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ABSTRACT 

By combining the qO-im method for asymptotic sum rules with the 

P -CQ method of Fubini and Furlan, we relate the structure functions 

W2 and WI in inelastic lepton-nucleon scattering to matrix elements of 

commutators of currents at almost-equal times at infinite momentum. 

We argue that the infinite momentum limit for these commutators does 

not diverge but may vanish. If the limit is nonvanishing we predict 

. . vW2(v,q2)-f2 v 

0 2 

as v andq2 tendto 00. From a similar analysis for neutrino processes, 

we conclude that at high energies the total neutrino-nucleon cross sections 

rise linearly with neutrino laboratory energy until nonlocality of the weak 

current-current coupling sets in. The sum of up and Yp cross sections 

is determined by the equal-time commutator of Cabibbo-current with 

its time derivative, taken between proton states at infinite momentum. 

(submitted to Phys. Rev.) 
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I. INTRODUCTION 

Inelastic Iepton-nucleon scattering at high momentum transfer is a very 

direct means of probing small-distance nucleon structure. Reflecting this fact 

is the profound state of theoretical ignorance on what, even qualitatively, can 

be expected in this process. ’ Some small inroads have been recently made 

using the techniques of current algebra. 
2 

In particular, Cornwall and Norton’ 

. have written down a large class of asymptotic sum rules, valid at large 92: for 

inelastic electron scattering. Of these, the sum rule of Callan and Gross 
4’ 

relating an asymptotic integral over electron scattering cross sections to a piece 

of the commutator of electromagnetic current with its time derivative is of special 

interest. The purpose of this paper is to discuss such sum rules in a slightly 

different language - that of the infinite momentum method. We show that the 

electron scattering data is related in a direct way to matrix elements of electro- 

magnetic current commutators at infinite nucleon momentum. 596 In particular, 

we find that the structure functions W2(q2, v) ad w,ts2, v) describing inelastic 

scattering’ tend to simple limits for large q2: 

lim 

2 
q-eoa % fixed 

q 

\ 

lim 
2 

Wl(S2, v) = -g- $- ( 1 

(Ll) e 

(I-2) 

2 
cl--- , -?J fixed 

cl 

. with 

Ft(~) E FI(cJ) = $ p-w FT sinup <Pz~~x($T e-9 JxU’+‘z> lim 

Z 
(I.31 
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and 

F2W 
F&U) = 0 - FI(w) = +- pzzp~ Sin ‘J7JdSx <PzfJz@, $--),Jz&j~~z> 

2 (1.4) 

where w=-$.. The existence of these limits (aside from the Brandt-Sucher 

disease*) is guaranteed by a finite value of the integral appearing in the Callan- 

Gross sum rule. Although the present data’ appears to indicate that F2 is non- 

vanishing at q2 - l-2 BeV2, it is still possible that F2-“0 and the infinite- 

momentum commutators in (I. 3) and (I. 4) vanish in the limit. In such a case the 

content of this paper is empty. . 

Sum rules such as Cornwall and Norton have written down3 may be obtained 

by taking the sine-transform of (I. 3) and (I. 4) and expanding both sides in a 

power series in 7. For example, for n = 1,3,5.. . 

2 

dwo” F+) = 

. 

??J,(x, t) 
= lim 

P-m at” 
9 JxW) Pz> 

t=o Z 

n = 1,3,5... (I. 5) ., 

with a similar expression for Fe or W2’ However, the content of these results is 

more succinctly discussed in terms of (I. 1) - (1.4). 

Although a straightforward generalization of these relations to different cur- 

rents and momentum states is not difficult, what is not straightforward is the 

interpretation of the almost-equal-time commutators appearing in (I. 3) and (I. 4). 
0. 2 

In particular, the spectrum of intermediate “frequencies” o = -+ is bounded 

above, corresponding to at most the intermediate energy appropriate to the 

single-nucleon Z-diagram (see Fig. 1) o Assuming the limit (I. 1) and (1.2) is 
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nontrivial (nonvanishing), it will be most interesting to construct models with the 

kind of asymptotic behavior expressed in (1.1) - (I.4). This, however, is beyond 

the scope of this paper. 

