives the structure of the time-dependent attractor in terms of complete bounded trajectories of
the system (see Theorem 3.2). The second result (Theorem 4.2) addresses in an abstract form the main question stated in
the introduction; precisely, when the original model formally collapses into an autonomous system as t → ∞, we provide
sufficient conditions in order for At to be close (in a suitable sense) to the global attractor of the limiting equation.

As a concrete application of the abstract result, in the second part of the paper we focus on the wave equation (1.1) with
time-dependent speed of propagation and its relationships with the parabolic heat model (1.2). In particular, the closeness
between the time-dependent global attractor At associated with (1.1) and the global attractor A∞ associated with (1.2) is
shown to occur in terms of Hausdorff semidistance.

2. Time-dependent global attractors: a review

We begin by recalling some basic definitions and results from [1,2,8] about processes on time-dependent spaces. For
t ∈ R, let Zt be a family of normed spaces. We consider a two-parameter family of operators

U(t, τ ) : Zτ → Zt ,

depending on t ≥ τ ∈ R, satisfying the following properties:
(i) U(τ , τ ) is the identity map on Zτ for every τ ;
(ii) U(t, τ )U(τ , s) = U(t, s) for every t ≥ τ ≥ s.

The family U(t, τ ) is called a process.
We now give the definition of global attractor in this context. First, we introduce a suitable notion of uniform bounded-

ness.

Definition 2.1. A family C = {Ct}t∈R of bounded sets Ct ⊂ Zt is called uniformly bounded if there exists R > 0 such that

Ct ⊂
{
ζ ∈ Zt : ‖ζ‖Zt ≤ R

}
, ∀t ∈ R.

Analogously to [9], the global attractor in this framework can be defined as in [1], through the property of being the
minimal set among the compact attracting ones.

Definition 2.2. The time-dependent global attractor for U(t, τ ) is the smallest family A = {At}t∈R such that
(i) each At is compact in Zt ;
(ii) A is pullback attracting, i.e. it is uniformly bounded and the limit1

lim
τ→−∞

δZt (U(t, τ )Cτ , At) = 0

holds for every uniformly bounded family C = {Ct}t∈R and every fixed t ∈ R.

1 For any normed space Z, the Hausdorff semidistance of two (nonempty) sets B, C ⊂ Z is given by

δZ(B, C) = sup
x∈B

distZ(x, C) = sup
x∈B

inf
y∈C

‖x − y‖Z.
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Remark 2.3. By virtue of [1, Theorem 4.2] A exists and is unique if and only if the set{
K = {Kt}t∈R : Kt ⊂ Zt compact, K pullback attracting

}

is not empty.

The next issue is the invariance of the attractor.

Definition 2.4. A family C = {Ct}t∈R is called invariant if

U(t, τ )Cτ = Ct , ∀t ≥ τ , τ ∈ R.

Although such a property is not required inDefinition 2.2, the time-dependent global attractor turns out to be invariant as
soon as the process satisfies someweak continuity-like properties (see [1, Theorem 5.6]). In particular, the following is true.

Theorem 2.5. If U(t, τ ) is a strongly continuous process which possesses the time-dependent global attractor A, then A is in-
variant.

Recall that a process is called strongly continuous if U(t, τ ) is a continuous map from Zτ to Zt for any pair of fixed times
t ≥ τ .

Noticeably, whenever invariant, the time-dependent global attractor is maximal in the class of bounded invariant fami-
lies, as a consequence of the next proposition.

Proposition 2.6. If C = {Ct}t∈R is any uniformly bounded invariant family, then

C ⊂ A.

Proof. Since A is pullback attracting and C is uniformly bounded, then

lim
τ→−∞

δZt (U(t, τ )Cτ , At) = 0.

But U(t, τ )Cτ = Ct , hence

δZt (Ct , At) = 0,

which implies Ct ⊂ Ct ⊂ At = At for all t (the bar standing for closure in Zt ). �

3. Complete bounded trajectories

Similarly to the classical case, the time-dependent global attractor can be characterized as sections of the set of complete
bounded trajectories.

