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1 Introduction

When restricting the gravitational phase-space to conical spacetimes [1, 2] in 2+1-dimensional

flat supergravity, it has been shown [3, 4] that one can define neither linear momentum nor

supercharge but only energy and angular momentum because the asymptotic dynamics

does not allow for the associated symmetries. The absence of unbroken supercharge in

this context has important physical implications as it can serve as a mechanism to ensure

vanishing cosmological constant for the vacuum while at the same time boson and fermion

masses need no longer be degenerate [5].

The same kind of symmetry breaking occurs in pure Einstein gravity with negative cos-

mological constant for a suitably restricted phase-space, but disappears when consistently

relaxing the boundary conditions in order to allow for a richer asymptotic structure [6]:

in this case, the asymptotic symmetry group is enlarged and contains not only SO(2, 2)

but the conformal group in two dimensions. At the same time, the phase-space now in-

cludes, besides the angular defects, further “zero mode solutions”, such as the BTZ black

hole [7, 8] and more generally, two arbitrary functions that make up the coadjoint repre-

sentation [9, 10] of two copies of the Virasoro algebra at central charge c± = 3l/2G (see

also [11–13] for more recent discussions and applications). The results on an enhanced
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asymptotic structure have been extended to AdS3 supergravity for which the boundary

dynamics is governed by the superconformal algebra [14–16].

A similarly rich asymptotic structure for flat three-dimensional gravity can be defined

at null infinity [17–19]1 and is connected through a well-defined flat-space limit to the

one of AdS3 [21–26]. In particular, the limit of BTZ black holes are cosmologies [27, 28]

whose horizon entropy can be understood from symmetry arguments [29, 30] consistent

with those of the AdS3 case [31], while the boundary dynamics [32] is a flat limit of

Liouville theory [33], obtained through a Hamiltonian reduction from a chiral ISO(2, 1)

Wess-Zumino-Witten theory [34, 35].

The purpose of the present paper is to extend this asymptotic analysis to the simplest

N = 1 flat supergravity in three dimensions. As expected from the AdS and the flat

case in the absence of fermions [36], the reduced phase space with its Dirac bracket of

charges turns out to coincide with the coadjoint representation of the centrally extended

asymptotic symmetry algebra, viz. the super-BMS3 algebra, which now includes the full

Poincaré superalgebra as a subalgebra.

Note that in the context of Galilean conformal algebras, superalgebras isomorphic to

the super-BMS3 algebra, but with a different physical interpretation for the generators,

have been constructed previously [37, 38] by taking a non-relativistic limit of the super-

conformal algebra (see also [39, 40] for finite-dimensional versions).

In the next section, we briefly describe N = 1 flat supergravity in three dimensions

together with its Chern-Simons formulation. Additional conventions are given in the ap-

pendix A.

The main part of the paper is section 3, where we provide suitable fall-off conditions

and work out the asymptotic symmetry algebra, the general solution to the supergravity

equations of motion consistent with the boundary conditions, the transformation laws of

the functions parametrizing solution space and the Poisson bracket algebra of the canonical

symmetry generators together with the associated central charge.

Finally, in section 4, we discuss energy bounds and the Killing spinor equation, while

section 5 is devoted to rederiving the flat space results from the corresponding ones for

asymptotically AdS3 supergravity by rephrasing the latter in a suitable gauge that allows

one to perform the vanishing cosmological constant limit in a straightforward way. Section 6

is devoted to the minimal locally supersymmetric extension of the most general three-

dimensional gravity theory without cosmological constant that leads to first order field

equations for the dreibein and the spin connection. Due to additional parity odd terms,

the Poisson algebra of canonical generators is given again by the centrally extended super-

BMS3 algebra, but now with an additional central charge for the superrotation subalgebra.

2 Minimal N = 1 flat supergravity in 3D

The minimal locally supersymmetric extension of General Relativity in three dimensions

with N = 1 gravitino was constructed in [41–43]. Nowadays, it is well-known that the

1As shown in [20], these results can be naturally extended to the case of conformal gravity in three

dimensions.