In Section II, a simple derivation of the result is given. Section HI remedies 

the swindle perpetrated on the reader in Section II, by providing a more honest 

derivation. In Section IV, we attempt a generalization to an arbitrary kinematical 

situation. In Section V, we apply the same method to neutrino-reactions and find 

that up and vp total cross sections should rise linearly with energy. The sum of 

up and Yp cross sections is determined by the equal-time commutator of the 

Cabibbo current with its first-time derivative. Section VI summarizes our con- 

clusions 0 

II. SIMPLE DERIVATION OF THE ASYMPTOTIC LIMIT 

The inelastic scattering cross section from an unpolarized nucleon may be 

written’ as 

du a2 2 e 28 
RdE’ = cos sin 

4E2 sin4 ’ 
2 + 2W,(q2, v) 1 2 

‘z 
with 

E, E’ = energy of incident and scattered electron 

e = scattering angle of electron 

q2 = - 4EE’ sin2 e 
2 

V = q= P = (E-E’) M 

(II. 1) 

P = momentum of target nucleon 

q = momentum of virtual photon 
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and 

pO . =- 
M 

pO =- 
M 

c <PI J,CO,ln> <njJvU91P> VW3 g4 (P,-P-s) 
n 

tn. 2) 

J 
$$eiqa x <P~~pWy Jv(0)]/P> 

In all matrix elements <PI.. . IP), an average over nucleon spin is implied. Now 

40 
consider the limit of (II. 2) as PO-co, qO-m, F- - o fixed, sfixed 

Notice that q2 - + CQ 
0 

(timelike) in this limit. . 

Choosing p # 0, v # 0, we find, 

-&Pot-is 5 
<PI[Ji~, ~), JjcO,]/ P> 

(II* 3) 

or using (I. 1) and (I. 2) and the assumption that the commutator vanishes outside 

the light cone ’ .’ . . 

3p) 
00 

- *i3 *j3 
dr -ior 

-+ 6..F (0) = lim d3x 2ne 
cd 11 1 /J P-w 

3 -co 

<‘ipi( :(o;lIP> 

=- dr sin 07 <P 

Now (lI.4) defines Fl and F2 for positive w as well as negative; therefore we let 

+lq21 &)- 
V 

> 0, as appropriate for inelastic scattering. Then we get 

00 . 
F&W) = F+u) == lim d3x dr sin Iaii <PI J x 

7T, Pz-cc JJ 
P 

-’ ,[ x(w+)s JxV3j/p) 



and 

F2W 
W 

Fp(4 = w - F1(a) = + $ lim d3x d7. sin 1017 <p 
P4w JJ z 0 

(0 ’ 0) (II. 6) 

This is the desired result given in (I. 3) and (I. 4). Both Ft and Fm are positive; 

notice the curious sign change between the transverse and longitudinal commutators. 

The reader should have noticed the swindle that has been perpetrated in letting 

o--o. There has been no justification that o < 0 can be extrapolated from 

o > 0. The next section is devoted to providing such a justification. .:. 

III. JUSTIFICATION OF THE RESULTS 

In order to provide a better derivation of the preceding results, we consider 

the covariant current correlation function 

T;v = -$ ($-y) ($ - ‘;“) T2tq2,v) - (&, -y) T1(q2,v) 

=+ 
‘90, 

- M J d4x eiqox 0(x,) <P i[J,(x), J~(o)]~ P> -t- polynomials in q 

(III. 1) 
.--. -~ 

where, as always in this paper, an average over nucleon spin is implied, 

-------1x) -. 
According to the dictum of Harari, T2 satisfies an unsubtracted dispersion rela- 

tion in v, while TI requires one subtraction, provided q2 < 0, i.e., spacelike. 

-” 

1 
T2= 71 

w dvt2 ImT2(vf ,q2) 

J 2 2-iE 
0 

v’ - v 
(III. 2) 

2 
TI(v,q2) = T+%q2) + 5 

wdv121mTI(v ,q2) 

/ ,_ $2 Jsv 2 
0 t V -ic) 

tq2< 0) (III, 3) 
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We choose to express the Ti in terms of the variables q2 and w = (- q2/v) o Using 

the fact that 

$Im Ti(v ,q2) = Wi<v , q2) (III. 4) 

we obtain 
4 

T1(wq2) = Tltm ,s2, - 

/ 

do’ 2 WI@‘, q2) 

(0 
,2 2 -0 -I- ie) 

4 

T2(u, q2) = - u2 J dtig2 W2(&q2) 
. 

