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1 Introduction

The Bondi-Metzner-Sachs algebra BMS, is the algebra of asymptotic symmetries of
four-dimensional Einstein gravity in the asymptotically flat context [1-7]. This infinite-
dimensional symmetry has been connected to soft graviton theorems through the corre-
sponding Ward identities [8-10], a remarkable result that sparked a lot of activity leading
to a deeper physical understanding of classical and quantum properties of gravity.

There has been some debate on how the BMS algebra gets generalized in higher space-
time dimension D, especially in odd spacetime dimensions where an expansion of the grav-
itational radiation field as one goes to infinity along null directions (“null infinity”) involves
inverse fractional powers of the radial distance [11-14]. The status of the supertranslations,
which are the characteristic feature of the BMS, enlargement of the Poincaré algebra, was
in particular questioned in some work, leading to a tension with the validity of soft theorems
in any D [15-18]. This question was clarified in the articles [19-25], which gave boundary
conditions at null infinity that accomodated supertranslations (mostly in even spacetime
dimensions, except for reference [25], which also considers odd spacetime dimensions).

In a recent paper [26], we indicated how the asymptotic symmetry structure could be
completely understood at spatial infinity in higher spacetime dimension independently of
the parity of the dimension, which can be even or odd. We presented the results in five
spacetime dimensions to stress the point that odd spacetime dimensions raised no particular
difficulty. The BMS;5 algebra that emerged with our boundary conditions exhibited new
interesting features, which were also presented.

These new features are:

e The BMSs5 algebra contains more supertranslations than anticipated, i.e., supertrans-
lations depend on four (and not one) independent functions of the angles. The su-
pertranslations are furthermore of two different types: leading (O(1)) and subleading
(O(r~1)), both yielding non trivial conserved quantities.

o The ADM expression of the energy (more generally, of the supertranslation charges)
is modified by non-linear contributions, which are important for the correct transfor-
mation properties of the energy and makes it free from supertranslation ambiguities.

e The Poisson bracket algebra of the asymptotic symmetry generators is also modified
by non-linear terms. The form of these non-linear terms depends on which “basic”
charges are chosen to describe the polynomial algebra of conserved charges. In [26],
the Poisson brackets of the boost charges between themselves were found in particular
to get contributions that are cubic in the supertranslation charges with the choices
of generators made there. One might wonder these non-linearities can be removed
by redefinitions.

e There is also a non-vanishing central charge in the Poisson brackets of leading with
subleading supertranslations.

The purpose of this paper is to expand the analysis of [26] by providing detailed infor-
mation on the derivations. We analyze further the key new properties of the BMS5 algebra



and in particular show that the homogeneous Lorentz subalgebra can be realized linearly,
although (apparently unremovable) non-linearities remain in Poisson brackets involving
the boosts and leading supertranslations if one insists on imposing some natural conditions
that we outline. We also comment on how the analysis generalizes to spacetime dimensions
bigger than five.

Our approach to the BMS symmetry is based on the Hamiltonian formulation of Ein-
stein theory on spacelike hypersurfaces asymptoting spacelike infinity [27-30]. We follow
the methods of [31-33] where finiteness and invariance of the off-shell action are central
ingredients for determining the asymptotic conditions and the asymptotic symmetries.

More precisely, we impose the requirement that the boundary conditions defining the
gravitational phase space in the asymptotic flat case fulfill the following consistency fea-

tures:

e The boundary conditions make the action, and in particular the kinetic “pg” term
finite so that a well-defined symplectic structure exists.

« The asymptotic symmetries contain the BMS algebra.!

Using the well-defined symplectic structure, one can then associate to any symmetry a
charge-generator in the standard way: symmetries are canonical transformations. The
charge-generators are defined up to the trivial addition of a constant but are otherwise
unambiguous. The arbitrary constants can be fixed by requesting for instance that the
charges all vanish for the background Minkowski metric.

A brief review of the D = 4 results. Precise boundary conditions that fulfill these
requirements were given in four spacetime dimensions in the papers [31-33]. The boundary
conditions of [31] and those of [32, 33] are actually distinct, but both differ from those of [30]
by a twist (that takes a different form in each case) in the parity conditions on the leading
term in the expansion of the gravitational variables near spatial infinity. The effect of this
twist is to elevate the BMS transformations to the status of non trivial gauge symmetries,
i.e., gauge symmetries with non-vanishing charges — while the original boundary conditions
of [30] effectively factored out the BMS supertranslations, which had zero charge. A gauge
transformation with non-vanishing generator is called “improper” [34] (the terminology
“large gauge transformations” is sometimes also used).

We shall focus on the boundary conditions of [32, 33], which yield a smooth match
with null infinity (to leading order) [32]. In asymptotically cartesian coordinates, these

LA symmetry is a phase space transformation that preserves the boundary conditions and leaves the
action invariant up to surface terms at the time boundaries. An asymptotic symmetry is a symmetry that
takes the form of a diffeomorphism (rewritten in Hamiltonian form). It is generated by a combination of
the constraints plus a surface term at infinity, so that its non trivial physical content is purely determined
by its asymptotic behaviour.



are,

9ij = 51’]""" % + O (T_Q) , (1.1)
mil = % +0(r 7). (1.2)

where g;; and 7% are the components of the spatial metric and its conjugate momentum.
The leading orders Eij and 7, which are functions of the angles only, are required to have
the following parity properties under the antipodal map:

e The even part of Eij is unrestricted, but its odd part must be given by (the leading
order of) the change of the metric under an even spatial diffeomorphism ¢* of order
. —odd
0(1), 1.e. h?j /’l“ = Ci,j + Cj,i'

e The odd part of 7 is unrestricted, but its even part must be given by (the leading
order) of the change of the momentum under an even normal diffeomorphism V+ of
order O(1), i.e. T . /r? = 0PI VL — SUAVL,

even

We note that a spatial diffeomorphism of order (1) has no action on the leading order
O(r=2) of 7, while a normal diffeomorphism of order O(1) has no action on the lead-
ing order O(r~1) of hij, which explains why these terms do not appear in the boundary

conditions.
—odd ’ .
If we were to set h?j = 0 and 7Y,.,, = 0, one would recover the stricter boundary
s Todd — i " .
conditions of [30]. But hioj =0 =7Y,, are gauge conditions that fix improper gauge

symmetries and so cannot be imposed.

It was shown moreover in [32] that finiteness of the kinetic term (which is not automatic
when the leading orders of the fields do not obey strict parity conditions) required that the
constraints be of order O(r~*). Furthermore, the extra condition that the radial-angular
components of the coefficient h;; of the leading term vanish had also to be imposed in
order to guarantee that the asymptotic Lorentz boosts be asymptotic symmetries, which
forced (; to take the form ¢; = 9;(rU), where U is an odd function of the angles. These
two additional requirements completed the set of boundary conditions.

The full set of boundary conditions yields an asymptotic symmetry algebra which
is the BMS, algebra found at null infinity. The condition on the leading radial-angular
components of the metric guarantees in particular that the sizes of the supertranslation
subalgebras match.

We shall now generalize the boundary conditions at spatial infinity to higher dimen-
sions, by enforcing the same requirement that these boundary conditions should include
diffeomorphisms of order O(1) as in D = 4, which cannot not be eliminated by proper
gauge fixing. We consider explicitly the case D = 5, which, while simpler than the higher
dimensional case, presents already some technical intricacies.

Organization of paper. Our paper is organized as follows. In section 2, we give the
boundary conditions at spatial infinity on the canonical variables and recall the phase space
description of the diffeomorphisms. We also verify that the boundary conditions make the



action, and hence the symplectic form, finite. In section 3, we display the asymptotic sym-
metries and construct their canonical generators. We show that the supertranslations are
of two types (“leading” and “subleading”) and involve four functions of the angles on the 3-
sphere. We also stress the presence of non-linear contributions to the generators, including
the energy and linear momentum. Section 4 displays the non-linear algebra of these gen-
erators. In section 5, we simplify this algebra by non-linear redefinitions of the generators.
We succeed in making the Poincaré subalgebra (including the boosts) linearly realised, but
non-linear terms remain in the brackets of the boosts with the leading supertranslations,
which we have not been able to eliminate. Section 6 is devoted to the transformation
properties of the energy under supertranslations and emphasizes the importance of the
non-linear contributions to the charges. In section 7, we comment on the matching with
null infinity, which can proceed along the lines of [38]. Finally, we give some remarks on the
extension to higher dimensions D > 6 in the conclusions (section 8). Technical formulas
and derivations, which are sometimes cumbersome, are relegated to appendices.

2 Hamiltonian action and asymptotic conditions in five spacetime di-
mensions
2.1 Action in Hamiltonian form

The Hamiltonian action of General Relativity in five spacetime dimensions reads
S[gij,ﬂ'ij,N, NZ] = /dt |:/d4$ (Wijgij - NH - Nl'Hz) — Boo:| . (2.1)

Here, 7% is again the conjugate momentum of the four-dimensional spatial metric 9ij
while N and N? stand for the lapse and the shift, respectively. The surface integral on the
3-sphere at spatial infinity B, which depends on the values of the lapse and the shift at
infinity, coincides with the energy when N — 1, N* — 0. It will be given below.

Variation with respect to the Lagrange multipliers N and N? implies the “Hamiltonian”
and “momentum” constraints

1 . 72
/H:ﬁ szﬂ_ij_? —\/‘aR%(), (22)

H; = —2Vim; ~0. (2.3)

Variation with respect to the canonical variables g;; and 7% yields the dynamical
Einstein equations in Hamiltonian form.

2.2 Hamiltonian description of diffeomorphisms

Diffeomorphisms act infinitesimally on the spacetime fields through the Lie derivative,
en @4 = Len®. (2.4)

These transformations form a Lie algebra under the Lie bracket of vector fields, which is
the vector field associated with the commutator of two infinitesimal diffeomorphisms.



While this set of transformations (with &# depending only on x) forms a complete
set of gauge symmetries of a diffeomorphism-invariant theory, it is by no means the only
one. Indeed, the presentation of the gauge symmetries of any gauge theory allows changes
of a given “complete set” by redefinitions of the gauge parameters involving the fields
as well as the addition of “on-shell trivial gauge symmetries” [35]. Such changes in the
description of the gauge symmetries generically modify the algebra of the transformations
and necessarily appear in the transition to the Hamiltonian description when the symmetry
transformations involve the time derivatives of the fields [35].

This is in particular the case for diffeomorphisms. The detailed derivation of the
Hamiltonian reformulation of the diffeomorphisms was given in [36]. The corresponding
constraint algebra was geometrically related in [37] to the “algebra” of deformations of
spacelike hypersufaces in a riemannian geometry. It is important to stress that the La-
grangian and Hamiltonian descriptions of the diffeomorphisms are different but equivalent,
in the sense that the change of description can be implemented by a canonical trans-
formation in the extended phase space involving also the ghost variables [35]. How this
equivalence is formally achieved in the path integral was established in [36].

In the Hamiltonian description, the transformation law of the canonical variables
(9ij, ™) under diffeomorphisms is generated by [ dix(¢XH + EH;) + B, i.e.,

S i F = [F / d*z(&FH + M) + B

where ¢+ = ¢ and ¢ describe the deformation of the spatial hypersurface and are such
that the boundary term B that makes the generator well-defined exists (see below). The
transformations are local in space and thus the variations d¢ ¢ig;; and dg ¢ 7 at a point x at
finite distance do not depend on the asymptotic behaviour of (£, "), and can be computed
assuming that they vanish asymptotically so that B = 0. One finds explicitly

2 1
Og gi9ij = \/% (mj - 39z'j77> + Legi (2:5)
S i = —£0/g (Rij _ 1gz‘jR) L& i g T
§8 2 2./3 mn 3
2 ( im_i 1 4 lij _ ijelm ij
_% T gy — g +\/§(£ —gv¢ m)—l—ﬁgﬂ , (2.6)
where m = gijﬂij. The spatial Lie derivatives of g;; and 7 read
Legij = £ Ongij + 9ri0;€" + grj0iE" (2.7)
Len'l = 0y (€F77) — Opg'nI* — ™ (2.8)
We shall interchangeably refer to the transformations (2.5)—(2.6) as the changes of
the canonical variables under the “diffeomorphisms” or the “surface deformations”
parametrized by (&, £%).

There are additional unwritten terms proportional to the constraints in (2.5) and (2.6)
if ¢ and &' depend also on the fields. The deformation parameters (&,£&°) may indeed



depend on the canonical variables, and should in fact allow to do so in the most general
formulation. The only restriction is that (£, £%) preserve the boundary conditions and have
a well-defined canonical generator, i.e., that the corresponding B in [ d*z(¢-H +&7H,;) +B
actually exists. Field-dependent redefinitions of the deformation parameters (&,&%) may
be viewed as field-dependent redefinitions of the constraints (which evidently change their
Poisson bracket algebra) accompanied by a redefinition of the improper gauge symmetries
when the deformation parameters do not vanish at infinity (in a way compatible with the
above restriction). If the redefinition does involve the fields asymptotically, the resulting
redefinition of the canonical symmetry generators will in general be non-linear and modify
the asymptotic algebra.

2.3 Boundary conditions

In five spacetime dimensions, the Schwarzchild solution and its boosted form behave asymp-
totically as

7. A
B SR R -
gij = (51] + TT + 3 + 0O (T ) s (29)
N L -
= T T +o(7~ 5), (2.10)

i.e., decay one inverse power of r faster than in four dimensions. This is also true for the
rotating solutions.