– 2 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
1

theory can be described in terms of a Chern-Simons action in the cases of negative [44] or

vanishing [45] cosmological constant. In the latter case, different extensions of the theory

have been developed in e.g., [46–51].

Let us begin by considering the simplest case which corresponds to N = 1 supergravity

theory with vanishing cosmological constant. The gauge field A = Aµdx
µ is given by

A = eaPa + ωaJa + ψαQα , (2.1)

where ea, ωa and ψα stand for the dreibein, the dualized spin connection ωa = 1
2ǫabcω

bc, and

the (Majorana) gravitino, respectively; while the set {Pa, Ja, Qα} spans the super-Poincaré

algebra, given by

[Ja, Jb] = ǫabcJ
c; [Ja, Pb] = ǫabcP

c; [Pa, Pb] = 0 , (2.2)

[Ja, Qα] =
1

2
(Γa)

β
αQβ ; [Pa, Qα] = 0; {Qα, Qβ} = −1

2
(CΓa)αβ Pa, (2.3)

where C is the charge conjugation matrix. The action then reads

I[A] =
k

4π

∫ 〈

A, dA+
2

3
A2

〉

, (2.4)

where the bracket 〈·, ·〉 stands for an invariant nondegenerate bilinear form, whose only

nonvanishing components are given by

〈Pa, Jb〉 = ηab, 〈Qα, Qβ〉 = Cαβ , (2.5)

and the level is related to the Newton constant according to k = 1
4G . Hence, up to a

boundary term, the action reduces to

I =
k

4π

∫

2Raea − ψ̄Dψ , (2.6)

where ψ̄α = Cαβψ
β is the Majorana conjugate, while the curvature two-form and the

covariant derivative of the gravitino are defined as

Ra = dωa +
1

2
ǫabcωbωc ; Dψ = dψ +

1

2
ωaΓaψ . (2.7)

By construction, the action is invariant, up to a surface term, under the local supersymme-

try transformations spanned by δA = dλ+ [A, λ], with λ = ǫαQα, whose components read

δea =
1

2
ǭΓaψ ; δωa = 0 ; δψ = Dǫ . (2.8)

Analogously, the field equations F = dA+ A2 = 0, whose general solution is locally given

by A = G−1dG, reduce to

Ra = 0 ; T a = −1

4
ψ̄Γaψ ; Dψ = 0 , (2.9)

where T a = dea + ǫabcωbec is the torsion two-form.
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3 Asymptotic behaviour, canonical generators and super-BMS3 algebra

The aim is now to provide a suitable set of fall-off conditions for the gauge fields at infinity

that (i) extends the one of the purely gravitational sector so as to include the bosonic

solutions of interest, and (ii) is relaxed enough so as to enlarge the set of asymptotic

symmetries from BMS3 to a minimal supersymmetric extension thereof. In order to fulfill

these requirements, the behaviour of the gauge fields at the boundary is taken to be of

the form

A = h−1ah+ h−1dh , (3.1)

where the radial dependence is completely captured by the group element h = e−rP0 , and2

a =

(M
2
du+

N
2
dφ

)

P0 + duP1 +
M
2
dφJ0 + dφ J1 +

ψ

21/4
dφQ+ , (3.2)

where the functions M, N , and the Grassmann-valued spinor component ψ are assumed

to depend on the remaining coordinates u, φ.

The asymptotic symmetries correspond to the set of gauge transformations, δA =

dλ+[A, λ], that preserves this behaviour. When applied to the dynamical gauge fields Aφ,

one finds that the Lie-algebra-valued parameter λ must be of the form

λ = ξa(u, φ)Pa + χa(u, φ)Ja + 21/4ǫ+(u, φ)Q+ + 21/4ǫ−(u, φ)Q− , (3.3)

with

ξ0(u, φ) =
1

2
N (u, φ)χ1(u, φ) +

1

2
M(u, φ)ξ1(u, φ)− ξ1′′(u, φ) +

1

2
ǫ−(u, φ)ψ(u, φ)

ξ2(u, φ) = −ξ1′(u, φ)

χ0(u, φ) =
1

2
M(u, φ)χ1(u, φ)− χ1′′(u, φ)

χ2(u, φ) = −χ1′(u, φ)

ǫ+(u, φ) =
1√
2

(

χ1(u, φ)ψ(u, φ)− 2ǫ−′(u, φ)
)

,

(3.4)

in terms of functions χ1, ξ1, ǫ− of u, φ and prime denotes a derivative with respect to φ.

