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1 Introduction

Theories of (p+1)-forms Aµ0···µp in d dimensions, which we will denote by (d, p)-form theo-

ries, are natural extensions of the usual Maxwell theory of electrodynamics (p = 0, d = 4).

Since multiplets of supersymmetry algebra generically contain p-forms, form field theories

are ubiquitous in supersymmetric theories in d > 4 [1, 2]. Two of the most famous examples

are p = even (p = odd) forms in 10d type IIb (IIa) supergravity and the (6, 1)-form field

theory in 6d supersymmetric theories [2–4]. Being a part of short multiplets in such super-

symmetric theories, form fields of (d, p)-form theories always come with a gauge symmetry,

where the gauge parameter is a generic p-form. This is a direct generalization of the case

of Maxwell theory where the gauge parameter is a scalar. This p-form gauge symmetry

manifests itself in the action of the theory which is expressed in terms of a (p + 2)-form

field strength. (d, p)-form gauge theories via their gauge fixing procedure in Lagrangian

or Hamiltonian description and also their Dirac-type quantization conditions and duality

properties have been extensively studied and analyzed in [5–16]. Interactions and possible

gauge groups involving (d, p)-forms have also been studied [17, 18]. Moreover, (d, p)-form

theories received a renewed attention after introduction of Dp-branes in string theory [19]

as sources carrying the charge of (p+ 1)-form.

In this work, we progress further in study of (d, p)-form theories, their gauge sym-

metries and conserved charges. Gauge symmetry is generically viewed as a manifestation

of redundancy of the description in terms of gauge fields which should be removed and

dealt with through gauge fixing procedure, e.g. see [10, 20]. Any gauge fixing procedure,

however, leaves a residual part. Recalling the seminal Noether’s theorem, one may ask if

conserved charges can be associated with these residual gauge symmetries and what the

physical meaning and implications of such charges is. Especially, recalling the lore that

physical observables are made from gauge invariant quantities, does such a charge analysis

have any relevance to physical observables?

A place to look for such a physical meaning and implication is the Ward identity

or BRST symmetry in gauge-fixed gauge theories. In asymptotically flat spacetimes, an

alternative formulation of Weinberg’s soft theorems [21] has been proposed as Ward iden-

tities of these residual gauge symmetries with non-trivial charges [22–25]. Such an explicit

derivation of soft theorems from conserved quantities has been made in the context of

gauge theories, gravity, higher spin theories and anti-symmetric 2-form theories [26–33].

The analysis on conserved quantities are usually useful when we are only interested in

comparing the state of a system at early and late times. The memory effect [34] fits well

into this setup as it amounts to capturing the traces remaining from passage of a gravity

or electromagnetic wave on the existing matter long after the wave has passed, without the

need to follow the detailed evolution of the system [35–39].

For analyzing the residual gauge symmetries and associated conserved charges, there

are some different systematic frameworks and formulations. The simplest one is based on

the usual Noether’s theorem suitably extended to capture these symmetries e.g. see [40–

42]. There are other approaches based on Hamiltonian formulation e.g. see [16, 43, 44] and

covariant phase space method [45, 46]. To tackle the question of conserved charges in the
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(d, p)-form theory, which is a linear theory, we employ an appropriately extended version

of the Noether’s method which we find more handy.

In our case, we will be focusing on a specific (d, p)-form theory in flat Minkowski

spacetime Md = Rd−1,1. In order to compute the conserved charges associated with

residual (gauge) symmetries, we choose to fix the Lorenz gauge which preserves Lorentz

symmetry, and we specify the fall-off asymptotic behavior of gauge fields and/or residual

gauge parameters. Here we will choose the de Sitter slicing of the flat spacetime which is

used in similar questions in 4d Maxwell theory or Einstein-Hilbert theory e.g. see [28, 47]

(The other two commonly used choices are slicing by constant time surfaces [48, 49] and the

null slicing [25, 50], see below for more discussions.) We fix the fall-off behavior such that

we find finite and well-defined expressions for the conserved surface charges in d = 2p+ 4

dimensions. This spacetime dimension, as we will discuss, is special in some different ways;

the most relevant one to our work in this paper being as follows. It is known that radiation

flux of a localized source in d dimensions has radial fall-off r−(d−2), which means the field

yielding this radiation should fall off as r−
d−2
2 , usually called radiation fall-off behavior.

On the other hand, the fall-off behavior of fields generated by ‘localized’ electric sources,

the so-called Coulomb fall-off behavior, for a (p + 1)-form is r−(d−p−3) [51]. It has been

argued that we have memory effect when these two are equal, i.e. (d − 2)/2 = d − p − 3,

which happens in d = 2p+ 4.1

The surface charges are integrals over the asymptotic spheres Sd−2 = S2p+2 and the

integrand is a linear function of the residual gauge transformation parameter, which is a

harmonic p-form on Md. The part of these harmonic p-forms which contribute to the

surface charges is given by p-forms on the asymptotic S2p+2 sphere. These forms can

be decomposed into exact and coexact parts, leading to two distinct sets of asymptotic

surface charges which we conveniently call exact and coexact asymptotic charges. We then

compute the asymptotic charge algebra and show that the coexact charges commute among

themselves and also with exact charges. The exact charges, however, do not commute with

each other and form Heisenberg algebras.

This paper is organized as follows. After fixing the conventions and notations in sub-

section 1.1, in section 2 we introduce the (d, p)-form theory and present basic analysis of the

theory, including gauge fixing, fall-off behavior, zero-mode charges and the boundary term

established to make the action principle well-defined. Section 3 contains our main analy-

sis and results where we derive the expression for asymptotic conserved charges associated

with residual gauge symmetries. We discuss that there are three classes of zero-mode, exact

and coexact charges and that the exact sector, unlike the other two satisfies a non-Abelian

charge algebra. In section 4, we present explicit computation of charges and their algebra

for the two p = 0 (4d Maxwell theory) and p = 1 (6d 2-form theory) cases. We summarize

and discuss our results in section 5. In appendices, we have gathered some technical details

of our computations as well as other subsidiary approaches. In appendix A, we briefly re-

view differential forms and their Hodge decomposition on sphere by discussing separation

of exact and coexact parts of the gauge fields and gauge parameters, needed for explicit

1See [33, 39, 52–56] for discussions on (gravitational) memory effect in d > 4 dimensions.
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computation of charges. Appendix B concerns the Hamiltonian analysis of the (d, p)-form

theory. This section provides complementary analysis to the action and Lagrangian de-

scriptions of section 2. In appendix C we present the charge analysis in the covariant phase

space method, as a complement to our ‘extended Noether’s theorem’ charge computations

presented in the main text.

1.1 Notation and conventions

Coordinate systems and covariant derivatives. We formulate the (d, p)-form gauge

theories on d-dimensional Minkowski spacetime Md with Cartesian coordinates xµ and

metric ηµν = diag(− + · · ·+), where Greek indices run over 0, · · · , d − 1. We will mainly

work in de Sitter slicing of Minkowski spacetime using the hyperbolic coordinate system

where the coordinates on (d − 1)-dimensional de Sitter spacetime are denoted by xa, and

small Latin indices (a, b, c, · · · ) run over 0, · · · , d− 2. The line element onMd in these two

coordinate systems is given by

ds2 = ηµνdx
µdxν = −dt2 + dr2 + r2dΩ2

d−2 = dρ2 + ρ2habdx
adxb , (1.1)

with hab being the metric on the unit-radius (d− 1)-dimensional de Sitter space dSd−1

habdx
adxb = −dτ2 + cosh2 τ dΩ2

d−2 . (1.2)

We note that the above metric describes a global dS space. The map between coordinates is

ρ2 = xµxµ = r2 − t2 , tanh τ =
t

r
, x̂→ x̂ , (1.3)

or equivalently,

r = ρ cosh τ , t = ρ sinh τ , r, ρ ≥ 0 , t, τ ∈ R , (1.4)

where x̂ denotes a specific direction in space, corresponding to a point on unit (d−2)-sphere

Sd−2. We will denote the coordinates on Sd−2 in either of de Sitter slicing or Minkowski

coordinates by xA, with the uppercase Latin indices ranging over 1, · · · , d − 2 and the

metric on Md, unit radius dSd−1 and unit radius Sd−2 respectively by gµν , hab and GAB.

The respective covariant derivatives are denoted by ∇, D and D whose indices are raised

and lowered as

∇ν = gµν∇µ , Da = habDb , DA = GABDB . (1.5)

Moreover, for the integration measures we use,

√
−h =

√
− dethab ,

√
G ≡ coshd−2 τ

√
det GAB . (1.6)

The de Sitter slicing coordinate system covers r > |t| patch of Minkowski spacetime,

foliated by codimension 1 hypersurfaces with de Sitter metric. What we mean by spatial

boundary is the de Sitter space at ρ→∞ [47, 57]. The comparison between the Cartesian

and the de Sitter slicing coordinates and their coverage on the Penrose diagram of the flat
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Figure 1. Penrose diagrams of Minkowski flat spacetime Md. (Left) The dashed and thick curves

denote the constant Cartesian time t and radial r slices respectively. As we see all the constant t

curves meet the asymptotic spatial infinity i0 with a zero slope. (Right) The patch covered by the

de Sitter slicing. The solid lines are constant τ slices, while dotted lines are constant ρ hyperboloids.

The de Sitter slicing does not cover future and past timelike infinities i±.

space has been depicted in figure 1. As is seen in the figure, the de Sitter slicing covers a part

of the flat spacetime causally disconnected from the origin. Its ‘boundary’ (large ρ region)

covers spatial infinity i0 and up to half of past and future null infinities I ± depending

on how the limit to asymptotic region is taken. The de Sitter slicing makes manifest the

SO(d − 1, 1) Lorentz invariance of the Minkowski spacetime Md; at any constant ρ slice

we have a d− 1 dimensional de Sitter spacetime depicted in figure 2 whose isometry group

is SO(d − 1, 1). The reason is that ρ is a Lorentz invariant quantity and it is the proper

distance of points from the origin of Minkowski space. The timelike coordinate τ on de

Sitter slices determines the rate t/r by which radial spacelike curves emanate from the

origin. The τ = 0 slice corresponds to t = 0 region of the Minkowski and τ → ±∞ include

parts of asymptotic null infinities I ±. For later use we note that rigid scaling acting as

xµ → λxµ in the Minkowski coordinates, appears as ρ → λρ in the de Sitter slicing with

the other coordinates (τ, x̂) remaining intact (cf. footnote 7).

We show the large ρ asymptotics of the Minkowski spacetime denoted as ‘the dSd−1

boundary’ by B and the codimension 1 τ -constant surfaces by I. Note that B is a global

dS space. The boundaries of dSd−1, indicated by ∂B are then the intersection of B with

I-hypersurfaces. These are the Sd−2 surfaces at large ρ and constant τ which are denoted

as C and depicted in figure 3.

Gauge fields and gauge parameters as differential forms. The (p+ 1)-form gauge

fields of the (d, p)-theory will be denoted by A and the corresponding (p + 2)-form field

strength by F = dA:

A =
1

(p+ 1)!
Aν0···νp dxν0 ∧ · · · dxνp , (1.7)

F =
1

(p+ 2)!
Fν0···νp+1 dxν0 ∧ · · · dxνp+1 , (1.8)

– 5 –
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Figure 2. Embedding the de sitter space in global patch as ρ-constant slices of Minkowski pace

with ρ2 = xµx
µ. The ρ0 →∞ region gives the dSd−1 at the boundary of the Minkowski space.