We shall adopt boundary conditions that allow, on top of the “core behavior” (2.9)
and (2.10), improper diffeomorphism terms parametrized by vector fields that contain a
piece of order O(1). We shall also require, as in four dimensions, that the spatial part of the
vector fields generating these improper diffeomorphisms takes the special form ¢; = 9;(rU)
so that h,4 = 0 to leading O(1) order (z* are angular coordinates on the 3-sphere). As in
the four-dimensional case, the vanishing of the leading order of h,4 is imposed in order to
tame the Lorentz boosts.

The resulting fall-off is given in spherical coordinates by

2x A2
g =145+ 5+ 0 () (2.11)
A4 hg -3
gra="2+ 5L +0(r), (2.12)
(2)
_ h ~
9B =1Gap +10ap + hap + % +0 (7“ 2) ; (2.13)
iy
7 =R T+ T 0 (r2) (2.14)
T
=rA (2)rA .
pAmpgrA Ty T T O (r_s) , (2.15)
AB  =AB _(2)AB

AB __ K T T —4
= + 2 3 —|—(’)(r ), (2.16)

where the index A refers to the angular coordinates.



The terms parametrized by X\, Aa, hag, @7, @4 and T8 constitute the “core” (2.9)
and (2.10). They are subleading with respect to the improper diffeomorphism terms, which

T

involve 045, k™", k™ and kP with explicit expressions

Oap = DADBU +ga5U, (2.17)
KT =\GDADV, (2.18)
WA =\ GDV, (2.19)
WP = V5@ Pav - DD ), (2.20)

where D 4 denotes the covariant derivative associated to the unit metric g4z on the 3-sphere
at spatial infinity and A = D AEA is its Laplacian. Here, U and V stand for arbitrary func-
tions of the coordinates of the 3-sphere which parametrize the vector field of the improper
diffeomorphism terms. Specifically, V' is its normal component while U determines its tan-
gential component through ¢; = 9;(rU). Note that to leading order in the 7~ !-expansion,
the diffeomorphisms linearize. Therefore, the above terms with U and V finite (and not
infinitesimal) are indeed the leading expressions of the diffecomorphism variations of the
fields. The nonlinearities arising because of the non-abelian nature of the diffeomorphism
group, only appear in the subleading terms and can be absorbed in the “core” part.

A property that will be important later on is that the operator relating U to 845 has a
non-trivial kernel. The solutions of D4 Dpf+Gagf = 0 can be easily identified by expand-
ing f in spherical harmonics and turn out to be linear combinations of the first spherical

harmonics Y (¢ = 0,1, m = —£,--- ,{) (vector representation of the rotation group),
o ¢
DADpf +Gapf =0 o =0 > agyt™ (2.21)
£=0,1 m=—¢

Functions f in the kernel obey also
(A+3)f=0 (2:22)

and conversely, if f fulfills (2.22), then it is a linear combination of the first spherical
harmonics and is therefore in the kernel of the operator D4Dp + g 4p-

The operator that determines x in terms of V has also a non trivial kernel given by
the zero mode of V, i.e., V = constant.

We emphasize that contrary to the situation in four spacetime dimensions, we impose
no parity condition of any kind on the leading orders of the field. This is because these
conditions are not needed for making the symplectic structure finite, as shown below. In
four dimensions, the “core” part of the fields and their improper gauge part were of the
same order in the expansion in inverse powers of r but differed by parity. Here, they are at
different orders. The same property was found for electromagnetism in dimensions > 4 [38],
with which our treatment shares many conceptual features.

The boundary conditions (2.11)-(2.16) must be completed by further restrictions on
the asymptotic behavior of the constraints, a question to which we now turn.



2.4 Asymptotic conditions on the constraints

To analyse how H and Hj, behave at infinity, it is useful to note that the functions generated
by the improper diffeomorphisms parametrized by U and V obey the following identities,

Dabpc — Dpbac =0, (2.23)
DA™ + kpp — 64 =0, (2.24)
Dk +2k,4 =0, (2.25)

KA =26 =0. (2.26)

Because of these identities, we shall show that the constraint functions behave at infinity as
H=0(1,H,=0(r""),Ha=0O(1) and not as H = O (1), H, = O (1), Ha = O (')
as one might have naively worked out from a direct - and superficial - counting of the
powers of r of the different terms appearing in the constraints. The automatic vanishing of
the leading order of the constraints ultimately results from the fact that the leading terms
in the fields take the form of a diffeomorphism transformation under which the constraints
are invariant, be the diffeomorphisms proper or improper.

To establish explicitly this faster-than-naively-expected decay, we expand the con-
straints using the asymptotic form of the fields. One then finds that the asymptotic be-
haviour of the Hamiltonian density is given by

H=1/7 (Zeﬁ - EAEBaAB)
1 — A —p— _ _ _
- T@(DA(DB/MB — Dah) —2A X+ 9D AN
1 1— _ 1— _
+ §0A39AB — 202+ =DP0ACD 4050 — DAaACDBeBC>
4 4 4 4
1

1
— rA rB AB A2 -2
+ o (2gABn K7 + K" kaB 2(f<cA) ) +0 (r ) . (2.27)

The leading O(1)-term of H vanishes by virtue of the identity (2.23). Thus, H ~ 1.
For the components of the momentum density, one gets

_ 2 /— 1
H, = —2(DAI£TA + Kk — HA) — - (DAWTA — ﬁﬁ — HABF;AB> + 0 (7“_2) , (2.28)
T 2
Ha = —2(T§AB + (QAB) (EC,%CB + QHTB)
_ 1 — —
— Q(DBFE +§ABFTB — QABKTB + 5(2DB0AC’ — DAQBc)IiBC) + O (7“71) . (2.29)

The leading terms of these constraints also vanish, this time by virtue of the identities (2.24)
and (2.25), which implies that H, ~ r~! and H4 ~ 1 as announced.

As we explicitly show below, finiteness of the symplectic structure and of the (off-shell)
canonical generators imposes an even stronger decay of the constraints, which is

H=0("), H=0(), Ha=0(r2). (2.30)

We thus strengthen the boundary conditions by imposing also these conditions.
The set (2.11)-(2.16) with the diffeomorphism terms given by (2.17)-(2.20), supple-
mented by (2.30), define completely our boundary conditions in five spacetime dimensions.



2.5 Finiteness of the symplectic structure

Because of the slower decay of the fields compared with the standard “core” part, one must
check that the action is finite. Finiteness of the bulk part of the Hamiltonian is immediate
due to the fast decay of the constraints. The boundary term will be shown to be finite
when we discuss the charges. Finiteness of the symplectic structure is more subtle.

With our boundary conditions, the kinetic term in the action might a priori possess
two types of divergences, to wit, linear and logarithmic ones. Indeed, if one replaces the
asymptotic expression of the fields into the kinetic term, one gets (in spherical coordinates),

/d4x7r”gij = /dtdrd?’x {FLABQAB + = (2/{”)\4-2/&“4)\,4 + k2 Bhap —}—ﬁABGAB) —I—O(T72)
r
(2.31)
The linear divergence in (2.31) can be shown to be zero by using the definition of the
functions 045 and £4% in equations (2.17) and (2.20), respectively. When this substitution
is performed, one gets indeed after integration by parts on 3-sphere, that

/ dtdrd3zx*Bl g = / dtdr 7{ Bz /GDV ([EA,EC] DU - 2501)') : (2.32)

which identically vanishes due to the commutator of two covariant derivatives acting on an
arbitrary vector field Ty defined on the 3-sphere [E A,EC] T8 = 6870 — 6gTA.

The treatment of the logarithmically divergent term in (2.31) also makes use of the
definition of the fields 045, k', k™ and k4B, After some algebra and integration by parts
on the 3-sphere, one gets that the coefficient of the logarithmically divergent term turns
out to be a total time derivative term, explicitly

7{ dPx (M"X + 267N 4 + k48R 45 + 74P AB) = 9, ( 7{ d3a:\/f]5AV5AVZV> . (2.33)

Such a term can be removed by adding appropriate surface terms at the time boundaries
(and at the time boundaries only), namely

d?" 3 e —A. t
- /— ]fd o/GDAVD VAV (2.34)
T to
Such a modification is irrelevant for the symplectic structure since it amounts to adding a
total derivative dy 6 to the prepotential pdy ¢ of the symplectic 2-form Q = dy(pdyq) =
dyvpdyg, leading to the same 2-form Q (d%,60 = 0). Here q <> g;5, p <> 7 and

Q= dv/d4x7rijdvgij = /d4a:dv7rijdvgij.

We note in that context that the equations of motion (with N — 1 and N* — 0) imply
V = 0 so that it is natural to take as boundary condition V(to) = V(t;). In that case
the divergent contributions from both space-like boundaries t = ¢ty and t = t1, cancel each
other making the logarithmic term actually zero, and removing the need for adding a total
time derivative.

The conclusion is that the symplectic structure is completely devoid of divergent terms,
and it is thus finite.

~10 -



3 Asymptotic symmetries and canonical generators

3.1 Asymptotic symmetries

The set of asymptotic conditions at spatial infinity is preserved under asymptotic diffeo-
morphisms generated by the following vector fields

1
E=br+T+ ;T(l) + “more” + O(r~2), (3.1)
1
=W+ ;W(l) + 072, (3.2)
1 1 —
A=v44 ;IA + ﬁjé) + “more” + O(r3), 1= D'w. (3.3)

These vector fields contain three relevant orders in the expansion of inverse powers of r,
which are (in Cartesian coordinates): O(r), O(1) and O(r~1).

At order O(r), br = b;x’ describes the Lorentz boosts while the vectors YAG% are
the Killing vectors of spatial rotations. The function b = b;n* where n' is the outward
pointing unit normal to the sphere and the vector components Y4, which depend only on

the angles, obey equations that express the flat metric Killing equations,
DaDpb+gapb=0,  LyGap =Y 0cGap+0aYGpc+08Y Gac=0.  (34)

At order O(1), the functions T and W are arbitrary functions on the 3-sphere and de-
scribe the natural generalization to five dimensions of four-dimensional supertranslations.
Ordinary time translations correspond to the zero mode Ty while spatial translations cor-
respond to the first spherical harmonics of W. Since there is no parity condition, W has
also a zero mode. According to (3.1)—(3.3), this zero mode defines an asymptotic global
shift of the radial coordinate by an angle-independent O(1)-term, a transformation which
is permitted in our approach. We shall call “leading supertranslations” these O(1) trans-
formations parametrized by the functions 7" and W subject to no parity conditions. As
discussed below in the section on the algebra, they commute up to subleading supertrans-
lations, to which we now turn.?

At order O(r~1), the functions 7, W) and I é) are also arbitrary functions on the
3-sphere. They are explicitly written because they define independent non trivial sym-
metries with non-vanishing charges. However, as we shall show below, only 7)) and the
combination IV = D TMA — AWM actually appear in the expression of the charges,
so that transformations for which I(Y) = 0 are proper gauge transformations. These sub-
leading transformations depend therefore effectively on two independent functions of the
angles. Because the transformations parametrized by TM and IV commute between them-
selves and with the supertranslations (up to central terms, see below), they are also called
(subleading) “supertranslations”.

Finally, “more” denotes correcting terms of same order as the supertranslations, which
are completely determined by b and W and which must be included in order to preserve

2By including appropriate field-dependent subleading supertranslations, the leading supertranslations
can be redefined to commute exactly, see also below.

- 11 -



the boundary conditions (1 (’2)) and make the charges integrable (7{y), T((bI%/V) and I((;)‘;)).
These terms vanish when b and W are zero. They read
14 2 1 1 44 2 14 2 1 1 1 A
&(“more”) = T(b)_’_;T((b,%/V)v & (“more”) = 0, §A( more”) = ;I(’%)—i—ﬁl((b’)w), (3.5)
where the correcting term necessary to preserve the asymptotic conditions reads (see end
of appendix A)

I = \2/%5“1 = 2DV, (3.6)
and where the explicit expressions of T, T((bl}/v) and I((l},)mé) are respectively given
in (3.16), (3.17) and (3.18) below. Similar terms appear already in four spacetime di-
mensions [31-33]. As (3.6) and (3.16), (3.17) and (3.18) indicate, the correcting terms
depend on the fields even though the parameters b, YA, T, W, T, W) and I{}) are
taken to be field-independent.

3.2 Canonical generators

Given a phase space vector field X (i.e., infinitesimal transformations of the canonical
variables), the corresponding generator Fy - which exists if the vector field is Hamiltonian,
namely, leaves the symplectic form € invariant - is determined through the equation ¢x €2 =
—dy Fx. In our case, we know the vector field X (up to asymptotic corrections) and the
bulk part of F, which is [ d*z(¢H + €¥H;) and actually determines the form of X. What
we do not know yet are the correcting terms to be included in the surface deformation
parameters & and ¢ (upon which the infinitesimal transformation X clearly depends), and
the corresponding surface terms to be added to [ d*z(¢H + EVH;).

Because the symplectic 2-form of five-dimensional gravity takes the standard canonical
form [ d*zdyri A dy g;j, the Hamiltonian generators of the asymptotic symmetries are
obtained through the method of [30], i.e., the surface terms to be added to the bulk part of
the generators must be such that these have a well-defined functional derivative (see [39]
for considerations valid in the more general case when the symplectic form itself contains
a surface contribution).

