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ABSTRACT

ASYMPTOTIC THEORY AND
APPLICATIONS OF RANDOM

FUNCTIONS

XIAOOU LI

Random functions is the central component in many statistical and probabilistic

problems. This dissertation presents theoretical analysis and computation for random

functions and its applications in statistics.

This dissertation consists of two parts. The first part is on the topic of classic

continuous random fields. We present asymptotic analysis and computation for three

non-linear functionals of random fields. In Chapter 2, we propose an efficient Monte

Carlo algorithm for computing P{supT f(t) > b} when b is large, and f is a Gaussian

random field living on a compact subset T . For each pre-specified relative error ε, the

proposed algorithm runs in a constant time for an arbitrarily large b and computes

the probability with the relative error ε. In Chapter 3, we present the asymptotic

analysis for the tail probability of
∫
T
eσf(t)+µ(t)dt under the asymptotic regime that

σ tends to zero. In Chapter 4, we consider partial differential equations (PDE) with

random coefficients, and we develop an unbiased Monte Carlo estimator with finite

variance for computing expectations of the solution to random PDEs. Moreover,

the expected computational cost of generating one such estimator is finite. In this

analysis, we employ a quadratic approximation to solve random PDEs and perform

precise error analysis of this numerical solver.

The second part of this dissertation focuses on topics in statistics. The random

functions of interest are likelihood functions, whose maximum plays a key role in



statistical inference. We present asymptotic analysis for likelihood based hypothesis

tests and sequential analysis. In Chapter 5, we derive an analytical form for the

exponential decay rate of error probabilities of the generalized likelihood ratio test

for testing two general families of hypotheses. In Chapter 6, we study the asymptotic

property of the generalized sequential probability ratio test, the stopping rule of which

is the first boundary crossing time of the generalized likelihood ratio statistic. We

show that this sequential test is asymptotically optimal in the sense that it achieves

asymptotically the shortest expected sample size as the maximal type I and type II

error probabilities tend to zero. These results have important theoretical implications

in hypothesis testing, model selection, and other areas where maximum likelihood is

employed.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Random functions is the central component in many statistical and probabilistic

problems. This dissertation presents theoretical analysis and computation for random

functions and its applications in statistics.

This dissertation consists of two parts. The the first part (Chapter 2, Chapter 3

and Chapter 4) falls into the category of applied probability, where the random func-

tions are classic continuous random fields such as Gaussian random fields. Under

different problem settings, three types of functionals of random fields are studied.

In Chapter 2, we consider the supremum of a Hölder continuous Gaussian ran-

dom field {f(t) : t ∈ T} living on a compact set T ⊂ Rd. A classic problem in

applied probability is the asymptotic analysis and simulation of the tail probability

P(supt∈T f(t) > b) as b → ∞, which have a wide range of applications including, but

not limited to, physical oceanography, cosmology, quantum chaos, and brain mapping

[Adler et al., 1996; Bardeen et al., 1986; Dennis, 2007; Friston et al., 1994]. For sim-

ulating such small probabilities with a reasonable relative accuracy, standard Monte

Carlo method requires computational cost that grows exponentially fast in b2. We

design efficient computational method that runs in constant time that is indepen-

dent with b for achieving the same level of relative accuracy. Besides computation,

the change of measure and its analysis techniques have several theoretical indications



CHAPTER 1. INTRODUCTION 2

in the asymptotic analysis of general random functions, which will be presented in

Chapter 5 and Chapter 6.

In Chapter 3, we consider the integral
∫
T
eσf(t)+µ(t)dt, where σ is a scale factor

and µ(t) is a deterministic function living on T . Such integral of lognormal random

fields plays a key role in many probabilistic models in portfolio risk analysis, spatial

point processes, etc. [Liu and Xu, 2012]. We present asymptotic analysis for the

tail probability of
∫
T
eσf(t)+µ(t)dt under the asymptotic regime that the scale factor σ

tends to zero. This analysis has implications in risk analysis of short-term behavior

of a large size portfolio under high correlations, for which the variances of log-returns

could be as small as a few percent.

In Chapter 4, we consider functionals that are more complicated than those de-

scribed in Chapter 2 and 3. In particular, we consider an elliptic partial differential

equation (PDE)

−∇ · (a(x)∇u(x)) = f(x) for x ∈ U,

where U ⊂ Rd is a connected domain and the functions a(·) and f(·) are random

fields living on the domain U . Such random PDE is a powerful tool to characterizing

various physical systems which are microscopic heterogeneous or contain measurement

errors of parameters [De Marsily et al., 2005; Delhomme, 1979]. Let C(U) be the

set of continuous functions on U and Q : C(U) → R be a real valued functional.

We are interested in computing the expectation EQ(u). For simulating this quantity,

standard Monte Carlo is computationally intensive and has bias due to the inaccuracy

of numerical solutions of PDEs. We develop an unbiased Monte Carlo estimator with

finite variance for computing expectations of the solution of random PDEs. Moreover,

the expected computational cost of generating one such estimator is also finite.

The second part (Chapter 5 and 6) of the this dissertation focuses on topics in

statistics. The random functions of interest are likelihood functions indexed by model

parameters (Chapter 5) and possibly sample size as well (Chapter 6), whose maximum

is a key component in statistical inference.
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In Chapter 5, we consider the generalized likelihood ratio test and derive an an-

alytical form for the exponential decay rate of error probabilities. The study on

generalized likelihood ratio test was initiated by Neyman and Pearson [1933a]. Cox

[1961, 1962, 2013] discussed the case where the null hypothesis and alternative hy-

pothesis are separate parametric families. In the context of testing a simple null

hypothesis against a fixed simple alternative hypothesis, Chernoff [1952] introduced

a measure of asymptotic efficiency for tests based on sum of independent and iden-

tically distributed observations, a special case of which is the likelihood ratio test.

This dissertation present an extension of results in Chernoff [1952] to the general-

ized likelihood ratio test for testing composite null against a composite alternative

hypothesis. The technical challenges of this extension mainly lie in the fact that the

generalized likelihood ratio statistic is the ratio of two maximized likelihood function-

s. Usual techniques such as large deviation theory for independent and identically

distributed random variables are no longer applicable. We resort to similar change of

measure technique discussed in Chapter 2 and provide a definitive conclusion of the

asymptotic efficiency of generalized likelihood ratio test under Chernoff’s asymptot-

ic regime. This result has important theoretical implications in hypothesis testing,

model selection, and other areas where maximum likelihood is employed.

In Chapter 6, we present asymptotic analysis for generalized likelihood ratio test in

the context of sequential analysis. The central goal of sequential analysis is to reduce

the sample size required to achieve a certain level of error probabilities compared to its

fixed-sample-size counterpart, by means of constructing appropriate early stopping

rules. In the literature of composite sequential hypothesis testing, a univariate or

multivariate exponential family is usually assumed, and asymptotic analysis of error

probabilities are discussed in Bartroff and Lai [2008]; Shih et al. [2010]. We present

asymptotic analysis for non-exponential families with the aid of an extension of the

technique discussed in Chapter 5. In particular, we consider the case where the

stopping rule is the first boundary crossing time of the generalized likelihood ratio
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statistic. We show that this sequential test is asymptotically optimal in the sense that

it achieves asymptotically the shortest expected sample size as the maximal type I

and type II error probabilities tend to zero.
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Chapter 2

Rare-event Simulation and

Efficient Discretization for the

Supremum of Gaussian Random

Fields1

2.1 Introduction

In this chapter, we consider the design and the analysis of efficient Monte Carlo meth-

ods for the high excursion events of Gaussian random fields. Consider a probability

space (Ω,F ,P) and a Gaussian random field

f : T × Ω → R

living on a d-dimensional compact subset T ⊂ Rd. Most of the time, we omit the

second argument and write f(t). Let M = supt∈T f(t). In this chapter, we are

1This chapter is based on an accepted manuscript of an article published in Ad-

vances in Applied Probability, Volume 47, Issue 03, September 2015, available online:

http://journals.cambridge.org/abstract S0001867800048837.
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interested in the efficient computation of the high excursion probabilities, that is,

w(b) , P(M > b) (2.1)

as b → ∞. On computing small probabilities converging to zero, it is sensible to

consider relative accuracy that is defined as follows.

Definition 1. For some positive ε and δ, a Monte Carlo estimator Z of w is said to

admit ε− δ relative accuracy if

P(|Z − w| < εw) > 1− δ. (2.2)

We propose a Monte Carlo estimator admitting ε−δ relative accuracy for comput-

ing the tail probabilities w(b). One notable feature of this estimator is that the total

computational complexity to generate one such estimator is bounded by a constant

C(ε, δ) that is independent of the excursion level b. Thus, to compute w(b) with any

prescribed relative accuracy as in (2.2), the total computational complexity remains

bounded as the event becomes arbitrarily rare. With such an algorithm, the compu-

tation of rare event probabilities is at the same level of complexity as the computation

of regular probabilities. This efficiency result is applicable to a large class of Hölder

continuous Gaussian random fields and thus is very generally applicable.

The analysis mainly consists of two components. First, we consider a change of

measure on the continuous sample path space (denoted by Qb). The corresponding

importance sampling estimator given in (2.16) is unbiased. The first step of the anal-

ysis is to show that this estimator admits a standard deviations on the order O(w(b)).

Such estimators are said to be strongly efficient, which is a common efficiency concept

in the rare-event simulation literature (Asmussen and Glynn [2007]; Bucklew [2004]).

The second part of the analysis concerns the implementation. The simulation of

the estimators in the previous paragraph requires the generation of the entire sample

path of f . In that context, the process f is a continuous function. A computer

can only generate finite-dimensional objects, so we need to seek for an appropriate
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discretization scheme to perform the simulations. For instance, a natural approach is

to choose a subset

Tm = (t1, ..., tm) ⊂ T (2.3)

and to use the discrete field on Tm to approximate the continuous field. Thanks

to continuity and under certain regularity conditions of Tm, one can show that

P(supTm
f(t) > b)/w(b) → 1 as m → ∞, i.e., the bias vanishes as the size of the

discretization increases. However, it is well understood that this convergence is not

uniform in b. The smaller w(b) is, the slower it converges. Thus, the set Tm needs to

grow in order to maintain a prefixed relative bias. In fact, as discussed in Adler et al.

[2012], for any deterministic subset Tm, the sizem must increase at least polynomially

with b to ensure a given relative accuracy. In this chapter, we introduce a random

discretization scheme adapted to (correlated with) the random field f . This adaptive

scheme substantially reduces the computation complexity to a constant level.

The high level excursion of Gaussian random fields is a classic topic in probability.

There is a wealth of literature that contains general bounds on P(sup f(t) > b) as

well as sharp asymptotic approximations as b → ∞. An incomplete list of references

is Berman [1985]; Borell [1975a, 2003]; Landau and Shepp [1970]; Ledoux and Ta-

lagrand [1991]; Marcus and Shepp [1970]; Sudakov and Tsirelson [1974]; Talagrand

[1996]. Several methods have been introduced to obtain bounds and asymptotic ap-

proximations, each of which imposes different regularity conditions on the random

fields. General upper bound for the tail of max f(t) is developed in Borell [1975a];

Tsirelson et al. [1976], which is known as the Borel–TIS lemma. For asymptotic

results, there are several methods. The double sum method (Piterbarg [1996]) re-

quires an expansion of the covariance function around its global maximum and also

locally stationary structure. The Euler–Poincaré Characteristics of the excursion

set approximation (denoted by χ(Ab), where Ab is the excursion set) uses the fact

P(M > b) ≈ E(χ(Ab)) and requires the random field to be at least twice differentiable

(Adler and Taylor [2007]; Adler [1981]; Taylor and Adler [2003]; Taylor et al. [2005]).
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The tube method (Sun [1993]) uses the Karhunen-Loève expansion and imposes dif-

ferentiability assumptions on the covariance function (fast decaying eigenvalues) and

regularity conditions on the random field. The Rice method (Azais and Wschebor

[2008, 2009]) represents the distribution of M (density function) in an implicit form.

For other convex functionals, the exact tail approximation of integrals of exponential

functions of Gaussian random fields is developed by Liu and Xu [2012]; Liu [2012].

Recently, Adler et al. [2009] studied the geometric properties of high level excursion

set for infinitely divisible non-Gaussian fields as well as the conditional distributions of

such properties given the high excursion. The recent paper Adler et al. [2012] studies

numerical methods and proposes importance sampling estimators of w(b). In partic-

ular, the authors show that the proposed estimator is a fully polynomial randomized

approximation scheme (FPRAS), that is, to achieve the ε − δ relative accuracy, the

total computation complexity is of order O(ε−q1δ−q2 | logw(b)|q) (Mitzenmacher and

Upfal. [2005]; Traub et al. [1988]; Wozniakowski [1996]). When w(b) is very small,

the complexity O(| logw(b)|q) could be computationally heavy.

The algorithm in this chapter is built upon a change of measure initially intro-

duced in Adler et al. [2012]. Nevertheless, the results are nontrivial and substantial

generalizations of Adler et al. [2012]. The contributions are as follows. First, we show

that the continuous importance sampling estimator proposed in Adler et al. [2012]

given as in (2.16) is strongly efficient to compute w(b) for Hölder continuous fields and

under mild regularity conditions. This generalizes the results in Adler et al. [2012]

who establishes that their relative error grows polynomially fast with b unless the

process is twice differentiable for which the exact Slepian model is available. Second,

we introduce an adaptive discretization scheme that reduces the overall computation-

al cost to a constant level. This is a substantial improvement of Adler et al. [2012]

who requires the discretization size grow polynomially in b for both differentiable and

non-differentiable fields.

The rest of this chapter is organized as follows. In Section 2.2, we present the
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problem settings and some existing results that we will refer to in the later analysis.

Section 2.3 presents the Monte Carlo methods and their efficiency results. Numerical

implementations are included in Section 2.4. Sections 2.5 and 2.6 include the proofs

of the theorems.

2.2 Preliminaries: Gaussian random fields and rare-

event simulation

2.2.1 Gaussian random fields

Throughout this chapter, we consider a Gaussian random field living on a d-dimensional

compact subset T ⊂ Rd, that is, for any finite subset (t1, ..., tn) ⊂ T , (f(t1), ..., f(tn))

is a multivariate Gaussian random vector. For each s, t ∈ T , we define the following

functions,

µ(t) = E(f(t)), C(s, t) = Cov(f(s), f(t)), µT = sup
t∈T

|µ(t)|,

σ2(t) = C(t, t), σ2
T = sup

t∈T
σ2(t), r(s, t) =

C(s, t)

σ(s)σ(t)
.

Let Aγ be the excursion set over the level γ

Aγ = {t ∈ T : f(t) > γ} (2.4)

and thus w(b) = P(Ab 6= ∅). Furthermore, we define the concept of slowly varying

function.

Definition 2. A function L is said to be slowly varying at zero if limx→0
L(tx)
L(x)

= 1,

for all t ∈ (0, 1).

Throughout this chapter, we impose the following technical conditions.

A1 The process f(t) is almost surely continuous in t.
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A2 For some α1 ∈ (0, 2], the correlation function satisfies the following local expan-

sion

1− r(s, t) ∼ ∆sL1(|t− s|)|t− s|α1 , as t → s (2.5)

where ∆s ∈ (0,∞) is continuous in s and L1 is a slowly varying function at zero.