Space(time)

Forms
Gauge fields Gauge parameters

Minkd A = 1
(p+1)! Aµ0···µp dxµ0∧···dxµp Λ = 1

p! Λµ1···µp dxµ1∧···dxµp

dSd−1

A = 1
(p+1)! Aa0···ap dxa0∧···dxap

Aρ = 1
p! Aρ a1···ap dxa1∧···dxap

λ = 1
p! λa1···ap dxa1∧···dxap

λρ = 1
(p−1)! λρ a2···ap dxa2∧···dxap

Sd−2

Â = 1
(p+1)! ÂB0···Bp dxB0∧···dxBp

Âτ = 1
p! Âτ B1···Bp dxB1∧···dxBp

Âρ = 1
p! ÂρB1···Bp dxB1∧···dxBp

Âρτ = 1
(p−1)! Âρτ B2···Bp dxB2∧···dxBp

λ̂ = 1
p! λ̂B1···Bp dxB1∧···dxBp

λ̂τ = 1
(p−1)! λ̂τB2···Bp dxB2∧···dxBp

λ̂ρ = 1
(p−1)! λ̂ρB2···Bp dxB2∧···dxBp

λ̂ρτ = 1
(p−2)! λ̂ρτB3···Bp dxB3∧···dxBp

Table 1. Summary of notations for forms. Bold letters A(Λ), A(λ) and Â(λ̂) stand for abstract

gauge fields (parameters) as differential forms on Minkd, dSd−1 and Sd−2 respectively.

with2

Fµ0···µp+1 = (p+ 2)∂[µ0Aµ1···µp+1] . (1.10)

Throughout this paper, we will be dealing with forms on the Minkowski space Rd−1,1,

the de Sitter dSd−1 and the sphere Sd−2. The components of forms in any case will

be indicated by an assigned font as shown in table 1 and the associated forms with the

same font but boldfaced. We select an asymptotic ρ-expansion for the gauge fields and

discriminate the leading components by uppercase Latin font,

Aµ0···µp(ρ, xa) = Aµ0···µp(x
a)ρn + subleading , (1.11)

2The anti-symmetric bracket is defined such that for a differential form ω,

ω[µ1···µn] = ωµ1···µn , (dω)µ1···µn+1 = (n+ 1)∂[µ1
ωµ2···µn+1] . (1.9)

– 6 –
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I2

I1

C2

C1

B

Figure 3. I1, I2 depict constant de Sitter time (τ = cons.t) and blue-shaded region B shows

constant ρ slice of the Minkd between the two constant τ regions. C1, C2 are boundaries of these

constant time slices; these are two Sd−2 spheres corresponding to codimension 2 ρ, τ -constant

surfaces in the Minkd region.

for an appropriately chosen fall-off power n. Note that n may be different for different

components. For our case, if the fall-off for components involving the ρ direction is n, for

the other components along dS (not involving ρ) it is n+1; see section 2.4. The Aµ0···µp(x
a)

fields, which have dependence only on xa , may be viewed as form fields on the de Sitter

of unit radius. That is, one may decompose the µi indices into ρ, xa and hence Aµ0···µp(x
a)

yields a (p+ 1)-form A and a p-form Aρ on dSd−1;

Aρ ≡ ρ−n n ·A
∣∣∣
ρ→∞

=
1

p!
Aρ a1···apdx

a1 ∧ · · · dxap , (1.12)

A ≡ ρ−(n+1)
(
A− dρ ∧ n ·A

)∣∣∣
ρ→∞

=
1

(p+ 1)!
Aa0···apdx

a0 ∧ · · · dxap , (1.13)

where n = ∂ρ is the unit normal vector to constant ρ surfaces, i.e. the de Sitter slices.

The above should of course be computed at ρ → ∞ where the ‘boundary’ B is defined

(cf. figure 3). We will raise the indices on A and Aρ by hab the unit de Sitter metric. In

our analysis of the charges we will work with forms on the (t, r)-constant/(ρ, τ)-constant

sections of the spacetime that is Sd−2.

To distinguish forms on the sphere Sd−2 from those on the de Sitter dSd−1 we will

denote the former by hatted uppercase Latin letters, as shown in the table 1. In particular,

the (p+ 1)-form gauge field of the bulk is decomposed into one (p+ 1)-form, two p-forms

and one (p− 1)-form on Sd−2;

Â ≡ A− dτ ∧ Âτ , Âτ ≡ τ ·A , (1.14)

Âρ ≡ Aρ − dτ ∧ Âρτ , Âρτ ≡ τ ·Aρ , (1.15)

where τ = ∂τ is the normal vector to constant τ surfaces of the de Sitter slices, normalized

with respect to hab. Similarly the p-from gauge parameter Λ of the bulk is reduced to one

p-form, two (p− 1)-forms and one (p− 2)-form on the Sd−2, see table 1.

– 7 –
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Hodge decomposition of forms on sphere. Our expressions for the charges are given

by codimension 2 surface integrals of a (2p + 2)-from on the S2p+2. The integrands are

composition of two (p + 1)-forms or a p and a (p + 2)-form on the sphere. The sphere is

a compact Riemannian manifold, and hence one can use the Hodge theorem to decompose

these forms on it (see appendix A.1 for more discussions). In particular, for a p-form gauge

parameter we have,

λ̂ = λ̂
exact

+ λ̂
coexact

+ λ̂
harmonic

, (1.16)

where i) λ̂
harmonic

is annihilated by the Laplace-Beltrami operator ∆ = dd† + d†d, ii)

λ̂
exact

= dφ̂ is the curl of a lower rank form, and iii) λ̂
coexact

= d†ψ̂ is the divergence of a

higher rank form.

We emphasize that in this work, only forms on Sd−2 are subject to this decomposition.

As a side remark, harmonic forms on sphere exist only for functions and top forms, that

is, if p = 0 or d − 2. As a result, except for the (4, 0)-form theory (i.e. the 4d Maxwell

theory), we only deal with exact and coexact gauge parameter forms.

Finally, we point out that we denote the Hodge dual of a form X by ?X, where the

star operation is understood to be on Minkowski, de Sitter or the sphere depending on the

type of the font used for the form as defined on these space(-times). Similarly, the exterior

calculus on all three spaces is carried out by the same symbols d, d†, and ∆.

2 Basic setup

In this section we introduce our theory through the action principle and by specifying the

boundary conditions.

2.1 Action for (d, p)-form gauge field theory

We start with the action of the p-form gauge theory in the d-dimensional Minkowski space-

time Md, denoted as (d, p)-theory,3

S = S0 + Sb = −
∫
Md

(
1
2 dA ∧ ? dA− (−1)pA ∧ ?J

)
+

∫
∂Md

Lb , (2.1)

which is the generalization of the Maxwell theory for (p+ 1)-form gauge fields A and the

(p+1)-form currents J . The last term is a potential boundary term defined by an integral

over the boundary of Md, ∂Md. In the de Sitter slicing ∂Md is the union of regions

I1, I2, B depicted in figure 3.

Variation of the action (2.1) leads to,

δS = (−1)p+1

∫
M
δA ∧

(
d? dA− ?J

)
+

∫
∂Md

(δLb − δA ∧ ? dA) . (2.2)

Action principle yields equations of motion

d? dA = d?F = ?J , or ∇αFµ0···µpα = J µ0···µp , (2.3)

3One may of course consider other gauge invariant actions e.g. p-form Chern-Simons theory [58–60] or

Born-Infeld theory [61, 62].
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provided that our boundary conditions ensure

(δA ∧ ? dA− δLb)|∂Md
= 0. (2.4)

We will discuss this latter condition in more detail in section 2.5.

2.2 Gauge symmetry

Integrability of (2.3) implies d?J = 0, which in turn yields gauge invariance of the ac-

tion (2.1), if Lb is also invariant. Explicitly, the action (2.1) is invariant under

A→ A + dΛ, (2.5)

where Λ is a p-form. To analyze the theory and the associated conserved charges we

need to fix the gauge freedom (2.5). The gauge fixing condition for a (d, p)-form theory

is generically to set a p-form combination of form fields or their first derivatives equal to

zero. A convenient choice which is also Lorentz covariant is the Lorenz gauge

d†A = 0, or −∇αAαµ1···µp = 0 (2.6)

where d† = (−1)d(p+1) ? d? is the co-differential operator on Minkowski space (we use the

same notation for de Sitter and sphere discussed in the appendix A.1). In this gauge the

equations of motion (2.3) are

∆A = (−1)pJ , ∆ = d d† + d† d . (2.7)

The gauge condition (2.6) separates into two sets of conditions in the de Sitter slicing

Da0Aa0a1···ap +

(
d− 1

ρ
+ ∂ρ

)
Aρ a1···ap = 0 , Da1Aρa1···ap = 0 . (2.8)

Having fixed the Lorenz gauge, we remain with p-form residual gauge symmetries : the

gauge fixing condition (2.6) still allows gauge transformations of the form (2.5) where the

p-form Λ satisfies

d†dΛ = 0 . (2.9)

Nevertheless, (2.9) indicates that we can still define Λ up to an exact form. This freedom

may be fixed by setting an extra condition on Λ analogous to the Lorenz gauge (2.6) on

the gauge field A. We will return to this point at section 3.4.

Propagating degrees of freedom. The (p + 1)-form gauge field in d spacetime di-

mensions has
(
d
p+1

)
independent components. However, gauge symmetry implies that only

transverse modes of the form field are propagating. The p-form gauge parameter enables

us to remove
(
d−1
p

)
components. This could be done e.g. by imposing the covariant gauge

condition (2.6). The residual p-form gauge parameters satisfying (2.9) gauge away another(
d−2
p

)
components. The total number of degrees of freedom turns out to be,(

d

p+ 1

)
−
(
d− 1

p

)
−
(
d− 2

p

)
=

(
d− 2

p+ 1

)
, (2.10)

– 9 –
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where the last term on the l.h.s. in (2.10) is the contribution of the residual degrees of

freedom. In the appendix B we have presented a more precise counting of propagating

degrees of freedom in Hamiltonian formalism by counting first-class constraints and re-

ducibility identities.

The number of degrees of freedom (2.10) can be intuitively understood as the number

of independent components of the (p+ 1)-form in the transverse d− 2 dimensional space.

That is, the propagating modes can be explicitly described through solution to equations

of motion for a radiation in the transverse gauge:

Aµ0···µp = εµ0···µpe
ikµxµ , kµkµ = 0, kµiεµ0···µi···µp = 0, i = 0, · · · , p. (2.11)

2.3 Zero mode charges of (d, p)-form theory

Consistency of field equations (2.3) requires the current J be coclosed d?J = 0, giving

rise to a conserved quantity [10],

Q =

∫
Md−p−1

?J , (2.12)

whereMd−p−1 is the spacelike surface orthogonal to the worldvolume of p-brane source. If

there are several parallel p-branes in space,Md−p−1 intersects each one at a point, and the

charge will be the total number of branes with sign + or − for each brane according to its

orientation. For example, a couple of parallel branes with opposite orientations have zero

total charge. Using the Stokes’ theorem, the charge density can be expressed as a Gauss’s

law in the orthogonal space Md−p−1 whose boundary is an Sd−p−2

Q =

∫
Sd−p−2

?F . (2.13)

The quantity (2.13) counts the net electric charge of the parallel branes by integration on

orthogonal space.4 The conserved charge (2.13) may be directly related to the global part

of gauge transformations (2.5) i.e. gauge transformations with dΛ = 0, via the standard

Noether’s theorem,

QΛ[F ] =

∫
Sd−2

Λ ∧ ?F . (2.14)

Taking the gauge parameter to be proportional to the volume-form of the p-brane, namely,

Λ ∝ dx1 ∧ · · · dxp, then (2.14) reduces to (2.13).5

One can make the above discussion more general and systematic, allowing arbitrary

relative alignments for the branes. There is a set of gauge transformations, the exact

symmetries in the language of [63], that keeps any gauge field A intact; satisfying dΛ = 0.

In the p = 0 case of Maxwell theory, where Λ is a 0-form, the only solution to dΛ = 0

is constant Λ which produces the electric charge. Also the case of p = d − 2 has been

4(2.13) differs from that in [10] duo to different sign conventions at the action level.
5To do the calculation for this case, one could work in cylindrical coordinates aligned with the brane.

The integration on p-brane directions is then trivial and gives an infinite multiplicative factor which we

drop from charge value.
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studied in [64]. For the 0 < p < d − 2 case, we define the zero-mode charges of (d, p)-

form theory to be generated by closed p-form gauge parameters ΛB1···Bp(x̂), defined on the

asymptotic (d − 2) sphere with no r- and t- dependence. Such forms are exact Λ = dε

and (2.14) becomes

Q[ε] = (−1)p
∫
Sd−2

ε ∧ d ?F = (−1)p
∫
Sd−2

ε ∧ ?J , (2.15)

where field equations have been used in the last equality.6 In terms of components,

Q[ε] =
(−1)p

(p− 1)!

∫
Sd−2

dΩd−2 εB2···BpJ trB2···Bp . (2.16)

For (2.16) to be non-vanishing, the source J must extend to infinity, like an infinite string or

a planar brane. For example, an infinite string induces a couple of points on the celestial

sphere with opposite signs according to its orientation. As a result, objects like closed

loops (which do not extend to infinity) have zero charge. Increasing the form rank by one,

a planar source induces a great circle on the celestial sphere with definite orientation for

its tangent vector.

The zero-mode charge is only sensitive to the asymptotic alignment of the brane and

not to its shape or velocity inside the bulk. If the asymptotic alignment of the source is

time-independent (which is physically reasonable), the zero-mode charge (2.16) is clearly

conserved. To compute the zero-mode charge explicitly, the simplest yet non-trivial exam-

ple is (6, 1)-form theory, where the sources are strings and ε is a 0-form (a function) on

4-sphere. The charge can be written in terms of the sources

Q[ε] = −
∫
S4

dΩd−2 εJ tr(x̂). (2.17)

To be explicit, let’s consider a number of n straight strings aligned at ŝn directions. The

source will be

J tr =
∑
n

qnx̂ · ŝn[δ4(ŝn) + δ4(−ŝn)]/
√

detGAB, (2.18)

and the charge is

Q[ε] = −
∑
n

qn

[
ε(ŝn)− ε(−ŝn)

]
. (2.19)

This is the intuitively expected result. For every function ε(xA) on the 4-sphere there is

one charge and the whole set has the information of the alignment of all strings and their

charge qn. For another approach to zero-mode p-form charges see [65].

2.4 Boundary conditions

In order to fully introduce the theory we have to specify the boundary conditions on the

dynamical fields. This together with the equations of motion determines the space of

field configurations that defines the theory. In particular one imposes a set of boundary

conditions that determine how the fields decline at infinity. Sometimes, specific gauge

conditions are also set to narrow the space of functions under consideration further.