In order to determine the surface terms to be included in the canonical generators of
the surface deformations (3.1)-(3.3), one needs to know how the asymptotic fields behave
under these transformations. This can be derived from (2.5) and (2.6) using the boundary
conditions and the asymptotic form (3.1)-(3.3) of the deformation vector fields (£, £%). Since
the expressions are rather cumbersome, these are given in appendices, first without the
correcting terms (appendix A) and second with the correcting terms included (appendix B).
When the deformation vector fields (¢,£?) depend on the canonical variables, there are
additional terms proportional to the constraints in (2.5) and (2.6), but these are irrelevant
asymptotically because of the fast decay of H and Hj.

The asymptotic expansion of the extrinsic curvature K;; and other useful quantities
are needed for the subsequent derivations. These can be found in appendix C.

We start carrying the computations with the transformations of the fields improved
to include only the boundary-conditions-preserving correction terms coming from (3.6), in
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order to stress the need for the other improvement terms “more” in the asymptotic form
of the transformations.

The surface integral Qg[gij,ﬂij] that must be added to the weakly vanishing bulk
part [ d*z(¢H + €¥H;) to make its functional derivatives well-defined must be such that

6Q¢lgij, ™) is given by

g 1 . .
0Qclgis, ] = f d%{%@fsém\@gmagm <£K§+A<8T§—AD8D5>&%> +2516w:—£7“5gjw’“}7
(3.7)
since this is indeed minus the term that arises from the integrations by parts necessary to
bring the variation of the bulk part [ d*z(¢H + ¢'H;) to the required form.
Replacing the asymptotic form of the fields, of their variations and of &, % in (3.7), we
obtain

5Q¢lgij ) =2 f d*x(V/gbso +2v 5x (3.8)
—}—r?{dgfc {\/ﬁb <25%+ %950+ ;9A359A3>

+2Y 45 (7 + 04" +2(5AW+I(‘2))5/£2+2W5/<;”1 (3.9)

+ }z{ d3m\/§[2b(5k(2) +2(T+ bﬁ)am (T<1> +be® + ?)59
) 1) , 7B 1 bo AB
—9T6e —(2T 2 6Bb)59+§ T+ )0and

S _
+50 ap(OR*F —0A605C) + b o 68

+ jé dr2v 467" +2(DW + 1) )6 (Fy + 04’

+2W R ~ WP 50 45 + 20D A5k], +2W Maw| (3.10)
with 6 = 92‘, and
S |
kg‘:hﬁ+DAAA+3A—§9§0A, (3.11)
3 3 3_ - 1
(2 _2p2) 4 2p,A _ 2 AB _ 1+ 1 2BpCpA
KD = Zh) 4+ Zh P = Shast SN0 + 050502
— 1—a— A .
+ DA 4 §>\AD 40— N'DpoB — 04BD g, (3.12)
1—a 1 1
2 _ 34 _ = AB | 12 .
e QhA 49,439 —1—89 , (3.13)
7 = 7l 4 04578 + hapr™® + Xar"" . (3.14)

As stated above, we have included the contribution [ (‘2) that maintains the asymptotic
form of the fields, but not the contributions coming from the other correcting terms, the
necessity of which comes from integrability and is addressed below eq. (3.15).

Apparently, the variation of the canonical generator possesses quadratic and linear
divergences. However, the quadratic divergent term in (3.8) is actually zero by virtue of
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the definitions of #45 and k™4, and the asymptotic Killing equations for b and Y4 in (3.4).

The proof of the vanishing of the linear divergence (3.9) can also be established and can

be found in appendix D. This demands the faster fall-off of the constraints (2.30).
Accordingly, the charge is free of divergent terms, and its (finite) variation is given by

Qw41 = f 3 [+ 7+ Yoo +2(1 + )
- 2(T + be)ée@) +b3(0e®) — (T + X700 ) 60

+3 <T + be)eae - 90259 — b0A0S508 + ga(egﬁﬁ)

+ y{d?’ HA’JT A4 HABHTAHTB) - (f“‘ + egﬂB) 5/{1}
+ f Bz /g (253595 + bEBXA(seﬁ)
+ ]f d[2v 457 D" 1+ 2D W5 (7 + 0ap™”) + 2WoT
— WrAB§04p + 2IWA5K", + 2W(1)5/£”"} . (3.15)

In this expression, the terms proportional to the boost and spatial supertranslation
parameters b and W are non-integrable, which would imply that neither the boosts nor
the spatial supertranslations define Hamiltonian vector fields in phase space. However, we
can render these transformations canonical by adding to them correcting diffeomorphisms
with suitably chosen parameters T, T((b{)w) and [ ((;’)MA;). These terms remove the non-
integrable contributions and are subleading with respect to the boosts (for b) and the
spatial supertranslations (for W). They are the other terms under the label “more” in (3.1)
and (3.3), and read explicitly

bo
Toy =5 » (3.16)

1 B = -1
Ty = —X Opb+ (5 +3)

A b— .
(DADB + gAB) <2hAB +bD A)\B>

1 —

+ ﬁDAWMA , (3.17)
(a4 _ 20 (rapa ey _ Loapsy, 3.18
(ta,wf)—ﬁcr +Upk )—53 : (3.18)

To be pointed out is the fact that T((bl, %/V) involves the inverse operator (A 4 3)7!
Because A + 3 has a non trivial kernel, the corresponding expression might not exist.
It does exist in our case, however, because the quantity in square bracket in (3.17) has
no component along the & = 1 spherical harmonics Y since it involves the operator
DD +3”B which projects out such components. Although ((b %,V) exists, it is not unique
and determined up to the addition of an arbirary element 3, , Bem Y Y™ in the kernel of
A + 3. As we shall see, this defines a proper gauge symmetry, i.e., the corresponding

generator vanishes when the constraints hold.
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Once the correcting diffeomorphisms have been included, the variation §Q¢[gi;, 7] is a
total derivative in field space. The corresponding integrated-in-field space surface integral
at infinity necessary to complete the bulk term to get a well-defined canonical generator is
then given by

1 1
— E93 — gé)gageﬁ

Qe 7] = f P2 /Gb|240%) + e
+ leéﬁjj + i(n’;ﬁ”‘ + QABHTAIQTB)]
2 g
+ ?{d%\/ﬁ[QT (E —e® 4 éaQ + éegeﬁ) — T(l)ﬁ]

—I—]{de

2y A7 4 orMA g 4 oy (e

_ 1—
+2W <ﬁ”" — D74 - QDA(eABn’"B))] : (3.19)

One can rewrite this surface integral in a manner closer to standard notations for the
homogeneous Lorentz group. To that end, we introduce the standard basis {YijA&viA} of
rotation Killing vectors

D 9 D 9
ijA_Y  — ligilk Y _ ligglA_Y  _ ygiA_ Y
Y 5pA = ) 5k = € 5 Y 5o (3.20)

where e/ (2B ) are the following tangent vectors to the 3-sphere,

. . A
4 (2B) = 5ﬂ’f% (3.21)
so that
. 8 A 8 Ay aT o Tl
W—”k%"_ek A’ n(z”) = ek (3.22)

k

(Indices referring to the asymptotically cartesian coordinates z”* are raised and lowered in

these formulas with 6% and §;;.) We thus have

9

o 1,
A _ . A
YAS = gh Y

1 .
81"4 bij = —bji, YA = ibijaflejA. (3.23)

In these notations, the surface integral Qg[gij,wij] takes the familiar form of “one
charge for each independent asymptotic algebra parameter”,

ij i 1 i
Q¢lgij, ] = b;B" + §bijM T+ Qr + Qw + Qray + Qray (3.24)

where

b=bn'(z?), I =DaWA _AwW (3.25)
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as we already indicated and

B' = 74 Pz \/gn' [2/@ +0e® — %93 - éeéegaﬁ

14— 4
+ 508k, + = (KF 4 + GAB/JA;JB)] : (3.26)

2 g
MY = %d:;:): x[ieﬂAﬁf)T, (3.27)
QTZ]fd%\/jTT, szyfd%ww, (3.28)
Qpoy = — }{ Bar/GTO0 = — 7{ PagTO (B +3)U). (3.29)
Qi =2 ?{ APz (I“)Amg + W“)/fﬂ) =2 f BaegIOv . (3.30)

Here we have set
T (2) 1 2 1 ApB —rr _ 7y =rA 1 =4 rB

T=2(k—e —|—§9 +§930A , W=2(7" — D7 —§D (0apr™)) (3.31)

Since the charges can be expressed in terms of f45 and %, they are free from the
ambiguities that plague the functions U and V. However, the expressions of (Q;a) and
Q) in terms of U and V exhibit two features which will play an important role below.

o The writing of the charge Q) in terms of U makes it clear that it vanishes if U is
in the kernel of the operator A + 3. But the symmetry of the operator A + 3 implies
at the same time that QQ;pa) also vanishes when T' (1) is in the same kernel, i.e., is a
linear combination of the first spherical harmonics, as announced. This means that
these transformations are pure gauge. We thus see that the ambiguity in the function
U, which describes part of the improper gauge components of the fields at leading
order (associated with spatial supertranslations), is paired with the absence of a true
improper gauge freedom at the subleading order (in the time supertranslations T(l)),
described by the same function space (first spherical harmonics).

o A somewhat similar phenomenon (pairing of leading and subleading orders) char-
acterizes QQ;1). To see this, we observe that the expression of Q;u) in terms of V
explicitly shows that only the combination IV = D,TMA — AW D) defines an im-
proper gauge symmetry. Now, IV is requested to have no zero mode but is otherwise
an arbitrary function on the sphere. Indeed, it follows from its definition that I(*) has
no zero mode. And conversely, given a function 7" with no zero mode, one can al-
ways find a vector field I(M4 and a function W) such that I = D, 7MA AW,
Take for example I(VA = 0, W) = ~A'TM. 1t follows that the ambiguity in
V', described by the same functional space (constants), is indeed irrelevant in the
charge ;). The ambiguity in the function V', which describes the other part of
the improper gauge components of the fields at leading order (associated with time
supertranslations), is paired with the absence of a true improper gauge freedom at
the subleading order (in the space supertranslations I(1).
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The ambiguity in the leading terms U and V has thus an interesting “dual” im-
pact on the subleading supertranslations through the form of their charges, which
are such that the first spherical harmonics of the subleading time supertranslations
parametrized by T and the zero mode of the subleading space supertranslations
parametrized by I(!) are pure gauge and do not define non trivial improper diffeo-

morphisms with a non trivial physical action.

Although the first spherical harmonics of the leading spatial supertranslations W (ordi-
nary spatial translations) and the zero mode of the leading time supertranslations (ordinary
time translations) have no physical action on the improper diffeomorphism components of
the fields parametrized by U and V, they do act non trivially on the “core”. The cor-
responding charges are the linear momentum and the energy. There is no action on the
improper diffeomorphism components because the associated vector fields are exact Killing
vectors of the flat metric. This distinction between ordinary spacetime translations and
pure supertranslations has a clear origin in the linear theory, where the Killing vectors
of the background flat metric define global charges of the Pauli-Fierz theory and become
improper gauge diffeomorphisms upon switching on the interactions, while the pure super-
translations are improper diffeomorphisms already in the linear theory [40].

The asymptotic symmetry algebra is spanned by the homogeneous Lorentz generators
B? and M%7and the integrands T (z?), W(z?), 8(z4) = (A + 3)U(24) and V(2*) which
appear in the expressions of the integrated supertranslation charges. These integrands are
arbitrary functions on the sphere, modulo the fact stressed already a couple of times that
(A + 3)U(x?) has no vector mode (k = 1 in the spherical harmonics expansion) and the
zero mode (k = 0 in the spherical harmonics expansion) of V (z?4) is pure gauge. In fact,
it will be more convenient to use U(z*) itself and

— kT
Kis=Dyv =24 3.32
75 (3.32)

which is permissible provided U always appears with the projector (A 4 3) or with the

operator (D4Dp + g4p) acting on it, which both remove the & = 1 mode. The use of K
instead of V is also allowed, since K4 contains the same physical information as V: the
knowledge of K 4 is equivalent to the knowledge of V up to its irrelevant zero mode k = 0.

4 Asymptotic symmetry algebra BMSy

4.1 Poisson versus Dirac brackets

We have derived that the canonical generators of the asymptotic symmetries read
Pelgij, 7] = /d49€ (57'[ + fin) + Qelgij ™), (4.1)
with Qg[gijﬂi'ij | given by (3.24). We now turn to the question of computing the algebra

{Pelgij, 7], Pylgij, ™]} of these generators, where we use in this paper the notation {, }
for the Poisson bracket. We will call this algebra “the BMS5 algebra”.
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Two generators that differ solely in the bulk — and hence, which are equal when the
constraints hold, — define the same observable and must be identified. Only the asymp-
totic value is relevant. Furthermore, it is known on general grounds that the bracket
{Pelgij, 7], Pylgij, ™)} of two well-defined generator is a well defined generator [41].
Therefore, if one knows its asymptotic form, one knows that it is accompanied by an
appropriate bulk term [ d*z ((H + (*H;) such that the sum is a well-defined generator - in
particular, the bulk vector field (¢, (") asymptotically matches the asymptotic symmetry
parameters of the bracket.