Furthermore, there exist nonnegative constants κr, β0, and positive constant

β1 > 0 satisfying β0 + β1 ≥ α1 such that

|r(t, t+ s1)− r(t, t+ s2)| ≤ κrL1(|s1|)|s1|β0 |s1 − s2|β1 for |s1| ≤ |s2|. (2.6)

A3 The correlation function is non-degenerate, that is, r(s, t) < 1 for all s 6= t.

A4 The standard deviation σ(t) belongs to either of the following two types.

Type 1 σ(t) = 1 for all t ∈ T .

Type 2 σ(t) has a unique maximum attained at t∗ satisfies the following conditions

|σ(t)− σ(s)| ≤ κσ × L2(|t− s|)× |t− s|α2 for all s, t ∈ T , (2.7)

σ(t∗)− σ(t) ∼ Λ× L2(|t∗ − t|)× |t∗ − t|α2 as t → t∗, (2.8)

where α2 ∈ (0, 1], Λ > 0, and L2 is a slowly varying function at zero such

that the limit limx→0+
L1(x)
L2(x)

exists.

A5 There exists κµ > 0 such that if σ(t) is of Type 1 then |µ(s) − µ(s + t)| ≤
κµ

√
L1(|t|)|t|α1/2; if σ(t) is of Type 2 then |µ(s)−µ(s+ t)| ≤ κµ

√
L2(|t|)|t|α2/2.

A6 There exist κm and ǫ small enough, such that mes(B(t, ǫ) ∩ T ) ≥ κmǫ
dωd, for

any t ∈ T , where B(t, ǫ) is the ǫ-ball centered around t and ωd is the volume of

the d−dimensional unit ball.

Condition A2 ensures that the normalized process f(t)−µ(t)
σ(t)

is Hölder continuous

with coefficient α1/2. The bound in (2.6) imposes slightly more conditions. For

instance, in case when 1 − r(s, t) = |t − s|α1 , we can choose that β0 = α1 − 1 and
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β1 = 1 if α1 ≥ 1; β0 = 0 and β1 = α1 if 0 < α1 < 1. Condition A3 excludes the

degenerated case that is not essential and it makes the technical development more

concise. Conditions A4 and A5 require that the mean and the standard deviation

functions are also Hölder continuous. In Condition A4, we can adjust the constant Λ

such that the limit limx→0+ L1(x)/L2(x) belongs to the set {0, 1,∞}. Condition A5

ensures that the variation of the mean function is bounded by those of f(t) and σ(t).

In the later technical developments, the analysis is divided into two cases: α1 < α2

and α1 ≥ α2.

Throughout this chapter, we use the following notations for the asymptotics. We

write h(b) = o(g(b)) if h(b)/g(b) → 0 as b → ∞; h(b) = O(g(b)) if h(b) ≤ κg(b) for

some κ > 0; h(b) = Θ(g(b)) if h(b) = O(g(b)) and g(b) = O(h(b)); h(b) ∼ g(b) if

h(b)/g(b) → 1 as b → ∞.

2.2.2 Rare-event simulation and importance sampling

2.2.2.1 Rare-event simulation

The research focus of rare-event simulation is on estimating w = P(B), where P(B) ≈
0. It is customary to introduce a parameter, say b > 0, with a meaningful interpreta-

tion from an applied standpoint such that w(b) → 0 as b → ∞. Consider an estimator

Zb such that EZb = w(b). A popular efficiency concept in the rare-event simulation

literature is the so-called strong efficiency that is defined as follows (c.f. Asmussen

and Glynn [2007]; Bucklew [2004]; Juneja and Shahabuddin [2006]).

Definition 3. A Monte Carlo estimator Zb is said to be strongly efficient in estimat-

ing w(b) if E(Zb) = w(b) and there exists a κ0 ∈ (0,∞) such that

sup
b>0

V ar(Zb)

w2(b)
< κ0.

Strong efficiency measures mean squared error in relative terms for an unbiased

estimator. Suppose that a strongly efficient estimator of w(b) has been constructed,
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denoted by Zb, and n i.i.d. replicates of Zb are generated Z
(1)
b , ..., Z

(n)
b . Let Z̄b,n ,

1
n

∑n
i=1 Z

(i)
b be the averaged estimator that has variance V ar(Zb)

n
. By means of the

Chebyshev’s inequality, we obtain that

P
(
|Z̄b,n − w(b)| > εw(b)

)
≤ V ar(Zb)

nε2w2(b)
.

For any δ > 0, to achieve the ε− δ accuracy, we need to generate

n =
V ar(Zb)

δε2w2(b)
≤ κ0

δε2

replicates of Zb. This choice of n is uniform in the rarity parameter b. We will

later show that the proposed continuous importance sampling estimator is strongly

efficient.

2.2.2.2 Importance sampling and variance reduction

Importance sampling is based on the basic identity,

P(B) =

∫
I (ω ∈ B) dP (ω) =

∫
I (ω ∈ B)

dP
dQ

(ω) dQ (ω) for a measurable set B,

(2.9)

where we assume that the probability measure Q is such that Q(· ∩ B) is absolutely

continuous with respect to the measure P (· ∩ B). If we use EQ to denote expectation

under Q, then (2.9) trivially yields that the random variable Z (ω) = I (ω ∈ B) dP
dQ

(ω)

is an unbiased estimator of P (B) > 0 under the measure Q, or symbolically, EQZ =

P (B).

A central component lies in the selection of Q in order to minimize the variance

of Z. It is easy to verify that if we choose Q∗(·) = P(·|B) = P(· ∩ B)/P(B) then the

corresponding estimator has zero variance and thus it is usually referred to as the the

zero-variance change of measure. However, Q∗ is clearly a change of measure that is

of no practical value, since P (B) – the quantity that we are attempting to evaluate

in the first place – is unknown. Nevertheless, when constructing a good importance

sampling distribution for a family of sets {Bb : b ≥ b0} for which 0 < P (Bb) → 0 as
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b → ∞, it is often useful to analyze the asymptotic behavior of Q∗ as P (Bb) → 0 in

order to guide the construction of a useful Q.

2.2.2.3 The change of measure

We now present a change of measure defined on the continuous sample path space

denoted by Qb. This measure was initially proposed by Adler et al. [2012]. We should

be able to compute the Radon-Nikodym derivative and also be able to simulate the

process f under Qb. We describe the measure Qb from two aspects. First, we present

its Radon-Nikokym derivative with respect to P

dQb

dP
(f) =

∫

T

hb(t)
qb,t(f(t))

ϕt(f(t))
dt, (2.10)

where hb(t) is a density function on the set T , qb,t(x) is a density function on the

real line, and ϕt(x) is the density function of f(t) under the measure P evaluated at

f(t) = x. We will need to choose hb(t) and qb,t(x) such that the measure Qb satisfies

the absolute continuity condition to guarantee the unbiasedness.

We will present the specific forms of hb(t) and qb,t(x) momentarily. Before that,

we would like to complete the description of Qb by presenting the simulation method

of f under Qb.

Algorithm 1 Continuous simulation

To generate a random sample path under the measure Qb, we need a three-step

procedure.

1: Generate a random index τ ∈ T following the density hb(t).

2: Conditional on the realization of τ , sample f(τ) from the density qb,τ (x).

3: Conditional on the realization of (τ, f(τ)), generate {f(t) : t 6= τ} from the

original conditional distribution P(f ∈ · |f(τ)).

It is not difficult to verify that the above three-step procedure is consistent with

the Randon-Nikodym derivative given as in (2.10). The process f(t) mostly follows
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the distribution under P except at one random location τ where f(τ) follows an

alternative distribution qb,τ (x). The overall Randon-Nikodym derivative is an average

of the likelihood ratio qb,t(f(t))/ϕt(f(t)) with respect to the density hb(t).

Now, we present the specific forms of hb(t) and qb,t(x) for the computation of w(b).

For some positive constant a, let γ be

γ = b− a/b. (2.11)

We choose

qb,t(x) = ϕt(x)
I(f(t) > γ)

P(f(t) > γ)
(2.12)

that is the conditional distribution of f(t) given that f(t) > γ. The distribution of τ

is chosen as

hb(t) =
P(f(t) > γ)∫

T
P(f(s) > γ)ds

. (2.13)

The choice of a in (2.11) does not affect the efficiency results, nor the complexity

analysis. To simplify the discussion, we fix a to be unity, that is,

γ = b− 1/b. (2.14)

The random index τ indicates the location where the distribution of the random field

is changed. Furthermore, qb,t(x) is chosen to be the conditional distribution given a

high excursion. The index τ basically localizes the maximum of f(t). Thus, as an

approximation of the zero-variance change of measure, the distribution hb(t) should

be chosen close to the conditional distribution of the maximum t∗ , arg supt f(t)

given that f(t∗) > b. This is our guideline to choose hb(t). For each t ∈ T , the

conditional probability that f(t) > b given M > b is

P(f(t) > b|M > b) =
P(f(t) > b)

P(M > b)
.

The denominator P(M > b) is free of t and thus P(f(t) > b|M > b) ∝ P(f(t) > b).

Our choice of hb(t) ∝ P(f(t) > γ) approximates P(f(t) > b|M > b) by replacing b
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with γ mostly for technical convenience. With such choices of hb(t) and qb,t(x), the

Radon-Nikodym takes the following form

dQb

dP
=

∫
T
I(f(t) > γ)dt∫

T
P(f(t) > γ)dt

=
mes(Aγ)∫

T
P(f(t) > γ)dt

, (2.15)

where

mes(Aγ) =

∫
I(t ∈ Aγ)dt

is the Lebesgue measure of Aγ. According to Fubini’s theorem, the denominator of

(2.15) is ∫

T

P (f(t) > γ)dt = E[mes(Aγ)].

Remark 1. For different problems, we may choose different hb(t) and qb,t(x) to ap-

proximate various conditional distributions. For instance, qb,t(x) was chosen to be in

the exponential family of ϕt(x) in Liu and Xu [To appear] for the derivation of tail

approximations of
∫
ef(t)dt.

2.2.3 The bias control

In addition to the variance control, one also needs to account for the computational

effort required to generate Zb. This issue is especially important for the current study.

The random objects in this analysis are continuous processes. For the implementation,

we need to use a discrete object to approximate the continuous process. Inevitably,

discretization induces bias, though it vanishes as the discretization mesh increases.

To ensure the ε − δ relative accuracy, the bias needs to be controlled to a level less

than εw(b).

In Adler et al. [2012], it is established that, to ensure a bias of order εw(b), the

size of the discretization must grow at a polynomial rate of b for both differentiable

and non-differentiable fields. The authors also provide an optimality result. For twice

differentiable and homogeneous fields, the size of a prefixed/deterministic set Tm must

be at least of order O(bd) so that the bias can be controlled to the level εw(b). In this
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chapter, we adopt an adaptive discretization that substantially reduces the necessary

size of Tm to constant.

2.3 Main results

The main results of this chapter consist of a random discretization scheme of T

associated with the change of measure Qb and the efficiency results of the importance

sampling estimators and the overall complexity.

2.3.1 An adaptive discretization scheme and the algorithms

2.3.1.1 The continuous estimator and the challenges

Based on the change of measure Qb, an unbiased estimator for w(b) is given by

Zb , I(M > b)
dP
dQb

= I(M > b)

∫
T
P(f(t) > γ)dt

mes(Aγ)
. (2.16)

We call Zb the continuous estimator. It is straightforward to obtain that Eb(Zb) =

w(b), where we use Eb(·) to denote the expectation under the measure Qb. The second

moment of Zb is

Eb(Z
2
b ) = Eb

[{
∫
T
P(f(t) > γ)dt}2
mes2(Aγ)

;M > b
]
,

where f(t) is generated from Algorithm 1. We will later show that Zb (under regularity

conditions) is strongly efficient, that is, Eb(Z
2
b ) = O(w2(b)).

For the implementation, we are not able to simulate the continuous field f and

therefore have to adopt a simulatable estimator, Ẑb, that approximates the continuous

estimator Zb. A natural approach is to consider the random field on a finite set

Tm = {t1, ..., tm} ⊂ T and to use P(maxTm f(ti) > b) as an approximation of w(b) =

P(supT f(t) > b). The bias is given by

P(sup
T

f(t) > b)− P(max
Tm

f(t) > b) = P(Tm ∩ Ab = ∅,M > b).
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We explain without rigorous derivation that the above scheme usually induces a

heavy computational overhead. To simplify the discussion, we consider that f is a

stationary process and its covariance function satisfies the local expansion (slightly

abusing the notation)

C(t) , Cov(f(s), f(s+ t)) = 1− |t|α + o(|t|α) (2.17)

Then, the process is Hölder continuous with coefficient α/2. Under this setting, stan-

dard results yield an estimate of the excursion set E(mes(Ab)|M > b) = Θ(b−2d/α).

Thanks to stationarity, Ab is approximately uniformly distributed over the domain

T .

Notice that the bias term P(Tm ∩ Ab = ∅,M > b) is the probability that Tm does

not intersect with Ab. Therefore, if m ≪ b2d/α, Tm is too sparse such that it is not

able to catch the set Ab no matter how Tm is distributed over T . It is necessary to

have a lattice of size at least of order O(b2d/α). This heuristic calculation was made

rigorous for smooth fields in Adler et al. [2012]. Thus, the computational complexity

to generate the process f on the set Tm grows at a polynomial rate with b. In this

chapter, we aim at further reduction of the discretization size to a constant level while

still maintaining the ε-relative bias. For this sake, we propose to randomly sample

an appropriate discrete set that is correlated with f .

2.3.1.2 A closer look at the excursion set Aγ

The proposed adaptive discretization scheme is closely associated with the three-step

simulation procedure. Among the three steps in Algorithm 1, Step 1 and Step 2 are

implementable. It is Step 3, generating {f(t) : t 6= τ} conditional on (τ, f(τ)), that

requires discretization. In order to estimate w(b) and to generate the estimator Zb, we

only need to simulate the random indicator I(M > b) and the volume of the excursion

set mes(Aγ) conditional on (τ, f(τ)). The term
∫
T
P(f(t) > γ)dt is a deterministic

number that can be computed via routine numerical methods.
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In what follows, we focus on the simulation and approximation of I(M > b) and

mes(Aγ). For illustration purpose, we discuss the stationary case with covariance

function satisfying the expansion (2.17). We define ζ = b2/α and the normalized

process

g(t) = b(f(τ + t/ζ)− b). (2.18)

Note that b × (f(τ) − γ) asymptotically follows an exponential distribution. Condi-

tional on f(τ) = γ + z/b the g process has expectation Eb[g(t)|f(τ) = γ + z/b] =

z − 1− (1 + o(1))|t/ζ|α[b2 + (z − 1)]. For all z = o(b2), we have that

Eb[g(t)|f(τ) = γ + z/b] = z − 1− (1 + o(1))|t|α as b → ∞.

In addition, the covariance of g(t) is Cov(g(s), g(t)) = (|s|α + |t|α − |s − t|α) + o(1)

where o(1) → 0 as b → ∞. Therefore, g(t) converges in distribution to a Gaussian

process with the above mean and covariance function. In addition, f(τ + t/ζ) ≥ γ if

and only if g(t) > −1. The excursion set Aγ can be written as

Aγ = τ + ζ−1 · Ag
−1 , {τ + ζ−1t : t ∈ Ag

−1},

where Ag
−1 = {t : g(t) > −1}. Note that the process g(t) is a Gaussian process with

standard deviation O(|t|α/2) and a negative drift of order O(−|t|α). Therefore, in

expectation, g(t) goes below −1 when z ≪ |t|α where z is asymptotically an expo-

nential random variable. Thus, the excursion set Ag
−1 is of order O(1). Furthermore,

Aγ is a random set within O(ζ−1) distance from the random index τ . The volume

mes(Aγ) is of order O(ζ−d). This heuristic calculation is well understood; see Aldous

[1989]; Berman and others [1972]. The above discussion quantifies the intuition that

τ localizes the global maximum of f . It also localizes the excursion set Aγ. Therefore,

upon considering approximating/computing mes(Aγ) and I(M > b), we should focus

on the region around τ .