Definition 3.1. A function z : t �→ z(t) ∈ Zt is a complete bounded trajectory (cbt) of U(t, τ ) if and only if

sup
t∈R

‖z(t)‖Zt < ∞

and

z(t) = U(t, τ )z(τ ), ∀t ≥ τ , τ ∈ R.

Theorem 3.2. Let A = {At}t∈R be the time-dependent global attractor of U(t, τ ). If A is invariant, then

At =
{
z(t) ∈ Zt : z cbt of U(t, τ )

}
.

Accordingly, we can write

A =
{
z : t �→ z(t) ∈ Zt with z cbt of U(t, τ )

}
.

Proof. Let us denote

Ã = {Ãt}t∈R with Ãt =
{
z(t) ∈ Zt : z cbt of U(t, τ )

}
.

We have to prove the set equality

A = Ã.

Let us first show that Ã ⊂ A. To this aim, let z(·) be any fixed cbt of U(t, τ ). In particular, the family

Bz = {z(t)}t∈R

is uniformly bounded and invariant. Hence, by Proposition 2.6,

Bz ⊂ A ⇒ Ã ⊂ A.
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To see the converse, let ζ ∈ As for a fixed s. Using the invariance ofA, we build in a recursiveway a sequence ζn (with ζ0 = ζ )
such that

ζn = U(s − n, s − n − 1)ζn+1.

Notice that ζn ∈ As−n for all n. Define then

z(t) = U(t, s − n)ζn, for t ≥ s − n.

The definition is well posed, since if t ≥ s − m and we assume, for instance, n ≥ m, then

U(t, s − n)ζn = U(t, s − m)U(s − m, s − n)ζn = U(t, s − m)ζm.

Since z(t) ∈ At and A is uniformly bounded, then

sup
t∈R

‖z(t)‖Zt < ∞.

Finally, if t ≥ τ , choosing n such that τ ≥ s − nwe have

z(t) = U(t, s − n)ζn = U(t, τ )U(τ , s − n)ζn = U(t, τ )z(τ ),

proving that z is a cbt of U(t, τ ), and, in particular,

z(s) ∈ Ãs.

Exploiting the equality ζ = z(s), we conclude that As ⊂ Ãs, which yields the sought family inclusion A ⊂ Ã. �

4. Upper semicontinuity of the attractor

In what follows, we will focus on the particular, albeit significant, case of a process U(t, τ ) acting on a family of spaces
{Zt}t∈R of the form

Zt = X × Yt ,

where X is a normed space and {Yt}t∈R is a family of normed spaces, endowed with the product norm

‖(ξ , η)‖2
Zt

= ‖ξ‖
2
X + ‖η‖

2
Yt

.

4.1. Notation

We denote by Πt : Zt → X the projection on the first component of Zt , namely,

Πt(ξ , η) = ξ .

Accordingly, if Ct ⊂ Zt , then

ΠtCt = {ξ ∈ X : (ξ , η) ∈ Ct}.

In a similar manner, if C = {Ct}t∈R, we set

ΠC = {ΠtCt}t∈R.

4.2. General assumptions

We suppose that our process U(t, τ ) possesses the time-dependent global attractor A = {At}t∈R, which is assumed to be
invariant as well. Observe that, by Theorem 3.2, we can write

ΠA =
{
x : R → X such that x = Πz with z cbt of U(t, τ )

}
.

In addition, let

S(t) : X → X, t ≥ 0,

be a semigroup acting on X, possessing the (classical) global attractor A∞ ⊂ X.
Recall that the global attractor of the semigroup S(t) is by definition the unique compact set A∞ ⊂ X which is simulta-

neously invariant, i.e.

S(t)A∞ = A∞, ∀t ≥ 0,

and attracting the bounded subsets of X with respect to the Hausdorff semidistance in X (see e.g. [3–6]).