When applied to the Lagrange multipliers Au, λ is restricted further to depend only on

three arbitrary functions of the angular coordinate, two bosonic ones Y (φ), T (φ), and one

fermionic E(φ),

χ1(u, φ) = Y (φ) , ǫ−(u, φ) = E(φ) , ξ1(u, φ) = T (φ) + uY ′(φ) , (3.5)

and, at the same time, the field equations are required to hold in the asymptotic region:

the fields M, N , ψ become subject to the conditions

∂uM = 0 , ∂uN = ∂φM , ∂uψ = 0 , (3.6)

2Hereafter we assume light-cone coordinates in tangent space. See appendix A for the Γ-matrices repre-

sentation and further conventions.
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which are trivially solved by

M = M(φ) , N = J (φ) + uM′(φ) , ψ = Ψ(φ) . (3.7)

The phase space is thus reduced to three arbitrary functions of the angular coordinate, M,

J , Ψ, whose transformation laws under the asymptotic symmetries are given by

δM = YM′ + 2Y ′M− 2Y ′′′ ,

δJ = Y J ′ + 2Y ′J + TM′ + 2T ′M+ EΨ′ + 3E ′Ψ− 2T ′′′ ,

δΨ = YΨ′ +
3

2
Y ′Ψ+

1

2
ME − 2E ′′ .

(3.8)

The would-be variation of the canonical generators that corresponds to the asymptotic

symmetries spanned by λ(T, Y, E) can be readily found in the canonical approach [52]. In

the case of a Chern-Simons theory in three dimensions, they are given by [53–56]

δ/Q[λ] = − k

2π

∫

〈λ, δAφ〉dφ . (3.9)

For the asymptotic behaviour described here, it is straightforward to verify that this expres-

sion becomes linear in the deviation of the fields with respect to the reference background,

so that it can be directly integrated as

Q[T, Y, E ] = − k

4π

∫

[TM+ Y J − 2EΨ] dφ . (3.10)

Therefore, since the Poisson brackets fulfill δλ1
Q[λ2] = {Q[λ2], Q[λ1]}, the algebra of the

canonical generators can be directly read from the transformation laws in (3.8). When

expanded in Fourier modes,

Pm =
k

4π

∫

eimφM dφ , Jm =
k

4π

∫

eimφJ dφ , Qm =
k

4π

∫

eimφΨ dφ,

the Poisson brackets read explicitly

i{Pm,Pn} = 0 ,

i{Jm,Jn} = (m− n)Jm+n +
c1
12
m3δm+n,0 ,

i{Jm,Pn} = (m− n)Pm+n +
c2
12
m3δm+n,0 ,

i{Pm,Qn} = 0 ,

i{Jm,Qn} =
(m

2
− n

)

Qm+n ,

{Qm,Qn} = Pm+n +
c2
6
m2δm+n,0 ,

(3.11)

where the central charges are given by c1 = 0 and c2 = 3
G . Note that the standard

redefinitions J0 → J0 + c1
24 , P0 → P0 + c2

24 change the central terms in the algebra to
c1
12m(m2 − 1)δm+n,0,

c2
12m(m2 − 1)δm+n,0 and c2

6 (m
2 − 1

4).
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Algebra (3.11) constitutes the minimal supersymmetric extension of the BMS3 algebra

with central extensions. One can furthermore show that the fields M,J ,Ψ, their trans-

formation laws (3.8) and the Poisson bracket algebra (3.11) are entirely captured by the

coadjoint representation of the centrally extended super-BMS3 group.