Conditional on a specific realization of the process f , we formulate the approx-

imation of mes(Aγ) as an estimation problem. The ratio mes(Aγ)/mes(T ) ∈ [0, 1]
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corresponds to the following probability

mes(Aγ)

mes(T )
= P(U ∈ Aγ)

where U is a uniform random variable on the set T with respect to the Lebesgue

measure. Estimating mes(Aγ) constitutes another rare-event simulation problem.

2.3.1.3 An adaptive discretization scheme

Based on the understanding of the excursion set Aγ, we set up a discretization scheme

adaptive to the realization of τ . To proceed, we provide the general form of ζ in

presence of slowly varying functions

ζ , max
{
|s|−1 : L1(|s|)|s|α1 ≥ b−2 or L2(|s|)|s|α2 ≥ b−2

}
. (2.19)

In the case of constant variance, we formally define α2 = ∞ and thus ζ is defined as

ζ , max{|s|−1 : L1(|s|)|s|α1 ≥ b−2}. We further define two other scale factors

ζi , max
{
|s|−1 : Li(|s|)|s|αi ≥ b−2

}
, i = 1, 2. (2.20)

It is straightforward to verify that

ζ = max(ζ1, ζ2).

Consider an isotropic distribution (centered around zero) with density k(t), that is,

k(t) = k(s) if |s| = |t|. We choose k(t) to be reasonably heavy-tailed such that for

some ε1 > 0

k(t) ∼ |t|−d−ε1 , as t → ∞.

In addition there exists a κ1 > 0 such that k(t) ≤ κ1 for all t. For instance, we can

choose k(t) to be, but not necessarily restricted to, the multivariate t-distribution.

Furthermore, conditional on τ , we define the rescaled density

kτ,ζ(t) = ζd × k(ζ(t− τ)) (2.21)
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that centers around τ and has scale ζ−1. We construct a τ -adapted random subset of

T by generating i.i.d. random variables from the density kτ,ζ(t), denoted by t1, ..., tm.

Then, define

m̂es(Aγ) ,
1

m

m∑

i=1

I(f(ti) > γ)

kτ,ζ(ti)
(2.22)

that is an unbiased estimator of mes(Aγ) in the sense that for each realization of f

Eτ,ζ [m̂es(Aγ)|f ] = mes(Aγ)

where Eτ,ζ(·|f) is the expectation with respect to t1, ..., tm under the density kτ,ζ for

a particular realization of f . Notationally, if ti /∈ T , then I(f(ti) > γ) = 0.

Similar to the approximation of mes(Aγ), we use the same τ -adapted random

subset to approximate I(M > b), that is,

I(
m

max
i=1

f(ti) > b) ≈ I(M > b).

Based on the above discussions, we present the final algorithm.

Algorithm 2 Discrete estimator

1: Generate a random index τ ∈ T following the density hb(t) in (2.13).

2: Conditional on the realization of τ , sample f(τ) from qb,t(x) in (2.12).

3: Conditional on the realization of τ , generate i.i.d. random indices t1, ..., tm follow-

ing density kτ,ζ(t).

4: Conditional on the realization of (τ, f(τ)), generate multivariate normal ran-

dom vector (f(t1), ..., f(tm)) from the original/nominal conditional distribution

of P(·|f(τ)).
5: return

Ẑb =
I(maxmi=1 f(ti) > b)

m̂es(Aγ)

∫

T

P(f(t) > γ)dt,

where m̂es(Aγ) is given as in (2.22).

We will call Ẑb the discrete estimator.
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2.3.2 The main results

We present the efficiency results of the proposed algorithms.

Theorem 1. Consider a Gaussian random field f that satisfies Conditions A1-6. Let

Zb be given as in (2.16) and Algorithm 1. Then, Zb is strongly efficient in estimating

w(b), that is, there exists κ0 such that

Eb(Z
2
b ) ≤ κ0w

2(b), for all b > 0.

Theorem 2. Consider a Gaussian random field f that satisfies Conditions A1-6. Let

Ẑb be the estimator given by Algorithm 2. There exists λ > 0 such that for any ε > 0

if we choose m = λε−d(2/min(α1,α2)+2/β1), then

|Eb(Ẑb)− w(b)| ≤ εw(b)

for all b > 0. Furthermore, there exists κ0 such that

Eb(Ẑ
2
b ) ≤ κ0w

2(b).

With the above results, we generate n i.i.d. replicates of Ẑb, denoted by Ẑ
(1)
b ,

...,Ẑ
(n)
b , withm chosen as in the theorem such that the averaged estimator, 1

n

∑n
i=1 Ẑ

(i)
b ,

has its bias bounded by εw(b)/2 and its variance is bounded by κ0w
2(b)/n. To achieve

ε relative error with at (1− δ) confidence, we need to choose n = 4κ0

ε2δ
, that is,

P
(∣∣∣ 1

m

n∑

i=1

Ẑ
(i)
b − w(b)

∣∣∣ > εw(b)
)
< δ.

The total computational complexity is of order O(m3ε−2δ−1), where m3 is the com-

plexity of Cholesky decomposition of the covariance matrix for the generation of an

m-dimensional Gaussian random vector.

2.4 Numerical analysis

We present four numerical examples to show the performance of our algorithm. First,

we consider a one-dimensional Gaussian field whose tail probability is known in a
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closed form. For the discretization, we deploy m = 20 points when d = 1 and 40

points when d = 2. To make sure that the bias is small enough, we have run the

simulations with 10 times more points and the results didn’t change substantially.

We only report the results with fewer points to illustrate the efficiency.

Example 1. Consider f(t) = X cos t + Y sin t, T = [0, 3/4], where X and Y are

independent standard Gaussian variables. The probability P(supt∈T f(t) > b) is known

in closed form (Adler [1981]),

P( sup
0≤t≤3/4

f(t) > b) = 1− Φ(b) +
3

8π
e−b2/2. (2.23)

Table 1 shows the simulation results.

b true value est std dev coefficient of variation

3 2.68E-03 2.55E-03 1.09E-04 1.35

4 7.17E-05 7.17E-05 3.22E-06 1.42

5 7.31E-07 7.33E-07 3.41E-08 1.47

6 2.80E-09 2.84E-09 1.35E-10 1.51

7 4.01E-12 4.07E-12 1.98E-13 1.54

Table 2.1: Simulation results for the cosine process where n = 1000, m = 20, k(t) is

chosen to be the density function of t−distribution with degrees of freedom 3. The

“true value” is calculated from (2.23), the “std dev” is the standard deviation of the

averaged Monte Carlo estimator over n i.i.d. samples, and the “coefficient of variation”

is the ratio between the standard deviation of a single Monte Carlo estimator and its

expectation.

The following three examples consider random fields over a two-dimensional square.

Example 2. Consider a mean zero, unit variance, stationary and smooth Gaussian

field over T = [0, 1]2, with covariance function

C(t) = e−|t|2 .
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Table 2 shows the simulation results.

b est std dev coefficient of variation

3 9.32E-03 3.63E-04 1.23

4 3.39E-04 1.51E-05 1.41

5 4.20E-06 1.71E-07 1.28

6 1.93E-08 8.15E-10 1.33

7 3.25E-11 1.27E-12 1.23

8 1.87E-14 7.11E-16 1.20

Table 2.2: Simulation results for Example 2, where n = 1000, m = 40, k(t) =

25
32π

(1 + 0.64|t|2)−3.

Example 3. Consider a continuous inhomogenous Gaussian field on T = [0, 1]2 with

mean and covariance function

µ(t) = 0.1t1 + 0.1t2 C(s, t) = e−|t−s|2 .

Table 3 shows the simulation results.

b est std dev coefficient of variation

3 1.25E-02 5.61E-04 1.42

4 4.95E-04 1.95E-05 1.24

5 7.16E-06 2.80E-07 1.24

6 3.51E-08 1.36E-09 1.22

7 6.69E-11 2.72E-12 1.29

8 4.50E-14 1.91E-15 1.34

Table 2.3: Simulation results for Example 3, where n = 1000, m = 40, k(t) is the

same as that of Example 2.
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Example 4. Consider the continuous Gaussian field living on T = [0, 1]2 with mean

and covariance function

µ(t) = 0.1t1 + 0.1t2 C(s, t) = e−|t−s|/4.

Table 4 shows the simulation results.

b est std dev coefficient of variation

3 1.35E-02 6.63E-04 1.55

4 7.40E-04 4.36E-05 1.86

5 1.54E-05 7.53E-07 1.55

6 9.93E-08 5.23E-09 1.66

7 2.87E-10 1.33E-11 1.47

8 2.60E-13 1.41E-14 1.71

Table 2.4: Simulation results for Example 4, where n = 1000, m = 40, k(t) =

1
8π
(1 + |t|2)−3.

For all the examples, the ratios of standard error over the estimated value do not

increase as b increase. This is consistent with our theoretical analysis. Also note

that m does not increase as the level increases, which reduces the computational

complexity significantly. Overall, the numerical estimates are very accurate.

2.5 Proof of Theorem 1

Throughout the proof, we will use κ as a generic notation to denote large and not-

so-important constants whose value may vary from place to place. Similarly, we use

ε0 as a generic notation for small positive constants.

The first result we cite is the Borel-TIS (Borel-Tsirelson-Ibragimov-Sudakov) in-

equality Adler and Taylor [2007]; Borell [1975b]; Tsirelson et al. [1976] that will be

used very often in our technical development.
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Proposition 1. Let f(t) be a centered Gaussian process almost surely bounded in T .

Then, E[supt∈T f(t)] < ∞ and

P
(
sup
t∈T

f (t)− E[sup
t∈T

f(t)] ≥ b
)
≤ exp

(
−b2/(2σ2

T )
)
.

In order to show strong efficiency, we need to establish a lower bound of the

probability

w(b) = Eb

[ 1

mes(Aγ)
;M > b

] ∫

T

P(f(t) > γ)dt

and an upper bound of the second moment

Eb(Z
2
b ) = Eb

[ 1

mes2(Aγ)
;M > b

][ ∫

T

P(f(t) > γ)dt
]2

The central analysis lies in the following two quantities:

I1 = Eb

[ 1

mes(Aγ)
;M > b

]
, I2 = Eb

[ 1

mes2(Aγ)
;M > b

]
. (2.24)

We will show that there exist constants κ and ε0 such that

I1 ≥ ε0ζ
d, I2 ≤ κζ2d. (2.25)

If these inequalities are proved, then lim supb→∞
I2
I21

< ∞ is in place and we finish our

proof for Theorem 1. For the rest of the proof, we establish these two inequalities.

To proceed, we describe the conditional Gaussian random field given f(τ). First,

if we write f(τ) = γ + z/b, then (conditional on τ) z asymptotically follows an

exponential distribution with expectation σ2(τ). Conditional on f(τ) = γ + z/b, let

f(t+ τ) = E[f(t+ τ)|f(τ) = γ + z/b] + f0(t), (2.26)

where f0(t) is a zero-mean Gaussian process. By means of conditional Gaussian

calculation, the conditional mean and conditional covariance function are given by

µτ (t) = E(f(t+ τ)|f(τ) = γ + z/b) (2.27)

= µ(t+ τ) +
σ(τ + t)

σ(τ)
r(τ + t, τ)(γ + z/b− µ(τ))

C0(s, t) = Cov(f0(s), f0(t))

= σ(τ + s)σ(τ + t)[r(s+ τ, t+ τ)− r(τ + t, τ)r(τ + s, τ)].
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The next lemma controls the conditional variance.

Lemma 1. Under condition A1-6, there exists a constant λ1 > 0 such that, for all

τ ∈ T and b large enough, the following statements hold.

(i) For all t+ τ ∈ T ,

C0(t, t) ≤ λ1L1(|t|)|t|α1 ;

(ii) for s, t ∈ T ,

V ar(f0(s)− f0(t)) ≤ λ1 max(L1(|t− s|)|t− s|α1 , L2(|t− s|)|t− s|α2);

(iii) for any ε > 0, there exists δ > 0 (independent of b) such that for each t

E( sup
|s−t|≤δζ−1

f0(s)) ≤
ε

b
.

The proofs for (i) and (ii) are an application of Conditions A2, A3 and A6 and

elementary calculations. (iii) is a direct corollary of (ii) and Dudley’s entropy bound

(Theorem 1.1 of Dudley [2010]). We omit the detailed derivations. We proceed to

the analysis of I1 and I2 by considering the Type 1 and Type 2 standard deviation

function (Condition A4) separately.

In the main text, we only provide the proof when σ(t) is of Type 1 in Condition A4,

that is, a constant variance. The proof of the non-constant case is similar. We present

it in the Supplemental Material available on arXiv (http://arxiv.org/abs/1309.7365

). The constant variance case corresponds to α2 = ∞. The scaling factor is given by

ζ = ζ1.

We aim at showing that I2 ≤ κζ2d1 and I1 ≥ ε0ζ
d
1 .

2.5.1 The I2 term

For some y0 > 0 chosen to be sufficiently small (independent of b) and to be deter-

mined in the later analysis, the I2 term is bounded by

Eb

[ 1

mes2(Aγ)
;M > b

]
≤ y−2d

0 ζ2d1 + Eb

( 1

mes2(Aγ)
;mes(Aγ) < yd0ζ

d
1 ,M > b

)
. (2.28)



CHAPTER 2. RARE-EVENT SIMULATION FOR THE SUPREMUM OF
GAUSSIAN RANDOM FIELDS 27

To control the second term of the above inequality, we need to provide a bound on

the following tail probability for 0 < y < y0

Qb(mes(Aγ) < ydζ−d
1 ,M > b)

=

∫
P(mes(Aγ) < ydζ−d

1 ,M > b|f(τ) = γ + z/b)hb(τ)
qb,τ (γ + z/b)

b
dτdz.

(2.29)

The probability inside the integral is with respect to the original measure P because,

conditional on f(τ), f(t) follows the original conditional distribution. We develop

bounds for P(mes(Aγ) < ydζ−d
1 ,M > b|f(τ) = γ + z/b) under two situations: z > 1

and 0 < z ≤ 1.

Situation 1: z > 1.

Define constant cd = ω
−1/d
d where ωd is the volume of the d-dimensional unit ball. The

event {mes(Aγ) < ydζ−d
1 } implies the event {inf |t−τ |≤cdyζ

−1
1

f(t) ≤ γ}. Otherwise, if

{inf |t−τ |≤cdyζ
−1
1

f(t) > γ}, then {|t− τ | ≤ cdyζ
−1
1 } ⊆ Aγ and mes(Aγ) ≥ ydζ−d

1 . Thus,

we have the bound

P
(
mes(Aγ) ≤ ydζ−d

1 ,M > b|f(τ) = γ +
z

b

)

≤ P
(

inf
|t−τ |≤cdyζ

−1
1

f(t) ≤ γ|f(τ) = γ +
z

b

)
.