0’ 2 (0 ,2 -0 2 + ie)’ 

0 

(la. 3) 

(I& 6) 

We now take the limit qo-iw , sfixed and Pz temporarily fixed. In this limit 

2 4 

‘Ti- 
pO 

Tl(w,q2) - y- 

I I 

J dos2 W&i?, q2) 

qo 0 

T2- + J 
0 

On the other hand, from (III. 1) 

w 
iP 

T ----! 
w M JJ d3x dt e -lqO’t <PI[JI$x), Jv(o)llP> + Polynomial 

M$; I[ 
-- d3x <P J,# 01, Jv V3] jP> +--$j/“x <Pi[ aJ$$’ “!, JvP,l~~~~o 

0 

+ . . . (IL 7) 
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Specializing to ~1 and v # 0, and 2 in the z-direction, we find 

aJx &, t) 
4 

at 9 Jx(0) P>t, 0 = II lim 

8 

iq2 TI(w , q2) + iPt J dwf2 W+w’, q2) 

-c-w 0 

. 

Hereafter, we shall assume that 

iim Iq21{ 
dw12 
- W2(ot, q2) = 

q2dAoo 0 cd2 
lim 21q21 

q2 
J w$ W2(v,,q2) < cc 

---co 0 

w* 8) 

w* 9) 

(III. 10) 

For fixed q2, the integration in v converges, if the Harari dictumlois correct. 

The q2-w limit is that taken by Callan and Gross 
4 ; in particular (III. 10) is an 

integral involved in their sum rules. It is unlikely the inelastic scattering is so 

large that this Callan-Gross integral does not exist; such a circumstance would 

over%aturate the sum rules for Jdv W2 from current algebra. 
1 

More likely is 

the vanishing of (III. 10). If the Callan-Gross integral exists, i.e., (III. 10) holds, 

we can show that almost-equal-time commutators (I. 3) and (I. 4) necessarily exist 

as well. To show this, we observe from their kinematical definitions in terms 

of transverse and longitudinal cross sections, 
11 

that in our limit 

’ 

(III. 11) 
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which implies 

q 

4 ,. 

lim 
2 

J dw’ 2 WI(o’ 2 ) ,q < 00 

q ---a,0 

. 1;” 1s 2 dot2 I J- 
at2 

W2Wyq2) < OTJ 

q --)--Q) 

(HI. 12) 

(In. 13) 

. 

and because W1 and W2 are positive semidefinite, it follows that for lol> 2, 

4 

Gl(w) = lim 
dwt2 wl(ot 

1 

A21 . 

&)2 _ UC2 < Oc 
(III. 15) 

q2-&- 
0 

and Qi therefore by analytic continuation exists throughout the cut w plane barring 

extreme pathology in the behavior of WI in the limit. Similarly, we have 
. 

4 

Q2(o) = lim (q21m2 
dot2 W2(w’,q2) 

q2+- 00 / 
d2(cd2 - d2) 

cw 

0 

(III. 16) 

throughout the cut w plane. These results are then sufficient to guarantee the 

existence of Fly F2, and the almost-equal-time commutators (I. 3) and (I. 4). 

We go back to T* as defined in (III. 1), (III. 5) and (III. 6) and let Pz -+ w , 
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4 

dwt2 F1(ar) 

[ J Tl(myq2) - k cd2 -I- 1021 
0 

co 

-147 <P lcJi(g, i), Jj(0,3 / P > + Polynomial 

(In. 18) 

’ In the limit, 

P.P. 
2 

-Ll -6 6 pO : %3 ‘j3 

I I q2 
i3 j3 2 

90 
Ia21 

and 
. 

Tl(mrq2)- Polynomial . (HI. 19) 

The existence of the commutator in (III. 18) is guaranteed by the existence of an 

inverse Laplace-transform of (III. 18). Having. taken the limit q2-+m , etc., we 

may continue (HI. 18) into the cut -plane, and obtain 

6 
ij 

0 
co 

i <P Jib, 
1[ 

. (III. 20) 

Upon taking the imaginary part of this relation, we reproduce (II. 5) and (II. 6). 