For that reason, it is customary to focus exclusively on the physically relevant sur-
face integrals at infinity and not write explicitly (any one of) the accompanying bulk
terms [ d*x(EH + £¥H;), where (€, &) are bulk vector fields that asymptotically matches
the given parameters of the asymptotic symmetries. To evaluate the asymptotic part of
the bracket {P¢[g;;, 7], P,y[gij, m]}, one observes that {P¢[g;;, 7], Py[gij, 7]} is equal to
60 Pelgij, 7] = —6¢Pygij, 7] and that 6, [ d*x (EH + £'H,;) is equal to zero when the con-
straints hold, so that the boundary term in { P¢[g;;, 7], P, [gi;, 7]} is equal to 6,Q¢[gi;, 7]
(equivalently, —0¢Qy[gij, 7]). This method provides an efficient way to automatically com-
pute the complete brackets of the generators, which include two types of contributions: (i)
the contributions coming from the surface deformation algebra of the deformation vector
fields; and (ii) the additional contributions due to the fact that the deformation vector
fields (¢,¢%) are field-dependent. It is the method that we shall adopt below.

It should be stressed that we are allowed to use these well-known properties of the sym-
plectic formalism in the derivation of the charge algebra because our boundary conditions
guarantee a well-defined (finite) off-shell symplectic structure. The standard canonical
formalism applies.

One could alternatively fix the gauge in the bulk and work with the Dirac bracket.
This procedure is equivalent to the one just outlined because Poisson brackets and Dirac
brackets of observables coincide when the constraints and gauge conditions hold.

4.2 Explicit form of the algebra

A direct but somewhat tedious computation of dg,Q¢, [gij, 7] shows that the bracket
{P¢,[gij, ], Pe,[gij, 7]} is the sum of a familiar linear term in the asymptotic charges,
augmented by central terms and non-linear contributions that are polynomial in the asymp-
totic charges,

{Perloiss ], Peolgsg, 791} = Pelgigs ] + Cey ) + Mgy ) 935, 7] (4.2)

We will describe in turn each of these contributions by giving only their asymptotic form,
aware that there are of course also bulk contributions proportional to the constraints that
accompany them so that the generators are well-defined, but not writing them explicitly be-
cause they carry no particular physical information relevant to our analysis. The resulting
“ignorance” corresponds to a pure gauge generator.

Before turning to the explicit display of the various terms in the algebra, we mention
that we verified the consistency check that the Jacobi identities held for all double Poisson
brackets.
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4.2.1 Linear terms

The linear term FPg|gi;, 7J] takes the form (4.1) with

VA = YPopYs + 4 8b10pby — (1 2), (4.3)

b = YPapby—(12), (4.4)

T = YPORTs— 4b,Wo — 94y D Wa — b, DAD W — (13 2) (4.5)

W = YPogWy—b1Th— (142), (4.6)
70 = vPopTH + 100,40

~(B8+3)[(DaDp+3ag) (0D Y7 |+ 20 WY — 040 D WD + by Ay
—(12), (4.7)
o T =yPopTY —ab IV — 940 DIV — 0, DAD Y — (145 2), (4.8)
104 = yPop I — 1P 0yt +58 (1) 0pb1 — 0105 T4 ) + TD ' T — (145:2), (4.9)
)
)

WO = vBapwi - (12), (4.10
= ) :YlBanél) —b1T2(1) + TV ATy — (1452), (4.11

where we have set

T = (A +3)TV. (4.12)

The function T in (4.7) is well defined because the operator (A + 3)~! acts on a
function with no component involving the first spherical harmonics. Of course, it is defined
only up to a linear combination of the first spherical harmonics. The function 7™ carries
no such ambiguity since it involves the projector (A + 3).

One can also easily verify directly that the function () has no zero mode. Both I {1)
and fél) transform in representations of the rotation group that do not involve the trivial
representation and hence there is no zero mode in YIBﬁBIS) or Y38 8BI§1). Furthermore
the tensor product of the vector representation (b; or by) with the representation in which
Tz(l) or Tl(l) transform, which does not contain the vector representation, does not contain
itself the trivial representation.

4.2.2 Central charges

Central charges appear as in three-dimensional AdS gravity [42]. These central charges
are non-zero only for the brackets between the leading supertranslation charges Qr, Qw
and the subleading supertranslation charges @), Q;u). One finds explicitly that the
non-vanishing central charges are

Covry = —Copm wy = 2j§d3z\fw (A + 3 = zj[d%\fWT (4.13)
C{I(1)7T} = _C{TJ(l)} =2 % dSCC\/EI T. (414)

These formulas exhibit one important feature: that the central charge is zero when
Q7 and Qw are the generators of ordinary spacetime translations. Indeed, if T' reduces
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to its zero mode T (ordinary time translation), the central charge C (I Ty} vanishes since
I™M has no zero mode. Similarly, if W reduces to its vector component Wy—1, the central
charge C (Wiey T} vanishes since it involves the projection operator (Z + 3).

4.2.3 Non-linear terms

A direct but tedious computation shows that the non-linear terms are given by

1
A{b1,b2} = j{d3x-(blaAb2 — bgaAbl) [85_1KTAKTBETB + 59(39KTA + 4(9§I€TB):| s (415)

Apry = —Agpy = j‘{ drrt [T (05050 + 04(b0)) — b (05057 +3004T) |, (4.16)
Apwy = —Agwey (4.17)

1 o
— j'{ d%\? {bwuoﬁ’“%g — 2D A" D" + k48K aR)
g

__ _ _ _ 1 _
+4bAW/£TA/f’A — 4bDAW(/@ABH’”B — H%DAHTB + KTBDB/#A — 2/1’:4DBHTB)

1 - — —
+ 7( Bayg [4bW(292 — 10450"8 + D40D"0 — D A0pc D" 05)

1 — — — 1 —
+ 5bD“‘W(QABD% — 208D 40p0) — ZaAbDAW@BCQBC‘
1

_ 1 —a—
+ ZbAVV(@? — 30pc05Y) + 5bDADBW(95{903 — eABe)] . (4.18)

These non-linear terms are quadratic functions of the charges U and V of the subleading
supertranslations. Our task now is to translate the above formulas in terms of the brackets
of the generators.

Brackets involving the homogeneous Lorentz generators. We then find from the
linear terms in subsection 4.2.1 and from (4.15) that the brackets of the homogeneous
Lorentz generators read

{B, B’} = 2M" + AV (4.19)
o 1, . . y

(B!, M%) = §<5sz] —~§YB"), (4.20)

(M, MM = 5 (5”“Mﬂ — gilpik ik it 4 5J’M““) , (4.21)

where the non-linear term A% is cubic in the supertranslation generators and given by

. . _ _ 3 _
AY =2 7{ dPxy/g aliel 8KAKB+2(DADBU+§ABU)(AU+3U)+2§AB(AU+3U)2} KB,
(4.22)

There is no non-linear contribution in the brackets involving the angular momentum M% .
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The brackets of the subleading supertranslation generators (A +3)U and K4 with the
homogeneous Lorentz generators are linear. They read

(B, (& +3)U} = —2D" ('K L), (4.23)

(MY (A +3)U} = D[zl (A + 3)U], (4.24)
. 1— . l—epn . —

{B',Ka} = 5Daln' (B +3)U] + QDBnl(DADBU +9a5U), (4.25)

(M7 K2} = Dp(2l'ePK,) — 2D e’ P K . (4.26)

They are equivalent, up to relevant projections and unphysical ambiguities, to the following
Lorentz brackets of U and V,

{B', U} = —2n'V, (4.27)
(MY, U} = —Dp(al'ePU), (4.28)
(B, V} = % [4niU +0.n' DU + niZU] : (4.29)
(M, V} = -Dp(ale!Pv). (4.30)

The brackets of the leading supertranslations with the homogeneous Lorentz generators
read
{B", T} = —n'W+ A, ( )
(M9, T} = -Dp(allePT), (4.32)
(B W} = —4n'T — 9an' DT — n' AT + Al (4.33)
(M9, W} = ~Dp(aledPw). (4.34)
The non-linear contributions Air and A%/v are given by
A = KADPn (DD pU + Gagl) + KAD o[ (AU + 3U)]
+ Da[Kpn' (D' DU + g*BU)| + 3D 4[K4n' (AU + 3U)] (4.35)
Ay, =100 KK 4 — n'(DoK©)?

+n' D KBDAKp +4D 4 |n (DCKCKA _D'KBK — 2KADBKB>

. 1 .r — . A
AR EAK ) + o’ 2(AU +3U)2 = 1(DaADpU +5U)(D" D U +5470)

+ 4
S

A ZU+3U)EA(ZU—|— 3U) —EA(EBECU_‘_EBCU)EA(EBECU_‘_EBCU)}

S
S

[0 (DADBU + 7450V D" (BU +30)] + {5 [w (AU +30)?]

NI
]

Afm = — _ —B—=C,  _
{DATL (DpDcU +gpcU)(D™D U+gBCU)]

+ o+
]
b

7' (D"D U +35U)Da(DDeU +Gpcl)]

DD [n'(D“DaU +85U)(D"D U +35CV)]

N =

+
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3 . .
-5 n' (DDl +GpcU) (D" DU +35C0)]
l=a=B

-5D'D 7' (DaDsU + GapU) (AU +3U))| . (4.36)
Brackets of the supertranslation generators. The supertranslation generators form

a subalgebra, which we can read off by collecting the information from the above formulas.
We find that the non-vanishing brackets are

{Qn, Qn} = Ql(nl _ _2%(1355\/5:7EA(T15AT2 -T2 DAT1)V, (4.37)
(Qw, Qi } = 27§d3xfw (Z+3)70) = Qfd%fWT (4.38)
(@, Qo = -2 § oG IOT, (4.39)
with
I 1y = VAT, — TyATY . (4.40)

The algebra of the leading and subleading supertranslations is thus non abelian and
centrally extended. The non-abelian commutator is {Qr,, @7, } ~ Qjq), showing that the
Poisson bracket of two leading supertranslations in time yields a subleading supertransla-
tion in space.

This is not too surprising, in view of the fact that the Lie bracket of two vector fields
of order O(1) will generically be a vector field of order O(r~!). We should stress, however,
that the supertranslations are accompanied by field-dependent correcting terms. These
terms play an important role in the specific form of the algebra encountered above. They
are in particular key in the emergence of the central charges.

The presence of Q) in {Qr,,Qn,} was overlooked in [26], where the abelian
{T1, T2}
relation {Qr,,Q7,} = 0 was given instead. It turns out that one can add field-dependent

diffeomorphisms to 7T such that the leading supertranslations commute. This is done in
the next section. With the choice made above leading to the definite expression (3.28) for
Qr, however, one gets {Qr,, @7, } # 0.

How to simplify the asymptotic symmetry algebra by non-linear redefinitions of the
generators is a question to which we now turn.

5 Simplification of the presentation of the BMSjy algebra

5.1 Non-linear algebras and Poisson manifolds

A striking feature of the above charge algebra is that it is non-linear. In particular, the
bracket of two boost generators is cubic in the charges of the subleading supertranslations.

That symmetry charges might form a non-linear algebra is not a surprise. It is in fact
more the rule than the exception, as clearly discussed in [43]. In terms of the canonical
transformations generated by the charges, non-linearities mean that the commutator of
the corresponding transformations is a transformation that takes the same form, but with
coefficients that are functions of the fields through the charges. Indeed, if @), is a complete
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set of charges with {Qq, @} = fur(Q) and X, the corresponding vector fields (X, F =
{Qa, F'}), then one finds [Xo, Xp] = X(g,.0.3 = Xp.0) = gg’z X.. This is not a linearly
independent vector field (over the functions), just as the corresponding charge-generator

fab 1s not independent from the @Q,’s.

Thus, in our case, the non-linearities found in the BMS5 brackets simply imply that the
parameters T, W) and IS) associated with the commutator of two asymptotic symme-
tries depend on the fields through the charges. As we just observed, such transformations
do not define independent asymptotic symmetries. Examples of non-linear asymptotic
symmetry algebras have been found earlier in [44-54].

There is a great flexibility in the presentation of non-linear algebras since one can
make non-linear redefinition of the charges, under which f.,;(Q) changes. That non-linear
redefinitions may have a dramatic effect already in the Lie algebra case is illustrated in the
recent paper [55].

The space generated by the symmetry charges is a Poisson manifold, about which
much is known in the finite-dimensional case [56-58]. In particular, one can bring the
Poisson bracket to a canonical form that generalizes the Darboux canonical form by (non-
linear) redefinitions of the charges (“Weinstein splitting theorem” or “Darboux-Weinstein
theorem”). Explicitly, one has

Theorem [56, 57]: let P be an arbitrary point of a Poisson manifold. One can find local
coordinates (¢;, pi, Yo) in a neighborhood U of P with the properties:

{ai: a5} = {pispi} ={a v} = {Pisva} =0, {ai:pj} =6ij {va,ys} = Faply) (5.1)

with

Fos(y) =0 at P, (5.2)
Here, ¢,7=1,---,s, o, =1,--- ,1r, 25 +r = n where n is the dimension of the Poisson
manifold M.

We can assume P to have coordinates ¢; = p; = yo = 0, so that the last condition is
F,3(y =0) = 0. If one expands F,g in Taylor series, one has

Faﬁ = C'yaﬂy’y + O(y2) (53)

where the C7,5 are easily verified to fulfill the Jacobi identity and are thus necessarily
the structure constants of a Lie algebra. An interesting question is whether one can get
rid of the non linear terms by redefinitions. This question is reviewed in [59] and can be
expressed as a problem of Lie algebra cohomology (at least for the formal linearization
problem) [57]. In particular, if the algebra is semi-simple, one can absorb the non-linear
terms through redefinitions.