6Note that field equations involve exterior derivative d on Minkowski space, not on the sphere. Nonethe-

less, when the equation is pulled back to the sphere at r-, t- constant, the exterior derivative reduces to

that of the sphere.
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Radiation and Coulomb fall-off behaviors. There are usually two physically relevant

fall-off behaviors, the Coulomb and radiation fall-offs. For the Coulomb fall-off behavior,

let us consider field strengths F that represent the ‘electric charges’ of the theory. In

p = 0 case, they are electric monopoles moving freely in space, while in generic (d, p)-form

theories, the sources are extended p-branes. A static p-brane in Minkowski spacetime,

extended in x1 to xp directions is described by the source

J ∝ dx0 ∧ · · · dxp. (2.20)

Solving field equations (2.3) gives

A01 ··· p ∝
1

`d−p−3,
(2.21)

where `2 =
∑d−1

k=p+1(xk)2 is the orthogonal distance to the brane. For p = 0, this is the

familiar 1/rd−3 behavior of the electric field and is hence called Coulomb fall-off behavior.

Boosting the brane gives rise to purely spatial magnetic components of the field strength

with the same fall-off.

The radiation fall-off behavior corresponds to intensity of (black-body) radiation E of

a localized gas of ‘(p+1)-form photons’ in d dimensions. This is given by E ∝ 1/rd−2. This

energy is carried by the radiation (p + 1)-form field with temporal component Au (in the

standard Bondi frame at null infinity) such that E ∝ (∂Au)2, yielding the radiation fall-off

behavior Au ∼ 1/r
d−2
2 [33, 51].

For d > 2p + 4, Coulomb field falls off faster than radiation and the converse is true

for d < 2p+ 4. In d = 2p+ 4, which we will be interested in, both radiation and Coulomb

fields fall off in the same rate and hence the traces of passage of (p+ 1)-form radiation can

be recorded in the associated (p+ 1)-form charges,7 leading to p-form memory effect.

Fall-off behavior in de Sitter slicing. According to the previous discussion, one can

verify that in the de Sitter slicing introduced in section 1.1 the fall-off behavior of field

strength associated with a p-brane source for any p and d is8

Fρa0···ap =F ρa0···ap(xb) ρ−d+1 +O(ρ−d), (2.22a)

Fa0···ap+1 =F a0···ap+1(xb) ρ−d +O(ρ−d−1) . (2.22b)

The boundary conditions on gauge fields compatible with the above are

Aρa1···ap = Aρa1···ap(xb) ρ−d+3 +O(ρ−d+2), (2.23a)

Aa0···ap = Aa0···ap(xb) ρ−d+2 +O(ρ−d+1) . (2.23b)

7d = 2p+ 4 is also the dimension in which our (d, p)-form theory exhibits conformal symmetry [66, 67].

The scaling part of this symmetry may be readily seen: let us start with the geometric object A (p+1)-form

and require that it is invariant under scaling. This means the form field components Aµ0···µp should scale

as λp+1 if we scale xµ → λ−1xµ. With this scaling the Lagrangian density
√
g|dA|2 scales by λ−dλ2(p+2).

Scale invariance of the action hence yields d = 2p + 4. This scale invariance for our theory is enhanced to

the 2p+ 4 dimensional conformal symmetry [66].
8Note that F with lower indices has ρ−(d−p−1) fall-off. However, for convenience and later use in (2.22a)

we have presented large ρ behavior of F with upper indices.
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These boundary conditions are preserved by the following (residual) gauge transformations;

Λρa2···ap = λρa2···ap(xb) ρ−d+5 +O(ρ−d+4), (2.24a)

Λa1···ap = λa1···ap(xb) ρ−d+4 +O(ρ−d+3) . (2.24b)

We note that (2.23a) and (2.23b) are not the only possibilities which follow

from (2.22a). In principle we could have chosen a weaker fall-off behavior for allowed

gauge transformations than the background gauge fields Aµ0···µp . Such ‘leading’ gauge

transformations do not yield a finite charge (as we compute in section 3) and hence we will

not study them in this work.

2.5 Action principle and the boundary term

On a d-dimensional Lorentzian globally hyperbolic manifold M, let S[Φ(t, ~x)] be a func-

tional of the set of generic fields Φ(xµ) onM with at most two time derivatives. For fixed

initial and final data;

Φ(t, ~x)
∣∣
t=i

= Φi(~x) , Φ(t, ~x)
∣∣
t=f

= Φf (~x) , (2.25)

the classical trajectory Φcl(t, ~x) is defined as the solution of

E(Φ) ≡ δS

δΦ(t, ~x)
= 0 . (2.26)

The action S is said to have a well-defined action principle if

δS =

∫
M
E(Φ)δΦ +

∫
I2

I0(δΦ,Φ)−
∫
I1

I0(δΦ,Φ) +

∫
∂I2

Ib(δΦ,Φ)−
∫
∂I1

Ib(δΦ,Φ), (2.27)

for generic field variations δΦ = δΦ(t, ~x). Here I1, I2 denote constant time slices of M at

ti, tf respectively, and ∂I1, ∂I2 are the (spacelike) boundaries of the constant time slices.

That is, variation of an action with well-defined action principle is vanishing on-shell upon

a suitable fixation of initial and final conditions under generic field variations.

Given the definition above, a generic action S0 with a prescribed boundary condition

on fields, may fail to obey a well-defined action principle due to appearance of a boundary

term B on the time-like boundary B:

δS0 =

∫
M
E(Φ)δΦ +

∫
I2

I0(δΦ,Φ)−
∫
I1

I0(δΦ,Φ) +

∫
B
B(δΦ,Φ), (2.28)

where B is the timelike boundary (ρ = ρ0 =constant in de Sitter slicing), and I0 is the

initial/final term integrated on the initial spacelike constant time (constant τ in de Sitter

slicing) surfaces I1 or the final one I2 such that, ∂M = B ∪ I1 ∪ I2; cf. figure 3. In these

cases we supplement S0 with a suitable boundary term Sb =
∫
B Lb such that, off-shell,

δSb = −
∫
B
B(δΦ,Φ) +

∫
∂I2

Ib(δΦ,Φ)−
∫
∂I1

Ib(δΦ,Φ). (2.29)

where B is the boundary term of S0 in (2.28), integrated on the timelike boundary. In

consequence, S0 + Sb defines a well-defined boundary value problem in the sense that the
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first variation of the action under all field variations that preserve our boundary conditions

on B is of the form (2.27).

To see how this works in practice and how one fixes Sb, consider a generic variation

of S0 in the (d, p)-action (2.1) and plug the boundary conditions (2.22)–(2.23) in (2.2),

we find,

B-term = − ρd−1
0

(p+ 1)!

∫
B

√
−hnα δAµ0···µpFαµ0···µp (2.30)

= −ρ
2p+4−d
0

(p+ 1)!

∫
B

√
−h δAa0···ap

[
(2p+ 4− d)Aa0···ap − (p+ 1)∂a0Aρ a1···ap

]
.

where n = ∂ρ is the unit vector normal to the ρ = ρ0 hypersurface. As we see for large ρ0,

this term vanishes for d > 2p + 4 case (where the Coulomb fall-off is faster than that of

radiation, cf. our discussions in previous section), while for d < 2p + 4 case the boundary

term blows up unless field variations identically vanish at the boundary. The case of

d = 2p + 4, which as argued in previous sections is the case we are focusing on in this

work, is the case where the boundary term remains finite and we need to add a non-trivial

boundary term for any given variation, as we will discuss below.

For d = 2p + 4 case the first term in (2.30) drops and the remaining one is O(ρ0).

This boundary term is generically non-zero for our boundary conditions and spoils our

boundary-value problem. However, we could get rid of this term by fixing a gauge condition

and introducing the boundary term Sb. To this end we rewrite the Lorenz gauge fixing

condition (2.8) to the leading term in ρ

Da0Aa0a1···ap + 2Aρ a1···ap = 0 , (2.31a)

Da1Aρ a1···ap = 0 . (2.31b)

Using (2.31a) the B-term takes the following form,

B-term = − 1

p!

∫
B

√
−h δ (Aρ ·Aρ)p −

1

p!

∫
∂B

√
G τb

(
δAb ·Aρ

)
p
, (2.32)

where τ = ∂τ is the ‘outward-pointing’ normal vector to the τ -constant hypersurfaces in

unit de Sitter normalized as habτaτb = −1, and we have introduced the notation,

(A ·B)p ≡ Aa1···apB
a1···ap . (2.33)

The second term in (2.32) is an integration on ∂B which is the intersection of B with I1

and I2 in (2.28) (see figure 3). In a well-defined initial value problem, one fixes the initial

and final values of the variable, so this term vanishes. Since the B-term is a total variation,

it is sufficient to identify the boundary term Sb in the original action (2.1) as,

Sb = −
∫
B

Aρ ∧ ?Aρ . (2.34)

where Aρ = 1
p!Aρ a1···apdx

a1 ∧ · · · dxap is the boundary p-form while the wedge and the

Hodge duality is defined on B — see section 1.1. This ensures to have a well-defined

action principle for the (2p + 4, p)-form theory with boundary conditions (2.22)–(2.23) in

the Lorenz gauge (2.6).9

9Such a boundary term appears also in the context of AdS2 holography [68].
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Zero-modes charges and action principle. In our action principle analysis above we

required the variation of action to be zero on-shell for generic field variations δA with

prescribed fall-off behavior (2.22)–(2.23). One should, however, note that there could be

other restrictions on the physically allowed/relevant variations. One particular case we

discuss here concerns the case where the p-brane sources are on. One may hence consider

field variations over the setup with a given fixed source content. In statistical mechanical

systems this is analogous to studying systems in sectors with a given chemical potential. In

the (d, p)-form theories, one may observe that in the presence of p-brane sources, F̄τρB1···Bp
(the field produced by static sources with specific zero-mode charges) is playing the role of

a fixed chemical potential on Sd−2, and on-shell we generically have;

δS ∼
∫
B
δAτB1···BpF̄

τρB1···Bp . (2.35)

Since F̄ρ is fixed, one may get rid of this term either by restricting the boundary conditions

on δAτ such that the contribution above is zero or we may add the suitable boundary term

which is minus the field-space integration of the above contribution.

Invariance under residual gauge transformation. Boundary term (2.34) is obtained

by Lorenz gauge fixing which leaves us with the residual gauge transformations, generated

by Λ satisfying (2.9). For consistency of our analysis, especially the computation of charges

discussed in the next section, one should hence make sure that this boundary term respects

this residual gauge symmetry. Gauge transformations (2.5) at leading order are

δλAρ a1···ap = −p ∂[a1λ|ρ| a2···ap] or δλAρ = −dλρ , (2.36a)

δλAb a1···ap = (p+ 1) ∂[bλa1···ap] or δλAb = (dλ)b . (2.36b)

Obviously, if p ≥ 1, the boundary term (2.34) is not invariant under (2.36a). However, as

we argue here, the extra terms can be cast into integrals on the future and past codimension

2 boundaries of the de Sitter space using Lorenz condition (2.31b). Gauge transformation

of the boundary term is explicitly

δλSb = 2(−1)p
∫
B
λρ ∧ d?Aρ + 2

∫
∂B
λρ ∧ ?Aρ . (2.37)

The first integral is zero as a consequence of the Lorenz gauge condition (2.31b) and the

second integral is at boundaries of the de Sitter space where all large gauge transformations

also act. Although the boundary term (2.34) is only defined on the timelike segment B of

the boundary ∂M, we can simply extend it to the whole boundary by fixing initial and

final data on I1,2. The improved action of our (2p+ 4, p)-form theory is thus,

S = − 1

2(p+ 2)!

∫
M

√
−gF2

µ0···µp+1
− 1

p!

∫
∂M

√
−h (Aρ ·Aρ)p . (2.38)

Although we have fixed the boundary fall-off behavior of our fields, we may need further

restrictions on the fields to make sure that the on-shell action (i.e. the boundary term) is a

finite quantity for given consistent initial and final conditions. Since field equations for Aρ

are of second degree in de Sitter time τ , for each angular mode there are two functions of τ .
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3 Conserved charges of residual gauge symmetries

Setting the stage in the previous section, we now turn to computing conserved asymptotic

surface charges associated with the boundary condition preserving residual gauge symme-

tries of the (2p+ 4, p)-form theory. Here we use an extension of the Noether theorem and

our analysis is based on a simple and direct manipulation of the action. Let us review

how symmetries of generic gauge theories give rise to conserved charges in flat spacetime.

Consider a generic variation of an action S, already including the boundary terms required

for having a well-defined action principle, e.g. like the one in (2.38). The variation of this

action for general field variations has the form (2.27). A variation δεΦ of the fields, gener-

ated by a continuous parameter ε is a symmetry, if it leaves the action invariant off-shell,

up to possible terms over constant initial and final time slices [20], i.e.