Remark 4.1. It is well known that, for any fixed s ∈ R, the global attractor of S(t) has the form

A∞ =
{
w(s) : w cbt of S(t)

}
,
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where w : R → X is called a cbt of S(t) if

sup
t∈R

‖w(t)‖X < ∞ and w(t + τ) = S(t)w(τ),

for all t ≥ 0 and τ ∈ R. Besides, w ∈ C(R, X) whenever the map t �→ S(t)ξ belongs to C(R+, X) for all ξ ∈ X.

4.3. The abstract result

We are now ready to state the theorem on the convergence of At to A∞.

Theorem 4.2. Assume that, for any sequence zn = (xn, yn) of cbt of the process U(t, τ ) and any tn → ∞, there exist a cbt w
of S(t) and s ∈ R for which

‖xn(s + tn) − w(s)‖X → 0

as n → ∞, up to a subsequence. Then

lim
t→∞

δX(ΠtAt , A∞) = 0.

Proof. By contradiction, let there exist ν > 0 and two sequences tn → ∞ and ζn ∈ ΠtnAtn such that

inf
ξ∈A∞

‖ζn − ξ‖X ≥ ν. (4.1)

In light of Theorem 3.2, for all n there is a cbt zn = (xn, yn) of U(t, τ ) satisfying

ζn = xn(tn).

If we define the function ẑn = (x̂n, ŷn) by the rule

ẑn(t) = zn(t − s),

then ẑn is still a cbt of U(t, τ ) (note that ẑn(t) ∈ At−s). Besides,

ζn = x̂n(s + tn).

Therefore, by assumption, we find a cbt w of S(t) such that

‖ζn − w(s)‖X = ‖x̂n(s + tn) − w(s)‖X → 0

up to a subsequence. Since w(s) ∈ A∞ by Remark 4.1, this violates (4.1). �

5. Wave equations with time-dependent speed of propagation

Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω . For any initial time τ ∈ R, we consider as in [1] the
evolution equation in the unknown u = u(x, t) : Ω × [τ , ∞) → R

εutt + αut − ∆u + f (u) = g (5.1)

subject to the homogeneous Dirichlet boundary condition

u(x, t)|x∈∂Ω = 0 (5.2)

and the initial conditions

u(x, τ ) = a(x) and ut(x, τ ) = b(x), (5.3)

where a, b : Ω → R are assigned data. Here, the damping coefficient α is a strictly positive constant while ε = ε(t) is a
function of t .

5.1. General assumptions

Let ε ∈ C1(R) be a positive decreasing bounded function with bounded derivative satisfying

lim
t→∞

ε(t) = 0.

Besides, let f ∈ C2(R) with f (0) = 0 satisfy the growth bound

|f ′′(u)| ≤ c(1 + |u|), (5.4)

for some c ≥ 0, along with the dissipation condition

lim inf
|s|→∞

f (s)
s

> −λ1,
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where λ1 > 0 is the first eigenvalue of the strictly positive Dirichlet operator

−∆ with domain D(−∆) = H2(Ω) ∩ H1
0 (Ω) � L2(Ω).

Finally, the time-independent external source g = g(x) is taken in L2(Ω).

5.2. Functional setting and notation

We set H = L2(Ω), with inner product 〈·, ·〉 and norm ‖ · ‖. For σ ∈ R, we define the hierarchy of (compactly) nested
Hilbert spaces

Hσ
= D((−∆)

σ
2 ), 〈u, v〉σ = 〈(−∆)

σ
2 u, (−∆)

σ
2 v〉, ‖u‖σ = ‖(−∆)

σ
2 u‖.

The symbol σ is always omitted whenever zero. Then, for all t ∈ R, we introduce the time-dependent spaces

Zt = H1
× H,

endowed with the time-dependent product norms

‖(u, v)‖2
Zt

= ‖u‖2
1 + ε(t)‖v‖

2.