4 Energy bounds and Killing spinors

4.1 Energy bounds from quantum superalgebra

If the gravitino fulfills antiperiodic (Neveu-Schwarz) boundary conditions, the modes Qp

involve half-integer p. The wedge subalgebra is then spanned by the subset Pm, Jm, Qp,

with m = ±1, 0, and p = ±1/2, which corresponds to the super-Poincaré algebra. Indeed,

this can be explicitly seen once the modes in (3.11) are identified with the generators

in (2.3) according to J−1 = −
√
2J0, J1 =

√
2J1, J0 = J2, P−1 = −

√
2P0, P1 =

√
2P1,

P0 = P2 − 1
8G , Q1/2 =

√
2Q− and Q−1/2 =

√
2Q+. In the quantum theory, one can then

use arguments similar to those of [14, 57, 58]: the last of the brackets in (3.11) becomes an

anticommutator to lowest order in ~ and the quantum generator P0 is bounded according to

P0 = Q1/2Q−1/2 +Q−1/2Q1/2 −
1

8G
≥ − 1

8G
. (4.1)

In classical supergravity, the simplest solution that saturates the bound is Minkowski space-

time with P0 = − 1
8G and all other modes of M,J ,Ψ vanishing.

For the case of periodic (Ramond) boundary conditions for the gravitino, the modes

Qp involve integer p and the bound on the quantum generator becomes

P0 = Q2
0 ≥ 0 . (4.2)

The simplest classical supergravity solution that saturates this bound is the null orb-

ifold [59] with all modes vanishing.3

4.2 Asymptotic Killing spinors

Starting from transformations (3.8), one can systematically discuss the isotropy subalgebras

of various solutions. A particular case of this problem is the “asymptotic Killing spinor

equation”, i.e., the question which asymptotic supersymmetry transformations leave purely

bosonic solutions invariant,

δEΨ = −2E ′′ +
1

2
ME = 0 . (4.3)

Asymptotic Killing spinors of solutions with constant M 6= 0, are given by

E = Ae
√
M
2

φ +Be−
√
M
2

φ , (4.4)

3How to turn these arguments into a supersymmetry based proof, analogous to the one in four di-

mensions [60], of the positive energy theorems in classical three-dimensional general relativity [13] will be

discussed elsewhere.
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with A, B constants. They are globally well-defined provided M = −n2, with n > 0 a

strictly positive integer,

E = En
2
ein

φ

2 + E−n
2
e−inφ

2 . (4.5)

Solutions with n > 1 are below the bounds (4.1) or (4.2). This singles out n = 1, Minkowski

spacetime for J = 0, in which case there are two independent antiperiodic solutions.

In the remaining case, M = 0, the solution of (4.3) is given by

E = E0 + F0 φ , (4.6)

with E0, F0 constants, which is single-valued provided F0 = 0. This means in particular

that there is a single periodic solution for the null orbifold at J = 0.

4.3 Exact Killing spinors of bosonic zero mode solutions

Purely bosonic solutions (ψ = 0) to the field equations (2.9) in the asymptotic region are

described in outgoing Eddington-Finkelstein coordinates by metrics

ds2 = Mdu2 − 2dudr +Ndudφ+ r2dφ2 , (4.7)

with M,N as in (3.7). The “zero mode solutions”

M = 8GM , N = 8GJ , (4.8)

with M,J constants, describe cosmological solutions for nonnegative mass (M ≥ 0) and

arbitrary values of the angular momentum J , while for − 1
8G < M < 0, the geometry

corresponds to stationary conical defects. For M = − 1
8G , the curvature is no longer

singular at the origin, but the torsion is unless J = 0, which corresponds to Minkowski

spacetime. Below this value of the mass, the geometry describes angular excesses (see,

e.g., [1, 22]).