δεS0 =

∫
I2

K0(δεΦ,Φ)−
∫
I1

K0(δεΦ,Φ),

δεSb =

∫
∂I2

Kb(δεΦ,Φ)−
∫
∂I1

Kb(δεΦ,Φ),

(3.1)

for appropriate functions K0,Kb. The above off-shell equations are of course also true on-

shell. Then, using the fact that S = S0 + Sb has a well-defined action principle (2.27), we

arrive at ∫
I2

I0 +K0 +

∫
∂I2

Ib +Kb ≈
∫
I1

I0 +K0 +

∫
∂I1

Ib +Kb, (3.2)

where ≈ denotes on-shell equality. Since I1, I2 are arbitrary constant time slices, the quan-

tity

Qε[Φ] ≡
∫
I
I(δεΦ,Φ) +

∫
C=∂I

C(δεΦ,Φ), (3.3)

with

I(δεΦ,Φ) ≡ I0(δεΦ,Φ) +K0(δεΦ,Φ), C(δεΦ,Φ) ≡ Ib(δεΦ,Φ) +Kb(δεΦ,Φ), (3.4)

defines a conserved charge for solutions of equations of motion, associated with symme-

try δε.

3.1 Electric charges

Now we are ready to apply the above analysis to the action (2.38). The integration on the

τ -constant hypersurface I denoted as the I-term in (3.3) yields,10∫
I
I = − 1

p!

∫
I
dd−1σα ∂[µ0Λµ1···µp]Fαµ0···µp ≈ −

1

p!

∫
∂I

√
G τbλa1···apF

ρb a1···ap , (3.5)

where dd−1σα is the volume form on I, τ b is future-directed and in the last equality we

have used the on-shell condition. The C-term integral in (3.3) acquires two contributions

on the boundary of I;∫
C
C = − 1

p!

∫
C

√
G τb

(
(p+ 1)∂[bλa1···ap]Aρa1···ap + 2pλρ a2···apA

ρ b a2···ap
)
, (3.6)

10We note that K0 = 0 in our case, if the source J is turned off.
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The first term in (3.6) comes from the B-term in (2.32) (Ib) and the second term in (3.6)

from variation of the boundary term (2.37) (Kb) and is non-zero for p > 0. Putting the

I-term (3.5) and the C-term (3.6) into (3.3), the conserved charge for our (2p+ 4, p)-form

theory takes the following form

Qλ[A] = − 1

p!

∫
C

√
G τb

[ (
λ · F ρb

)
p

+
(

(dλ)b ·Aρ
)
p
− 2p

(
λρ ·Aρb

)
p−1

]
, (3.7)

where the integration is over the C = S2p+2 at large ρ-constant and arbitrary τ -constant

hypersurface. We can write it down in terms of differential forms on S2p+2; the relevant ones

being the p-forms F̂ρτ , Âρ, λ̂ and the (p − 1)-forms λ̂ρ and Âρτ (cf. notation introduced

in section 1.1):

Qλ[A] = −
∫
C

(
λ̂ ∧ ?F̂ρτ + Âρ ∧ ?(d̂λ)τ − 2λ̂ρ ∧ ?Âρτ

)
. (3.8)

In the second term, the de Sitter exterior derivative acts on λ first, then projecting on

Sd−2 yields the sphere p-form (d̂λ)τ .

3.2 Magnetic charges

For a (p+1)-form theory in 2p+4 dimensions, the Hodge star operator maps the (p+2)-form

field strength Fp+2 to its Hodge dual which is another (p+ 2)-form,

Fp+2 → ?Fp+2. (3.9)

The source-free equations of motion d ? F = 0 which are relevant to the asymptotic

region, will allow for a magnetic potential ?Fp+2 = dÃp+1. The action is invariant under

‘magnetic’ gauge transformations Ã→ Ã+dΛ̃p, so we can ask about the conserved charges

corresponding to this gauge symmetry.

The first question is whether the magnetic charges contain new independent informa-

tion about the fields. We have seen that the gauge potential can be decomposed into de

Sitter differential forms:

Aν0···νp :

{
Aρ a1···ap de Sitter p-form ,

Aa0···ap de Sitter (p+ 1)-form .
(3.10)

We showed above that the conserved charges are built out of the de Sitter p-form Aρ a1···ap
and its corresponding field strength, independent of the de Sitter (p + 1)-form Aa0···ap
in (3.10). Similarly, the magnetic charges involve only the Ãa1···apρ components which are

related to the electric gauge potentials by

(dÃ)a0···apρ =
1

(p+ 2)!
εb0···bp+1

a0···apρ(dA)b0···bp+1 . (3.11)

Thus, the magnetic charges extract the information contained in Aa0···ap being missed by

the electric charges.

The expression for the magnetic charges and their conservation follows exactly along-

side the discussions we had about electric charges, providing that the same boundary

conditions as in (2.23) are satisfied by the magnetic potentials Ã;

Qλ̃[Ã] = − 1

p!

∫
C

√
G τb

[ (
λ̃ · F̃ ρb

)
p

+
(

(dλ̃)b · Ãρ
)
p
− 2p

(
λ̃ρ · Ãρb

)
p−1

]
. (3.12)
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3.3 Algebra of charges

We already presented a general formula for the conserved charge associated with residual

gauge transformations (3.8). This formula is linear in gauge transformation parameter and

also linear in the background gauge field. The expression for the charge may then be viewed

as a functional over the phase space of form-field configurations. One can then compute

algebra of charges (Poisson bracket of charges over the phase space).11 The expression for

the charge (3.8) only involves the Aρ component with the associated gauge transformation

δεAρ = −dερ . (3.13)

Therefore, the charge algebra is

{Qλ, Qε} = δεQλ = −
∫
C

(
dερ ∧ ?dλ− 2λρ ∧ ?dερ

)
. (3.14)

Next, recall that λ and ε are p-forms generating residual gauge transformations on dS2p+3

satisfying (2.9), which at leading order takes the following form;

d ? dλ = 2 ? dλρ (−1)p . (3.15)

One therefore finds after an integration by parts

{Qλ, Qε} = 2

∫
C

(
λρ ∧ ?dερ − ερ ∧ ?dλρ

)
. (3.16)

In terms of forms on sphere, it becomes

{Qλ, Qε} = 2

∫
C

(
λ̂ρ ∧ ?(d̂ερ)τ − ε̂ρ ∧ ?(d̂λρ)τ

)
. (3.17)

This expression takes a simpler form in temporal gauge λρτB3···Bp = 0,

{Qλ, Qε} = 2

∫
C

(
λ̂ρ ∧ ?∂τ ε̂ρ − ε̂ρ ∧ ?∂τ λ̂ρ

)
. (3.18)

The charge algebra can hence be non-Abelian only if the ρ-component of the gauge param-

eters are non-zero. Moreover, the r.h.s. of the charge algebra (3.16), being independent of

the gauge field A, is a c-number over the phase space; i.e., the r.h.s. is a central term. In

section 4.2 we will explicitly compute the charges as well as their algebra in six dimensions

for the (6, 1)-form theory and find the corresponding central charge.

3.4 Classification of charges

We showed that conserved charges of the (2p+4, p)-form theory are related to those residual

gauge transformations generated by p-forms Λ on the Minkowski spacetime which preserve

11In the Hamiltonian or the covariant phase space method for computing charges, as discussed in ap-

pendices B and C, one computes the charge variation and then integrating over a phase space; whereas we

obtain the charge itself in the ‘Noether’s method’ proposed above.
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our boundary conditions (2.23) and satisfy d†dΛ = 0 as explained above (2.9). To leading

order in ρ, this equation can be written down in terms of de Sitter forms and operators

d†dλ+ 2dλρ = 0 , (3.19)

with immediate implication that d†dλρ = 0. As mentioned earlier, (3.19) specifies Λ up to

closed forms, i.e. there is a ‘gauge symmetry’ in this equation. We can fix this extra freedom

through a ‘gauge fixing’ condition. A convenient choice especially for the computation of

charges is the temporal gauge fixing ;12

τ ·Λ = 0 or λ̂τ = λ̂ρτ = 0 . (3.20)

In this gauge upon decomposing forms on de Sitter in terms of forms on sphere we have

λ = λ̂ and we may only work with hatted gauge parameter forms which live on the sphere.

In particular — see appendix A.2,

dλ =

(
dτ ∧ ∂

∂τ
+ d̂

)
λ = dτ ∧ ˙̂

λ+ d̂λ̂ , (3.21)

d†λ =
1

cosh2 τ
d̂
†
λ̂ . (3.22)

We may now discuss solutions to the residual gauge condition equation (3.19). The

simplest solution to this equation is dλ = 0, which yields dλρ = 0 where in the temporal

gauge (3.20), results in,

λ̂ = d̂ε̂ , ˙̂ε = 0 and λ̂ρ = d̂ε̂ρ , ˙̂ερ = 0 . (3.23)

This is the zero-mode solution. It turns out that in this case λ̂ρ does not contribute

to the charge and one may choose ε̂ρ = 0. Other solutions to the equation of residual

gauge condition (3.19) can be classified by decomposing it on the sphere in the temporal

gauge (3.20);

d̂
† ˙̂
λ+ 2

˙̂
λρ cosh2 τ = 0 , (3.24a)

d̂
†
d̂λ̂+ ∂τ

(
cosh2 τ

˙̂
λ
)

+ 2d̂λ̂ρ cosh2 τ = 0 . (3.24b)

where (3.24a) is the projection of (2.36) on the τ direction. We note that (3.24) is written in

terms of p or (p−1) forms on the sphere S2p+2 for which we can use Hodge decomposition.

Except for the p = 0 case, the Hodge decomposition (see appendix A.1) will not involve

the harmonic part. So for the moment we focus on the p 6= 0 case and shall consider the

harmonic case later. In order to solve (3.24) we then write

λ̂ = λ̂
exact

+ λ̂
coexact

. (3.25)

12One could have fixed de Sitter or Minkowski covariant gauges, respectively, d†λ = 0 or d†Λ = 0. Our

results on charge algebra and classification is of course independent of this gauge fixing on λ.
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eq.(3.24) then splits into three equations,

d̂
† ˙̂
λexact + 2

˙̂
λρ cosh2 τ = 0 , (3.26a)

∂τ

(
cosh2 τ

˙̂
λexact

)
+ 2d̂λ̂ρ cosh2 τ = 0 , (3.26b)

d̂
†
d̂λ̂

coexact
+ ∂τ

(
cosh2 τ

˙̂
λcoexact

)
= 0 . (3.26c)

The above analysis explicitly shows that equations (3.26) have three different classes of

solutions for λ̂. Upon changing variables as y = tanh τ , these cases read as:

• Coexact. λ̂ = d†ψ̂ is coexact and together with λ̂ρ are solutions to (3.26c);

(1− y2)λ̂
′′coexact

+ ∆̂λ̂
coexact

= 0 , λ̂ρ ∼= 0 , λ̂
′
ρ = 0 . (3.27)

where ′ is derivative w.r.t. the new variable y and ∼= denotes ‘equality up to an

exact/harmonic form’.

• Exact. λ̂ = dε̂ is an exact form and in general time-dependent, subject to (3.26a)–

(3.26b). In this case ε̂ is specified in terms of λ̂ρ � 0,

∆̂ε̂′ =
2λ̂
′
ρ

(1− y2)
, ε̂′′ ∼= −

2λ̂ρ
(1− y2)2

, d†dλ̂ρ = 0 (3.28)

• Zero-mode. As spelled out in (3.23), ε̂ is constant in time, with no restriction on its

angular dependence. Zero-modes form a subclass of exact parameters, identified by

setting λρ ∼= 0 in (3.28).13

We have discussed exact and coexact parts of λ̂ and recalling the Hodge theorem,

there remains λ̂
harmonic

. The only harmonic forms on an n-sphere are the constant function,

and the volume form. Top-form gauge parameters are discussed in [64]. In the context of

(2p+ 4, p)-form theory the only relevant case is p = 0 where the charges are point-like and

the sources do not reach celestial sphere S2. In this case, however, the gauge parameter is

a 0-form and the Hodge decomposition allows for a harmonic part, a constant function on

S2. This constant function gives rise to the zero-mode charge.

One may note that, as the definition above indicates, all the zero-modes are also

exact. However, the zero-modes are distinct, as they are exact over the whole de Sitter

and Minkowski spacetime and not just on codimension 2 asymptotic sphere. These two

have also different physical meanings. The zero-mode part, as discussed, corresponds to

the ‘global part’ of gauge transformations which keep a given gauge field configuration

A intact and the corresponding charges may be computed using the standard Noether’s

theorem (see [63] for more discussions); these charges are the usual brane charges. The

zero-mode charges and the coexact charges commute with themselves and with other exact

13In (6, 1)-theory, ε is a function. Actually the time-dependent ε(y, x̂) = cy parameter solves (3.28) with

vanishing, λρ. However, its charge is always vanishing, as the strings pierce the sphere at two points with

opposite contributions.
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charges, while the exact charges are not commuting; their algebra has a central extension.

As our explicit example in (4.35) shows, the fact that exact charges do not commute, at

the technical level, is due to the fact that λρ � 0 for the exact charges. From now on we

omit the hat ˆ from operators and forms on sphere and only retrieve it when necessary.

4 Two concrete examples

In this section we explicitly compute the charges (3.8) for two p = 0, 1 examples. The p = 0

case has been studied (extensively) in the literature [22, 27–29, 69] and we show how our

formulation recovers/compares with those analysis. The p = 1, however, is new and has

the novel feature that it contains non-Abelian sector of ‘exact charges’.