In our case, however, the space of the symmetry charges is infinite-dimensional, and
furthermore, it is natural to restrict the redefinitions so as to maintain the structure of the
new generators to be

/d4x(§7'[ + fl’Hz) + Q¢lgij, ﬂ'ij] (5.4)
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where (£, ¢%) has the asymptotic behaviour (3.1)—(3.3). Accordingly, the only redefinitions

that we allow are field-dependent redefinitions of the coefficients b, T, W, TM, W) and

11(41) characterizing this asymptotic behaviour, in a way that keeps integrability of the

charges. This makes the problem different from the finite-dimensional one.

It turns out to be possible, however, to make non-linear redefinitions of the above
type such that (i) supertranslations commute up to central charges; and (ii) the Poincaré
subalgebra is linearly realized.

5.2 Abelian description of the supertranslations (with central extension)
In order to make the supertranslations abelian, we redefine the leading supertranslations

T by adding to them a subleading supertranslation with parameter

r rA A
@) = Rt =TK". (5.5)

Note that this parameter maintains integrability. It modifies the leading time supertrans-
lation charge by a term proportional to the square KK 4 of the subleading space super-
translation charges. Thus, we now have

Qr = 7{ dPagTT, (5.6)
where the new 7T (still denoted in the same way) is given by
1 1
T =2k — 2 + 192 + Zegef +7 R (5.7)

and one easily checks that {Qr,,Qn,} = 0.

The extra improper gauge transformation added to T does not affect the remaining
brackets between the other time and spatial supertranslation generators, which we take
unchanged,

Qw — 7{ BrWWwW, W= 2(%”’ _ DA ;EA(HABHTB)> (5.8)
Qo = — ]f EovgTO (B +3)U), Quu = -2 ]f PryFIOV . (5.9)
The final supertranslation algebra is thus abelian with non-trivial central terms given by
(Qw, Qroy} = 2j{d3x\/§w (& +3)TW, (5.10)

{Qr, Q) = —2fd3x\/51(1>:r’, (5.11)

while all the other Poisson brackets between supertranslation generators vanish.

On can view the elimination of the charge-dependent terms in the algebra of the
supertranslations as an application of Darboux theorem since the central term defines a
non-degenerate antisymmetric matrix.
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5.3 Linear realization of the Lorentz subalgebra

In order to eliminate the cubic terms in the boost algebra, we add to the boosts a subleading
supertranslation with parameters

(1) _ gpz—1,.r4 b o
Ty = 2bg KK — §0 , (5.12)
Mma_ _2b ;a4
I(b) = \/ﬁlﬁl 0. (5.13)
Again, these parameters yield an integrable generator. The new boost charges receive the
following cubic contribution in the subleading supertranslation charges

2 Vg
3 _ rA r 3
%dwb( \/EK /€A9+249>

and now read

. . 1 1
H:ffxgw@@+%®—mw—f@%§
1 a— 4 0
+2%%§+_Qﬁﬁﬂ+<m3—2@w>ﬁﬂﬁﬂ> (5.14)
g
while the rotation generators remain unchanged,
MY = ?{d3x gliel4 ﬁf)r. (5.15)
The redefined boosts obey
{Qb,, Quy} = 04, Q0 = Qy (5.16)
where Qy = $ d3z 2}7‘473(42% with Y4 = blﬁAbg — bgﬁAbl, or equivalently,
{B*, B’} = 2M" (5.17)

with no non-linear contributions. Therefore, the Lorentz algebra becomes linearly realized.
That one can eliminate the non-linear terms in the Lorentz algebra is not too surprising
either since it is a simple, finite-dimensional algebra.

One can summarize the redefinitions of the generators of the symmetry algebra by
saying that the “more” terms in (3.1)—(3.3) should contain the improper gauge transfor-
mations (5.5), (5.12) and (5.13) in addition to the already displayed correcting terms. The
final expression for the supertranslation parameters corresponding to the new form of the
algebra is thus

' =D'w+ 13, (5.18)
T=T+1Ty, (5.19)
W=Ww, (5.20)

Tm:ﬂ”M%%, (5.21)

(5.22)

WA 1A , ;1A
74— 1@ + I,

— 95—



where

2

Ié‘;) _ ﬁﬁ A (5.23)
bl
T2, (5.24)
Tty = —A Osb+ (B +3)” [(D D +—AB) <ZEAB + bEAXB>]
2Lk Ak 7% +7 DAWrA, (5.25)
2 T 1 i=B
A (T4 + 04K — 0"4) + =K' — Z0AD W . (5.26)
(b,T,W) \/5 VG 2 B

The modification of the boost and leading supertranslation generators change the non-

linear terms appearing in their Poisson bracket. One now finds
Ay = Mgy == § dabi (6505T — 004T) . (5.27)
Apwy = —Agway
= ]{d?’x\}? {bW(2/<;”A/<aT’A — 2Dk Dgr"B + K]ABHAB) + 6AbEAWHTA/£Q
—i—4bZWﬁTA/{4 —4DW (/{AB/{TB — /-{%EA/{TB + /{TBEBKQ — ;KQEB/{TBH
+ f Ba/G LllbW(502 — 70,4507 + D 46D"0 — DabpcD" 05)
+%bﬁAW(9ABEBH — 208D A05¢) — i@AbﬁAWHBCHBC

(5.28)

1 — 1 —a—
+DAW (20% — 305c6”C) + 5bDADBW(e)gemg — 040
The Poisson brackets of the redefined boost and supertranslation charges are thus
{B", T} =—n'W+ A%, (5.29)
(B, W} = —4n'T — 9an' DT — n' AT + Al (5.30)
where the nonlinear terms are given by
Nir = D4 [Kpn' (D' DU + g*BU)| — DalK*n' (AU + 3U))
Ay = 20 KK 4 = n'(DeKC)? +n' D" KPDaKp — D" (9an' K4 K 4)

. — R — 1 —
AN KAK L) + 4Dy |n'(DeKCKA — D KB K — S KADBE")

n'[5(AU + 30))* — 7(DaDpU + G.50) (D DU + 38U

+ o+
| =

w\'—* wl|

A ZU + 3U)5A(ZU + 3U) — EA(EBECU + EBCU)EA(BBECU + EBCU)}
D[

_ 1 . —
(DaDgU +gapU)D" (AU +3U)| + 50 7' (AU + 30)?]
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11— A — R — B—
n 1D“‘ [Dan(DpDoU +GpcU)(D DU +5°°0)]
+ D" [n'(D"DU +§"°U)Da(DpDcU + e U)]
1—A—BT + —O— B
+ §DADB [n'(D“DaU +65U)(D DU +3°CU)]
3__r . B
-5 7' (DDl +GpcU) (D" DU +35C0)]
1=A=B[ ;= = _ —
-,D'D 7/ (DADBU +345U) (AU +3U)] . (5.31)
One might wonder whether one can eliminate the remaining non-linear terms Air and
A%,V in the algebra. We show in appendix F that one can eliminate A%— but that once
this is done along the lines we indicate, there is an obstruction to the elimination of A%/v-
Furthermore, the elimination of AiT itself leads to undesireable features in what concerns
the transformation properties of the energy, which would be affected by supertranslation
ambiguities (see section 6).

5.4 Lorentz transformation of the energy and the linear momentum

It is to be pointed out that when 7" reduces to its zero mode (constant time translations), the
non-linear term Ay, 7 vanishes. The same is true when W reduces to its vector harmonic
(k = 1), although it is less immediate to see.

The proof goes as follows. It is convenient to split Ag, 1y as follows,

Ay = Ay + Ay (5.32)

where
My = § v | J0W (58 — 1045647 + Da0D"0 — DabcD"0™)

1 _ _ 1
+ 5bDAW(eABDBQ — 205D 40p¢) — ZaAbDAWQBCGBC

+ 1bZW(w? — 30pc0°°) + %bﬁAﬁBW(Gge(;B —04p9)

1 , (5.33)

1 - — _
A}{b Wy = j{d%\f {bW(Z@TAF;Z‘ — 2Dk Dk + kPR AR) + 8AbDAW/<;TA/<Z‘ (5.34)
’ g
_ _ _ _ 1
+4bAW/<;TA/iQ — 4bDAW(/£AB/£TB — KTBDAKTB + /QTBDB/{Q — ZEQDBK;TBH .
First, let us focus on the term A?b W We can directly apply the equation for the

spatial translations parameter, D4 DpW = —g,gW, on the second order derivative terms
in (5.33). Then, we obtain that

1 1o oA
Ay = ]{ d3x\/§[4bW02 + oW (D A0D"0 — D A0ED"05)

1 — — — 1 _
+ 5bDAW(aABDBe) — 208D 405¢) — ZaAbDAWcheﬂ-”‘C . (5.35)
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We will make use of the following identity
7( d*2\/Gf (DabD*0 ~ DabED"05) = — 74 a2/ 051 (05D 04 — 04D 0%
+ (6% - 30305) |, (5.36)

with f an arbitrary function. This can be obtained after integration by parts and taking into
account the commutator of two covariant derivatives [EC,ﬁA]HoB = 3048 — 9gAB. If we
now choose f = bW /4, and consider the equations for these parameters (b, W), we have that

7( d%@% (DA0D"0-Da08D"05) = ]{ Br/g

1 )
bW (492+49§9;§> (5.37)
1 — — A — 1
- 5aAbD“We2 +D W Dpw (959 - 2950§> ] .
Replacing this identity in the first line of (5.35), the non-linear term becomes
AU = b e va| Rewez + 2eweBed - 1D pptwe
{6Ww} — 9 2 4 AYB 2 A

_ 14 — 1
+ DD Wop — 5DAbDBwegag -.D AbD W oB6S

1 - — _
+3 j[ dBa/GD W (045D"0 — 205°D 405¢) . (5.38)

Integrating by parts the terms proportional to D 4b in the expression above, (5.38) reduces
to

_ _ 1 — _
A,y = 74 d3x\/§<bDBW0éDAHBC — 0D AWOABDBH)
+§%d :r\/ng W(QABD 0 — 20 DAegc)
=0, (5.39)

which identically vanish after the use of the identity Dabpc = Dplac.

Let us now proceed to show how the non-linear term Af{/b’W} vanishes for spatial trans-
lations. For this, we make use of the definitions of the functions % in terms of V', which
are given in (2.19) and (2.20). After some algebra and integration by parts, we get that
A‘{/b,W} becomes

Afwy=— }( 2V [2D" (WOARV ) + 14D (WD D"V (5.40)
—2D4 (0WD'V)+8D4 (WAD'V) ~ A (WAV) —7D4Dp (sWD*D"V)].

This can again be simplified by using the equation DADgW + g W = 0. Thus, A}{/b W}
reduces to

Ay = - f d¥e/GV [2(004W — 0.6W) D'V — 8 (b0AW — 0,0W) AD'V] | (5.41)

where we have made use of the identity on the 3-sphere ADYW =D'AV + 9D V.
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It is straightforward to show that both terms in (5.41) vanish (independently) after
integration by parts and using the equation for the parameters b and W. This can be seen
for the first term of (5.41), where

2]§d3x\/§v (bOAW — D4bW) D'V = yfd%\/ﬁ(baAW — 94bW) D (V?)
S ]{ BrG (bZW - wa) V2
= 0. (5.42)
For the second term in (5.41), we proceed in a similar way
]{d%\/ﬁv (bOAW — 04bW) DDV = — y{d%\/ﬁ (VDD AW — DD 4bW)VD D'V
1 3 = —A,— _ —B
—5 § d*ev/g (00aW — 926W) D" (DVD"V)
1 _ _ _
=3 7{ 2§ (VAW — 50W) DV D"V
= 0. (5.43)

Hence, A}{/l)7W} = 0 for spatial translations. Accordingly, we have explicitly shown that the
non-linear term A,y is also zero for ordinary spatial translations.

It follows from this result that the energy E and the linear momentum P’ transform
in the finite-dimensional vector representation of the Lorentz algebra since the non-linear
terms appearing in the transformation of 7 and W vanish for them. E and P; are respec-
tively defined as the values of the generators of constant translations in time (7" = Tp) and
space (W = Wi—1).

6 The importance of the non-linear terms in the energy

The transformation properties of the energy F and the linear momentum P* under leading
and subleading supertranslations can also be directly read off from the algebra, by taking
their bracket with the generators of supertranslations. From the fact that the algebra is
abelian modulo central terms that vanish for Ty and Wi, we simply get that the energy
and the linear momentum are invariant,

Srwrm mE=0,  Spworm P =0. (6.1)

Energy and momentum are thus free from supertranslation ambiguities, as in four dimen-
sions.

This absence of ambiguities seems to be in conflict with the non-invariance of the en-
ergy under spatial supertranslations pointed out in [60]. There is in fact no contradiction,
because the expression for the energy considered in that reference was the direct generaliza-
tion to five dimensions of the expression for the energy derived in four dimensions in [61],
which is linear. While this expression is correct in four dimensions, it is not so in five dimen-
sions as soon as one takes (as here) boundary conditions compatible with the possibility of
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performing leading supertranslations. The energy gets additional non-linear contributions,
E-— 2% /G [(1/2)Ra + DaX" +3X — (1/8)0450"F + K4 K] . (6.2)
ES

Here the first three linear terms are the direct generalization to five dimensions of the
four-dimensional expression of [61] (“ADM contribution”), while the other two terms are
the non-linear (quadratic) corrections. These non-linear terms acquire non-zero values
under supertranslations and are crucial for ensuring the invariance of the energy.