Such solutions admit global supersymmetries when they are invariant under super-

symmetry transformations of the form (2.8), provided the spinorial parameter ǫ is globally

defined. The Killing spinor equation to be solved is then given by

Dε = (d+ ω)ε = 0 , (4.9)

with ω = 1
2ω

aΓa.

This equation can be solved directly through ε = Λ−1ε0 with ε0 a constant spinor and

Λ the Lorentz group element associated to the flat spin connection, ω = Λ−1dΛ, whose

form can be read off (3.2),

Λ = exp

[

1

2

(

Γ1 +
1

2
MΓ0

)

φ

]

=





cosh
(√

M
2 φ

)
√

M
2 sinh

(√
M
2 φ

)

√

2
M sinh

(√
M
2 φ

)

cosh
(√

M
2 φ

)



 .

Alternatively, one can first solve the Killing spinor equation for the upper component.

According to (3.4), this amounts to ǫ+ = −
√
2ǫ−′. The equation for the lower component

then reduces to the asymptotic Killing spinor equation (4.3).
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When suitably identifying the constants ǫ+0 , ǫ
−
0 , one finds in both cases that the Killing

spinor ε is globally defined provided M = −n2 with n a positive integer. For n > 0, one

finds two independent Killing spinors which can be periodic (even n) or antiperiodic (odd

n) given explicitly by ǫ = (−
√
2E ′, E), with E as in (4.5). For n = 0, one finds a single

independent periodic solution given explicitly by ǫ = (0, E0).
In summary, massive cosmological solutions (M > 0) do not admit global supersym-

metries, while the massless case admits only one periodic Killing spinor. For M = −n2, the
geometries possess two (the maximum number of) global supersymmetries, which includes,

for n = 1, the case of Minkowski spacetime.

Note that the geometries with M = −n2, n > 1 can be interpreted as suitable un-

wrappings of those for n = 1 with n playing the role of the winding number. Indeed,

the rescalings

φ′ = nφ , r′ = n−1r , u′ = nu,

amount to the change M → n2M , J → n2J in (4.8). As we have argued in section 4.2,

these geometries actually become excluded when one insists on fulfilling the energy bounds

in eqs. (4.1) and (4.2), for the periodic and antiperiodic boundary conditions, respectively.

It is worth pointing out that geometries endowed with angular deficit or excess actually

possess a curvature singularity on top of the source at the origin, so that they do not fulfill

the integrability condition of (4.9), i.e., DDε 6= 0. Minkowski spacetime is obviously

devoid of this problem, while a detailed discussion of the singularity of the null orbifold

M = 0 = J at r = 0 can be found in section 2.3 of [61].

5 Flat limit of asymptotically AdS3 supergravity

The standard N = 1 supergravity action (2.6) can be directly recovered either from the

(1, 0) or the (0, 1) AdS supergravity theory in the vanishing cosmological constant limit.

However, when one deals with the asymptotic behaviour of the fields, even in the case of

pure gravity, the limiting process turns out to be much more subtle [22]. In this section we

show how the results obtained in section 3 can be recovered from the corresponding ones

in the case of asymptotically AdS3 supergravity. Here we follow a similar strategy as the

one carried out in [23] for the vanishing cosmological constant limit of higher spin gravity,

which consists in finding a particularly suitable gauge choice that allows to perform the

limit in a straightforward way.

5.1 Asymptotic behaviour of minimal AdS3 supergravity, canonical generators

and superconformal symmetry

There are two inequivalent minimal locally supersymmetric extensions of General Relativity

with negative cosmological constant in three spacetime dimensions, known as the (1,0) and

(0,1) theories. Since both possess the same vanishing cosmological limit, without loss

of generality we will choose the (1,0) one, which can be formulated as a Chern-Simons

theory whose gauge group is given by OSp(2|1) ⊗ Sp(2) [44]. The action depends on two

– 8 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
1

independent connections A+ and A−, for OSp(2|1) and Sp(2), respectively, and is given by

ISAdS = I[A+]− I[A−] ,

where I[A] is defined in (2.4).