This justifies the short derivation given in Section II. 

IV. A GENERALIZATION 

The preceding analysis can be generalized to arbitrary currents and momenta 

of the stateaAs an example, we considersthe case of two different SU(3) x SU(3) 

currents (s,, q2) sandwiched between spin zero hadron states (p,, p,) of the 

- 10 - 



same parity. We use the notation of Bander and Bjorken 
12 

p1+q1 -P2 + 92 

p = P1+P2 

A = p2-P1=ql-q2 

Q= q1+q2 

V =p.Q +A2 a= A.Q=q;-q; (IV. 1) 

and take the limit 

E~P~=P~~-c+ Q -io3, 
0 

‘&,=O (IV. 2) 

such that 

a=- &o, !z 

pO 
-- 

V 
(IV. 3) 

remains finite. Encouraged by the reasonableness of this limit in the special case 

of Sections I - III, we assume it exists in this case as well. 
. 

Under these circumstances, the new general invariants, 6 and t; tend to a 

finite limit: 

t = A2 (IV. 4) 

_, .-.. -. 

The covaiant amplitude Map!. tends,in the limit t0 
i 

pv ---- --. --L 

(27Q3 i (40~0~) 112 iql’x 6(x,) <P,/lj~W, j~(o)l(p1> 

00 

JJ 
-&Ot I I 

-- (27r)3 i (2-E) d3x dt e _ 2 lim <P,, P 2il[j354s j~(o;J/ Pzy P1) 
0 P-w 

Z 

-- 2i (27r) 3 jd3x JT e-iOh 

0 Z 
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This latter expression is a function of_pzI, & , and o alone. Upon writing out 

tip 
PV 

in invariants (suppressing indices (YP) 

M* 
P 

= p&, Al + (PpQv + Pv QJ A2 + (PpQV - Pv Qp' A3 

+ (PpAv + PvA 
c) 

Aq+ (P A 
P lJ 

- Pv A.’ A5 + ‘Q,/$, + Qv Ap’ A6 

+(Q A 
P v 

- Q,, Ac1' A7 -I- QpQv A8 + A& A9 t- gpv Alo 

(IV. 6) 

we see that A4, A5, A6, and A7 would have to tend to (Q2)-1’2 in order that the 

limit be nonvanishing and finite. We consider this unlikely, but cannot exclude 

it. Here we assume that in the limit these Ai do not contribute, 

We write 

AQ@ 
1 .o!p 

i 
-2 Fi (m,t, e) 

Q 

i = 1,2,3,8 

QoA;! -0 i=4,5,6,7 (IV. 7) 

AaP-FLYP i (WYtYE) i 
i = 9,lO 

where we introduce the variable ,. 

E=-6= 2 
( 

2 
> ( 

2 2 
Cd p21+ "2 - pll + m1 > 

(IV. 8) 

When these limits (IV. 7) are inserted into (IV, 6)) we find in the asymptotic infinite- 

momentum limit 

Map- ‘pev W,~, + f$ rip) 

PV ,2 F1- w F2- w F3 
r. 

(IV. 9) 

+ qpqv F8+ApAv Fg+g pv F1O 

where 8 c1 = (1,1,0,0) qti = (LOYO,O). 
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We are now free to identify various combinations 

terms of the almost-equal-time current commutators 

Using i or j to indicate transverse components, 

of 

at 

these form factors in 

infinite momentum. 

Mop 
Fy? 2FiP IT@ 

00 
-CT- o + F;“+F;,” M”P ” --- 

zz a2 
- F$ 

@P 
-J+@P 

2 
+ FiP 

MOz - 0 Map-O iz 

M@ ij - A F@ - ZLj F$) 
ij 9 

ME/-O &Pi0 
i0 

(IV. 10) 

Recall 

MCVP 
PV 

- - 2i (27r) 

’ 

3 ji3x (iT emiwlr 

Thus all invariant functions Fi can be determined in terms of the various current 

correlation-functions, which then play the central role. Similarly, an infinite set 

of convergent sum rules, whose right hand side involves commutators of Jv with 

3” J , can be obtained by expanding (IV. 10) and (IV. 11) in inverse powers of w, 
.o P 

and comparing coefficients as o -00. These are independent of the asymptotic 

sum rules of Bander and Bjorken, 12 
because in this case 6 does not tend to zero, 

but rather to ~1). We do not know what to do with these results, and shall not 

pursue them further here. 
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I 