Using the representation in (2.26), the right-hand side of the above probability is

= P
(

inf
|t|≤cdyζ

−1
1

f0(t) + µτ (t) ≤ γ
)
. (2.30)

Notice that µτ (0) = γ + z/b > γ + 1/b. For the constant variance case, expression

(2.27) can be written as

µτ (t) = µ(t+ τ) + r(τ + t, τ)(γ + z/b− µ(τ)). (2.31)

According to the Condition A5, we have that |µτ (t) − µτ (0)| = O(bL1(t)|t|α1) +

O(
√
Lt(t)|t|α1). According to the choice of ζ1 in (2.20), we have that for |t| ≤ cdyζ

−1
1 ,

bL1(t)|t|α1 ≤ κbL1(cdyζ
−1
1 )yα1ζ−α1

1 = κb−1L1(cdyζ
−1
1 )

L1(ζ
−1
1 )

yα1 .



CHAPTER 2. RARE-EVENT SIMULATION FOR THE SUPREMUM OF
GAUSSIAN RANDOM FIELDS 28

According to Lemma 5 (i) in the Supplemental Material, the ratio L1(cdyζ
−1
1 )/L1(ζ

−1
1 )

varies slower than any polynomial of y. Thus, we have

|µτ (t)− µτ (0)| ≤ yα1/2b−1. (2.32)

By choosing y small, we have

µτ (t) ≥ γ +
1

2b
for |t| ≤ cdyζ

−1
1 . (2.33)

Furthermore, by Lemma 1(i) the conditional variance is

C0(t, t) ≤ λ1L1(cdyζ
−1
1 )cα1

d yα1ζ−α1
1 . With the same argument as that of (2.32), we

obtain

C0(t, t) = O(yα1/2b−2) for |t| ≤ cdyζ
−1
1 . (2.34)

By Lemma 1(iii), E(sup|t|≤cdy0ζ
−1
1

b× f0(t)) = o(1) as y0 → 0. So we can pick y0 small

enough such that

E( sup
|t|≤cdy0ζ

−1
1

f0(t)) ≤
1

4b
. (2.35)

By the Borel-TIS inequality (Proposition 1), (2.30), (2.33), (2.34), and (2.35), there

exists a positive constant ε0, such that

P(mes(Aγ) ≤ ydζ−d
1 ,M > b|f(τ) = γ + z/b)

≤ P( inf
|t|≤cdyζ

−1
1

|f0(t)| >
1

2b
)

≤ exp(−ε0y
−α1/2).

Situation 2: 0 < z ≤ 1.

We now proceed to the case where 0 < z ≤ 1. With y0 defined to satisfy (2.33) and

(2.35), we let c = cdy0 and define a finite subset T̃ = {t1, ..., tN} ⊂ T such that

1. For i 6= j, |ti − tj| ≥ c
2ζ1

.

2. For any t ∈ T , there exists i, such that |t− ti| ≤ c
ζ1
.
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Furthermore, let

Bi = {t ∈ T : |t− ti| ≤ cζ−1
1 } for i ∈ {1, 2, ..., N}.

and thus ∪iBi = T . Note that

P
(
mes(Aγ) ≤ ydζ−d

1 ,M > b|f(τ) = γ +
z

b

)

≤
N∑

i=1

P
(
mes(Aγ) ≤ ydζ−d

1 , sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b

)
.

With cd as previously chosen, each of the summands in the above display is bounded

by

P
(
mes(Aγ) ≤ ydζ−d

1 , sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b

)

≤ P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
1

|f(t)− f(s)| > 1

b
, sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b

)
. (2.36)

The above inequality is derived from the following argument. Suppose that f(t0) > b.

In order to have mes(Aγ) ≤ ydζ−d
1 , with the same argument as that of (2.30), one

must have inf |s−t0|≤cdyζ
−1
1

f(s) ≤ b − 1/b. Thus, there exists |s0 − t0| ≤ cdyζ
−1
1 and

|f(s0) − f(t0)| > 1
b
. Therefore, the event {mes(Aγ) > ydζ−d

1 , supt∈Bi
f(t) > b} is a

subset of {supt∈Bi,|s−t|≤cdyζ
−1
1

|f(t)− f(s)| > 1
b
, supt∈Bi

f(t) > b}, which yields (2.36).

Select δ0, δ1 > 0 small enough and λ large enough, We provide a bound for (2.36)

under the following four cases:

Case 1. 0 < |ti − τ | < y−δ0ζ−1
1 ;

Case 2. y−δ0ζ−1
1 < |ti − τ | < δ1;

Case 3. |ti − τ | ≥ δ1, y < b−λ;

Case 4. |ti − τ | ≥ δ1, y ≥ b−λ.

To facilitate the discussion, define

xi , ζ1 × |ti − τ |.
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Case 1: 0 < |ti − τ | < y−δ0ζ−1
1 . We provide a bound for (2.36) via the conditional

representation (2.26) and the calculation in (2.27). According to Conditions A2 and

A5, for |t− s| ≤ cdyζ
−1
1 and t ∈ Bi, we have

|µτ (t)− µτ (s)| ≤ κµζ
−α1/2
1

√
L1(y/ζ1)y

α1/2 + κr(xi + 1)β0L1((xi + 1)ζ−1
1 )yβ1ζ−α1

1 b.

According the definition of ζ1 in (2.20) and Lemma 5(i), the above display can be

bounded by

|µτ (t)− µτ (s)| ≤
2κµy

α1/4 + 2κry
−δ0β0+β1−ε0

b
.

We choose δ0 small such that it is further bounded by

|µτ (t)− µτ (s)| ≤ κyε0b−1 for some possibly different ε0 > 0.

Furthermore, we pick y0 > 0 small enough such that for 0 < y < y0 and |s−t| < cdyζ
−1
1

|µτ (s)− µτ (t)| ≤
1

2b
. (2.37)

The above inequality provides a bound on the variation of the mean function over

the set Bi when ti is within y−δ0ζ−1
1 distance close to τ . The probability in (2.36) can

be bounded by

(2.36) ≤ P( sup
t∈Bi,|t−s|≤cdyζ

−1
1

|f0(t)− f0(s)| >
1

2b
).

Note that by Lemma 1(ii), for |s− t| < cdyζ
−1
1 and for y < y0, we have that

V ar(f0(s)− f0(t)) ≤ λ1
L1(cdyζ

−1
1 )

L1(ζ
−1
1 )

yα1b−2 = O(yα1/2b−2). (2.38)

We apply the Borel-TIS inequality (Proposition 1) to the double-indexed Gaussian

field ξ(s, t) , f0(s) − f0(t) and obtain that there exists a positive constant ε0 such

that

P
(

1

mes(Aγ)
> y−dζd1 , sup

t∈Bi

f(t) > b|f(τ) = γ +
z

b

)

≤ P( sup
t∈Bi,|t−s|≤cdyζ

−1
1

|f0(t)− f0(s)| >
1

2b
)

≤ exp(−ε0y
−α1/2). (2.39)
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We put together all the Bi’s such that |ti − τ | < y−δ0ζ−1
1 and obtain that

P
( 1

mes(Aγ)
> y−dζd1 , sup

|t−τ |≤y−δ0ζ−1
1

f(t) > b|f(τ) = γ +
z

b

)

= O(y−δ0d exp(−ε0y
−α1/2)) ≤ exp(−y−ε0)

possibly redefining ε0.

Case 2: y−δ0ζ−1
1 < |ti − τ | < δ1. For this case, we implicitly require that y−δ0ζ−1

1 <

δ1. For t ∈ Bi and y small enough, we have that

P( sup
t∈Bi,|s−t|≤cdyζ

−1
1

|f(t)− f(s)| > 1

b
, sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b
)

≤ P(sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b
).

According to Condition A2 and expression (2.31), we have the bound

µτ (t) ≤ b− ∆τ

2

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

xα1
i b−1, for τ + t ∈ Bi. (2.40)

According to Lemma 1 and definition of ζ1, the variance of f0(t) is controlled by

C0(t, t) ≤ 2λ1
L1(xiζ

−1
1 )

L1(ζ
−1
1 )

xα1
i b−2. (2.41)

According to Proposition 1 and Lemma 5(ii) in the Supplemental Material, we have

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

xα1
i > x

α1/2
i for y−δ0 < xi < δ1ζ1. We continue the calculations

P(sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b
) ≤ P( sup

t+τ∈Bi

f0(t) >
∆τ

2

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

xα1
i b−1)

≤ exp
(
− ∆2

τ

8λ1

L1(xiζ
−1
1 )

L1(ζ
−1
1 )

xα1
i

)

≤ exp(−∆2
τ

8λ1

x
α1/2
i ).

Putting together all the Bi’s such that y−δ0 < xi < δ1ζ1, we have that

P(
1

mes(Aγ)
> y−dζd1 , sup

y−δ0ζ−1
1 <|t−τ |<δ1

f(t) > b|f(τ) = γ +
z

b
)

≤
∞∑

k=0

κ(y−δ0 + k)d−1 exp[−∆2
τ

8λ1

(y−δ0 + k)α1/2]

≤ exp(−y−ε0)
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for some constant ε0 > 0.

Case 3: |ti − τ | ≥ δ1 and y < b−λ. Since C(s, t) is uniformly Hölder continuous,

we can always choose λ large such that for |s− t| ≤ cdyζ
−1
1 ≤ cdb

−λζ−1
1 ,

|µτ (t)− µτ (s)| ≤ 1

4b
. (2.42)

By Lemma 1(ii) and Lemma 5(i), for |s − t| ≤ cdyζ
−1
1 , the conditional variance

V ar(f0(s)− f0(t)) is bounded by

V ar(f0(s)− f0(t)) ≤ λ1
L1(cdyζ

−1
1 )

L1(ζ
−1
1 )

yα1b−2 = O(yα1/2b−2).

Thus, there exist a constant ε0 > 0 such that

P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
1

|f(t)− f(s)| > 1

b
, sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b

)

≤ P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
1

|f0(t)− f0(s)| >
1

2b

)

≤ 2 exp(−ε0y
−α1).

Note that ζ1 ≪ b4/α1 , so for y < b−λ, we have

P
( 1

mes(Aγ)
> y−dζd1 , sup

|t−τ |>δ1

f(t) > b|f(τ) = γ +
z

b

)

≤ O(ζd1 ) sup
i

P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
1

|f(t)− f(s)| > 1

b
, sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b

)

≤ O(b4d/α1) exp(−ε0y
−α1/2)

≤ O(y
− 4d

α1λ ) exp(−ε0y
−α1/2)

≤ exp(−y−ε0) (2.43)

for some possibly different constant ε0.

Case 4: |ti − τ | ≥ δ1 and y ≥ b−λ. Note that Condition A3 implies that for

any δ1 > 0, there exists ε > 0 such that for |s − t| > δ1 one has r(s, t) < 1 − ε.
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Thus according to expression (2.31), there exists ε > 0 such that µτ (t) ≤ (1 − ε)b.

According to Proposition 1 , we have that for b large enough and some ε > 0,

P(
1

mes(Aγ)
> y−dζd1 , sup

|t−τ |≥δ1

f(t) > b|f(τ) = γ +
z

b
)

≤ P( sup
|t|≥δ1

f0(t) + µτ (t) > b)

≤ P( sup
|t|≥δ1

f0(t) > εb) ≤ exp(−ε2b2

2σ2
T

) ≤ exp(−y−ε0).

Combining Cases 1-4, for some constants ε0 and y0 chosen to be small, we have that

for y ∈ (0, y0]

P
( 1

mes(Aγ)
> y−dζd1 ,M > b

∣∣∣f(τ) = γ +
z

b

)
≤ exp(−y−ε0). (2.44)

Together with (2.29), we have

Qb

( 1

mes(Aγ)
> y−dζd1 ,M > b

)
≤ exp(−y−ε0). (2.45)

Thus, according to (2.28), for some κ > 0, we have

EQ
[ 1

mes(Aγ)2
;M > b

]
≤ (κ+ y−2d

0 )ζ2d1 . (2.46)

2.5.2 The I1 term

To provide a lower bound of

I1 = EQb

[ 1

mes(Aγ)
;M > b

]
,

we basically need to prove that mes(Aγ) cannot be always very large. Thus, it is

sufficient to show that f(t) drops below γ when t is reasonably far away from τ . The

next lemma shows that for any δ > 0, the process f(t) drops below γ almost all the

time when |t− τ | > δ.

Lemma 2. Under conditions A1-6, for standard deviation of Type 1, we have that

Qb( sup
|t−τ |>δ

f(t) ≥ γ) ≤ e−ε0b2 for some ε0 > 0. (2.47)
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Lemma 3. Under conditions A1-6, there exists δ small and κ large (independent of

b), such that for x > κ we have

Qb

(
sup

xζ−1≤|t−τ |≤δ

f(t) ≥ γ
)
< e−ε0xα1/4 . (2.48)

The proof of these two Lemmas are provided in the Supplemental Material. We

proceed to developing a lower bound for I1. First, notice that the event {M > b} is

a regular event under Qb, that is,

Qb(M > b) ≥ Qb(f(τ) > b) >
1

2
e−1.

The last step is based on an asymptotic calculation of the overshoot distribution of a

standard Gaussian random variable. According to Lemma 2 and 3, we choose x such

that

Qb( sup
|t−τ |>xζ−1

1

f(t) ≥ γ) <
1

2
e−2.

Let ωd be the volume of the d-dimensional unit ball. Thus, we have

I1 ≥ EQb(
1

mes(Aγ)
;M > b,mes(Aγ) < ωdx

dζ−d
1 )

≥ ω−1
d x−dζd1Qb(mes(Aγ) < ωdx

dζ−d
1 ,M > b)

≥ ω−1
d x−dζd1

[
Qb(M > b)−Qb(mes(Aγ) ≥ ωdx

dζ−d
1 )
]

≥ ω−1
d x−dζd1

[
Qb(M > b)−Qb( sup

|t−τ |>xζ−1
1

f(t) ≥ γ)
]

≥ 1

2
ω−1
d x−dζd1 (e

−1 − e−2). (2.49)

Summarizing the results in (2.46) and (2.49), we have that

Eb(Z
2
b ) ≤ κζ2d1

(∫
P(f(t) > γ)dt

)2
, P(M > b) > ε0ζ

d
1

∫
P(f(t) > γ)dt,

and therefore

sup
b

EQbZ2
b

P2(M > b)
< ∞.
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2.6 Proof of Theorem 2

Let Tm = {t1, ..., tm} be generated in the Step 3 of Algorithm 2. We start the analysis

with the following decomposition

Ẑb − Zb =

[
I(sup f(t) > b)

mes(Aγ)
− I(maxmi=1 f(ti) > b)

m̂es(Aγ)

]
E(mes(Aγ))

= E(mes(Aγ))

×
[I(sup f(t) > b)

mes(Aγ)
− I(maxmi=1 f(ti) > b)

mes(Aγ)

+
I(maxmi=1 f(ti) > b)

mes(Aγ)
− I(maxmi=1 f(ti) > b)

m̂es(Aγ)

]
,

where m̂es(Aγ) is defined as in (2.22). According to the result in Theorem 1, it is

sufficient to show that |EQb(Ẑb−Zb)| ≤ εP(M > b) and V ar(Ẑb−Zb) = O(P2(M > b)).

We define notation

J1 =
I(sup f(t) > b)

mes(Aγ)
− I(maxmi=1 f(ti) > b)

mes(Aγ)

J2 =
I(maxmi=1 f(ti) > b)

mes(Aγ)
− I(maxmi=1 f(ti) > b)

m̂es(Aγ)
.

We control each of the two terms respectively.

2.6.1 The J1 term

Note that J1 is non-negative and

Eb(J1) = Eb

(
1

mes(Aγ)
;M > b;

m
max
i=1

f(ti) ≤ b

)
. (2.50)

The proof of Theorem 1, in particular (2.45), shows that I(M>b)
ζdmes(Aγ)

is uniformly inte-

grable in the parameter b where

ζ = max(ζ1, ζ2).