4.1 Maxwell theory in four dimensions (p = 0)

The (4, 0)-form theory is defined by the following action,

S = −1

2

∫
M

√
−gFµνFµν −

∫
B

√
−hAρAρ , (4.1)

and the boundary conditions (2.22a), (2.23a) and (2.23b) which translate to,

Aρ =
Aρ
ρ

+O(ρ−2) , Aa = Aa +O(ρ−1) . (4.2)

In this case the gauge parameter is a p = 0 form, i.e. a scalar, and (4.2) is preserved by

large gauge transformations, if the gauge parameter has the boundary behavior,

Λ = λ+O(ρ−1) . (4.3)

It follows that gauge transformations at leading order in ρ are

δλAρ = 0 , δλAa = ∂aλ . (4.4)

The improved action (4.1) is gauge invariant under the boundary condition preserving gauge

transformations (4.3) and together with the boundary conditions (4.2) defines a well-posed

action principle in the Lorenz gauge, ∇µAµ = 0. To leading order in ρ, equations of motion

and the Lorenz gauge condition are

DaD
aAρ = 0 , (4.5a)

DaD[aAb] = 0 , (4.5b)

DaAa + 2Aρ = 0 . (4.5c)

In this case we do not have a λρ part and (3.19) reduces to

DaD
aλ = 0 . (4.6)

As discussed in section 3, surface charges (3.3) consist of two terms. The first term

leads to a surface integral on the boundary of I, lying on ρ = ρ0 and τ = τ0 surface;∫
I
I(δλA,A) =

∫
I
∂µΛFµνd3σν ≈

∫
C

√
G τaλ ∂

aAρ , (4.7)
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where in the second equality we have used the on-shell condition ∂µFµν = 0 and the

boundary conditions (4.2)–(4.3). The second surface term in the charge (3.3) comes from

the B-term (2.32), the remainder after subtraction of the varied boundary term (2.34);∫
C
C(δλA,A) = −

∫
C

√
G τa∂

aλAρ . (4.8)

Putting these together (that is writing (3.8) for p = 0 case), we recover the same expression

of [49] for the surface charge

Qλ[A] =

∫
S2

√
G (λ∂aAρ −Aρ∂aλ)τa , (4.9)

where τa is the future directed timelike normal vector of C = S2. Since the action (4.1) is

strictly gauge invariant within boundary conditions (4.2), the charges are conserved once

equations of motion hold. The conserved charge (4.9) is a functional of Aρ(τ, x̂
a), which is

a function on sphere at any given τ .

4.1.1 Solution space and the antipodal matching

The charge has been written in terms of two scalars Aρ and λ on the de Sitter spacetime

dS3, both satisfying the wave equation (4.5a) and (4.6). General solution to this equation

is found by expanding in spherical harmonics

Aρ(τ, x̂) =
∑
lm

Ylm(x̂)fl(y) , −l ≤ m ≤ l , l ≥ 0 . (4.10)

where y = tanh τ and fl(y) satisfies

(1− y2)f ′′l (y) + l(l + 1)fl(y) = 0 . (4.11)

There are two independent solutions to this equation;

fl(y) = c1f
(1)
l (y) + c2 f

(2)
l (y) . (4.12)

The zero mode solution is;

f
(1)
0 (y) = 1 , f

(2)
0 (y) = y , (4.13)

which for q = c2 this describes the famous electric monopole solution with the electric

charge q — see the footnote 14.

For all l ≥ 1 we have,

f
(1)
l (y) = (1− y2)

1
2P 1

l (y) , f
(2)
l (y) = (1− y2)

1
2Q1

l (y) , (4.14)

where P 1
l and Q1

l are Legendre functions of the first and the second kind respectively. To

confirm the conservation, we notice that because of the integration on S2, the charge (4.9)

picks up the modes with the same l and opposite m. In addition, its τ -dependence is

the Wronskian of the differential equation (4.11) which is a constant. So the charge is

independent of τ (or y) and is conserved.
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Figure 4. Penrose diagram of de Sitter space. The shaded region is the causal future of the

north pole, and its dashed 45◦ boundary is the future horizon of the south pole. The antipodal

map amounts to a couple of horizontal and vertical flips. Especially, the north pole at far past is

mapped to the south pole at far future.

Antipodal matching. The fields appearing in charge expressions, those in (4.10), are

defined on the global dS space B. It is, however, known that not all points on a global dS

space are causally connected (see figure 4). In particular, one can distinguish two regions

which are separated by the cosmological horizon and the physical fields/observables may

be defined only on one side of this horizon. One way to define fields on the whole dS is to

define them on one cosmological patch and extend it to the other side by the ‘antipodal

matching’ [70]. In our conventions the point (τ, x̂A) is mapped onto (−τ,−x̂A) by antipodal

map (see figure 4). In particular, in our case we require

Faρ(−τ,−x̂) = Faρ(τ, x̂), (4.15)

where F is the gauge field strength on dS3. Requiring the above antipodal matching, we

learn that

Aρ(−τ,−x̂) = −Aρ(τ, x̂) . (4.16)

The above condition, recalling the parity and time-reversal properties of the modes,

P 1
l (−y) = (−1)l+1P 1

l (y) , Q1
l (−y) = (−1)lQ1

l (y), Y m
l (−x̂) = (−1)lY m

l (x̂) , (4.17)

leads to the fact that there should not be Ql modes in the gauge field. So, the general

allowed solution for Aρ is

Aρ(y, x̂) = qy + (1− y2)
1
2

∑
l≥1,m

alm√
l(l + 1)

Y m
l (x̂)P 1

l (y) . (4.18)

We comment that the boundary term (4.1) remains finite if Aρ does not involve Ql
modes, as14 ∫ 1

−1
dy(1− y2)−1P 1

l (y)P 1
l′ (y)δll′ =

(l + 1)!

(l − 1)!
δl,l′ .

14The zero-mode l = 0 solution Āρ = c1 + q tanh τ , corresponds to an electric background gauge field

due to a point-like source whose asymptotic τ -behavior is drastically different from higher modes. The
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On the other hand, for having non-zero charges, the gauge parameter λ should have

the following form;

λ(y, x̂) = −λ0

4π
+ (1− y2)

1
2

∑
l≥1,m

λlm√
l(l + 1)

Y m
l (x̂)Q1

l (y) , (4.19)

hence for the gauge parameter,

λ(−τ,−x̂) = λ(τ, x̂), (4.20)

and the reality of the gauge parameter and the gauge field implies

alm = a∗l,−m, λlm = λ∗l,−m.

Expression of the charge. For generic gauge field Aρ(y, x̂) and gauge parameter λ(y, x̂)

the conserved charge becomes

Qλ[A] =

∫
S2

d2x̂(∂yλAρ − ∂yAρλ) = qλ0 +
∑
l≥1,m

almλ
∗
lm . (4.21)

Defining λ+(x̂) ≡ λ(τ → +∞, xA) and λ−(x̂) ≡ λ(τ → −∞, x̂) and denoting the

charges computed at τ → ± by Q± , we recover the antipodal matching condition for the

charges proved in [49]

Q+
λ+

[A] = Q−λ− [A]. (4.22)

As discussed above, the antipodal matching and finiteness of the boundary term and asymp-

totic charges in our analysis yield to the same condition (absence of Ql modes in the gauge

field). Moreover, the antipodal matching in our setup is a physically well-motivated re-

quirement as it is the natural way to extend definition of physical field on global dS. This

may be compared with other arguments for antipodal matching [22, 49]. It is desirable to

explore and understand the antipodal matching better.

The l = 0 term in (4.21) is the contribution of the zero-mode charge corresponding to

a global transformation on the sphere, ∆λ = 0, (cf. section 2.3). We denote l ≥ 1 terms as

coexact charges as they correspond to coexact gauge transformations on S2, d†λ = 0. There

are no exact charges in 4d as we are dealing with a scalar gauge parameter λ. Moreover, the

zero-mode and usual coexact charges, as (4.21) suggests, can be recombined into charges

associated with a coclosed λ on the S2. This is in fact the more usual viewpoint used to

describe multipole charges of Maxwell theory [25, 29, 71].

Computation of magnetic charges would lead to the same result (4.21) with the inte-

grand replaced by magnetic potential Ã and the corresponding gauge parameter λ̃. The

magnetic zero-mode charge would give the total number of magnetic monopoles.

boundary term (4.1) as it stands is divergent for this mode. As discussed in section 2.5 around eq. (2.35)

about a well-defined action principle in such a case should be refined. Explicitly, take the decomposition

Aρ =
(
Āρ +Aρ

)
/ρ+O(ρ−2) where δĀρ = 0 and Aρ is a square-integrable function on dS3. The resulting

phase space includes all configurations with fixed total charge q. In this case δS ∼
∫
S2 δAτ , for recovering

the action principle we need to either restrict our boundary conditions s.t.
∫
S2 δAτ or improve the action

by adding a new boundary term proportional to
∫
S2 Aτ .
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4.2 2-form theory in six dimensions (p = 1)

In this section we study the simplest yet non-trivial case with charges associated to exact

gauge transformation on S4, the p = 1 case. The improved action is

S = − 1

12

∫
M

√
−gFµναFµνα −

∫
B

√
−hAρaAρa . (4.23)

with the boundary conditions,

Aρa =
Aρa
ρ

+O(ρ−2) , Aab = Aab +O(ρ−1) . (4.24)

To leading order in ρ, the field equations and the Lorenz gauge condition are,

DbFρ ba = 0 , DaAρ a = 0 , (4.25a)

DcF
cab = 0 , DbA

ba + 2Aρ a = 0 . (4.25b)

To leading order in ρ, the ρ-component of the field strength Fρ ab = ∂ρAab + ∂bAρa +

∂aAb ρ, yields;

Fab ρ = 2∂[aAb] ρ , (4.26)

which means Fab ρ is a closed 2-form on dS5 with the potential Aρ a.

4.2.1 Exact, coexact and zero-mode conserved charges

The parameters of the boundary condition preserving gauge transformations at leading

order in ρ generate the following transformations on the boundary

δAaρ = ∂aλρ , δAab = 2∂[aλb] . (4.27)

They include a de Sitter scalar λρ and a de Sitter vector λa which satisfy (3.19) in temporal

gauge, i.e.

DaD[aλb] = Dbλρ , (4.28a)

λτ = 0 . (4.28b)

As discussed in section 3.4, the whole contribution of the gauge parameters to the expression

of charges, is reduced to knowing λ̂B on S4. The solutions to these equations come in three

classes: zero-mode solutions for which λ = dε on dS5, and the exact (coexact) charges for

which λ̂ is an exact (coexact) 1-form on S4. Below we discuss each cases separately.

Coexact charges. In this case λB = DCψBC while, λρ = const. and λτ = 0 as a

consequence of (4.28). Consequently, δλAaρ = 0 and hence the improved action (4.23) is

strictly gauge invariant, so the situation is exactly similar to the Maxwell in four dimensions

i.e. the (4, 0) theory. There remains two contributions to the expression of the charge (3.7)

with gauge parameters being coexact on S4. For constant τ slices and in the temporal

gauge, the expression for coexact charges (4.29) simplifies to

Qcoexact
λ [A] = −

∫
S4

√
G
(
∂τλBA

ρB − λB ∂τAρB
)
, (4.29)
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where in the first term above we used (4.26). The second term in (4.29) is the contribution

of δλS0 denoted as the B-term in (2.32). We also notice that in (4.29) both λ̂ = λB dxB

and Aρ = AρB dxB are coexact 1-forms on S4 as a consequence of orthogonality of exact

and coexact forms. Finally, since δλAρB = 0 in this case (as λρ = const.), these charges

commute among themselves;

{Qcoexact
ε , Qcoexact

λ } = −δεQ(coexact)
λ = 0 . (4.30)

Exact charges. These charges are associated with gauge transformations generated by

the de Sitter scalar λρ and the de Sitter vector λa which are related via solving (4.28).

Expression for the charges (3.7) with the gauge parameters being exact on S4 takes the form

Qexact
λ [A] = −

∫
S4

√
G
(
∂τλBA

ρB − 2λρA
ρτ
)
, (4.31)

where the last term in the expression above is coming from variation of the boundary term

δλSb in (2.37). Since λB is an exact form on S4, one can readily see that the coexact part

of the gauge field ABρ which is divergence-free, drops from the expression of the charge

and only the exact part of the background gauge field contribute to (4.31). This already

proves that the commutator of exact charges with the coexact ones are zero,

{Qcoexact
ε , Qexact

λ } = 0 . (4.32)

We may now define λB = ∂Bε and Aexact
ρB = ∂Bφ for some functions ε and φ. It can be

shown that on-shell — see appendix A, Aρτ = ∂τφ; so (4.31) simplifies to

Qexact
λ [A] = −

∫
S4

√
G
(

2λρ∂τφ+ ∂τ∂BεD
Bφ
)

= 2

∫
S4

√
G
(
φ∂τλρ − λρ∂τφ

)
, (4.33)

where in the last line we made an integration by part and also used (3.26b); DBDB ε̇ =

2∂τλρ cosh2 τ .