Note that Zt are all the same as linear spaces. Besides, since ε(·) is a decreasing function of t , for every (u, v) ∈ H1
× H and

t ≥ τ ∈ R we have

‖(u, v)‖2
Zt

≤ ‖(u, v)‖2
Zτ

≤ max
{
1,

ε(τ )

ε(t)

}
‖(u, v)‖2

Zt
.

Thus, the norms in Zt and Zτ are equivalent for any fixed t, τ ∈ R, but the equivalence constant blows up when t → ∞.

5.3. The process and its attractor

According to [1], problem (5.1)-(5.3) generates a process

U(t, τ ) : Zτ → Zt

by the rule

U(t, τ )ζ = (u(t), ut(t)),

where (u(t), ut(t)) is the unique solution to (5.1)–(5.2) with initial datum ζ = (a, b) taken at the initial time t = τ . Besides,
for every pair of initial data ζı = (aı, bı) ∈ Zτ such that ‖ζı‖Zτ ≤ R, the difference of the corresponding solutions satisfies

‖U(t, τ )ζ1 − U(t, τ )ζ2‖Zt ≤ eK(t−τ)
‖ζ1 − ζ2‖Zτ , ∀t ≥ τ ,

for some constant K = K(R) ≥ 0. Therefore, U(t, τ ) is strongly continuous.
The main result concerning the asymptotic behavior of the process U(t, τ ) is contained in [1, Theorem 11.1].

Theorem 5.1. The process U(t, τ ) possesses an invariant time-dependent global attractor A = {At}t∈R. Besides, for every τ ∈ R,
the uniform estimate

sup
z∈Aτ

sup
t≥τ

[
‖u(t)‖2 + ε(t)‖ut(t)‖2

1 +

∫
∞

τ

‖ut(y)‖2 dy
]

≤ c (5.5)

holds for some constant c = c(A) ≥ 0 independent of τ .

Remark 5.2. Since it is invariant, by Theorem 3.2 we conclude that the time-dependent global attractor coincides with the
set of all complete bounded trajectories of U(t, τ ), i.e.

A =
{
z : t 
→ z(t) = (u(t), ut(t)) ∈ Zt with z cbt of U(t, τ )

}
.

6. Asymptotic structure of the attractor

In the same spirit of the abstract Theorem 4.2, we nowwish to investigate the relationship between the time-dependent
global attractor of U(t, τ ) and the global attractor of the limit equation

αut − ∆u + f (u) = g, (6.1)

formally corresponding to (5.1) when t → ∞.
Within our assumptions on f and g , it is well known that Eq. (6.1) with the homogeneous Dirichlet boundary condition

generates a strongly continuous semigroup (see e.g. [3,6])

S(t) : H1
→ H1
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by the rule

S(t)a = u(t),

where u(t) is the unique solution to (6.1) with initial condition

u(x, 0) = a(x).

Furthermore, S(t) admits the (classical) global attractor A∞ which turns out to be a bounded subset of H2. From Remark 4.1,
we also know that, for any fixed s ∈ R,

A∞ =
{
w(s) : w cbt of S(t)

}
.

The main result of this paper establishes the asymptotic closeness of the time-dependent global attractor A = {At}t∈R of
the process U(t, τ ) generated by (5.1) and the global attractor A∞ of the semigroup S(t) generated by (6.1).

Theorem 6.1. The following limit holds:

lim
t→∞

δH1(ΠtAt , A∞) = 0.

The proof is an application of the abstract Theorem 4.2, whose hypotheses are verified (even in greater generality) in the
next lemma. In what follows, c = c(A) will always stand for a generic positive constant depending only on A = {At}t∈R.

Lemma 6.2. For any sequence zn = (un, ∂tun) of cbt of the process U(t, τ ) and any tn → ∞, there exists a cbt w of S(t) such
that, for every T > 0,

sup
t∈[−T ,T ]

‖un(t + tn) − w(t)‖H1 → 0 (6.2)

as n → ∞, up to a subsequence.