V. NEUTRINO PROCESSES 

If we write the analogue of (IL 1) for the process FP 

.J3,14,1 

1 
da 

g&m= 
Mdo E’ 

dlq21dv = E 
cos2# + 2 Wlsin2$ + @&Q W3sin2$J 

+P- P++ hadrons 

with kinematics as in Section II, and (V* 1) 

pO M &eiqex 
J 2r 

<Plfjp), j~&j(JQ = =W M2 H2 
W i-5!i&$qpW 

-gpJ r1- 2M2 m3 
. 

+ . . . (V* 2) 

where jP is the Cabibbo current, 
15 

it follows from the arguments in the preceding 

section that under our assumptions 

. . 

(V. 3) 

W 
M 

( > 
-cl2 

RI13 --v$3 -7 

as q2 --co,v -00. 
. 62 

Introducing the variables o = T and x = $E , the total cross section coming 

from (V. 1) becomes (for E >> M) 
2 1 

v. 4) 

Therefore the cross section is predicted to rise linearly with laboratory neutrino 

energy. The coefficient is controlled again by the behavior of the current 
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commutators at almost equal time and at infinite momentum. To determine this, 

we take various components of (V. 2) in the Q, Pz-m limit, in parallel with the 

discussion leading to (lI.5) 

lim 
P-00 

Z 

lim 
P-a 

Z 

(V-5) 

03 

lim 
JJ 

d3x dT ewioT ^’ - 
P-m 

Z 
--co 27T 

Substituting (V. 5) into (V. 4) we find, upon extending the o -integration to M 

where 

Tot --cz1\IE &kJ ti& ewiwT c(T) 

-0 
W- 6) 

An interesting result is obtained upon taking the sum of antineutrino and 

neutrino cross sections. By crossing symmetry, 

,FP 
tot +cTvp tot 

= *Jdu&e-iaT C(T) = *(-i) 
-00 

91 
T= 

0 
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Therefore, we predict not only that vp and vp total cross sections depend 

linearly on energy, but that the sum of the tota cross sections is determined 

by the equal-time commutator of the Cabibbo current with its time-derivative ’ 

at infinite momentum. 

The linear rise of cross sections predicted here would be cut off, were 

Mtv 
there an intermediate boson W exchanged, with the cutoff at E m M . Data 

from the deep-mine cosmic-ray neutrino experiments 
16,17 P 

are as yet inconclusive; 

however, a linear rise of neutrino cross sections up to lo-100 BeV is not incon- 

sistent with the data. 
18 

. 

VI. CONCLUSIONS 

By combining the go-- io3 asymptotic limit with the infinite-momentum 

method, we have shown that in a certain limit, inelastic electron scattering 

structure functions 

. lim ml(u,q2) = Ft 

2 
q -a 

sz = o fixed 
u 

lim (-q2) W2(v ,q2) - W1(v ,q2) = F1 

2 M 
q-w 

WI* 1) 

^ 

(VI* 2) 

o fixed 

are directly related to Fourier transforms of almost-equal-time commutators at 

infinite nucleon mom.entum, given in (II. 5) and (II. 6). Provided the Callan-Gross4 

integral is finite : 

lim /q21f$ W2(v*jq2) c CQ 
2 

I I q -O” 0 

W*3) 
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we have shown that these commutators are not infinite, but may be zero (or 

ambiguous). The hypothesis that these commutators are indeed finite is equiv- 

alent to the prediction 

MWl-----F 
2 

4 -00 

‘VW2 
( ) -q2 .M2 -F2 v 

q -03 

W-4) 

Under similar assumptions, total f;p and vp cross sections are predicted to rise 

linearly with laboratory neutrino energy. Of particular interest is the behavior 

of the sum of cross sections, dependent, according to (V.8); only on the equal- 

time commutator of Cabibbp current with its time derivative, evaluated between 

nucleon states at infinite momentum. 

An extension of this technique to more general kinematical conditions, pre- 

sented in Section IV, is possible, but by itself does not seem to lead further 

insight into the nature of this limit. A more physical approach into what is going 

on is, without question, needed. 
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