The asymptotic behaviour of the fields has been previously discussed in [15, 16]. The

fall-off of the fields can be written as

A± = b−1
± a±b± + b−1

± db± , (5.1)

with b± = e± log(r/l)L0 , and

a+ =
(

L+
1 − L+L

+
−1 + ψQ+

)

dx+ ,

a− =
(

L−
−1 − L−L

−
1

)

dx− ,
(5.2)

where x± = t
l ±φ. Here the generators L±

i , with i = −1, 0, 1, span the left and right copies

of Sp(2), and Qα, with α = 1,−1, correspond to the (left) fermionic generators of OSp(2|1).
On-shell, the functions L± and the Grassmann-valued ψ, are required to be chiral, i.e.,

∂∓L± = 0, ∂−ψ = 0 , (5.3)

so that they depend only on x+ or x−.

The asymptotic symmetries are given by the gauge transformations δa± = dλ± +

[a±, λ±] that maintain the form of (5.2), so that λ± are given by

λ+ = χ+L1 − χ+′L0 +
1

2

(

−2L+χ
+ − ǫΨ+ χ+′′)L−1 + (χ+Ψ+ ǫ′)Q+ + ǫQ− ,

and

λ− = χ−L−1 + χ−′L0 +
1

2

(

−2L−χ
− + χ−′′)L1,

which depend on three arbitrary chiral functions, fulfilling

∂±χ
∓ = 0 , ∂−ǫ = 0 . (5.4)

The on-shell transformation law of the fields L±, ψ reads

δL+ = χ+L′
+ + 2L+χ

′
+ − 1

2
χ+′′′ +

3

2
ψǫ′ +

1

2
ǫψ′,

δψ = −L+ǫ+ ǫ′′ +
3

2
ψχ+′ + χ+ψ′,

δL− = χ−L′
− + 2L−χ

′
− − 1

2
χ−′′′.

(5.5)

The canonical generators associated to the asymptotic symmetries spanned by λ+ =

λ+(χ+, ǫ) and λ− = λ−(χ−), are given by

Q+[χ+, ǫ] = − κ

2π

∫

[

χ+L+ − ǫψ
]

dφ ,

Q−[χ−] = − κ

2π

∫

[

χ−L−
]

dφ ,

(5.6)
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where κ := lk, which by virtue of (5.5), can be readily shown to fulfill the (super) Virasoro

algebra. Expanding in Fourier modes L±
m = kl

4π

∫

L±e±imφ dφ and Qm = kl
4π

∫

ψeimφ dφ ,

the nonvanishing Poisson brackets read

i{L±
m,L±

n } = (m− n)L±
n+m +

c

12
m3δm+n,0 ,

i{L+
m,Q+

n } =
(m

2
− n

)

Q+
m+n ,

{Q+
m,Q+

n } = 2L+
m+n +

c

3
m2δm+n,0 .

(5.7)

where the central charge is given by c = 3l
2G .

5.2 Vanishing cosmological constant limit

In order to recover the results of section 3 from the ones described in the previous subsection

once the vanishing cosmological constant limit is taken, it turns out to be useful to express

the asymptotic behaviour of the gauge fields of the (1,0) AdS supergravity theory in a

different gauge. We then choose different group elements g±, so that the fall-off of the

connections now read

A± = g−1
± a±g± + g−1

± dg± , (5.8)

where a± are given by (5.2), and

g+ = b+e
− log( r

l
)L0e

r
2l
L−1 ,

g− = b−e
− log( r

4l
)L0e

r
2l
L−1e

2l
r
L1 .

(5.9)

In this gauge, the asymptotic form of the super-AdS gauge field is explicitly given by

A+ =
r

l
dx+L+

0 +
1

2

[

dr

l
+

(

r2

2l2
− 2L+

)

dx+
]

L+
−1 + dx+L+

1 + ψ+Q+dx
+ ,

A− =
r

l
dx−L−

0 − 1

2

[

dr

l
+

(

r2

2l2
− 2L−

)

dx−
]

L−
−1 − dx−L−

1 .