For instance if one performs the coordinate transformation r = p+ ¢ on the flat metric
dr? + r2d9)? where c is a constant (see lecture notes [60], pages 18-19 with o = 1), which
corresponds to a non-trivial leading spatial supertranslation with W = ¢, one finds after
transformation that the fields are given by

hap =Gag, 0ap=2cGag, A=0, X =0, Ky =0, (6.3)

and therefore

E = 2}23 x5 (02 - c2> =0. (6.4)

The first term is the ADM contribution while the compensating second term arises from
the non-linear contribution.

The absence of supertranslation ambiguities for the energy and the linear momentum
holds only because the supertranslation algebra is abelian modulo central terms that vanish
for the energy and the momentum. If the Poisson brackets between the leading supertrans-
lations involved the subleading supertranslations, as did the original choice of 7 and W,
then the energy defined as the value of the zero mode 7y of the corresponding 7 would
not be invariant under supertranslations. This would mean that the energy could not be
identified with the zero mode of that choice of 7, but rather of the improved 7 that fulfills
a (centrally extended) abelian algebra. It is for that reason that we redefined 7 above in
order to achieve this property.

7 Matching with null infinity

The Hamiltonian derivation of the ADM-BMS charges given here follows the general ap-
proach developed in [31-33] for four dimensions. It is self-contained and makes no reference
to null infinity. It is thus independent from the dynamical question of the existence of a
smooth null infinity, which is already a non trivial issue in four dimensions [62, 63]. In fact,
the parity conditions of [32, 33] lead to the absence of the leading logarithmic singularities
that develop as one goes to null infinity while those of [31] do not eliminate them, but from
the point of view of the Hamiltonian formalism and initial data on Cauchy hypersurfaces,
this smoothness condition is in fact not a necessary requirement.

The four-dimensional boundary conditions adopted in [32, 33] leading to the absence
of leading logarithmic singularities at null infinity where actually suggested by electromag-
netism, where one encounters similar features in a simpler linear context [39]. There also,
appropriate parity conditions on the leading order of the fields at spatial infinity eliminate
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the leading logarithmic singularities that generically develop at null infinity. In both cases,
one can see how logarithmic singularities emerge as one goes to null infinity by (i) integrat-
ing the asymptotic equations of motion from spatial infinity to null infinity in hyperbolic
coordinates [64-66]; and (ii) following then the methods of Friedrich [67-69], which are
adapted to the “critical sets where the two infinities meet”. The evolution of the leading
terms as one goes from spatial infinity to null infinity is governed by the second order
Legendre equation [70] and the parity condition eliminates the term proportional to the
Legendre function of the second kind, which becomes singular at the critical sets [32, 39]
(see also [71]).

The approach just outlined has the advantage of matching explicitly the fields at
spatial infinity and null infinities (in four dimensions). In particular, one can derive the
Strominger’s antipodal matching conditions [8, 10, 72] from the parity conditions on the
initial data of [39] (for electromagnetism) and [32, 33] (for gravity). The equality of the
past (future) limits of the soft U(1) charges and BMS charges with the corresponding
Hamiltonian charges follows from the matching of the fields but is more subtle to establish
directly. This is because the natural bases in which the symmetry algebras are given are
not the same at null infinity and at spatial infinity, as shown in the earlier analysis of [70]
and further discussed in [32, 39]. [Matching conditions have been derived later from a
different perspective in [73-75], with [75] emphasizing also the connection between parity
conditions and elimination of leading logarithmic singularities.]

Now in five spacetime dimensions, there is no parity condition on the leading orders in
the asymptotic expansion of the fields as one goes to spatial infinity. As shown in [38] for
electromagnetism, this leads to more general matching conditions between future and null
infinities, involving both odd and even antipodal matchings that turn out to be associated
with different inverse powers of r as one goes to infinity along null geodesics. The odd
matching applies to the leading radiative branch which goes with the fractional power r=3
(in terms of the fields). The even matching — the only one in four dimensions — applies to
the Coulomb branch which goes with the power 3. We expect similar features to emerge
in gravity. The analysis is harder since spacetime is dynamical and a satisfactory definition
of null infinity is more intricate. Work on this question is in progress [76].

8 Conclusions

In this paper, we have given boundary conditions for five-dimensional Einstein gravity
at spatial infinity, which define asymptotic flatness. These conditions lead to an infinite-
dimensional asymptotic symmetry algebra, which we denoted BMSs5. The property of this
algebra, which turns out to be non-linear in terms of the chosen generators, have been
studied.

The boundary conditions are characterized by a relaxation of the decay rate as one
goes to spatial infinity with respect to the “Coulomb rate”. The new allowed terms take
the form of a O(1) diffeomorphism. These boundary conditions are rather general, since
they contain the Myers-Perry metrics [77]. It is known thanks to the work of [78] that
under reasonable assumptions, rather general initial data can be put asymptotically to the
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Myers-Perry form by an appropriate change of coordinates. The coordinate transformation
necessary to achieve this task might be improper, just as the boost necessary to bring a
black hole at rest would be improper. Our boundary conditions precisely allow for such
improper gauge transformations, which it would be incorrect to gauge fix. If we did not
include the slowlier decay rate in our boundary conditions, we would see no sign of the
supertranslations [79, 80].

Our work can be extended in principle to higher dimensions. However, as one increases
the dimension, the analysis becomes more and more technically intricate. This is because
the gap between the pure (improper) diffeomorphism piece in the expansion of the fields
(generated by O(1) vector fields) and the “Coulomb” piece widens by one power of 1/r as
one increases the dimension by one. Non-linearities (of increasing order) then proliferate.
Although these non-linearities are not seen in the linear Pauli-Fierz theory, it is neverther-
less instructive to carry the analysis in this simplified context. One finds that even though
there are potentially more subleading supertranslations associated with the additional in-
termediate powers of 1/r in the expansion, preliminary analysis indicates that the size of
the BMS group does not increase because the new terms in the diffeomorphism generators
define proper gauge transformations. Similar features hold for electromagnetism.

Our analysis raises a number of questions, of which we will only list two.

First, what is the meaning of the enlargement of the supertranslation subalgebra,
parametrized now by four independent functions of the angles? What are the correspond-
ing Ward identities and soft theorems? There are indications that a similar enlargement
of the supertranslations — and hence the similar problem of understanding the physical
implications of these new symmetries — might actually occur already in four dimensions,
with the role of the leading supertranslations being played by logarithmic supertransla-
tions, yielding an analogous structure for the supertranslation subalgebra [81]. More work
is required to understand this issue.

Second, while there is an enlargement on the supertranslation side, our analysis does
not include the superrotations [82, 83] as asymptotic symmetries. How to include these and
their higher dimensional generalization [25] in a Hamiltonian treatment at spatial infinity
remains an open question.
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A Action of the diffeomorphisms on the fields (leading orders, unim-
proved)

We write in this appendix the variations of the leading orders of the fields for a surface de-
formation (3.1)—(3.3) without the correction terms (i.e., without the ‘more”). We consider
successively the space-like diffeomorphisms (¢ = 0) and the normal ones (¢° = 0).

Action on the fields: I. Space-like diffeomorphisms (unimproved). Space-like
diffeomorphisms (§ = 0) generate the following transformation laws for the coefficients
appearing in the spatial metric fall-off:

o Leading order (improper gauge part):
S¢ian = Ly0ap + (Dalp + Dpla+2545W) , (A1)
where T4 = D4W.

o First subleading order (“core”):

Jeid = YA — W) | (A.2)
(5§¢XA =LyAg — HABIB —i—ﬁAW(l) — 2[1(41) , (A.3)
d¢ihap = Lyhap + L10ap +W0ap + 2 (b(AIg)) + ?ABW(D) ; (A.4)

where £ stand for the Lie derivative along the vector I4 = Dw.
From 6¢04p we can read the transformation law for the field U, which is

0eU = YA04U +2W . (A.5)

As mentioned above, an arbitrary term of the form Eg7mag7mY1£m (spanning the kernel of
the operator D4 Dp+g4p) can be added to the transformation law of U. This arbitrariness
will play no role in the formulas giving the charges, as it should.

The transformation laws of the first terms in the expansion of the momentum are given
by

o Leading order (improper gauge part)

Sk’ = 0a (YAR™) (A.6)
551',%”‘ = 0p (YBFLTA) - GBYAF;TB, (A.7)
S = o (VORAP) = oY Ak — 9oy Ak, (A.8)

o First subleading order (“core”):

ST = LyT™ + L1x"" — 26" D AW + 5"W (A.9)
(5&%“4 = ﬁyﬁrA + ﬁ[HTA + I — HgﬁBW, (A.10)
5e7 8 = Ly 7P + LyrAP + A + TPk — WrAB (A.11)
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From these transformation laws, we obtain that the field V' must transform as
0eV =YA04V, (A.12)

an expression to which one can add an arbitrary constant, which parametrizes as we pointed
out the kernel of the operator relating £ to V.

Action on the fields: II. Time-like diffeomorphisms (unimproved). We will now
write down the transformation law of the fields generated by time-like diffeomorphisms

(& =0).

The coefficients of the spatial metric fall-off transform as

o Leading order (improper gauge part)

2b 1
0¢bap = —= — ~GaBKG A13
¢VUAB /3 </~€AB ZQAB/'%*) ) ( )
but d¢0,4 # 0 (see discussion at the end of this subsection).

o First subleading order (“core”):

SeX = 3\1’@ (27 =74 — apr??) | (A.14)
beda = \2/% (WrA + 0apr™B — ;9§HTA> + f/gﬁrAv (A.15)

5§EAB = \2/% TAB + 200(Aﬁg) - %HABIQg — %gAB <ﬁrr +ﬁ8 + QCDFJCD)}
_ \%95 (KAB — ;gAB,@g) + f/Tg (;MB — ;gAB/ig) : (A.16)

The transformation law of the function U, which can be consistently extracted from

the one of 04p, is given by
0¢U = 20V (A.17)

an expression to which one can again add an arbitrary element of the kernel of the operator
that relates 045 with U in (2.17).

Similarly, the transformation laws of the first orders of the momentum in the asymp-
totic expansion turn out to be given by

o Leading order (improper gauge part)

Sk = _\f (004 — 046D 0F) - VG AT, (A.18)
S = ?6369/‘5 - VgD'T, (A.19)
SerP = \f’ (0047 — 8obD"04C — g7 (b5 — 0cbD 9B )|

- Vg (¢*PAT - D"'D"T) . (A.20)

~ 34—



o First subleading order (“core”):
57" = —/G(A -3)TW
+ Y9 08T+ DD T+ 204D AD"T) + YID (125, - 2D

—208CD 40pc+0D 40 +4Dph’s — 208D 50 —24(k™)? + 1265 K7

)+ 525l
24 /5
—24n7 A+ 854 — 4w 4)? + (288X + 2404 + 150407 — 967+ 72D X"
+12D4Dh"” ~3D"0D 6% +3D a0 D 07|, (A.21)
S A = \f (363D" 16D 1) —2ygD" TV

+ TQEB b(4hp+003 — 40564 +2DpX" —2D" X — 165" KA

)+ 5]
123
+8n5" 4 — 245" +5 (12X +12D "7 — 303 D" 0+ 6804 + 6D D' X"
—~36D"X-12D" i +302D" 05 ~12D"DpX” )|, (A.22)
SR = \/ﬁ(EAEBTﬂ) —gABZT<1>) 4 \f [29ABZT— 20D DT

—208°D DT +0D"' D1 -D*0BD T + 5B (26ABEAEBT

—OANT — EAGEAT)} + [— 24k KB 4 8K kAP + 8Kk AP

b
12,/
— 2452k +5 (2407 +1200F — 180207 + 621" —6D DR
—6DD R +3Dc0D" 98¢ — 6D X" - D"X* +12D" DX
+6D D h—3D"9“PD" 00 ) EA;B (8(5™)2 +245"C kg, — 887"
+1260pKCP — K% +G(—24R+ 2100 p0°D — 962 + 24D 4N — 248N
+12DcDph°P — 1287 — 3D 0D 6 + 8DcOprD 077))]
+ ‘facb [2D°R* ~ 2045 93D K" ~aD"h" +204 D" 6%
+205 D794 —9D"07C +20°PD0F + 58 (43 4D X-2D R
— 0D 05 +0D 0+4Dph”" —205D"0)|. (A.23)
The transformations d¢x* induce the following transformation law for V

eV =—T+ %@\bﬁAU + %bU, (A.24)

which, similarly to §¢U, can also differ by terms in the kernel of the operator that links %
and V| namely, an arbitrary constant.

Now, as mentioned above, if one computes the variation of g.4, one finds that it
contains a O(1) term, in contradiction with the assumed boundary conditions. In order to
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preserve the fall-off of the mixed radial-angular component of the metric one must therefore
perform a correcting spatial diffeomorphism proporitonal to the Lorentz boost parameter

1
€=0 and = ;I(Ab) , (A.25)
where %

This contribution is part of the “more”-term in (3.3). It only affects the leading order
f4p and the subleading orders hap of the metric, as well as the subleading orders of the
conjugate momentum. Explicitly, the variation of 8 4p acquires the extra contribution

ngA (bi') + \21}3 57y (A.27)

that of h4p is obtained by replacing L£;0 45 by 579 4B Where 57 stands for the Lie deriva-

tive along the vector = EAW + 1 (‘2), with similar replacements in the variations of 7%
(LkY — Ejkaij ). The final form of the transformations will be shown explicitly in sub-
section B together with all the other contributions coming from the additional correcting
gauge transformations.