Thus, for any δ small enough, we have that

sup
Qb(B)≤δ

Eb

(
1

mes(Aγ)
;M > b;B

)
≤ (− log δ)1/ε0δζd. (2.51)
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Therefore, it is sufficient to derive a bound for

Qb(M > b;
m

max
i=1

f(ti) ≤ b).

Let x be large and δ′ be small and we have the following split

Qb

(
M > b;

m
max
i=1

f(ti) ≤ b
)

(2.52)

≤ Qb

(
sup

xζ−1<|t−τ |<δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)

+ Qb

(
sup

|t−τ |<xζ−1

f(t) > b, sup
|t−τ |>xζ−1

f(t) ≤ b;
m

max
i=1

f(ti) ≤ b
)

+ Qb

(
sup

|t−τ |≥δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)
.

We will provide a specific choice of m such that

Qb

(
sup f(t) > b;

m
max
i=1

f(ti) ≤ b
)
≤ δ , ε1+ε0 ,

where ε is the relative bias preset in the statement of the theorem. We consider each

of the three terms in (2.52).

2.6.1.1 The first term in (2.52).

We choose

x = min{(− log δ)4/α, δ′ζ}, where α = min{α1, α2}.

According to Lemma 3, the first term in (2.52) is bounded by

Qb

(
sup

xζ−1<|t−τ |<δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)
≤ Qb

(
sup

xζ−1<|t−τ |<δ′
f(t) > b

)
≤ δ.

Notationally, we define that supt∈∅ f(t) = −∞. Thus, when x = δ′ζ, the above

probability is zero.
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2.6.1.2 The second term in (2.52).

Simple derivations yield that

Qb

(
sup

|t−τ |<xζ−1

f(t) > b, sup
|t−τ |>xζ−1

f(t) ≤ b,
m

max
i=1

f(ti) ≤ b
)

= Eb

[
Qb(

m
max
i=1

f(ti) ≤ b|f); sup
|t−τ |<xζ−1

f(t) > b, sup
|t−τ |>xζ−1

f(t) ≤ b
]

≤ Eb

[
(1− β(Ab))

m; sup
|t−τ |<xζ−1

f(t) > b
]

(2.53)

where

β(Ab) = ζd ×mes(Ab ∩ B(τ, x/ζ))× inf
|t|≤x

k(t)

is a lower bound of the probability that Qb(ti ∈ Ab|f) and B(τ, x) is the ball centered

around τ with radius x. In what follows, we need to show that mes(Ab) cannot be

too small on the set {sup|t−τ |<xζ−1 f(t) > b} and therefore β(Ab) cannot be too small.

We write

E1 = { sup
|t−τ |<xζ−1

f(t) > b}

and write (2.53) as

Eb[(1− β(Ab))
m; E1] = Eb[(1− β(Ab))

m; E1, Dc
λ3,δ1

] + Eb[(1− β(Ab))
m; E1, Dλ3,δ1 ]

where, for some λ3 and δ1 positive, we define

Dλ3,δ1 = { sup
|s−t|≤λ3ζ−1

s,t∈B(τ,xζ−1)

|f(s)− f(t)| ≤ δ1b
−1}.

For some ε0 small, we choose δ1 = ε0δ and λ3 = ε0δ
2/α+1/β1+ε0
1 . We apply the Borel-

TIS lemma to the double-indexed process ξ(s, t) = f(s) − f(t) whose variance is

bounded by Lemma 1 (ii). Thus, we obtain the following bound

Eb

[
(1− β(Ab))

m; E1, Dc
λ3,δ1

]
≤ Qb(D

c
λ3,δ1

) ≤ δ.

Therefore, (2.53) is bounded by

δ + Eb

[
(1− β(Ab))

m; E1, Dλ3,δ1

]
.
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We further split the expectation

Eb

[
(1− β(Ab))

m; E1, Dλ3,δ1

]

≤ Eb

[
(1− β(Ab))

m;Dλ3,δ1 ; sup
|t−τ |<xζ−1

f(t) > b+ δ1b
−1, E1

]

+Qb

[
Dλ3,δ1 ; b < sup

|t−τ |<xζ−1

f(t) ≤ b+ δ1b
−1, E1

]
.

We derive a bound of the second term by considering the standardized process g(t) =

b(f(τ + t/ζ)− b) conditional on f(τ) = γ + z
b
. g(t) can be written as

g(t) =
C(t/ζ + τ, τ)

C(τ, τ)
z + l(t), (2.54)

where l(t) is a random field whose distribution is independent of z. So we have

Qb(b < sup
|t−τ |<xζ−1

f(t) < b+ δ1b
−1) = Qb

(
sup
|t|≤x

C(t/ζ + τ)

C(τ, τ)
z + l(t) ∈ (0, δ1)

)

= O(δ1).

The last equality holds because z has a density bounded everywhere (asymptotically

exponential), and 1
2
< C(t/ζ+τ)

C(τ,τ)
<

σ2
T

σ2(τ)
. Given a realization of l(t) , sup|t|≤x

C(t/ζ+τ)
C(τ,τ)

z+

l(t) ∈ (0, δ1) implies that z has to fall in an interval with length less than 2δ1. Thus,

if we choose ε0 small and δ1 = ε0δ, then

Qb(b < sup
|t−τ |<xζ−1

f(t) < b+ δ1ζ
−1) < δ.

Therefore, we have that (2.53) is bounded by

2δ + EQb [(1− β(Ab))
m;Dλ3,δ1 ; sup

|t−τ |<xζ−1

f(t) > b+ δ1b
−1, E1].

Note that, on the set Dλ3,δ1 , mes(Ab ∩ B(τ, xζ−1)) is controlled by the overshoot

sup|t−τ |<xζ−1 f(t)−b, that is, if sup|t−τ |<xζ−1 f(t) > b+δ1/b, thenmes(Ab∩B(τ, xζ−1)) ≥
ε0λ

d
3ζ

−d. In addition, the density kτ,ζ(t) is bounded from below by x−d−ε1 for t ∈
B(τ, xζ−1). Thus, the probability β(Ab) has a lower bound

β(Ab) ≥ ε0x
−d−ε1λd

3 ≥ ε0δ
2d/α+d/β1+2ε0 .
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The last step of the above inequality follows from that x = min{(− log δ)4/α, δ′ζ}.
Thus, we have that (2.53) is bounded by

2δ + (1− ε0δ
2d/α+d/β1+2ε0)m.

For some κ large,

m = κδ−2d/α−d/β1−3ε0

and therefore

Qb

(
sup

|t−τ |<xζ−1

f(t) > b, sup
|t−τ |>xζ−1

f(t) ≤ b;
m

max
i=1

f(ti) ≤ b
)
≤ 4δ.

2.6.1.3 The last term in (2.52).

According to the result in Lemma 2, we can choose ε0 and δ′ such that

Qb( sup
|t−τ |≥δ′

f(t) ≥ γ) ≤ e−ε0b2 .

There are two cases: δ > e−ε0b2 and δ ≤ e−ε0b2 .

Case 1: δ > e−ε0b2. In this case, The last term in (2.52) is bounded trivially by

Qb

(
sup

|t−τ |≥δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)
≤ Qb( sup

|t−τ |≥δ′
f(t) ≥ γ) ≤ δ.

Case 2: δ < e−ε0b2. We need a similar analysis to that of the second term. We now

split the probability for δ2 = δ1+ε0

Qb

(
sup

|t−τ |≥δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)

≤ Qb

(
sup

|t−τ |≥δ′
f(t) ∈ [b, δ2b

−λ]
)
+Qb

(
sup

|t−τ |≥δ′
f(t) > b+ δ2b

−λ;
m

max
i=1

f(ti) ≤ b
)
.

We now consider the first term split the set {t : |t − τ | > δ′} into two parts. Define

the set F = {t : C(t,τ)
C(τ,τ)

> 1
(− log δ2)2

}, We start with the small overshoot probability on

the set F

Qb

(
b < sup

|t−τ |>δ′,t∈F
f(t) ≤ b+ δ2/b

)
.
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Using the representation (2.54), applying similar analysis as that of the second term,

we have that

Qb

(
b < sup

|t−τ |≥δ′,t∈F
f(t) < b+ δ2b

−1
)

≤ Qb

(
sup

| t
ζ
|>δ′, t

ζ
+τ∈F

C(t/ζ + τ)

C(τ, τ)
z + l(t) ∈ (0, δ2)

)

= O((− log δ2)
2δ2) ≤ δ. (2.55)

The last two steps are based on the fact that z is a random variable independent of

l(t) and has bounded density. Thus, the above probability is bounded by

sup
x

P(x < z < x+ (log δ2)
2δ2) = O((log δ2)

2δ2).

We will return to this estimate soon.

We now consider t in F c. For some κ0 large, we have that Qb(z > −κ0 log δ2) < δ2.

Thus, we only consider z < −κ0 log δ2. Conditional on f(τ) = γ+z/b, the conditional

mean is supt∈F c µτ (t−τ) ≤ C > 0. In addition, the conditional variance of f(t) on the

set F c is almost σ2(t). Thus, we can apply classic results on the density estimation of

the sup f(t) (c.f. Theorem 2 of Tsirel’son [1975]). That is, conditional on f(τ) = γ+ z
b
,

sup|t−τ |≥δ′,F c f(t) has a bounded density over [b, b+ δ2b
−λ] for some λ ≥ 1 and thus

Qb( sup
|t−τ |≥δ′,t∈F c

f(t) ∈ [b, b+ δ2b
−λ]|f(τ) = γ +

z

b
) = O(δ2).

Summarizing the above results, we have that

Qb( sup
|t−τ |≥δ′

f(t) ∈ [b, b+ δ2b
−λ])

≤ Qb( sup
|t−τ |≥δ′,t∈F

f(t) ∈ [b, b+ δ2b
−λ])

+Qb(z ≥ −κ0 log δ2) +Qb( sup
|t−τ |≥δ′,t∈F c

f(t) ∈ [b, b+ δ2b
−λ], z ≤ −κ0 log δ2)

≤ 3δ.

The last term in (2.52) is bounded by

Qb

(
sup

|t−τ |≥δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)
≤ 3δ +Qb

(
sup

|t−τ |≥δ′
f(t) > b

+δ2b
−λ;

m
max
i=1

f(ti) ≤ b
)
.
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For the second term, we apply the old trick by choosing λ4 = δ
2/α+1/β1+ε0
2 b−2λ/α−λ/β1 ,

and thus

Qb( sup
|s−t|<λ4

|f(s)− f(t)| > δ2b
−λ) < δ2. (2.56)

Note that b2 ≤ −ε−1
0 log δ2, we can choose a different ε0 such that λ4 can be simplified

to

λ4 = δ
2/α+1/β1+ε0
2 .

If sup|s−t|<λ4
|f(s) − f(t)| < δ2b

−λ and sup|t−τ |≥δ′ f(t) > b + δ2b
−λ, we have that

β(Ab) ≥ ε0λ
d
4ζ

−d−ε1 . With a different choice of ε0, we choose

m = −2λ−d
4 ζd+ε1 log δ = O(δ−d(2/α+1/β1)−ε0), (2.57)

then we have

Eb[(1− β(Ab))
m; sup

|s−t|<λ4

b < |f(s)− f(t)| < δ2b
−λ, f(t) > b+ δ2b

−λ] ≤ δ. (2.58)

Therefore, combining the bounds in (2.55), (2.56), and (2.58), if ε < e−ε0b2 and we

choose m as in (2.57) and, then

Qb

(
sup

|t−τ |>δ′
f(t) > b;

m
max
i=1

f(ti) ≤ b
)
≤ 5δ.

Putting together the bounds for all the three terms in (2.52), we have that

Qb

(
M > b;

m
max
i=1

f(ti) ≤ b
)
≤ 5δ.

If we choose δ = ε1+ε0 and

m = O(δ−d(2/α+1/β1+ε0)) = O(ε−d(2/α+1/β1)−2dε0)

then according to the bound in (2.51), we have that

EQbJ1 ≤ ζdε.

Similarly, according to the uniform integrability of ζ−2d/mes2(Aγ), by choosing the

same m, there exists a κ0 such that

EQb(J2
1 ) ≤ κ0ζ

2d.
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2.6.2 The J2 term

We now proceed to

J2 = I(
m

max
i=1

f(ti) > b)

[
1

mes(Aγ)
− 1

m̂es(Aγ)

]
.

We study the behavior of J2 by means of the scaled process g(t) defined as in (2.18).

For the analysis of J2, we translate everything to the scale of g(t). Recall the process

g(t) given by (2.18) is

g(t) = b(f(τ + t/ζ)− b), (2.59)

For each t, f(τ + t/ζ) > γ if and only if g(t) > −1.

Conditional on τ , t1, ..., tm are i.i.d. with density kτ,ζ(t) defined as in (2.21). Let

si = (ti− τ)ζ and thus s1, ..., sm are i.i.d. following density k(s). We can then rewrite

the estimator in (2.22) as

m̂es(Aγ) =
ζ−d

m

m∑

i=1

I(g(si) > −1)

k(si)
.

Thus, m̂es(Aγ) is an unbiased estimator ofmes(Aγ), that is, E(m̂es(Aγ)|f) = mes(Aγ).

Conditional on a particular realization of f(t) (or equivalently, g(t)), the variance of

m̂es(Aγ) is

V ar(m̂es(Aγ)|f) =
κfζ

−2d

m
,

where

κf = V ar
[I(g(S) > −1)

k(S)

∣∣∣f
]
≤ k−2(tf ) (2.60)

and

tf = max(|t| : g(t) > −1). (2.61)

By means of the inequality 1
1+x

−1 ≥ −x, we have 1
mes(Aγ)

− 1
m̂es(Aγ)

≤ m̂es(Aγ)−mes(Aγ)

mes2(Aγ)
.

Therefore,

E
[( 1

mes(Aγ)
− 1

m̂es(Aγ)

)2
; m̂es(Aγ) > mes(Aγ)

∣∣∣ f
]
≤ κfζ

−2d

m×mes4(Aγ)
.
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It is the expectation on the set {m̂es(Aγ) < mes(Aγ)} that induces complications in

that the factor 1
m̂es(Aγ)

can be very large when there are not many ti’s in the excursion

set Aγ. We now proceed to this case. Conditional on a particular realization of f

(and equivalently the process g(t)), the analysis consists of three steps.

Step 1. Define the f -dependent probability

pf , Qb(ti ∈ Aγ|f) =
∫

Aγ

kτ,ζ(t)dt =

∫

Ag
−1

k(t)dt. (2.62)

Using standard exponential change of measure techniques for large deviations Dembo

and Zeitouni [2009], we obtain that

Qb

[
m∑

i=1

I(ti ∈ Aγ) ≤ pf (1− δ3)m
∣∣∣f
]
≤ e−mI(δ3,pf ) (2.63)

for all δ3 ∈ (0, 1), where the rate function I(δ3, pf ) = θ∗pf (1 − δ3) − ϕ(θ∗), ϕ(θ) =

log(1−pf+pfe
θ), and θ∗ = log

(
1− δ3

1−pf (1−δ3)

)
. By elementary calculus, if we choose

δ3 =
1
2
, then we have that for some ε0 > 0

I(δ3, pf ) ≥ ε0pf for all pf > 0.