(5.10)

It is now convenient to make the change t = u and to perform the change of basis

L
(±)
−1 = −2J±

0 , L±
0 = J±

2 , L
(±)
1 = J±

1 , Q+ =
1

21/4
Q̃+, (5.11)

followed by

J±
a =

Ja ± lPa

2
, Q+ =

√
lQ̃+ , (5.12)

so that the full gauge field reads

A =

(

−dr + M
2
du+

N
2
dφ− r2

2l2
du

)

P0 + duP1 + rdφP2

+

(M
2
dφ+

N
2l2

du− r2

2l2
dφ

)

J0

+dφJ1 +
r

l2
duJ2 +

Ψ

21/4
Q̃+dφ+

1

l

Ψ

21/4
Q̃+du , (5.13)
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where the arbitrary functions L±, ψ have been redefined according to

M = (L+ + L−), N = l(L+ − L−), Ψ =
√
lψ . (5.14)

The chirality conditions (5.3) now read

∂uM =
1

l2
∂φN , ∂uN = ∂φM , ∂uΨ =

1

l
∂φΨ. (5.15)

The vanishing cosmological constant limit can now be directly performed in a trans-

parent way. Indeed, for the full gauge field A = A+ + A−, one just takes l → ∞, so that

it reduces to

A =

(

−dr + M
2
du+

N
2
dφ

)

P0 + duP1 + rdφP2 +
M
2
dφJ0 + dφJ1 +

Ψ

21/4
Q+dφ ,

which coincides with the asymptotic form of the connection in the asymptotically flat case,

eqs. (3.1), (3.2). Analogously, in the limit, the chirality conditions (5.15) take the flat space

form (3.6), whose solution is given by (3.7).

It is simple to verify that the expression for the global charges for the gauge choice (5.9)

remains the same as in the gauge (5.1) and is still given by (5.6). After making use of the

redefinition for the fields in (5.14), they acquire the form

Q[f, h, E ] = − k

4π

∫

dφ (fM+ hN − 2EΨ) , (5.16)

where the parameters that characterize the asymptotic symmetries have been conveniently

redefined as

f = l(χ+ + χ−), h = χ+ − χ−, E =
√
lε.

The chirality conditions (5.4) on the gauge parameters then read

∂uf = ∂φh, ∂uh =
1

l2
∂φf, ∂uE =

1

l
∂φE , (5.17)

and, in the limit l → ∞, they imply that

h = Y (φ), f = T (φ) + uY ′, E = E(φ),
and hence, by virtue of (3.7), the global charges (5.16) reduce to the ones of the asymp-

totically flat case given in (3.10).

As explained in section 5.1, the canonical generators of (1,0) AdS supergravity satisfy

the centrally-extended superconformal algebra in two dimensions given by (5.7). In order

to take the flat limit, it is useful to change the basis according to

Pm ≡ 1

l
(L+

m + L−
−m) , Jm ≡ L+

m − L−
−m ,

as well as rescaling the supercharges as

Qm ≡ 1√
l
Q+

m .

After this has been done, in the limit l → ∞, algebra (5.7) readily reduces to the minimal

supersymmetric extension of the BMS3 algebra (3.11), where the central charges are given

by lc1 = c+ − c− and lc2 = c+ + c−. In particular, it also follows that the bounds for

the generators that are obtained from the superconformal algebra, reduce to the ones in

eqs. (4.1) and (4.2) in the limit of vanishing cosmological constant.
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6 Asymptotic structure of N = 1 “reloaded” flat supergravity

The locally supersymmetric extension of the most general three-dimensional gravity theory

that leads to first order field equations for the dreibein and the spin connection has been

constructed in [49]. It includes additional parity-odd terms as compared with the standard

theory. In the vanishing cosmological constant limit, the action with N = 1 supersymmetry

is given by

I(µ,γ) =
k

4π

∫

2 (1 + µγ)Raea + γ2
(

1 + µ
γ

3

)

ǫabce
aebec + µL(ω)