B Action of the diffeomorphisms on the fields (leading orders, improved)

We now write down explicitly the transformations of the leading orders of the metric and
its conjugate momentum, collecting all correction terms, i.e., including the “more” terms
in (3.1)—(3.3).

The correcting gauge transformations can most simply be displayed by shifting the
gauge parameters in the following way

A A
I"=D"W + I, (B.1)
T=T+ T(b) s (B'2)
1 1
™ =W 4T (B.3)
F(HA A
T4 = J0A 4 g8 (B.4)

(HA

with 14 T, T((bl,%/v) and I(b,W) given above.

(b)?
This directly leads to the following somewhat cumbersome formulas, which play a
central role in the derivation of the Poisson bracket of the generators.

Metric.

e Leading order
d¢eilap = LyOap + 2 (EABBW +GapW)

2b ( 1_ C) 2 2
4+ — (kaB — =guapre | + —=Da (bklz) + —=Dp (bk'y) . B.5
2 (wan = 57annE ) + Dalony) + Do) . (B5)
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From 0¢04p we can read the transformation law for the field U, which is

O iU = YA04U +2W + 20V . (B.6)
As mentioned above, an arbitrary term of the form Eg,magvalﬁm (spanning the
kernel of the operator DaDp + g4p) can be added to the transformation law of U.

This arbitrariness drops from the formulas giving the charges, as it should.

o First subleading order (“core”)

- - b
Seeix=YAN WO 4~ (27" — 74 — 945x"F) , B.7
€€ 55 ( A ) (B.7)
Seeha = LyXa+ Daw® —op(0 _ 20 (7 + 08675 + 0Fk1)) + 2 (B8
576 A \/E \/E b
Seehan = Lyhap + Lpap + Woap +2 (Dialyy) + 45 ™)
2b [_ 1 1 /e
+ 7 TAB + 290(A’<0g) - 59,43/18 — 3948 (77 + &+ QC’DFLCD)
2b 1_ 2T 1_
- ﬁeg <’iAB - 2QAB“g) + 7 (”AB - 29,43“8) ; (B.9)
where ET stands for the Lie derivative along the vector ™ =D'w +1 é‘)).
Conjugate momentum.
e Leading order
Sk’ =04 (YART) ~ \f (4664 —304bD"0F —b204) /G AT, (B.10)

S’ =0 (YER) —0pY w75 + ‘f (056047 + D (008)| - VgD, (B.11)

CKAB) —9pYARCE _ 9y ARCA

«/‘r\oﬂ
i
N
|
o))
Q
—~
!

+ ‘ég [beAB — 9cbDP9AC _gAB (zbag‘ —30cbD 98 — ngg‘)}
- \f (200" 6g +0D D 05) -5 (6P AT-D"DT) . (B.12)
From these transformation laws, we obtain that the field V' must transform as
Og eV =Y"04V =T+ 20U + §8AbD U+ §bAU, (B.13)
an expression to which one can add an arbitrary constant, which parametrizes as we

pointed out the kernel of the operator relating <% to V, and which again drops from
the expression of the charges.
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o First subleading order (“core”)

e e @ = Ly ™"+ Lon" = 263D W A RTW — VG(& - 3) T
+ Y9(ORT + Da0D"T + 204D1D"T) + VID"b(12%, - 2D .40
b
247
— 24k KA 4+ 8T A — 4(k1)% + 5(288X + 247 + 150408 — 902 + 72D 40"

— 205D a050 + 0D a0 + 4Dhiy — 205D50) + [ - 24(x™)? + 1265

+12D4Dph"” — 3D 6D 0% + 3Da0pc D" 05|, (B.14)

O¢

>

g7 = LyT A 4 Lo + TR — s DUW + “;7 (364D°T — oD"T) — 2ygD"T"
b

127

+ 8 A — 245 P + 5 (123" +12DR 7 — 304D"0 + 6AX" + 6D D X"

+ TgﬁBb(ﬁg + 097 — 40508 + 2DpX" — 2D Xp) + [— 16575

—36D"X — 12D h; + 308D 05 —12D"DpX” )|, (B.15)
0 TP = LymAP 4 LB + TP 4 T 54 — wiAP

+ V3D DT - g ATY) 4 Vf [204FAT - 20°°D D T

— 208D DT + D" DT — D'0BD T + B (29ABEAEBT

— AT — EAGEATH + L [ — 24Kk KB 4+ 8K kAP + kAP

123
— 24kdkCP +5(240"7 + 120047 — 180207 + 6A 1" — 6D D N
— 6DcD R +3Dc0D" 08¢ — 6D X” - DX + 12D D"X
—AB

+6D"D"h - 3EAGCDEBGCD) gT (8(/@”)2 + 24k"C KL, — 8Kk

+1260pKCP — AR2 + G(—24R + 2100p0°L — 902 + 24D 4" — 24A X

+ 12505DECD —12Ah — 3509509 + 3500DFECQDF))}

+ Y090 [2DF — 26D - 2D*R7 — 3D R 4 264D 97

+205 D" 04 — 9D 0P + 20°PD"0f + 5P (437 — 4DX — 2D R

—0pD 05 + 0D 0+ 4Dph" " — 205D"0)] . (B.16)

The transformation laws of the next subleading terms in the asymptotic expansion of
the fields can be found in appendix E.
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C Decomposition of the spatial metric and spatial curvature

We denote in this appendix polar coordinates as z* = (r, xA), where z# are coordinates

on the 3-sphere. We introduce the “lapse” A and the “shift” A4 adapted to the slicing of
space by the spheres of constant radius r,

1
YAB = 9AB, /\A = 0grA, A= g,rr . (Cl)
In terms of these, the metric and its inverse take the form:
A2 4 AcAC Ap g [ = A
gii = , g J — A A , C.2
N ( A 4B R A (©2)

where we used y4p and its inverse ¥4 to raise and lower the angular indices A, B, ...
Introducing the extrinsic curvature of the 3-spheres K45, we can write all the Christoffel

symbols:
1
Kup = 2 (=0rgaB + DaAp + DpAa) (C.3)
. 1
A A A
I'sc = "Tsc — ~Kpe (C.5)
roo_ 1 B
rA =y (3A)\ + KapA ) (C.6)
r 1 )‘A B
If = 10+ (942 + KapA®) (C.7)
A M o} A A
Iy = - (98X + KpcA®) + DpA = MK 3 (C.8)
AANB
A — ) (%B + 52 ) (83)\ + KBC)\C) —\¢ (DAAC - )\Ké‘)
)\A
—50A vABE,\p (C.9)
where D, is the covariant derivative associated to v4p.The Ricci tensor is given by:
1 1
(4)RAB = XGTKAB + QKAch — KKap — XDADB)\
1
+"Rap — XE)\KAB, (C.10)
WR,4 = A (04K — DpKE) + WRApAT, (C.11)
DR, = N0, K — MOAK) — N2 KAKE — AD,DAA
—BDRAANE 2R pAB (C.12)

which implies that the Ricci scalar takes the form

_2

(4)
R A

2
(0, K — M OsK)+ R—- KgK5 — K% - XDADAA. (C.13)
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D Vanishing of the linear divergence in the canonical generator

In this appendix we will explicitly show that the linear divergence of the canonical generator

- 1 1 4b
. — 3 = - - AB r rA
Dinear 7{ d x[\/ﬁb <25k: + 5000 + 504560 ) + —\/EEAM (D.1)
+2Y45 (ﬁg - eAB,JB) + 2D WK, + 2W oK™ | (D.2)

vanishes by virtue of the faster fall-off of the constraint equations. In fact, by using the
fact that D k"™ — k™ = 0, we can see that the two last terms in (D.2) cancel each other.
For the remaining terms of (D.2), we make use of the faster fall-off of the radial component
of momentum constraint H4 ~ O (7“_1), which implies that

_ 1 _
Dgfﬁ + EABfTB — QABFLTB + 5(2DBQAC - DAQBC)FJBC =0. (D.3)
Then, we have that

_ 1 o
f Y45 (7 + 0apr™) = 6 }{ PPz\/g <YA9ABDBV - 5DBYAD ADCUDBDCV> .
(D.4)
It can be shown this last integral vanishes (after some integration by parts) by virtue of
the following properties of the Killing vector Y4:

DYB =D"vB | D.DpYe = —GapYe +GucVs. (D.5)
The remaining terms in (D.1) along the boost parameter b become
) 7{ 3z \/§b<2ﬁ + 6 + %92 — Zeg‘aﬁ +2DAVD'V + 2EAXA>. (D.6)
Using the properties of b, we have
5 ?{ d*z \/gb(2h +6X) = f @2 \/gb(D* D hap ~ DDk~ 2D.D*X). (D7)
Using the asymptotic constraint coming from the fact that H ~ O (r~2), we have that

D (DPhuap — Dah) — 2D Dar + 2D 40"
— B —=A=B{ = - A, =B
=2DAVD " V+D D VDDV —DsD VDDV
1 1— — 1— —
+ 307 - ZQABQAB - ZDBaACD A08c + ZDAeACDBeBC, (D.8)
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the boundary term then reduces to two independent terms which are both zero:
B =35 7{ &z \/55(592 - ;ag‘ef _ %EBHACEAHBC n 15A9A053930>
_ %5 f @2 \/GD" (b(~0°Dabc + 05D 0.40))
+ iafd% Vg {b(6* = 30260%) + D"b(Dp(04“9ac) — D" (05040)) }
_ ia j{ @2 GD” (b(~"“Dabc + 05D 0ac) + Disb6*“0ac — Dab 0265
+ iaj{d% Vab(e> - 030%) =0, (D.9)
By =6 § % Vgb(4DAVD'V + D' D VDADaY - DaD VDsDV)
— 5]&1% VgD (6D"V = VD b)(DaDgV ~ 345D DV)) =0, (D.10)
where we have used
b(0% —0268) = (D D °UDADU ~DuD UDD U)+40UD s DU +6bU?  (D.11)
=D* (DU -UD ) DpD"U — (bD"U —UD b)) DADpU +bD AU — 2D 4bU?) .
E Transformation laws of the subleading terms

In this appendix, we list the transformation laws of the subleading terms of the fields. These
are necessary to obtain the asymptotic symmetry algebra. The subleading components of
the metric fall-off transform as follows

Seeht® =Y A0, — 2D WXy +2D" WX — AW + 2T — T — eABK;AB)

T
il

2b 2b — _
— ﬁe (27” —fﬁ - 9AB:‘€AB) + 3—\/5 (27r(2)” - 7r1(42)A AN+ 6D
72XA/€TA75ABI€AB79ABWAB> , (El)

Seech® =Ly h®) —2TVB 1y — WA+ 2X04W + ApDaD’ W —ha DpW +0505DeW
2 — — - = 2 T
+gngn%DBW—f—DB)\ADBW—i—ﬁT(l)ng—#ﬁ[—052+2(7?2+9AB/<TB)}
2 Y. _,.rB 3B r 2b [~ 374 9, 3 AB BpC .
\/E(aAbABH OpbA HA)+3\/§ [3)\ ST g0+ (050" 605057

267 XA — kA A+ 35N g+ 370 =307, — 30,45 (78 +0x"2) +3XpDar”?

+

— — 2 - _ (O — b— . —
+3I€TBDB)\A] +ﬁn;\ (A+3)"" {(DCDDJ@CD) (zhoDH)Dc)\Dﬂ , (E.2)

2— rr r 3¢ 2 r C .7 -C
5£,£ih5412)3:ﬁYth)B+EI(1)9AB+W(1)9AB_EQABK koD W"’_EHABKCD W+DchapD W

+ QX(AEB)W — Q&EDWBB)QCD + QEC(AEB)ECW — QCDQ&EB)EDW
or™M)

1 ~— —D T
—20C DD W+ (K?AB 9" ) o {6%,43 6K Oap
27? V3 N
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+126¢(a05) —30kaB+3Gapk 0 —Gap (277 +27G +2egn3)}

2 _ o~ —=C 2 — —C 4 — 4 D=
+p0ans "AcD b—ﬁHAB/\CD b—l—ﬁhC(AHTCDB)b—i-ﬁHCDQ&K PDpyb
4 — b