We further have

E
[( 1

mes(Aγ)
− 1

m̂es(Aγ)

)2
;

m̂es(Aγ) ≤ mes(Aγ),
m

max
i=1

f(ti) > b,

m∑

i=1

I(ti ∈ Aγ) ≤
pfm

2

∣∣∣ f
]

≤ E
[ 4

m̂es2(Aγ)
; m̂es(Aγ) ≤ mes(Aγ),

m
max
i=1

f(ti) > b,
m∑

i=1

I(ti ∈ Aγ) ≤
pfm

2

∣∣∣ f
]
.

There is at least one ti in the excursion set Aγ. Therefore, the estimator m̂es(Aγ) ≥
m−1ζ−dk−1(tf ). Thus, the above expectation is upper bounded by

≤ κk−2(tf )m
2ζ2de−ε0mpf .
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Step 2. We consider the situation that
∑

I(ti ∈ Aγ) >
pfm

2
. The unbiasedness of

m̂es(Aγ) suggests that

mes(Aγ) = E
( 1

ζdk(S)
| S ∈ Ag

−1

)
pf ,

where S is a random index following density k(s). Note that on the set Ag
−1, k(tf ) ≤

k(S) ≤ κ1. Thus, if we let λf = κ−1
1 k(tf ), then on the set {∑ I(ti ∈ Aγ) >

pfm

2
} we

have

m̂es(Aγ) ≥
λfmes(Aγ)

2
.

Thus, using Taylor expansion, we have that

Eb

[( 1

mes(Aγ)
− 1

m̂es(Aγ)

)2
; m̂es(Aγ) < mes(Aγ);

∑
I(ti ∈ Aγ) >

pfm

2

∣∣∣f
]

≤ Eb

[
24 (mes(Aγ)− m̂es(Aγ))

2

λ4
fmes4(Aγ)

; m̂es(Aγ) < mes(Aγ);
∑

I(ti ∈ Aγ) >
pfm

2

∣∣∣ f
]

≤ 24κfζ
−2d

mλ4
fmes4(Aγ)

.

Step 3. We combine the previous analysis and have that

Eb(J
2
2 |f) ≤

24ζ−2d

mes4(Aγ)

κ2
1

k2(tf )m
+

κfζ
−2d

m×mes4(Aγ)
+ k(tf )

−2m2ζ2de−ε0mpf . (2.64)

The density k(t) has a heavy tail that is k(t) ∼ 1
|t|d+ε1

and k(t) ≤ κ1 for all t. In Step

3, we provide a bound on the distributions of tf and pf .

We start with tf . For each s > 0, tf > s if and only if sup|t−τ |>s g(t) > −1.

According to the results in Lemmas 2 and 3, for s sufficiently large, there exists some

ε0 > 0 such that

Qb(tf > s) = Qb( sup
|t−τ |>s

g(t) > −1) ≤ exp{−sε0}, for s < δ′ζ (2.65)

and

Qb(tf > s) ≤ exp(−ε0b
2), for s > δ′ζ.

Therefore, all moments of k−1(tf ) is bounded.

Eb[k
−l(tf )] ≤ Eb[t

(d+ε1)l
f ] ≤ κl
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for some constant κl possibly depending on l. Thus, by Cauchy-Schwarz inequality,

the expectation of the first two terms in (2.64) can be bounded as follows

E
[ 24ζ−2d

mes4(Aγ)

κ2
1

k2(tf )m
;M > b

]
≤ O(1)

m

√
E
[ ζ−4d

mes8(Aγ)

]
E(k−4(tf )) ≤

κζ2d

m

E
[ κfζ

−2d

m×mes4(Aγ)

]
≤ O(1)

m

√
E
[ ζ−4d

mes8(Aγ)

]
E(k−4(tf )) ≤

κζ2d

m
.

We now proceed to the third term in (2.64) concerning pf . The expectation of

this term is bounded by

Eb(m
2k(tf )

−2e−mε0pf ;M > b) ≤
√
Eb(m4e−2mε0pf ;M > b)

√
Eb(k−4(tf )).

The second term
√

Eb(k−4(tf )) is O(1). We proceed to the first term

Eb(m
4e−2mε0pf ;M > b) = Eb(m

4e−2mε0pf ; pf ≥ m−1/2)

+Eb(m
4e−2mε0pf ; pf ≤ m−1/2,M > b)

≤ m4e−2ε0
√
m +m4Qb(pf ≤ m−1/2,M > b).

We now proceeding to controllingQb(pf ≤ m−1/2,M > b). Note that pf ≥ k(tf )mes(Ag
−1).

For each x > 0,

Qb(pf < x,M > b) ≤ Qb

(
k(tf ) <

√
x or mes(Ag

−1) <
√
x,M > b

)

≤ Qb(tf > x
− 1

2(d+ε1) ) +Qb(mes(Ag
−1) <

√
x,M > b).

According to the bounds in (2.44), for some δ0 > 0 and ε0 > 0, we have that

Qb(mes(Ag
−1) <

√
x,M > b) = Qb(mes(Aγ) < ζ−d

√
x,M > b) ≤ e−x−ε0/d

for x sufficiently small. According to the previous result, we have that

Qb(tf > x
− 1

2(d+ε1) ) ≤ e−x−ε0 , for x
− 1

2(d+ε1) < δ′ζ

and

Qb(tf > x
− 1

2(d+ε1) ) ≤ e−ε0b2 , for x
− 1

2(d+ε1) ≥ δ′ζ.
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Thus, for some λ large enough and ε0 small enough, we have that

Qb(pf ≤ m−1/2,M > b) ≤ e−mε0 , for m < bλ;

for m > bλ (with λ sufficiently large), tf > m
1

4(d+ε1) implies that τ + tf/ζ /∈ T , that

is, m
1

4(d+ε1) is too large and thus

Qb(pf < m−1/2) = 0, for m > bλ.

Therefore, we have m4Qb(pf ≤ m−1/2,M > b) ≤ κm4e−mε0 for m sufficiently large

and furthermore

Eb(m
4k(tf )

−2e−mε0pf ;M > b) ≤ κm4e−mε0/2.

Summarizing the results in all the three steps, we have that Eb(J
2
2 ) ≤ κζ−2d

m
. If we

choose m = κmax{ε−2, ε−d(2/α+1/β1+3ε0)} = O(ε−d(2/α+2/β1)), then

Eb|Ẑb − Zb| = Eb|J1 + J2|
∫

T

P(f(t) > γ)dt ≤ εζd
∫

T

P(f(t) > γ)dt

and

Eb(Ẑb − Zb)
2 ≤ κζ2d

(∫

T

P(f(t) > γ)dt
)2
.
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2.7 Appendix to Chapter 2

2.7.1 Efficient simulation and efficient discretization for con-

ditional expectations

In this section, we develop an efficient algorithm to compute conditional expectations

given a high excursion

v(b) , E(Γ(f)|M > b) (2.66)

in the asymptotic regime that b tends to infinity, where Γ(·) is a functional (possibly

a random functional) mapping from the space of continuous functions to the real line.

It turns out that the computations of w(b) and v(b) are closely related, which will

be discussed in details later in this section. We define integral

α(b) =

∫

Ab

ξ(t)dt. (2.67)

where ξ(t) is another random field living on T and Ab is the excursion set {t ∈ T :

f(t) > b}. Then we are interested in computing conditional expectation

v(b) = E(α(b)|M > b).

In Section 2.2.2.2, we introduced importance sampling for the probability of a family

of rare event {Bb : b ≥ b0} for which 0 < P(Bb) → 0. We now describe briefly how

an efficient importance sampling estimator for P (Bb) can also be used to estimate a

large class of conditional expectations given Bb. Suppose that an importance sampling

estimator has been constructed

Zb
∆
= I(ω ∈ Bb)

dP
dQ

,

such that V ar (Zb) = O (P(Bb)
2). Then, by noting that

EQ (XZb)

EQ (Zb)
=

E[X;Bb]

P(Bb)
= E[X|Bb], (2.68)

it follows easily that an estimator can be naturally obtained; i.e. the ratio of the

corresponding averaged importance sampling estimators suggested by the ratio in the



CHAPTER 2. RARE-EVENT SIMULATION FOR THE SUPREMUM OF
GAUSSIAN RANDOM FIELDS 48

left of (2.68). Of course, when X is difficult to simulate exactly, one must assume

that the bias in estimating E[X;Bb] can be reduced with certain computational costs.

Similar to (2.16), a natural estimator for the numerator E(α(b);M > b) in (2.68)

is

Yb ,
α(b)

mes(Aγ)

∫

T

P(f(t) > γ)dt, (2.69)

which, under regularity conditions, will be shown to estimate E(α(b);M > b) with

strong efficiency.

For the discrete version of the estimator Yb as in (2.69), we approximate it in the

same way as in Algorithm 2 except for Step 4. In Step 4 of Algorithm 2, we simulate

{(f(ti), ξ(ti)) : i = 1, ...,m} jointly conditional on (τ, f(τ)). Then, we output the

estimator

Ŷb =
α̂(Ab)

m̂es(Aγ)

∫

T

P(f(t) > γ)dt

where

α̂(Ab) ,
1

m

m∑

i=1

ξ(ti)

kτ,ζ(ti)
I(f(ti) > b). (2.70)

Theorem 3. Consider a Gaussian random field f that satisfies Conditions A1-6.

There exists 0 < a1 < a2 < ∞, such that ξ(t) ∈ [a1, a2] almost surely. We have the

following results

1. Then, there exists κ0 such that for all b > 0

Eb(Y
2
b ) ≤ κ0u

2(b)

where u(b) = E(α(b);M > b).

2. There exists λ such that for each ε > 0 if we choose m = λε−d(2/min(α1,α2)+2/β1)

then

|Eb(Ŷb)− u(b)| ≤ εu(b)

and

Eb(Ŷ
2
b ) ≤ κ0u

2(b).
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In the previous theorem, we require that the process ξ(t) take values in a positive

interval [a1, a2]. This constraint is imposed for technical convenience. There are

several ways in which we can relax this condition. If ξ(t) is independent of f(t), then,

we can relax the interval to be (0,∞). In the case when ξ(t) ∈ (0,∞) and ξ(t) and

f(t) are dependent, we may need to modify the algorithm. This is because ξ(t) could

be very close to zero on the excursion set Ab and therefore the estimator (2.70) may

not be strongly efficient in estimating α(t). In this case, we may further change the

sampling distribution of {(f(ti), ξ(ti)) : i = 1, ...,m} to reduce the variance of α̂(t).

These modifications have to be case-by-case and they can be handled by routine

variance reduction techniques that we do not pursue in this chapter.

2.7.2 Proof of Theorem 3

2.7.2.1 The asymptotic lower bound and the continuous estimator

We start the analysis by first establishing an asymptotic lower bound of v(b). Note

that

v(b) = E(mes(Aγ))Eb

[
1

mes(Aγ)

∫

Ab

ξ(t)dt

]
.

Since ξ(t) is bounded by a2, then v(b) ≤ a2E(mes(Aγ)). In addition, a lower bound

can be given by

E
(∫

Ab

ξ(t)dt
)
≥ a1E(mes(Ab))

Thus

v(b) = Θ(1)E(mes(Aγ)).

The second moment of the estimator is

Eb(Y
2
b ) = E2(mes(Aγ))Eb

[
α2(b)

mes2(Aγ)
;M > b

]
≤ a22E

2(mes(Aγ)) ≤
a22
a21

v(b).
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2.7.2.2 Analysis of the discrete estimator

We start the analysis by the following decomposition

Ŷb − Yb =

[
α(b)

mes(Aγ)
I(sup f(t) > b)− α̂(b)

m̂es(Aγ)
I(

m
max
i=1

f(ti) > b)

]
E(mes(Aγ))

= E(mes(Aγ))

×
[α(b)I(sup f(t) > b)

mes(Aγ)
− α(b)I(maxmi=1 f(ti) > b)

mes(Aγ)

+
α(b)I(maxmi=1 f(ti) > b)

mes(Aγ)
− α̂(b)I(maxmi=1 f(ti) > b)

m̂es(Aγ)

]
.

We redefine the terms

J1 =
α(b)I(sup f(t) > b)

mes(Aγ)
− α(b)I(maxmi=1 f(ti) > b)

mes(Aγ)

J2 =
α(b)I(maxmi=1 f(ti) > b)

mes(Aγ)
− α̂(b)I(maxmi=1 f(ti) > b)

m̂es(Aγ)
.

Note that the factor α(b)/mes(Aγ) is bounded by a2, so we have

Eb|J1| ≤ a2Qb(sup f(t) > b,
m

max
i=1

f(ti) > b), Eb(J
2
1 ) ≤ a22Qb(sup f(t) > b,

m
max
i=1

f(ti) > b)

According to the previous analysis, for each ε, there exists an m = O(ε−d(2/α+1/β1)−ε0)

such that

Eb(|J1| | f) ≤ a2ε, Eb(J
2
1 |f) = a22ε.

For the second term, we apply similar analysis as the proof for Theorem 2. Note that

α(b) ≤ a2mes(Aγ), so by rearranging terms in J2, we have

|J2| ≤
[ |α(b)− α̂(b)|

mes(Aγ)
+ a2

|mes(Aγ)− m̂es(Aγ)|
mes(Aγ)

]
I(M > b).

Because α̂(b) is an unbiased estimator for α(b) conditional on f , we have

Eb

[
(α̂(b)− α(b))2|f

]
≤ m−1a22k

−2(tf )ζ
−2d.

Thus,

Eb

[
(â(b)− α(b))2 + a2(mes(Aγ)− m̂es(Aγ))

2
∣∣∣f
]

≤ 2Eb

[
(α̂(b)− α(b))2|f

]
+ 2a22Eb

[
(mes(Aγ)− m̂es(Aγ))|f

]

≤ 4a22m
−1k−2(tf )ζ

−2d.
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Therefore,

Eb

(
|J2|2|f

)
≤ 4a22

λ2
fmes(Aγ)2ζ2dmk2(tf )

Eb

(
|J2||f

)
≤ 2a2

λfmes(Aγ)ζd
√
mk(tf )

According the proof in Section 2.6, there exists a κ > 0 such that

E(|J2|) ≤
κ√
m
.

With a similar argument, we have that

E(J2
2 ) ≤ κ.

Summarizing the result for J1 and J2, we can choose

m = O(max(ε−d(2/α+1/β1+ε0), ε−2)) = O(ε−d(2/α+2/β1)), such that

Eb(Ŷb − v(b)) ≤ εv(b), V ar(Ŷb) = O(1).

2.7.3 Proof of Theorem 1 when σ(t) is of Type 2 in Assump-

tion A4

In our proof for Type 2 standard deviation, we use similar methods as that for Type

1. We are going to establish similar results as in (2.44) and Lemmas 2 and 3 hold for

Gaussian random field with type 2 standard deviation. To proceed, we provide some

bounds on the distribution of τ . The next lemma suggests that τ is close to

t∗ = arg sup
t∈T

σ(t).

Lemma 4. There exists constants δ, ε0 > 0 small enough and κ > 0 large enough

(but independent of b), such that for x > κ the following bounds hold

(i)
∫
|t−t∗|≤ζ−1

2
hb(t)dt > ε0,
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(ii)
∫
δ>|t−t∗|>xζ−1

2
hb(t)dt < exp(−xα2/2),

(iii)
∫
|t−t∗|>δ

hb(t)dt < exp(−ε0b
2).

To continue the analysis of I2 and I1, we discuss two different scenarios:

1. α1 > α2, or α1 = α2 and limx→0
L1(x)
L2(x)

∈ {0, 1}; that is, as x → 0, L1(x)x
α1 ≤

(1 + o(1))L2(x)x
α2 .