Proof. Owing to (5.5), for every T > 0 we deduce the boundedness of the sequence un(· + tn) in the space

L∞(−T , T ;H2) ∩ W 1,2(−T , T ;H),

and a direct application of corollary 4 in [10] shows that un(· + tn) is relatively compact in C([−T , T ],H1), for every T > 0.
Hence there exists a function

w : R → H1

such that, up to a subsequence, the convergence

un(· + tn) → w(·)

holds in the sense of (6.2). In particular, w ∈ C(R,H1). Besides, recalling (5.5),

sup
t∈R

‖w(t)‖1 ≤ c. (6.3)

We are left to show that w solves (6.1). To this end, we define

vn(t) = un(t + tn) and εn(t) = ε(t + tn),

and we rewrite Eq. (5.1) for un in the form

α∂tvn = −εn∂ttvn + ∆vn − f (vn) + g.

We first prove that the sequence εn∂ttvn converges to zero in the distributional sense. Indeed, for every fixed T > 0 and
every smooth H-valued function ϕ supported on (−T , T ), we have

∫ T

−T
εn(t)〈∂ttvn(t), ϕ(t)〉 dt = −

∫ T

−T
εn(t)〈∂tvn(t), ∂tϕ(t)〉 dt −

∫ T

−T
ε′

n(t)〈∂tvn(t), ϕ(t)〉 dt.

Consequently, exploiting again (5.5),
∣∣∣∣∣
∫ T

−T
εn(t)〈∂ttvn(t), ϕ(t)〉 dt

∣∣∣∣∣ ≤ c
∫ T

−T

√
εn(t)

√
εn(t)‖∂tvn(t)‖1 dt + c

∫ T

−T

|ε′
n(t)|

√
εn(t)

√
εn(t)‖∂tvn(t)‖1 dt

≤ c
∫ T

−T

√
εn(t) dt + c

∫ T

−T

|ε′
n(t)|

√
εn(t)

dt

≤ cT sup
t∈[−T ,T ]

√
εn(t) + c

(√
εn(T ) −

√
εn(−T )

)
,
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where the generic constant c > 0 depends also on ϕ. Since

lim
n→∞

[
sup

t∈[−T ,T ]

εn(t)
]

= 0,

we reach the desired conclusion

lim
n→∞

∫ T

−T
εn(t)〈∂ttvn(t), ϕ(t)〉 dt = 0.

Now, taking into account (5.4), the convergence (6.2) yields (up to a subsequence)

∆vn − f (vn) → ∆w − f (w)

in the topology of L∞(−T , T ;H−1), for every T > 0. At the same time, the convergence

∂tvn → wt

holds (again up to a subsequence) in the distributional sense. Therefore, we end up with the equality

αwt − ∆w + f (w) = g,

which, together with (6.3), proves that w is a cbt of the semigroup S(t). �

Proof of Theorem 6.1. Thanks to Lemma 6.2, we can readily apply Theorem 4.2 with

X = H1 and Yt = H,

the latter space endowed with the norm

‖ · ‖Yt =

√
ε(t) ‖ · ‖.

This finishes the proof of Theorem 6.1. �

7. Further regularity of the attractor

The aim of this final section is to establish further regularity properties for the trajectories lying on the attractor, within
the additional assumption

β := inf
t∈R

[
2α + ε′(t)

]
> 0. (7.1)

Namely, denoting

ΠA =
{
u : R → H1 such that u = Πz with z cbt of U(t, τ )

}
,

we prove that, for every u ∈ ΠA, the uniform estimate for ‖ut‖1 provided by (5.5) is in fact independent of ε. Again, we will
denote by c = c(A) a generic positive constant.

Theorem 7.1. Let (7.1) hold. Then we have the uniform estimate

sup
u∈ΠA

sup
t∈R

[
‖ut(t)‖1 +

√
ε(t) ‖utt(t)‖

]
≤ c. (7.2)

The proof of Theorem 7.1 is based on the following lemma.