—0caT “Dpyb—
UG et PR g

+240508 koD + T ap (8KTTA— 87T 11267 R — 95770 + 8770 — 6K 0505 — 8T K2

[— 24K Toap — 87" Oup + 24K 004 — 8KE0S04

+8005 k5 — 165X — 87T — 857D 4 867C) +4SE(CA/$B)C — 48000, ki)
—UNkap — 12hgran+ 60502k ap + 0%k ap +48K] 4N +247 7 — 80457
+480C, T )0 — 2407 4+ 24k5 D hap + 2474 D 045 + 4805, 5™ D ) 02
+ 48%0(1453) k" + 4890D9(C:453) kP + 489&53)%2«}
2 o1 [ =0 b— — -
+ NG (kaB—K"gap) (A+3) ! {(DCDD +§CD> (2th +bDC>\D>:| , (E.3)
while the transformation laws of the coefficientes of the momentum fall-off are given by
(55751’77(2)7"4 — EYT‘.(?)TA +£Tﬁ7’A _'_TA%’I"I‘ +£7(1) KTA +2T(1)A/{T7’ _%EEBW —ﬁTAW
—ADPWO ¢ \f (504D"T 20D TV + \f (SN'AT+16h5D"T
+600AD T —160A0BD T+ 4D\ DT - 8x gD DT +8AD'T
BeA— oA  —A~ —p—\ 2T
— 4R D T—*D"T— 4D XpD"T) + = [k (= 25" + 5) — 3"
3Vg
3g _ _ - A Y
i gg ( —4Dpp*? + 04D — oA — 2D D NP + 8D N+ 4D 2
—08D"05+4D"DpX")| + 1—6?53 b(24n)" —24hc05 + 8075 — 8203

FRGOA — 2050004 10204 — 240475, + 24020508 — 800405 + 8D ph(P4

SN Dp0—80AD A" + 40D + 802D Vg — 805D — 8D )
T =A — A~ —A~ b . .
+83c D05 — 40D N + 805D N0 ) + NG (240K 1 — 48087

— 48k TP — 32K A 16k 5T — 8k (47T — Opon®C — 27

+0(—=26"" + k) ) — 485" P74 + 5 (2404 — 48047 + 240X + 300D -
+36DpRS " — 127D 0 —3004D" 0+ 128024 + 66A X" — 1204 D DX
+12D5D* @B 1 60D DN’ +600AD" N — 6D DN — 360AD 1D
—240BD Iy + 120D 1y +120408D 9 — 1204 AN" — 123" D D0
+240AD°DNC —1208D D pn — 1208D°D* N5 — 36D h@) — 249D N
+3008D" RS — 1200”1 — 36 D" hPP + 1275 D705 — 120805702
+3008D"05 +6D 0D N — 24D Dh@B + 193" D" Do — 120D D X"
+2408D" DA )|, (E.4)
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with

I =D"W 4+ ==k, E.5
77 (E.5)
1
T =10 L1l (E.7)
—(1)A A
WA — A I&% , (E.8)

where T{y), 7

(o) and [((;)Mé) are given in (3.16), (3.17) and (3.18), respectively.

F An obstruction to the elimination of the non-linear terms in the alge-
bra

We have suceeded in the main text in redefining away the non-linearities appearing in
the BMS5 algebra, except for the brackets between boosts and leading supertranslations.
Specifically, these brackets read

{Qv, Qr} = Qy + Ap1y (F.1)
{Qp, Qw} = Q4 + Apwy (F.2)

where
W= —bT, T =—4bW — 94bD W — bAW , (F.3)

and where the non-linear terms are given by
Mgy = = f dabw (08057 — 004T) | (F.4)
1 — — —
Apwy = %dgm’\f {bW(2/<fAnTA —2DA™Dpr"B + KABRAB) + 8AbDAWnTA/{4
g

__ _ _ _ 1 _
+4bAW/<a’”A/<;f4 — 4bDAW</fAB/<fB — KZTBDAHTB + HTBDB/#A — 2/{4DB/<;TB>

1 - — —
+ j{ Baryg leW(w? — 10450 + DA0D"0 — D40 D" 65C)
1 — — — 1 —
+ §bDAW(0ABDBG — 208D A0pc) — ZaAbDAWGBCGBC
1 — 1 —p—
+ ZbAW(Q@Q — 30pc05Y) + 5bDADBW(93903 - eABe)] . (F.5)

The problem of linearizing a Poisson structure can be reformulated as a problem of
Lie algebra cohomology [57] (see review in the paper [59]). In our case, the algebra is the
semi-direct product of the homogeneous Lorentz algebra with its infinite-dimensional rep-
resentation spanned by the supertranslations, which is non semi-simple. The cohomology
is therefore expected to be non-trivial so one cannot invoke general theorems to infer that
the non-linearities could be removed.

Since the non-linearities appear only in the brackets between boosts and leading su-
pertranslations, one can reformulate the problem of eliminating them as a problem of
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Lie agebra cohomology for the finite-dimensional Lorentz subalgebra in the representation
given by the supertranslations. Because this representation is infinite-dimensional (and
reducible but indecomposable), however, this does not provide much insight. Furthermore,
locality requirements on the form of the generators must be preserved.

Given the intricacy of this question, we shall examine it in a restricted context, namely,
we shall only consider redefinitions of the supertranslation charges that take the form

Qr =Qr+ ]{d‘g:ﬂ\/?TF, (F.6)
Qw = Qw + %d?’x\/f] WG. (F.7)

where the functions F' and G are assumed to be the most general quadratic, rotation-

GAB

invariant homogeneous polynomials in and DAr™P, ie.,

Cl - Dl - Fl e AT
F = A10805 + B10? + —=Dar’z048 + =D sx™0 + —Dar"*Dpr"P
BYA \/g B \/g g
Gi—
+ DD, (F3)
Co = Do say, o cam 4B
G = As0p0% + Bof? + —ZDarlp08 + Z2Daw™0 + =D ak"™ Dpr"
v N NG g
Go
+ ;DAIQTBDAKQTB . (F.9)
Here A;, B;, C;, D;, F; and G; are at this stage arbitrary constants. We consider quadratic
polynomials because the non-linearities that we want to eliminate are themselves quadratic,
and the number of derivatives is also taken to match.
One can view the new terms as generating improper gauge transformations with pa-
rameters
_ -1
1) = -4y (B +3) [(D D" +§"7) (2104p)| - 2B:1T0
Cy
VI

I = DA[ —C\Dp (T@AB)—%DlﬁA(TG)

@H)Wp+wmm@y%mw, (F.10)

- \%D (TDpr®) - \G/%EB (D" ) |, (F.11)
for F' and
T = — 4, (Z + 3)_1 [(EAEB + gAB) 2w AB)} — 2B, W0
325 (& + 3) [(D"D” + %) (WDar)] - %WEA/JA, (F.12)
1) =Dyl - 10253 (wer) - %DQEA (W)
F D) T Gy — Y T
- \—;D (WDpk'?) - 7%1)3 (WD) (F.13)

for G. Of course, the surface integrals are accompanied by the appropriate bulk terms
proportional to the constraints.
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The non-linearities cannot be eliminated. We now investigate whether it is possible
to determine the arbitrary coefficients in F' and G in such a way that

QT = Qyy » (F.14)
Qw = Q7 (F.15)

where W = 0T and T' = 4bW + 04bD" W + bAW.
We start taking the transformation of Q7 under Lorentz boosts

QT = Q7 + ]{d?’x\/ﬁT%F (F.16)
= Qy + Ayrpy + j{d?’x\@TébF (F.17)
= QW - }{d%\/ﬁ WG+ Aprpy + fd?’m\/ﬁTébF, (F.18)

where the relation 0,Qr = Q3 + Agrpy was used. Note that it is possible to write the
non-linear term as

Agrpy = —j[d%\/ﬁ:rmff‘, (F.19)

with f4 =b (/17"39§ — KTAO). Then, if we demand (F.14), we obtain the first condition on
the functions F' and G:

fd%\/gT (5bF —Daft - bG) —0. (F.20)

We now proceed similarly for Qw:

50w = 6,Quw + ]f P /GFW6,G (F.21)
= Qp + Ay + f P JGW6,G (F.22)
= Qf — ]f dPx/GTF + Ay + ]f BrGW G, (F.23)

where the relation ,Qw = Q7 + Agyyy was used. Note that the non-linear term in this
case can be written as

Ay = ]{d%\/ﬁW (DaDg +3ag) 17, (F.24)
with
A 1 _ -
FAB — ZeéeBC —0ABy+6VD D"V 4gAB <i€2—2930g+v2+VAV—;DCVDCV>] .
(F.25)
Thus, if we now demand (F.15), we obtain the second condition
]{d%:\/;}w (6,G + (DaDp + Gap) f47 — 4bF - OAbD F — PAF|=0.  (F.26)
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In summary, we have that the two following conditions must be simultaneously satisfied
& F —Daf*—bG =0, (F.27)
0,G + (DaDp +Gap) fA8 — 4bF — 940D F — bAF = 0. (F.28)

Now, if we solve the first condition, we find upon computing & F and 6,G from 6,0 45 and
S’ given in appendix B, that the coefficients A;, B;, C;, D;, F; and G; are completely
determined. The only non-vanishing ones are

1 1
3 =—3 =—= =_. F.
Al ] P Bl 8 ) C2 2 ) DQ 2 ( 29)
This yields
~ 1
Qr=Qr+3 ?{d?’a:\/?T (645045 — 67) , (F.30)
- 1 _
Qw = Qw — 5}1{6531‘\/? WD K (HAB — HEAB) : (F.31)
The bracket with the boosts now read
{Qb, Q1) = Qi » (F.32)
{Qv, Qw} = Qp + Appwy (F.33)
with -
Apwy = —27{613:8\/?/@“4/42 + A?b,W} . (F.34)
Here,

Ay = f{ Bar/g [ibW(E)OQ — 70,450 + D40D"0 — Dabpc D" 05)
4 %bﬁAW(G D70 — 205D A05¢) — iﬁAbﬁAWHBCHBC
+ inW(w? — 30pc0P°) + %bﬁAﬁBW(Q%CB —04p9)
- i (00065 + 912(60)) Daw (647 —34%6)
+ é (46W + 0cbDW + bAW ) (645045 — 6%) } . (F.35)
The non-linearity in {Qp, Qw} has not been eliminated. It is therefore not possible

to eliminate simultaneously all the non-linearities within the class of redefinitions of the
generators that we have considered.

Insight from the Jacobi identity. The above redefinition (F.29) makes at the same
time the supertranslations non-abelian. Indeed, the new supertranslation algebra is given
by

{QTl ) QTQ} =0 ) (F36)
{QT: QW} = Q7 » (F.37)
{QW17QW2} = Qf(l) ) (F'BS)
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where
. 1 1 3
T = —SWAT + STAW + STW (F.39)

+(A+3)7!

— A— 1. — — 1 — —
(DADB + EAB> (2WDADBT — iT(DADBW + ?ABW)>:| ,
I = Wi AW, — Wo AW, . (F.40)
The presence of the non-abelian terms in the new supertranslation algebra forces in
fact the presence of non-linearities in the brackets with the boosts. Indeed, the Jacobi
identity would otherwise be violated.

One can for instance check explicitly that the Jacobi identity involving boosts, time
supertranslations and spatial supertranslations,

{Qv. {Qr, Qw 1} + {Qw . {Quv. Q7r}} + {Qr. {Qw. Qp}} = 0, (F.41)

is satisfied only if the non-linear term JNX(W’b) is present. In fact, we have that the first term
of the Jacobi identity reduces to

(@0 1Qr.Qw}} ={@nQpor} = Qo =2 PavGbE+HTIV,  (Pa2)

where we used that 1) = —b(A 4 3)TM | with 71 given in (F.39).

The second term in the Jacobi identity gives

{Qw, {Qv, Qr}} = {Qw, Qy/} (F.43)
= Q) (F.44)
=2 7{ &g (DWW - DWW) V., (F.45)

_9 ]{ ey [b (WAT — TAW —3TW) + 206D ' TW|V  (F.46)

where we used that W = —bT and the expression for (1) given in (F.40).
Finally, the third term in Jacobi identity is given by

{Qr. {Qw. Qu}} = —{Q1. Q7 + A ury } (F.47)
= —{Qr, Apwy} (F.48)
—4 ]{ BayGWDATD 'V (F.49)
_ 7{ d*0y/G (0ABWD'T + b0AWD T + WWAT) V. (F.50)

One can immediately see that the non-linear term A{b’w} is needed to eliminate the term
along d4b in (F.46). Summing over the three components of the Jacobi identity (F.41), we
conclude that it is identically satisfied, as it should, but only because A,y is present.
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Abelian supertranslations. As we argued in the text, the condition that the leading
supertranslations are abelian plays an important role in the invariance properties of the
energy and is thus a desirable feature. One can ask which values of the coefficients A;, B;,
Ci, D;, F; and G; preserve this property, i.e., are such that

61,Qr, = 51Qw (= ~0rQw ) = w,Quw;, = 0. (F.51)

A direct computation yields

51, Q1 =5I;1>QT+%d3l‘\/§T15T2F:j{d3$\/§T1 (5T2F_2I%)> =0, (F.52)
2

SwQr=b,)Qr+ § o VGTowF = fda/gT (6w F-21()) =0, (F.53)
w

51Qw =b,00Qu+ 'V GWorG= fda /g (6rG+2(B+3) 1) =0, (P50
T

s Qs =0, Qu + 7( Bn/GWi 61w, G = 74 d*o/gW (ow,G+2(B+3) 7)) =0. (F.55)
2

Replacing the above parameters into these conditions and using (F.10)—(F.13), we get
that the only non-vanishing parameters turn out to be Ay and By, subject to the condition

Thus FF =0 and G = B (02 — HABQAB) with B an arbitrary constant, so that the most
general abelian supertranslation charges are given by

Qr=Qr, (F.57)
Qw = Qw + By f dErygW (02 - 04507) . (F.58)

The abelian condition is therefore rather strong and in any case, incompatible with
the elimination on the non-linearities, which needs different values of the coefficients A;,
B;, Ci, D;, F; and G;.
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