The more interesting part is the commutator of exact charges: the central charge for

the exact charge sector turns out to be non-zero. The reason is simply that λρ 6= 0 in this

case and the gauge transformation on Aexact
ρB (and Aρτ ) is non zero and acts on φ as a shift

φ→ φ− λρ. (4.34)

We consequently find

{Qexact
ε , Qexact

λ } = −δεQ(exact)
λ = 2

∫
S4

√
G
[
− ερ∂τλρ + λρ∂τ ερ

]
. (4.35)

Zero-mode charges. We discussed above exact gauge parameters with λρ 6= 0. It

remains to consider exact gauge parameters with λρ = 0. For this class, (dλ)BC = 0 on the

sphere, so they leave the gauge parameter invariant; they are exact symmetries [63] and

the charge reduces to (cf. section 2.3)

Qzero-mode
λ [A] =

∫
S4

√
G λBF

ρτB. (4.36)
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These charges are non-vanishing only in the presence of sources that pierce the celestial

sphere, like infinite strings. Zero-mode charges obviously commute with all charges in

the theory.

4.2.2 Solution space and mode expansion

To compute the explicit expression of the charges we need to solve the equations for gauge

potentials and gauge parameters. Field equations (4.25) and (4.28) describe all components

of the gauge field and the gauge parameter respectively. We notice that since Aρa is a

1-form on the dS5 background, equations (4.25a) are essentially Maxwell’s equations in

Lorenz gauge for the 1-form gauge field Aρa and take the following form

(1− y2)A′′ρτ + 4yA′ρτ +

[
∆ + 4

1 + y2

1− y2

]
Aρτ = 0 , (4.37a)

(1− y2)A′′ρB + ∆AρB +
2y

1− y2
∂BAρτ = 0 , (4.37b)

A′ρτ −DBAρB +
4y

1− y2
Aρτ = 0 . (4.37c)

where prime is derivative w.r.t. y = tanh τ and ∆ is the Laplace-Beltrami operator on the

4-sphere. The spectrum of ∆ acting on functions and 1-forms is given in the appendix A.1.

Solutions to (4.37a) are

Aρτ = (1− y2)
3
2

∑
l≥0,mα

[
c

(1)
lmα

P 1
l+1(y) + c

(2)
lmα

Q1
l+1(y)

]
Ylmα(x̂) , (4.38)

where Ylmα(x̂), α = 1, 2, 3 are spherical harmonics on the 4-sphere, e.g. see [72, 73]. If

AρB is an exact form, then AρB(xa) = ∂Bφ(xa) ≡ Aexact
ρB and the Lorenz condition (4.37c)

leads to

D2φ = A′ρτ +
4y

1− y2
Aρτ . (4.39)

Plugging (4.38) into (4.39), and expanding in eigen-modes D2φ =
∑

l≥0 l(l + 3)φl as ex-

plained in the appendix A.1, after some manipulations one gets,

Aexact
ρB = (1− y2)

∑
l>0,mα

1

l(l + 3)

[
c

(1)
lmα

P 2
l+1(y) + c

(2)
lmα

Q2
l+1(y)

]
∂BYlmα(x̂) , (4.40)

where c
(1)
lmα

and c
(2)
lmα

are the same as in (4.38) and Aexact
ρB = 0 for l = 0. In the appendix A.3,

we also verify that up to the zero mode on sphere, Aρτ = ∂τφ where φ is a solution to

DaDaφ = 0. Thus Aρa = ∂aφ ≡ Aexact
ρa is a pure gauge de Sitter vector with Fρ ab = 0 which

could be eliminated from the beginning using residual gauge transformations.15 As we

have already seen in section (4.2.1), these pure gauge configurations can possess non-zero

exact charges.

15The operator D2 annihilates l = 0 mode of φ, so it is not invertible. However, since we are looking for

Aexact
ρB = ∂Bφ, that mode is unconstrained by Aexact

ρB . One is free to choose it such that Aρτ
∣∣
l=0

= ∂τφ
∣∣
l=0

,

as well as higher-l modes.
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The field equation (4.37b) has an exact and a coexact part which are linearly indepen-

dent and should be individually zero. For AρB being coexact denoted as Acoexact
ρB , on the

sphere, it simplifies as

(1− y2)A′′coexactρB + ∆Acoexact
ρB = 0 , (4.41)

with solutions

Acoexact
ρB (y, x̂) = (1− y2)

1
2

∑
lmα

ωlmαB (x̂)
[
b
(1)
lmα

P 1
l+1(y) + b

(2)
lmα

Q1
l+1(y)

]
, (4.42)

where ωlmαB are coexact eigen 1-forms of the Laplace-Beltrami operator on S4;

∆Hω
lmα
B = [l(l + 3) + 2]ωlmαB with l ≥ 1 . (4.43)

Solving the gauge parameter. Among all equations in (4.28) for the gauge parameter,

only the following equations are independent,

(1− y2)λ′′coexactB + ∆λcoexact
B = 0 , (4.44a)

(1− y2)λ′′ρ + 2yλ′ρ + ∆λρ = 0 , (4.44b)

while other components of exact/coexact gauge parameters are specified from (3.27)–(3.28).

The general solution for λcoexact
B is the same as in (4.42) and will be discussed in the next

section. The general solution for λρ is

λρ(y, x̂) = λ
(1)
0 + λ

(2)
0 (y

3

3 − y) + (1− y2)
∑

l>0,mα

[
λ

(1)
lmα
Plmα(y, x̂) + λ

(2)
lmα
Qlmα(y, x̂)

]
, (4.45)

where P,Q are the following functions,

Plmα(y, x̂) ≡

√
2(l − 1)!

(l + 3)!
Ylmα(x̂)P 2

l+1(y) , (4.46a)

Qlmα(y, x̂) ≡

√
2(l − 1)!

(l + 3)!
Ylmα(x̂)Q2

l+1(y) , (4.46b)

with l ≥ 1. These functions on dS5 are normalized as:∫
dyd4x̂

√
−h(1− y2)2Plmα(y, x̂)Pl′m′α(y, x̂) = δllδmα,m′α , (4.47)

and similarly for Q’s.

4.2.3 Evaluation of charges and the central extension

We may now compute the explicit expression for the coexact and exact charges (4.29)

and (4.33) in terms of the mode expansions of the gauge parameters and gauge fields

contributing to these charges.

In the coexact sector, both the gauge parameter λB and the gauge field Acoexact
Bρ satisfy

same equations (4.44a) and (4.41) with a general solution (4.42). As in the coexact charges

of the Maxwell theory in four dimensions i.e. (4, 0)-theory, discussed in section 4.1.1, not
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all terms in (4.42) keep our boundary term (2.34) finite. It turns out that similar to our

argument in the (4, 0)-theory, Qml solutions in (4.46) are not square-integrable and make

our boundary term (2.34) divergent. Moreover, the finite contribution to the charge comes

from the Q1
l+1(y) term in λB. That is,

Acoexact
Bρ (y, x̂) = (1− y2)

1
2

∑
lmα

ωlmαB (x̂)

[
blmα√

(l + 1)(l + 2)
P 1
l+1(y)

]
, (4.48)

λcoexact
B (y, x̂) = (1− y2)

1
2

∑
lmα

ωlmαB (x̂)

[
λlmα√

(l + 1)(l + 2)
Q1
l+1(y)

]
, (4.49)

for l ≥ 1. Now the expression of the charge in (4.29) is the Wronskian of (4.41) and by

orthonormality of ωlmαB it yields

Qcoexact
λ [A] =

∑
l≥1,mα

blmαλ
∗
lmα . (4.50)

The explicit expression for the exact charges (4.33) can be given in terms of the mode

expansions for λρ given in (4.45) and those for Aexact
ρB = ∂Bφ in (4.40) where both λρ and φ

satisfy the same equation as in (4.44b). The crucial point is that in contrast to the coexact

part, as shown in the appendix A.3, for exact gauge fields the boundary term (2.34) is

a total derivative, thus we need not disallow one of the branches allowed by equations of

motion.16 On the other hand, unlike the coexact case, both λ
(1)
lmα

and λ
(2)
lmα

modes in (4.45)

can contribute to exact charges and we hence have two sets of exact charges, which will

conveniently be denoted by Q
(a)
lmα

, a = 1, 2. In this respect, the exact charges are different

than the coexact and zero-mode charges. However, one class of the parameters λ
(a)
lmα

, say

a = 1 leads to non-zero charges only if φ belongs to the opposite class, which has opposite

behavior under PT. As a result, the exact charges exhibit antipodal matching property too

as will be discussed below.

The more interesting part is, however, the algebra of the exact charge sector, for which

we need to evaluate (4.35), which by using the general solution (4.45) for λρ and ερ, and

recalling the normalized Legendre functions (4.46b) and (4.47), yields

{Q(a)
lmα

, Q
(b)
l′m′α
} = 4δll′δmα,−m′αε

ab, l ≥ 1, a, b = 1, 2, (4.51)

where εab is the anti-symmetric symbol.17

Antipodal matching. As mentioned in 4.1.1 the causal connection between points on

I+ and I− as boundaries of the de Sitter slices is made via null geodesics beginning on

the sphere at I− and reaching its antipode at I+ [70]. This would verify the antipodal

16The boundary term Sb in this case describes a massless scalar on dS5 which can be regularized by

holographic renormalization means [74].
17As mentioned λ

(1)
lmα

, λ
(2)
lmα

behave oppositely under parity. Nonetheless, the expression of commutator

of exact charges (4.35) involves a time derivative and hence the expression receive a non-zero contribution

for Q
(1)
lmα

, Q
(2)
lmα

charges.
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matching property of the field strength for generic (2p+ 4, p)-theories as we explicitly did

for the (4, 0)-theory in section 4.1.1,

F̂ρτ (−τ,−x̂) = F̂ρτ (τ, x̂) . (4.52)

This condition restricts the p-form Âcoexact
ρ to its one branch of solutions similar to (4.42)

and satisfying (4.41) on S2p+2. In particular, the time-dependence will be given by P 1
l+p(y)

while the spacial-dependence on S2p+2 is governed by ωlmα(p) (x̂) with the following parity

transformations [75]

P 1
l+p(−y) = (−1)l+p+1P 1

l+p(y) , ωlmα(p) (−x̂) = (−1)l+pωlmα(p) (x̂), l ≥ 1 . (4.53)

Thus, Âcoexact
ρ is odd under PT; implying that the field strength F̂ρτ is even as in (4.52).

Similarly one can confirm that the gauge parameters entering the coexact charges are also

even. In the exact sector, the field strength is identically zero so both solutions are allowed.

In the case of exact charges, antipodal matching is a consequence of finiteness of charges.

One may verify that the zero-mode charges also satisfy antipodal matching conditions

discussed above. Hence all charges of the (2p + 4, p)-theory in general satisfy a relation

like (4.22), explicitly,

Q+
λ+

[A] = Q−λ− [A] . (4.54)

4.2.4 Summary of the asymptotic charges in 6d 2-form theory

We discussed that there are three classes of charges for the 2-form theory in six dimensions

i.e. (6, 1)-form theory. The zero-mode charges are specified by time-independent 0-forms

(the ε) on S4. These charges may be denoted by Qzero-mode
lmα

, l ≥ 0. The exact and coexact

charges are respectively specified by exact and coexact 1-forms on the S4. There is one set

of coexact charges Qcoexact
lmα

, l ≥ 1 but two sets of exact charges Q
(a)
lmα

, l ≥ 1, a = 1, 2. The

zero-mode and coexact charges commute with all other charges and only the exact charges

of different kind do not commute. Their commutator is given in (4.51) which is an infinite

set of Heisenberg algebras. In deriving these algebras (4.51) we assumed λ is independent

of the gauge field A. One may construct other algebras through quadratic combination of

these charges associated to linearly field-dependent gauge parameters [76, 77]. This point

needs further analysis which we hope to perform in future works.

The coexact and zero-mode charges have correspondents in the usual 4d Maxwell

theory, but the exact charges are new objects. They have a feature that they are conserved

even off-shell, since the field strength is zero in their case. This feature is reminiscent to the

case of asymptotic charges associated to Weyl transformation in conformal gravity [78–80]

where the value of the Weyl factor is in no way restricted by field equations. As a comment

on the physical meaning of these exact charges, we note that the same expression as in (4.31)

appears for electric conserved charges in the 6d Maxwell theory i.e. the (6, 0)-form theory

with the same boundary conditions given in (2.22a); see [51] for further analysis. The

asymptotic de Sitter space has topology Rτ × S4 with trivial first cohomology group. As

a result, for a purely electric configuration, that is Fab = 0, one has Aa = ∂aφ for some

de Sitter scalar φ. Applying the same procedure for conserved charges as we did for the

(4, 0)-form theory (with Lorenz gauge replaced by radial gauge Aρ = 0), one obtains (4.31)

with Aρa = −∂aφ which is exact.
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5 Discussion and outlook

In this work we studied asymptotic symmetries of (p+ 1)-form theories in ‘critical’ 2p+ 4

dimensions. This specific dimension has the remarkable feature that the radiation and

Coulomb fields have the same fall-off behavior [33, 51]. Although it is expected to have

memory effect for general (d, p)-form theory, this feature brings the possibility of having

more interesting p-form memory effect in the critical dimensions. The p-form memory

effect, compared to the usual gravitational or electromagnetic cases in four dimensions,

has the novel feature that objects carrying the (p + 1)-form charges are p-branes which

have internal degrees of freedom and have the possibility of altering their shape as a

(p+ 1)-form photons pass by. Our analysis here has set the stage for studying such p-

form memory effects.