Lemma 7.2. The uniform bound

sup
u∈ΠA

[
‖ut(t)‖2

1 + ε(t)‖utt(t)‖2
]

≤
c

ε2(τ )
e−ν(t−τ)

+ c

holds for some ν > 0 and every t ≥ τ .

Proof. Let u ∈ ΠA and let τ ∈ R be fixed. Then u solves (5.1)-(5.2) with initial conditions (u(τ ), ut(τ )) for every t ≥ τ .
Differentiating (5.1) in time, the function q = ut satisfies the equation

εqtt + (α + ε′)qt − ∆q = N(u)

with the homogeneous Dirichlet boundary condition, having set

N(u) = −f ′(u)ut .

Accordingly, the initial data read

q(τ ) = ut(τ ) and qt(τ ) =
1

ε(τ )

[
g − f (u(τ )) − αut(τ ) + ∆u(τ )

]
.
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Since (u(τ ), ut(τ )) ∈ Aτ , making use of (5.5) we deduce the bound

‖(q(τ ), qt(τ ))‖Zτ ≤
c

ε(τ )
. (7.3)

Besides, from the integral estimate in (5.5) and the Agmon inequality, we see at once that
∫

∞

τ

‖N(u(y))‖2 dy ≤ c. (7.4)

Multiplying the equation times 2qt , we get

d
dt

[
‖q‖2

1 + ε‖qt‖2]
+ (2α + ε′)‖qt‖2

= 2〈N(u), qt〉,

while a further multiplication by 2δq, for δ > 0 to be fixed later, yields

d
dt

[
δα‖q‖2

+ 2δε〈q, qt〉
]
+ 2δ‖q‖2

1 − 2δε‖qt‖2
= 2δ〈N(u), q〉.

Collecting the two differential identities, we end up with

d
dt

Λ + 2δ‖q‖2
1 + (2α + ε′

− 2δε)‖qt‖2
= 2〈N(u), qt + δq〉,

where the functional

Λ(t) = ‖q(t)‖2
1 + δα‖q(t)‖2

+ ε(t)‖qt(t)‖2
+ 2δε(t)〈q(t), qt(t)〉

satisfies, for δ > 0 small,

1
C

‖(q(t), qt(t))‖2
Zt

≤ Λ(t) ≤ C‖(q(t), qt(t))‖2
Zt

, (7.5)

for some C > 1. Indeed, as

L := sup
t∈R

ε(t) < ∞,

we can write

2δε|〈qt , q〉| ≤
ε

2
‖qt‖2

+ 2Lδ2
‖q‖2

≤
ε

2
‖qt‖2

+ δα‖q‖2,

provided that δ > 0 is small enough. Moreover, in light of assumption (7.1), and possibly choosing a smaller δ > 0, we have

inf
t∈R

[
2α + ε′(t) − 2δε(t)

]
≥ β − 2δL ≥

β

2
> 0.

Finally, controlling via standard computations the term 2〈N(u), qt + δq〉, we find ν > 0, depending only on δ and β , such
that

d
dt

Λ + νΛ ≤ κ‖N(u)‖2,

for some κ = κ(ν) > 0. At this point, keeping in mind (7.4), the Gronwall Lemma entails

Λ(t) ≤ Λ(τ)e−ν(t−τ)
+ c.

Thus, exploiting (7.5) and estimating Λ(τ) through (7.3), we are led to

‖ut(t)‖2
1 + ε(t)‖utt(t)‖2

≤
c

ε2(τ )
e−ν(t−τ)

+ c

for every t ≥ τ , as claimed. �

Proof of Theorem 7.1. Let z(t) = (u(t), ut(t)) be any given cbt of the process U(t, τ ). By the invariance of the attractor,
for any τ ≤ t there exists ζ ∈ Aτ such that

z(t) = U(t, τ )ζ .

Hence, by Lemma 7.2,

‖ut(t)‖2
1 + ε(t)‖utt(t)‖2

≤
c

ε2(τ )
e−ν(t−τ)

+ c.

Since ε is bounded at −∞, the required estimate follows by taking the limit τ → −∞. �
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