2. α1 < α2, or α1 = α2 and limx→0
L1(x)
L2(x)

= ∞; that is, as x → 0, L2(x)x
α2 =

o(1)L1(x)x
α1 .

The proof of this lemma is provided in the Supplemental Material B.

2.7.4 Proof for scenario 1: α1 > α2, or α1 = α2 and limx→0
L1(x)
L2(x)

∈
{0, 1}.

For the proof of this scenario, the variation of σ(t) is the dominating term. According

to A2, there exists a constant ∆ such that

1− r(s, t) ≤ ∆L2(|s− t|)|s− t|α2 (2.71)

In addition, we can further replace the slowly varying function L1 in (2.6) by L2 and

the inequality still holds, that is,

|r(t, t+ s1)− r(t, t+ s2)| ≤ κr max(L2(|s1|)|s1|β0 , L2(|s2|)|s2|β0)|s1 − s2|β1 . (2.72)

For the proof of this scenario, we work under the above two inequalities instead of A2.

The proof follows a similar idea as that of the constant variance case by providing

bounds for I2 and I1.

The I2 term. For a given τ and z, we adopt a similar conditional representation as

in (2.26). We start with establishing similar results as in Lemma 1. Since L1(x)x
α1 ≤

(1+ o(1))L2(x)x
α2 , we can replace α1 and L1 in the statement of Lemma 1 by α2 and
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L2 and the statement still holds. Now we proceed to prove (2.44).According to the

expression (2.29), we proceed by deriving an upper bound of

∫

T

P
(

1

mes(Aγ)
> y−dζ−1

2 ,M > b|f(τ) = γ +
z

b

)
hb(τ)

qb,τ (γ + z/b)

b
dτdz, (2.73)

for y small enough. We discuss two situation: z > 1 and 0 < z ≤ 1.

Situation 1: z > 1. From condition A2, A4, A5, (2.72) and Lemma 5(i), for

|t| < cdyζ
−1
2 , we have that

|µτ (t)− µτ (0)| ≤ κµ

√
L2(|t|)|t|α2/2 + κbL2(|t|)|t|α2 = O(yα2/4b−1)

Note that µτ (0) = γ+ z/b > γ+1/b. Thus, by picking y0 small enough, we have that

µτ (t) ≥ γ +
1

2b
for |t| ≤ cdyζ

−1
2 .

With a similar development as in (2.30) and the conditional variance calculation for

f0(t) as in (2.34), that is,

C0(t, t) = O(yα2/2b−2),

we conclude that for some small ε0 > 0

Qb

( 1

mes(Aγ)
> y−dζ−1

2 ,M > b
)

≤ P
(

inf
|t|≤cdyζ

−1
2

(f0(t) + µτ (t)) ≤ γ
)

≤ P( inf
|t|≤cdyζ

−1
2

|f0(t)| >
1

2b
)

≤ exp(−y−ε0).

Situation 2: 0 < z ≤ 1. For 0 < z < 1, we choose δ0, δ1 to be small enough

and λ to be large enough and develop bounds for the above probability under four

cases (same as in the proof of constant variance case):

Case 1. t ∈ C1 , {t : 0 < |t− τ | < y−δ0ζ−1
2 },

Case 2. t ∈ C2 , {t : y−δ0ζ−1
2 < |t− τ | < δ1},
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Case 3. t ∈ C3 , {t : |t− τ | ≥ δ1} and y < b−λ,

Case 4. t ∈ C3 and y ≥ b−λ.

With these notation, we have the following bound

Qb

( 1

mes(Aγ)
> y−dζ−1

2 ,M > b
)

≤
3∑

i=1

∫

T
P
(

1

mes(Aγ)
> y−dζd, sup

t∈Ci

f(t) > b|f(τ) = γ +
z

b

)
hb(τ)

qb,τ (γ + z/b)

b
dτdz.

With the same argument for (2.36), each of the summands on the right-hand-side is

further bounded by
∫

T

P
(

1

mes(Aγ)
> y−dζd2 , sup

t∈Ci

f(t) > b
∣∣∣f(τ) = γ +

z

b

)
hb(τ)

qb,τ (γ + z/b)

b
dτdz

≤
∫

T

P
(

sup
t∈Ci,|s−t|≤cdyζ

−1
2

|f(t)− f(s)| > 1

b
, sup
t∈Ci

f(t) > b
∣∣∣f(τ) = γ +

z

b

)

×hb(τ)
qb,τ (γ + z/b)

b
dτdz. (2.74)

Similarly, we define

xi , ζ2 × |ti − τ |.

Case 1: 0 < |t−τ | < y−δ0ζ−1
2 . We adopt the same lattice and cover sets, T̃ , and

Bi, defined on page 29 for the proof of the constant variance case, with ζ1 replaced

by ζ2. For this case, we bound the right-hand-side of (2.74) by

∑

Bi∩C1 6=∅

∫

T

P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
2

|f(t)− f(s)| > 1

b

∣∣∣f(τ) = γ +
z

b

)
hb(τ)

qb,τ (γ + z/b)

b
dτdz

and take advantage of the conditional representation f(t) = µτ (t)+f0(t). We proceed

to investigating the variation of µτ (t) and f0(t). For f0(t) and |s− t| ≤ cdyζ
−1
2 , with

the same argument as in (2.38), we have that V ar(f0(t) − f0(s)) ≤ κyα2/2b−2. For

the conditional mean, by means of the representation (2.27),

|µτ (t)− µτ (s)| ≤ κζ
−α2/2
2

√
L2(y/ζ2)y

α2/2

+κbL2(cdy/ζ2)y
α2ζ−α2

2 + κ(xi + 1)β0bL2((xi + 1)/ζ2)y
β1ζ−α2

2

≤ κb−1yε0



CHAPTER 2. RARE-EVENT SIMULATION FOR THE SUPREMUM OF
GAUSSIAN RANDOM FIELDS 55

for some small positive constant ε0. Now we pick y0 small enough. For 0 < y < y0

and |µτ (t)− µτ (s)| < 1
2b
, together with the variance control of f0(t)− f0(s), we have

that

∫

T

P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
2

|f(t)− f(s)| > 1

b

∣∣∣f(τ) = γ +
z

b

)
hb(τ)dτ

≤
∫

T

P
(

sup
t∈Bi,|s−t|≤cdyζ

−1
2

|f0(t)− f0(s)| >
1

2b

∣∣∣f(τ) = γ +
z

b

)
hb(τ)dτ

≤ exp(−y−ε0)

for some ε0 > 0. We sum up all the Bi’s such that 0 < |ti − τ | < y−δ0ζ−1
2 and obtain

that

P
( 1

mes(Aγ)
> y−dζd1 , sup

t∈C1

f(t) > b|f(τ) = γ +
z

b

)
≤ exp(−y−ε0)

for which we may need to choose a smaller ε0.

Case 2: y−δ0ζ−1
2 < |t− τ | < δ1. We split (2.74) as follows

(2.74) ≤
∑

Bi∩C2 6=∅

∫

|τ−t∗|≤ 1
3
y−δ0ζ−1

2

P
(
sup
t∈Bi

f(t) > b
∣∣∣f(τ) = γ +

z

b

)
hb(τ)dτ

+

∫

|τ−t∗|> 1
3
y−δ0ζ−1

2

hb(τ)dτ. (2.75)

For this case, we implicitly requires that y−δ0 < δ1ζ2. Thus, Lemma 4 (ii) and (iii)

provide an upper bound of the second term in the above display

∫

|τ−t∗|> 1
3
y−δ0ζ−1

2

hb(τ)dτ ≤ exp(−y−ε0)

for ε0 and y sufficiently small and y−δ0 < δ1ζ2.

For the first term on the right-hand-side of (2.75), we bound it in a similar way

as in constant variance case. In particular, each summand is bounded by

sup
|τ−t∗|≤ 1

3
y−δ0ζ−1

2

P(sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b
)
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For y−δ0ζ−1
2 < |t− τ | < δ1 and |τ − t∗| ≤ 1

3
y−δ0ζ−1

2 we have that |t− t∗| > 2
3
y−δ0ζ−1

2 .

Using the expansion σ(t∗)− σ(t) ∼ ΛL2(|t− t∗|)|t− t∗|α2 , we have that

σ(t)

σ(τ)
≤ 1− ε0

L2(xiζ
−1
2 )

L2(ζ
−1
2 )

(ζ2|ti − τ |)α2

b2
, for some small ε0 > 0 and . (2.76)

From the expression of (2.27) and the inequality (2.76), for t ∈ Bi ∩ C2 6= ∅ and

xi = ζ2|ti − τ |, we have that

µτ (t) ≤ b+ κ

√
L2(xiζ

−1
2 )

L2(ζ
−1
2 )

x
α2/2
i

b
− ε0

L2(xiζ
−1
2 )

L2(ζ
−1
2 )

xα2
i

b
≤ b− ε0

2
xα2
i

L2(xiζ
−1
2 )

L2(ζ
−1
2 )

b−1.

Furthermore, Lemma 1(i) implies that

V ar(f0(t)) = C0(t, t) ≤ 2λ2
L2(xiζ

−1
1 )

L2(ζ
−1
1 )

xα2
i b−2. (2.77)

Thus, the Borel-TIS inequality suggests that

sup
|τ−t∗|≤ 1

3
y−δ0ζ−1

2

P(sup
t∈Bi

f(t) > b|f(τ) = γ +
z

b
) ≤ exp(−x−ε0

i ),

for some small constant ε0.

Combining the upper bound for the two term on the right side of (2.75), and

putting together all Bi’s such that y−δ0 < xi < δ1, we have that

∫

T

P
( 1

mes(Aγ)
> y−dζd2 , sup

t∈C2

f(t) > b|f(τ) = γ +
z

b

)
hb(τ)

qb,τ (γ + z/b)

b
dτdz

≤ exp(−y−ε0) +
∞∑

k=0

κ(y−δ0 + k)d−1 exp(−(y−δ0 + k)ε0)

≤ exp(−y−ε0/2)

for some large constant κ > 0 and possible a different choice of ε0.

Case 3: |t− τ | ≥ δ1 and y < b−λ. The analysis is completely analogous to the

Case 3 on Page 32. The only difference is that the variance function σ2(t) is non-

constant. Given that σ(t) is Hölder continuous, all the calculations remain. Therefore,
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we omit the details and directly reach the bound that

∫

T

P
( 1

mes(Aγ)
> y−dζd, sup

|t−τ |>δ1

f(t) > b|f(τ) = γ +
z

b

)
hb(τ)

qb,τ (γ + z/b)

b
dτdz

≤ exp(−y−ε0)

for all y < b−λ.

Case 4: |t− τ | ≥ δ1, y ≥ b−λ. We split the bound (2.74) into two parts.

∫

T

P
( 1

mes(Aγ)
> y−dζd, sup

|t−τ |>δ1

f(t) > b|f(τ) = γ +
z

b

)
hb(τ)dτ

≤ sup
|τ−t∗|≤δ1/3

P
( 1

mes(Aγ)
> y−dζd, sup

|t−τ |>δ1

f(t) > b|f(τ) = γ +
z

b

)

+

∫

|τ−t∗|>δ1/3

hb(τ)dτ. (2.78)

From Lemma 4 (iii), the second term on the right side of last inequality can be bound

by exp(−bε0) for some ε0 > 0. Note that in Case 4, y > b−λ, so this expression can

be further bounded by

∫

|τ−t∗|>δ1/3

hb(τ)dτ ≤ exp(−ε0b
2) ≤ exp(−y−ε0/λ).

Now we consider the first term on the right side of (2.78). On the set |τ−t∗| < δ1/3

and |t− τ | > δ1, there exists some ε0 such that the conditional mean can be bounded

from below by

µτ (t) ≤ (1− ε0
2
)b. (2.79)

This is because from condition A4, σ(τ) ≥ σ(t∗) − ΛL(δ1/3)(δ1/3)
α, for |τ − t∗| ≤

1/3δ1; while σ(t) ≤ σ(t∗)−ΛL(2δ1/3)(2δ1/3)
α2 , for |t− t∗| ≥ 2δ1/3. As a result, there

exists a constant ε0 > 0 such that σ(t)
σ(τ)

≤ 1− ε0. In addition, the correlation function

also drops.

For the rest of case 4, we follow the same analysis as that of Case 4 on page 32
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and derive an upper bound for the first term on the right side of (2.78).

P
( 1

mes(Aγ)
> y−dζd, sup

|t−τ |≥δ1

f(t) > b|f(τ) = γ +
z

b

)

≤ P
(

sup
|t−τ |≥δ1

f(t) > b|f(τ) = γ +
z

b

)

≤ P
(

sup
|t−τ |≥δ1

f0(t) + µτ (t) > b
)

≤ P
(

sup
|t−τ |≥δ1

f0(t) > ε0b/2
)

≤ exp(− ε20
8σ2

T

b2) (2.80)

≤ exp(−y−ε′0).

for some ε0, ε
′
0 > 0. Combining our result for the first and second term of (2.78), and

for Ci = C3 for y ≥ b−λ

(2.74) ≤ exp(−y−ε0), for some possibly smaller ε0 > 0.

Summary of the analysis for I2. Putting all the results in Cases 1-4 together,

we have that there exists a y0 > 0 such that

Qb

( 1

mes(Aγ)
> y−dζ−1

2 ,M > b
)
≤ exp(−y−ε0), (2.81)

for 0 < y < y0. Thus, for some κ > 0, we have

I2 = EQb

( 1

mes(Aγ)2
;M > b

)
≤ (κ+ y−d

0 )ζ2
2d.

The I1 term. We are going to derive a lower bound for I1 by showing that Lemma

2 and Lemma 3 are valid. Following the same calculation for (2.78), we reach the

result of Lemma 2 (on page 33) that

Qb( sup
|t−τ |≥δ′

f(t) ≥ γ) ≤ Qb(|t∗ − τ | ≥ δ′/3) +Qb( sup
|t−τ |≥δ′

f(t) ≥ γ, |t∗ − τ | < δ′/3)

The first term on the right-hand-side is controlled by Lemma 4 (iii). The second term

can be bounded by a similar analysis as in (2.80). Thus, we have that

Qb( sup
|t−τ |≥δ′

f(t) ≥ γ) ≤ e−ε0b2 (2.82)
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for some ε0 small.

Now, we proceed to proving a similar result as in Lemma 3 (page 34). Note that

for xζ2
−1 < δ′

Qb

(
sup

xζ2
−1≤|t−τ |≤δ′

f(t) ≥ γ
)

≤ Qb

(
sup

xζ2
−1≤|t−τ |≤δ′

f(t) ≥ γ, |τ − t∗| < xζ−1
2 /3

)

+Qb

(
|τ − t∗| > xζ−1

2 /3
)
.

Thanks to Lemma 4, the second term on the right-hand-side is bounded by e−xε0 .

For the first term, we follow a similar analysis as in Lemma 3. In particular, we can

establish a bound for the conditional mean µτ (t) = E(f(τ + t)|τ, z) in the following

form

µτ (t) ≤ γ +
z

b
− ε0

xα2

b

for all xζ−1
2 < |t| < δ′ and |τ − t∗| < xζ−1

2 /3. With this bound, we follow exactly the

same analysis as in Lemma 3 and obtain that

Qb

(
sup

xζ2
−1≤|t−τ |≤δ′

f(t) ≥ γ
)
≤ e−xα2/4 (2.83)

and thus a similar result in Lemma 3 has been proved. With these results, we use

the same analysis as that in (2.49) and obtain that for some x sufficiently large

I1 ≥ ε0x
−dζd2 .