We showed that the systematic treatment of surface charges leads to their classification

into coexact, zero-mode and exact charges. This classification is of course Lorentz invariant.

As (d, p)-form theories are generalizations of electrodynamics (p = 0), the zero-mode and

coexact charges have electromagnetic analogues and have Abelian charge algebras. The

exact charges, however, appear in p ≥ 1 and have non-Abelian algebra. We presented

explicit computation of exact charge algebra for (6, 1)-form theory which we found to be

an infinite set of Heisenberg algebras; similar result is expected for generic (2p + 4, p)-

form theories. It is desirable to better understand this algebra and its potential physical

observable effects.

The zero-mode charges were shown to be relevant to the first law of black p-brane

thermodynamics [65]. Furthermore, it was shown in [81] that for black holes with non-

trivial horizon topology, dipole charges can also contribute to the first law. One may

then ask whether the class of zero-mode charges can also contribute to the first law of

thermodynamics for black branes of non-trivial horizon topology.

In this work, we computed asymptotic charges at spatial infinity and worked in Lorenz

gauge. Moreover, to impose the fall-off behavior we used de Sitter slicing of flat space (cf.

figure 1), as was done e.g. in [28] and [82]. One may wonder how much the final results on

soft charge algebra depend on the slicing and the gauge condition. Although appropriate

choice of slicing facilitates imposing fall-off behavior and the boundary conditions, it should

not alter the final result once we fix the boundary conditions. For example, to analyze the

problem with the boundary condition which is usually set to capture radiation (null rays)

reaching the infinity, it is more appropriate to use null slicing. As another example, for the

Hamiltonian approaches to asymptotic symmetries at spatial infinity, however, it is more

appropriate to use the standard (t, r)-slicing, in which all constant time t slices are mapped

to a same constant time τ surface at large ρ in the de Sitter slicing. Therefore, comparing

the asymptotic charges and their algebras for these three cases should be handled with care.

This point is pertinent for the case of 3d or 4d gravity where we are dealing with bms3 and

bms4 algebras, and has been noted and analyzed in [48, 83, 84] and for 4d Maxwell theory

in [28, 49, 85].

In principle, the soft charges and their algebra are expected to be gauge independent

for a given theory defined by boundary fall-off conditions and a given boundary term.
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However, we should note that to have a well-defined theory, besides an action and boundary

conditions, one needs a suitable boundary term. The latter is needed to ensure having a

well-defined variation principle. As we discussed, the form of this boundary term, besides

boundary fall-off dependence, also does depend on the gauge-fixing condition (albeit only

its asymptotic form) and it affects the expression for the soft charges.

In our derivation of asymptotic charges we first fixed the boundary term needed for

having a well-defined action principle. This kind of analysis is well established in the

context of AdS/CFT and holographic renormalization. Among other things, we showed

that finiteness of this boundary term is consistent with antipodal matching of asymptotic

charges. One may explore other physical effects our boundary value problem may bear,

possibly to establish a flat-space holography for these (d, p)-form gauge theories. In par-

ticular, the bulk p-form gauge symmetry in these (d, p)-form theories has a residual part

after gauge fixing; appearing as a boundary (p − 1)-form gauge symmetry on asymptotic

dS slices. This latter may be viewed as ‘holographic’ dual of the bulk theory. Another

interesting question in this line is how the arguments here for p-form residual symmetries

could be combined with the notion of (higher-form) generalized global symmetries [86–89].

Among the class of (d, p)-form theories with d = 2p + 4, the odd p cases, especially

p = 1, 3 cases are of great interest. For odd p, self-dual form field theories with real forms

are possible. The self-dual two-form and four-form cases appear in the context of six and

ten dimensional supergravity theories. In these cases the equations of motion are first

order and there exists a different class of background solutions. For these cases we expect

a mixing between the electric and magnetic asymptotic charges we discussed here. It is

desirable to explore this case in more detail.

Finally, we point out that although we worked with scale invariant quantities through-

out the paper, the charges are conserved up to 1/ρ corrections. In this sense, the charges are

asymptotic, defined at ρ→∞. An interesting question is how they could be defined inside

the bulk as symplectic symmetries [90] of the theory. The asymptotic charges can gather

more information from the fields in the interior of the spacetime, if divergent ρn, n > 0

gauge parameters are taken into account. These are called multi-pole charges [29, 91] due

to their relation to multi-pole moments of fields and the sources.
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A Differential forms on sphere

A.1 Hodge decomposition

We will state some definitions and propositions about differential forms on a sphere [75, 92].

Given a compact oriented Riemannian n-manifoldM, the Hodge star operator ? maps any

p-form to a (n− p)-form, and satisfies

? ? = (−1)p(n−p). (A.1)

The co-differential operator d† acting on p-forms is defined by,18

d† = (−1)n(p+1)+1 ? d? (A.2)

and acts as

(d†ω)B2···Bp = −DB1ωB1···Bp . (A.3)

The Laplace-Beltrami operator ∆ is defined by

∆ = dd† + d†d , (A.4)

and if ∆α = 0, then α is called a harmonic form. A differential form is harmonic iff

dα = d†α = 0 . (A.5)

One can define an inner product on the space of p-forms:

〈α, β〉 =

∫
M
α ∧ ?β . (A.6)

It follows that d† is the adjoint of d

〈dα, β〉 = 〈α, d†β〉 , (A.7)

while ∆ is self-adjoint.

According to the Hodge decomposition theorem, any differential p-form on a closed

Riemannian manifold M can be decomposed into exact, coexact and harmonic forms:

ωp = dαp−1 + d†βp+1 + γp . (A.8)

The number of harmonic p-forms on M is equal to the dimension of the p-th de Rham

cohomology group Hp
dR(M). On an n-sphere, de Rham cohomology is trivial unless p ∈

{0, n} where it becomes isomorphic to R. Since we are mainly interested on p- or (p+ 1)-

forms on a (2p + 2)-sphere, no harmonic forms are present in our discussion for p ≥ 1.

Eigenvalues of Laplace-Beltrami operator acting on p-forms on an n-sphere differ for exact

and coexact forms:

∆ωexact
pl = [l(l + n− 1) + (p− 1)(n− p)]ωexact

pl (A.9)

∆ωcoexact
pl = [l(l + n− 1) + p(n− p− 1)]ωcoexact

pl . (A.10)

18Both (A.1) and (A.2) acquire one more minus sign when the signature is Lorentzian.
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Exact and coexact forms are orthogonal in the sense of inner product (A.6),

〈dα, d†β〉 = 〈α, d†d†β〉 = 0 . (A.11)

Given a coordinate system xA on a sphere, exact and coexact p-forms satisfy

dα = 0↔ D[B0
αB1···Bp] = 0 , d†α = 0↔ DB1α

B1···Bp = 0 . (A.12)

Finally, for a function f and a 1-form ω = ωBdx
B on an n-sphere we have

∆Hf = −DCDCf ,
∆Hω = −DCDCω + (n− 1)ω .

(A.13)

where D is the covariant derivative on the n-sphere.

A.2 The Laplace operator on Sn induced from dSn+1

Consider the splitting of general k-forms on dSn+1 as19

ω = ω̂ + dτ ∧ ω̂τ . (A.14)

The Hodge star and co-differential operators have the following form in terms of those on

sphere

?ω =
[
(−1)kdτ ∧ ?̂ω̂ − ?̂ω̂τ cosh2 τ

]
coshn−2k τ , (A.15a)

cosh2 τ d†ω = cosh2k−n τ∂τ

(
ω̂τ coshn−2k+2 τ

)
+ d̂†ω̂ − dτ ∧ d̂†ω̂τ . (A.15b)

We can now compute the Laplace operator ∆,

cosh2 τ∆̂ω = ∆̂ω̂ + cosh2 τ ¨̂ω +
1

2
(n− 2k) sinh 2τ ˙̂ω + sinh 2τ d̂ω̂τ , (A.16a)

cosh2 τ∆̂ωτ = ∆̂ω̂τ + cosh2 τ ¨̂ωτ + (n− 2k + 2)

(
ω̂τ +

1

2
sinh 2τ ˙̂ωτ

)
(A.16b)

− 2 tanh τ d̂†ω̂ .

Now we apply these relations to our current problem with n = 2p+ 2 , k = p:

cosh2 τ∆̂λ = ∆̂λ̂+ ∂τ

(
cosh2 τ

˙̂
λ
)

+ 2 sinh τ cosh τ d̂λ̂τ , (A.17a)

cosh2 τ(∆̂λ)τ = ∆̂λ̂τ + cosh2 τ
¨̂
λτ + 4 cosh2 τ∂τ (λ̂τ tanh τ)− 2 tanh τ d̂†λ̂ . (A.17b)

A.3 Exact and coexact parts of gauge fields/parameters

The coordinate ρ is manifestly Lorentz invariant. Consequently, the Lorentz generators

Lµν = xµ∂ν − xν∂µ can be written in terms of xa and ∂a and they turn out to be the

isometries of dSd−1 which is expected because both represent so(d − 1, 1) algebra. Thus,

a Lorentz transformation is equivalent to a de Sitter coordinate transformation xa → x′a.

19Here we distinguish the quantities on the sphere from the ones on de Sitter space by a hat.
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These considerations enable us to decompose Minkowski tensors like Aµ into de Sitter

representations Aρ and Aa. The former is a Lorentz/de Sitter scalar, while Aa is a de

Sitter vector.

In (2p+4, p)-form theories that we are studying, the gauge field is a (p+1)-form Aµ0···µp
in Minkowski space. The leading terms in asymptotic ρ-expansion can be decomposed in

a Lorentz-covariant way as

Aρ a1···ap de Sitter p-form,

Aa0···ap de Sitter (p+ 1)-form.
(A.18)

In this paper we are mostly interested in electric description of the theory, in which the first

row of (A.18) plays the main role, and only those components contribute to all charges.

The components in the second row are related to magnetic charges, so from now on we

focus only on Aρa1···ap . These components completely determine the ρ-component of the

field strength tensor

Fρ a0···ap = −(p+ 1)∂[a0A|ρ| a1···ap] . (A.19)

Field strength and coexact charges. First we consider the on-shell field strength and

corresponding gauge fields. Taking all indices of (A.19) on sphere, the equation can be

written as

F̂ρ = −dÂρ, (A.20)

and if we split the latter into

Â = Âcoexact
ρ + Âexact

ρ , (A.21)

clearly the second term is irrelevant to the field strength, thus F̂ρ is determined by Âcoexact
ρ .

On the other hand, if one of the indices of Fρ is temporal, then

F̂ρτ = −∂τ Âcoexact
ρ −

(
∂τ Â

exact
ρ − dÂρτ

)
, (A.22)

and the equation of motion is

DB1F̂ρτB1···Bp = 0 or d†F̂ρτ = 0. (A.23)

Eq. (A.23) shows that F̂τρ is a co-closed p-form on S2p+2, which in turn implies that the

terms in parenthesis must be harmonic forms, and hence vanishing (if p > 0). In conclusion,

F̂τρ is also determined solely by Âcoexact:

F̂ρ = −dÂcoexact
ρ , (A.24)

F̂ρτ = −∂τ Âcoexact
ρ . (A.25)

Eq. (A.24) resulted from Bianchi identity, while (A.25) was a consequence of field equations,

with no use of gauge conditions. We have shown that Fρ a0···ap is built out of the coexact

part of the gauge field AρB1···Bp and this is a Lorentz invariant statement as the indices on

F imply. For p = 0, Aρ is a scalar with no exact parts.
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Gauge potential and exact charges. Let’s study the exact part of the gauge field.

We argued that the parenthesis in (A.22) vanishes on-shell, thus

∂τ Â
exact
ρ = dÂρτ . (A.26)

The action (2.38) and in particular its boundary term were derived in the Lorenz

gauge (2.31a) and (2.31b); the latter being

d†Âρτ = 0. (A.27)

By exactness we introduce Âexact
ρ ≡ dφ̂ where the r.h.s. is a (p − 1)-form on S2p+2.

From (A.26) we obtain20

d
(
Âρτ − ∂τ φ̂ρ

)
= 0 ⇒ Âρτ

∼= ∂τ φ̂ρ. (A.28)

In conclusion, the exact and temporal components of gauge field are on-shell built out

of a (p− 1)-form φ̂ρ on S2p+2 according to

Aexact
ρ = dφ̂, (A.29)

Âρτ
∼= ∂τ φ̂. (A.30)

Note the similarity with the system of equations (A.24), (A.25). Under residual gauge

transformations in temporal gauge

δλÂρ = −dλ̂ρ, δλÂρτ = −∂τ λ̂ρ (A.31)

φ̂ transforms by a shift

φ̂→ φ̂− λ̂ρ. (A.32)

B Canonical analysis of the (d, p)-form theory

This appendix contains in part a review of what appeared in [10, 20]. We will denote the

d dimensional spacetime coordinates by xµ, the time direction by x0 and its spatial part

by xi ≡ x. The Lagrangian for the Abelian p-form gauge theory is

L = −1

2

1

(p+ 2)!

∫
dd−1x

[
(p+ 2)F0i0···ipF0i0···ip + Fi0···ip+1F i0···ip+1

]
=

1

2(p+ 1)!