+ γ (2 + µγ)T aea − ψ̄

(

D +
γ

2
eaΓa

)

ψ , (6.1)

where L(ω) = ωadωa + 1
3ǫabcω

aωbωc is the Lorentz-Chern-Simons form. This action is

invariant, up to a surface term, under the following local supersymmetry transformations

δea =
1

2
ǭΓaψ , δωa =

1

2
γψ̄Γaǫ , δψ = Dǫ+

1

2
γeaΓaǫ . (6.2)

Note that in the case of µ = γ = 0, the action (6.1) and the supersymmetry transforma-

tions (6.2) reduce to the standard ones, given by (2.6) and (2.8), respectively.

Remarkably, in spite of the presence of a volume term in (6.1), the theory can also be

formulated in terms of a Chern-Simons action for the super-Poincaré group. This can be

seen as follows. In terms of the shifted spin connection ω̂a := ωa + γea, action (6.1) reads

I(µ,γ) =
k

4π

∫

2R̂aea + µL(ω̂)− ψαD̂ψ
α , (6.3)

where D̂, R̂a, and L(ω̂) stand for the covariant derivative, the curvature two-form, and

the Lorentz-Chern-Simons form constructed out from ω̂a, respectively. Hence, up to a

boundary term, the action can be written as

I[A] =
k

4π

∫ 〈

A, dA+
2

3
A2

〉

, (6.4)

where now the gauge field is given by

A = eaPa + ω̂aJa + ψαQα , (6.5)

and the nonvanishing components of the invariant nondegenerate bilinear form read

〈Pa, Jb〉 = ηab, 〈Ja, Jb〉 = µηab, 〈Qα, Qβ〉 = Cαβ , (6.6)

so that it reduces to the standard bracket in (2.5) in the case of µ = 0.

The asymptotic behaviour of the gauge fields in this case is then proposed to be exactly

of the same form as in eqs. (3.1), (3.2), which by virtue of (6.5), amounts just to modify

the fall-off of the spin connection ωa in the asymptotic region. This has to be so because

the field equations now imply a nonvanishing torsion even in vacuum.
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Therefore, the asymptotic symmetries are spanned by the same Lie-algebra valued

parameter λ = λ(T, Y, E) as in section 3 but, since the invariant form has been modified

according to (6.6), the global charges acquire a correction, so that they now read

Q[T, Y, E ] = − k

4π

∫

[TM+ Y (J + µM)− 2EΨ] dφ . (6.7)

Consequently, once expanded in modes, the Poisson bracket algebra of the canonical gen-

erators are given by the minimal supersymmetric extension of the BMS3 algebra (3.11),

but with an additional central charge,

c1 = µ
3

G
, c2 =

3

G
. (6.8)
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A Conventions

Our conventions are such that the Levi-Civita symbol fulfills ǫ012 = 1, and the tangent

space metric ηab, with a = 0, 1, 2, is off-diagonal, given by

ηab =







0 1 0

1 0 0

0 0 1






.

The three-dimensional Γ-matrices satisfy the Clifford algebra {Γa,Γb} = 2 ηab, and are

chosen as

Γ0 =
1√
2
(σ1 + iσ2) , Γ1 =

1√
2
(σ1 − iσ2) , Γ2 = σ3 , (A.1)

where the σ’s stand for the Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

.

As a consequence, they satisfy

ΓaΓb = ǫabcΓ
c + ηab1, Γaα

βΓ
γ
aδ = 2δαδ δ

γ
β − δαβ δ

γ
δ , (A.2)

where tangent space indices are lowered and raised with ηab and its inverse.
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For a spinor ψα, with α = +1, −1, we define the Majorana conjugate as ψ̄α = Cαβψ
β ,

where the charge conjugation matrix is given by C = iσ2, that is

Cαβ = εαβ = Cαβ =

(

0 1

−1 0

)

, (A.3)

which satisfies CT = −C and CΓaC
−1 = −(Γa)

T . In particular, this implies Λ−1ψ = ψ̄Λ

if Λ ∈ SL(2,R).
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