∫
dd−1x

[
(Ȧi0···ip)2 − 2(p+ 1)Ȧi0···ip∂[i0A|0|i1···ip]

+ (p+ 1)2(∂[i0A|0|i1···ip])
2 − 1

(p+ 2)
Fi0···ip+1F i0···ip+1

]
. (B.1)

The boundary conditions in spherical coordinates are deduced from Coulomb behaviour

of the fields (cf. section 2.4),

A0B1···Bp = A0B1···Bp r3−d +O(r2−d), AB0···Bp = AB0···Bp r2−d +O(r1−d) , (B.2)

20The case of p = 1 and Aτρ a constant function on S4 must be dealt with separately.
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where we have imposed radial gauge condition ArB1···Bp = 0. Consequently, the Coulomb

boundary conditions for field strength become [51]

F0rB1···Bp = F 0rB1···Bp r2−d +O(r1−d) , (B.3a)

F0B0···Bp = F 0B0···Bp r1−d +O(r−d) , (B.3b)

FrB0···Bp = F rB0···Bp r−d +O(r−1−d) . (B.3c)

The canonical momenta are defined as

π0i1···ip ≡ ∂L
∂Ȧ0i1···ip

= 0 , (B.4a)

πi0···ip ≡ ∂L
∂Ȧi0···ip

= Ȧi0···ip − (p+ 1)∂[i0A|0|i1···ip] . (B.4b)

where L is the Lagrangian density. Equation (B.4a) just shows that A0i1···ip is not a

dynamical field since there is no term in the Lagrangian with time derivative of A0i1···ip .

Vanishing of the associated momenta constitute the following primary constraints,

φ
i1···ip
1 ≡ π0i1···ip = 0 . (B.5)

The canonical commutation relations among the fields on the phase space are

{Aµ0···µp(x), πν0···νp(y)} = δd−1(x− y)δ
ν0···νp
µ0···µp , (B.6)

where the generalized Kronecker delta is equal to +1 (respectively −1) if the lower indices

are even (respectively odd) permutations of upper indices, and zero otherwise.

The canonical Hamiltonian is

HC =

∫
dd−1xπi1···ipȦi1···ip − L

=
1

2

∫
dd−1x

[
1

(p+ 1)!
πi0···ipπ

i0···ip +
1

(p+ 2)!
Fi0···ip+1F i0···ip+1 ,

− 1

p!
A0i1···ip∂kπ

ki1···ip
]

+ B . (B.7)

where the boundary term B

B =
1

(p+ 1)!

∫
dd−1x∂k

(
A0i1···ipπ

ki1···ip) , (B.8)

vanishes within boundary conditions (B.2), (B.3). There are also secondary constraints

{π0i1···ip , HC} = ∂kπ
ki1···ip ≡ φi1···ip2 . (B.9)

The complete set of p-form constraints φ
i1···ip
1 and φ

i1···ip
2 are first-class and the generator

of gauge symmetry will be built out of them. There are no further constraints since

{φi1···ip2 , HC} = 0 .
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B.1 Gauge transformations, gauge fixing and its reducibility

The generators of gauge transformation are constructed using the procedure of Castel-

lani [93];

G[ε] =
1

p!
ε1
i1···ipφ

i1···ip
1 +

1

p!
ε2
i1···ipφ

i1···ip
2 . (B.10)

where gauge parameters ε1 and ε2 are arbitrary anti-symmetric tensors. The extended

action;

SE =

∫
ddx
[
πi0···ipȦi0···ip + π0i1···ipȦ0ii···ip −HC − u1

i1···ipφ
i1···ip
1 − u2

i1···ipφ
i1···ip
2

]
, (B.11)

is invariant under transformations generated by (B.10). Here u1 and u2 are Lagrange

multipliers. The gauge transformations δεF = {F,G[ε]} read

δA0i1···ip = ε1
i1···ip , δAi0···ip = (p+ 1)∂[i0ε

2
i1···ip] , (B.12)

δπ0i1···ip = π0i1···ip = 0 . (B.13)

The Lagrange multipliers must transform accordingly to retain invariance of the action [20]:

δu1
i1···up = ε̇1

i1···ip , δu2
i1···up = ε̇2

i1···ip − ε
1
i1···ip . (B.14)

One usually fixes the Lagrange multipliers corresponding to the secondary and higher

generation constraints to zero, reverting to the total action ST which includes primary

constraints only. So we may set δu2 = ε̇2 − ε1 = 0 in the above,

δA0i1···ip = ε̇i1···ip , δAi0···ip = (p+ 1)∂[i0εi1···ip]. (B.15)

Gauge symmetry of the theory, A→ A+dε involves arbitrary p-form gauge parameter

εµ1···µp . However this generating set is reducible, since any gauge parameter of the form

ε = dη leaves the fields intact [10, 46] (in [63] these were called exact symmetries). The

reducibility manifests itself in identities among secondary constraints φ2:

I
i2···ip
(1) = ∂mφ

mi2···ip
2 = 0. (B.16)

The identities I(1) are not independent either. Taking repetitive divergences produces a

chain of identities:

I
in···ip
(n−1) = ∂mI

min···ip
(n−2) , n = 3, · · · , p+ 1 . (B.17)

Yet another way of spotting the reducibility is through the fact that Noether identities

corresponding to the gauge symmetries are not independent,

∇α∇βFαβµ1···µp = 0 . (B.18)

These are not independent identities, which is evident by taking further derivatives. We

can identify the redundant gauge parameters among εi1···ip in (B.15). If

εi1···ip = p∂[i1ηi2···ip] (B.19)
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then the corresponding gauge transformation vanishes

εi1···ip(x){K(y), φ
i1···ip
2 (x)} = 0 (B.20)

for all K due to reducibility identity I1 (B.16). However, Lagrange multipliers are left

invariant under (B.14) only if εi1···ip is time independent. The usual procedure in deal-

ing with reducible symmetries, however, is to enhance the gauge symmetry by a set of

parameters ε0i2···ip acting only on Lagrange multipliers as

δu1
i1···ip = −p∂[i1ε|0|i2···ip] . (B.21)

Now the redundant transformations are characterized by ε0i2···ip = η̇i2···ip where η is defined

in (B.19) and is arbitrary. With these considerations, the full set of gauge parameters of

the theory contain arbitrary p-forms εµ1···µp in spacetime.

The number of conjugate pairs is
(
d
p+1

)
. There are

(
d−1
p

)
primary and

(
d−1
p

)
secondary

constraint. Each generation of reducibility identities consists of #I(n) =
(
d−1
p−n
)

number

of relations which should be enumerated by alternating signs. Using Pascal’s identity(
d
p+1

)
=
(
d−1
p+1

)
+
(
d−1
p

)
we can write the whole number as an alternating sum:

#degrees of freedom =

p+1∑
k=0

(
d− 1

k

)
(−1)p−k+1 =

(
d− 2

p+ 1

)
. (B.22)

One can readily check that Maxwell’s theory (p = 0) in d dimensions has d − 2 degrees

of freedom.

B.2 Surface charges

The generator of gauge symmetry is explicitly

G[ε] =

∫
dd−1x

[
ε̇i1···ipπ

0i1···ip − εi1···ip∂kπki1···ip
]

(B.23)

In order to find a differentiable generator, one has to add a boundary term

δG̃[ε] = δG[ε] + δQ[ε], δQ[ε] =

∫
dd−1x∂k

(
εi1···ipδπ

ki1···ip
)

(B.24)

After this modification, G̃[ε] is no longer vanishing on the constraint surface. The on-shell

value of G̃[ε] ≈ Q[ε] is the surface charge corresponding to transformation generated by ε:

Q[ε] =

∫
dd−2x̂εB1···BpF0rB1···Bp . (B.25)

Boundary conditions (B.2) imply that the gauge parameter ε is O(1) and it is time-

independent. In consequence, the charge (B.25) is finite. Moreover, field equations at

leading order give
d

dt
FtrB1···Bp = 0 , (B.26)

which ensures conservation of the charge.
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C Covariant approach to charges and their algebra

We will analyze the gauge symmetry of the system by constructing its covariant phase

space, following [49].

C.1 Symplectic form and its conservation

The action may be written more compactly as

S = −1

2

∫
F ∧ ∗F (C.1)

the Lee-Wald [45] symplectic current is a (d− 1)-form given by

ω = −δ1A ∧ δ2 ∗F − 1↔ 2 (C.2)

If the symplectic current has no leakage at spatial boundary, its integral on any Cauchy

surface gives the symplectic form Ω of the theory:

Ω[δ1, δ2] =

∫
Σ
ω[δ1, δ2] (C.3)

The symplectic structure is conserved, i.e. it is s independent of Σ if the following

quantity−the leakage-vanishes at large ρ:∫
B
ω[δ1, δ2] (C.4)

where the integration is performed on a section of the asymptotic dSd−1 space between τ1

and τ2. This is ensured if the asymptotic fall-off of the symplectic current is faster than

ωρ ∼ ρ1−d. In this case, one can associate conserved charges to gauge transformations of

the theory.

Substituting (2.22a) and (2.23a) boundary conditions in (C.2) and (C.4) reveals that

the flux is vanishing only if d > 2p+ 4, with odd outcome of excluding conserved charges

for electrodynamics in four dimensions. As it turns out, however, refining the symplectic

current and boundary conditions will make the boundary leakage vanish for d = 2p+ 4.

To discuss conservation of symplectic form we begin with decomposing the symplectic

current (C.2) as follows

−(p+ 1)!ωµ = δ1Aν0···νpδ2Fµν0···νp − 1↔ 2 (C.5)

= δ1Aν0···νp∇µδ2Aν0···νp − p∇[ν0
(
δ1Aν0···νpδ2A|µ|ν1···νp]

)
+ p

(
∇[ν0δ1Aν0···νp

)
δ2A|µ|ν1···νp] − 1↔ 2 . (C.6)

Note that the second term in (C.6) is a total derivative. In specific conditions, if the total

derivative term is pushed to the right-hand-side, the flux of the modified symplectic current

is vanishing. To make this happen, fixing the Lorenz gauge

∇ν0Aν0···νp = 0 (C.7)
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is sufficient to omit the third term in (C.6). Regarding the first term, the ρ component is

δ1Aa0···ap∇ρδ2Aa0···ap − 1↔ 2 (C.8)

One can check that this term is O(ρ2(2+p−d)). To see this, first note that the Christoffel

symbols drop out by anti-symmetry in δ1,2, if the number of upper indices inside the

covariant derivative are the same for ∇δ1A and ∇δ2A. Second, the partial derivative

reduces the power by one unit, but the resulting term is symmetric in δ1 ↔ δ2. Therefore

the first non-vanishing term comes from ρ-derivative of subleading terms (if any), with

overall power: (2−d)×2−2+2p+2 = 2(2+p−d). Consequently, taking ρd−1 factor from

the metric, (C.8) is irrelevant to the flux (C.4), if d > 3 + 2p. If this condition is satisfied,

the conserved symplectic current augmented by the boundary term becomes

− (p+ 1)!ωµ = δ1Aν0···νpδ2Fµν0···νp + (p+ 1)∇[ν0
(
δ1Aν0···νpδ2A|µ|ν1···νp]

)
− 1↔ 2 (C.9)

C.2 Residual gauge symmetry charges

Given the symplectic form Ω, the Hamiltonian of a variation δΛA induced by a gauge

transformation A → A+ dΛ is given by

δQΛ[A] = Ω[δΛ, δ,A] =

∫
Σ
ω[δΛ, δ,A] . (C.10)

where A is the background solution at which the charge variation has been calculated. The

symplectic current then is a total derivative ωµ = ∇νkνµ on-shell.

p!kµνλ ≈
1

2
Λα1···αpδFµνα1···αp − (dΛ)µα1···αpδAνα1···αp − µ↔ ν . (C.11)

(We use index λ for the charge, since only the leading term contributes.) The charge must

be integrated on the boundary of Σ, a (d− 2)-surface

δQλ[A] =

∫
C

√
G kρτλ . (C.12)

The charge variation, in terms of de Sitter forms, is hence

δQλ[A] =

∫
C

√
G
[
λ ∧ ?δFρ + dλρ ∧ ?δA + δAρ ∧ ?(dλ)

]
, (C.13)

where λ is defined in (2.24b). An integration by parts in the second term gives

dλρ ∧ ?δA = d
(
λρ ∧ ?δA

)
− (−1)p−1λρ ∧ d ? δA . (C.14)

Inside the integral, the total derivative on de sitter will be pulled back to the sphere and

will drop by Stokes theorem. Then, from Lorenz gauge (2.31a) one has

d ? δA = 2(−1)p+1δAρ , (C.15)

which leads to the following formula for charge variation,

δQλ[A] =

∫
C

√
G
[
λ ∧ ?δFρ − 2λρ ∧ ?δAρ + δAρ ∧ ?dλ

]
, (C.16)
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in terms of forms on sphere. Being linear in field variations, one can readily verify the

integrability condition

(δ1δ2 − δ2δ1)Qλ[A] = 0. (C.17)

The charge variation can be hence be integrated to give a function Qλ on phase space,

which after writing in terms of forms on sphere recovers (3.8) for the charge.
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[12] E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality

of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106]

[INSPIRE].
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