Combining our upper bound for I2 and lower bound for I1, we conclude the proof for

scenario 1.

sup
b

EQbZ2
b

P2(M > b)
= sup

b

I2
I21

< ∞.

2.7.4.1 Proof for scenario 2: α1 < α2, or α1 = α2 and limx→0
L1(x)
L2(x)

= ∞

In scenario 2, we first consider the covariance function C(s, t) = cov(f(s), f(t)). It

satisfies the following conditions:

B1 There exists β0 ≥ 0, β1 > 0, such that β0 + β1 ≥ α1, and

|C(τ, t+ s1)− C(τ, t+ s2)| ≤ κmax(L2(|s1|)|s1|β0 , L2(|s2|)|s2|β0)|s1 − s2|β1
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B2 As |t− s| → 0,

C(s, s)− C(s, t) ∼ σ(s)2∆sL1(|s− t|)|s− t|α1

B3 There exists ε′′, δ′′ > 0 such that for |s− t∗| < δ′′, |t− s| > 2δ′′, we have

C(s, s)− C(s, t) > ε′′.

Therefore, we can basically replicate the analysis in Section 2.5 for the constant mean

by replacing the correlation function r(s, t) with the covariance function C(s, t) and

all the derivations are exactly the same except for one place. In the analysis of Case

4 (Page 32), for which we need to provide a bound for

Qb

(
mes(Aγ)

−1 > y−dζd1 , sup
|t−τ |>δ1

f(t) > b
)
.

For this part, we need to following the analysis of Case 4 for scenario 1 (page 57).

Other analyses are all the same and therefore are omitted.

2.7.5 Proof of Lemmas

Throughout the proof, we use several properties of slowly varying functions. They

are stated in the next Lemma.

Lemma 5. Suppose L(x), x > 0 is a positive continuous slowly varying function, then

it has the following properties.

(i) ∀β > 0, ∃δβ > 0, κs, s.t. for ζ satisfying ζ−1 < δβ, x ≤ 1 we have

L(xζ−1)

L(ζ−1)
xβ ≤ κs

(ii) ∀β > 0, ∃δβ > 0, κs > 0, s.t. for ζ satisfying ζ−1x < δβ, x ≥ 1, we have

L(ζ−1x)xβ

L(ζ−1)
≥ κ−1

s
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This lemma is a direct application of Theorem 1.5.3, and Theorem 1.5.4 in Bing-

ham et al. [1989]. We now continue to providing proofs of other lemmas.

Proof of Lemma 2. For |t− τ | ≥ δ, according to condition A3, there exits ε > 0, such

that r(t, τ) < 1− ε. For b large enough, and 0 < z < ε
4
b2, we have

µτ (t) = µ(t+ τ) +
r(t+ τ, τ)

r(τ, τ)
(γ +

z

b
− µ(τ))

≤ 2µT + (1− ε)(γ +
z

b
)

≤ (1− ε/2)b

and the conditional variance C0(t, t) = C(t+τ, t+τ)−C(t+τ, τ)2C(τ, τ)−1 is bounded

by σ2
T . Then by the Borel-TIS inequality (Proposition 1), we have that

P( sup
|t−τ |≥δ

f(t) ≥ γ|f(τ) = γ +
z

b
) ≤ e

− ε2

8σ2
T

b2

(2.84)

Since z is asymptotically exponentially distributed with mean σ(τ)2 and τ is asymp-

totically uniformly distributed, we have

Qb( sup
|t−τ |>δ

f(t) ≥ γ) ≤ sup
z< εb2

4

P( sup
|t−τ |≥δ

f(t) ≥ γ|f(τ) = γ+
z

b
)+Qb(z > εb2/4) ≤ e−ε0b2 .

Proof of Lemma 3. According to conditional Gaussian calculation, we have that

Qb(b× (f(τ)− γ) ≥ xα1/2) ≤ e−ε0xα1/2 .

Therefore, we only need to consider that f(τ) = γ + z
b
for z < xα1/2. Let T̃ =

{t1, ..., tN} such that:

1. For i 6= j, i, j ∈ {1, ..., N}, |ti − tj| > ζ−1
1

2. For any t ∈ T , there exists i ∈ {1, ..., N}, such that |t− ti| ≤ 2ζ−1
1 .
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Furthermore, let Bi = {t : |t− ti| ≤ 2ζ−1
1 }, i ∈ {1, 2, ..., N}. First calculate the upper

bound for conditional mean and variance. For k/ζ1 ≤ |ti − τ | ≤ (k + 1)/ζ1, t ∈ Bi,

and z < xα1/2 according to condition A2 and A5, we have that

µτ (t) ≤ b+
z

b
+ κµ

√
L1(|t|)|t|α1/2 −∆τbL1(|t|)|t|α1

≤ b− ∆τ

2

L1(kζ
−1
1 )

L1(ζ
−1
1 )

kα1b−1. (2.85)

For the conditional variance, by Lemma 1(i), when t ∈ Bi and k large enough, we

have

C0(t, t) ≤ λ1L1((k + 3)ζ−1
1 )(k + 3)α1ζ−α1

1

≤ 2λ1
L1(kζ

−1
1 )

L1(ζ
−1
1 )

kα1b−2 (2.86)

According to Lemma 1 (iii), E(sup|t+τ−ti|≤2ζ−1
1

f0(t)) = O(b−1) as b → ∞. So for k

large enough, we have

E
[
sup
t∈Bi

f0(t)
]
≤ ∆τ

4

L1(kζ
−1
1 )

L1(ζ
−1
1 )

kα1b−1. (2.87)

By Proposition 1, (2.85), (2.86), and (2.87), we have

P( sup
|t−ti|≤2ζ−1

1

f(t) ≥ γ|f(τ) = γ +
z

b
) (2.88)

≤ exp(−∆2
τL1(kζ

−1
1 )kα1

64L1(ζ
−1
1 )λ1

) ≤ exp(−∆2
τk

α1/2

64λ1

). (2.89)

The last inequality of the above display is due to Lemma 5(ii). Note that

P( sup
xζ−1

1 <|t−τ |<δ

f(t) > γ|f(τ) = γ +
z

b
) ≤

∑

xζ−1
1 <|ti−τ |<δ′

P(sup
t∈Bi

f(t) ≥ γ|f(τ) = γ +
z

b
).

According to (2.89), we further bound the above probability by

∑

xζ−1
1 <|ti−τ |<δ

P(sup
t∈Bi

f(t) ≥ γ|f(τ) = γ +
z

b
) ≤ O(1)

δζ1∑

k=⌊x⌋
kd−1 exp(−∆τk

α1/2

64λ1

)

≤ e−xα1/2−ε0

for x sufficiently large and ε0 small. We integrate the above bound with respect to

(z, τ) under the measure Qb and conclude the proof.
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Proof of Lemma 4. The proof of this lemma is based on the fact that P(f(t) > γ)

has the approximation

P(f(t) > γ) =
1√
2π

σ(t)

γ − µ(t)
exp

(
−γ − µ(t)

2σ(t)

)
(1 + o(1)),

combined with the expansion of σ(t)2 around t∗,

σ(t)2 = σ(t∗)2 − 2σ(t∗)ΛL2(|t− t∗|)|t− t∗|α2(1 + o(1)).

After basic calculation of expansion and integration, we can prove that there exist

ε0, κ > 0, such that for x > κ, we have

∫
|t−t∗|≤ζ−1

2
P(f(t) > γ)dt ≥ 1√

2π

σ(t∗)/2

γ + µT

ζ−d
2 exp

(
−(γ − µ(t∗))2

2σ(t∗)2

)
· ε0

∫
xζ−1

2 <|t−t∗|<δ
P(f(t) > γ)dt ≤ 1√

2π

σ(t∗)

γ − µT

ζ−d
2 exp

(
−(γ − µ(t∗))2

2σ(t∗)2

)
exp

(
−xα2/2

)

∫
|t−t∗|>δ

P(f(t) > γ)dt ≤ 1√
2π

σ(t∗)

γ − µT

exp

(
−(γ − µ(t∗))2

2σ(t∗)2

)
exp(−ε0b

2)

Combining the three inequalities above, and noticing that hb(t) =
P(f(t)>γ)∫

t∈T P(f(t)>γ)dt
, we

have the result in this lemma.
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Chapter 3

Tail Probabilities of Aggregated

Lognormal Random Fields with

Small Noise1

3.1 Introduction

Let {f(t) : t ∈ T} be a zero-mean continuous Gaussian random field living on a

compact set T ⊂ Rd. For a continuous and deterministic function µ(t) and a finite

positive measure m(·) on T , we are interested in the probability

v(σ) = P
(∫

T

eσf(t)+µ(t)m(dt) > b
)
, as σ → 0, (3.1)

where

b =

∫

T

eµ(t)m(dt) + κσα (3.2)

for some constants κ > 0 and 0 < α < 1. We consider two cases: m is a discrete

measure with finitely many point masses and m is the Lebesgue measure.

1This chapter is based on an accepted manuscript of an article published in Math-

ematics of Operations Research, Volume 41, Issue 01, February 2016, available online:

http://pubsonline.informs.org/doi/10.1287/moor.2015.0724.
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Motivation. The integral of lognormal random fields is the central quantity of

many probabilistic models in portfolio risk analysis, spatial point processes, etc. (see,

e.g., Liu and Xu [2012, 2014]). The current analysis is of interest particularly for

risk analysis of short-term behavior of a large size portfolio under high correlations.

We elaborate more on this application. Consider a portfolio consisting of n assets

denoted by S1, ..., Sn, each of which is associated to a weight, denoted by w1, ...,

wn. The total value is S =
∑n

i=1 wiSi. Of interest is the tail behavior of S. A

stylized model assumes that Si’s are lognormal random variables. Then, the total

value is the sum of n correlated lognormal random variables (Ahsan [1978]; Basak

and Shapiro [2001]; Deutsch [2004]; Duffie and Pan [1997]; Glasserman et al. [2000]).

Under such a setting, one may employ a latent space approach by embedding S1,

..., Sn in a Gaussian process. More precisely, we construct a Gaussian process f(t)

and a deterministic function w(t). For each 1 ≤ i ≤ n there exists ti ∈ T such that

Si = ef(ti) and wi = w(ti). An interesting situation is that the portfolio size is large

and the asset prices become highly correlated. Then the set {t1, ..., tn} becomes dense

in T . Ultimately, as the portfolio size tends to infinity, the limiting value of the unit

share price becomes
1

n

n∑

i=1

w(ti)Si →
∫

T

w(t)ef(t)m(dt)

where m(·) is the limiting distribution of {t1, ..., tn}.
Upon considering the short-term behavior of the portfolio, the variance of each

asset Si is usually small. For instance, the variance of the daily log-return of a liquid

stock is usually on the order of a few percent that corresponds to the variance of f .

Thus, we introduce an additional overall volatility parameter σ and consider

∫

T

w(t)eσf(t)m(dt).

Sending σ to zero is equivalently to considering a very short-term return of the port-

folio. We are interested in that
∫
T
w(t)eσf(t)m(dt) deviates from its limiting value,

∫
T
w(t)m(dt), by an amount κσα that is slightly larger than σ, i.e., the target prob-
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ability in (3.1) with eµ(t) = w(t). For instance, if σ is on the order of a few percent,

then κσα is of a larger order such as ten percent. In order to have the probability

v(σ) eventually converging to zero, it is necessary to keep α strictly less than one.

Related works. The tail probabilities of integrals of lognormal fields have been

studied both intensively and extensively in the literature, most of which focuses on

the asymptotic regime that b tends to infinity and σ is fixed. Asmussen and Rojas-

Nandayapa [2008] and Gao et al. [2009] study tail probabilities and the density func-

tions for summations of lognormal random variables. The distributions of integrals

of geometric Brownian motions are studied in Yor [1992] and Dufresne [2001]. For

more general continuous Gaussian random fields, Liu [2012] and Liu and Xu [2012]

derive the asymptotic approximations of P(
∫
T
ef(t)dt > b) as b → ∞ when f(t) is a

three-time differentiable Gaussian random field. Under similar conditions, Liu and X-

u [2014] characterize the conditional probabilities P( · |
∫
T
eσf(t)+µ(t)dt > b) as b → ∞

and efficient Monte Carlo estimators of v(σ) are then constructed. The corresponding

density function is studied in Liu and Xu [2013].

We the asymptotic regime that σ tends to zero and develop asymptotic approx-

imations of the tail probabilities under very weak regularity conditions. The tail

behaviors under small noise are different from the cases when b tends to infinity and

σ is fixed. For the latter case the most likely sample paths typically admit the so-

called one-big-jump principle, that is, the high value of the exponential integral is

due to the high excursion of f(t) at one location and the integral in a small region

around the maximum of f(t) is dominating. For case that σ converges to zero, there

is not a small dominating region and the integral on every piece of the region has a

contribution. This feature is often observed in the portfolio risk analysis. Suppose

that a large portfolio has a 10% downturn in one day. It is very likely to observe that

most stocks in the portfolio has a substantial negative return lead by a few (or sector

of) names whose returns are the most negative among all.
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In addition to the right tail, with completely analogous analysis, we provide ap-

proximations of the left tail probabilities

vl(σ) = P
(∫

T

eσf(t)+µ(t)m(dt) < b
)
, for b =

∫

T

eµ(t)m(dt)− κσα. (3.3)

The rest of the paper is organized as follows. The main approximation results are

presented in Section 3.2. Section 3.3 includes the proofs of the theorems presented in

Section 3.2.

3.2 Main results

3.2.1 Asymptotic approximations

We start the discussion with the case when m(·) is the Lebesgue measure. Let

C(s, t) = E(f(s)f(t))

be the covariance function of the Gaussian random field f(t) and assume that C(s, t)

is positive definite. Let C(T ) denote the set of continuous functions on T . Define a

map K : C(T ) 7→ [0,∞] as follows: for each x(·) ∈ C(T ),

K(x) =

∫

T

∫

T

x(s)C(s, t)x(t)dsdt (3.4)

that is the squared Mahalanobis distance induced by C. Define a linear map C :

C(T ) 7→ C(T )
C(x)(t) =

∫

T

C(s, t)x(s)ds.

We consider the optimization problem

K∗
σ = min

x∈C(T )
K(x) such that

∫

T

eσC(x)(t)+µ(t)dt ≥ b and sup
t∈T

|x(t)| ≤ σα−1−ε,

(3.5)

for some ε ∈ (0,min(α, 1 − α)). For σ sufficiently small, the above optimization

problem has a unique solution and it does not depend on the choice of ε. The

properties of the solution will be discussed later in this section. Now we present the

first result.
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Theorem 4. For 0 < α < 1, suppose that the covariance function C(s, t) is positive

definite and m is the Lebesgue measure. Let K∗
σ be defined as in (3.5). We have the

following approximation of v(σ)

v(σ) = (c1 + o(1))σ1−α exp
(
− 1

2
K∗

σ

)
, as σ → 0, (3.6)

where

c1 = κ−1{(2π)−1K(eµ(·))}1/2 (3.7)

and the constant κ appears initially in (3.2).

The above theorem provides an almost explicit approximation of v(σ). The im-

plicitly part lies in K∗
σ that is unfortunately not in a closed form. We will later present

an iterative algorithm to compute K∗
σ numerically. To maintain the approximation

accuracy in Theorem 4, we need to have the computational error reduced to the level

of o(1). Due to the technical complication and also to smooth the discussion, we delay

this topic to the following subsection. In the meantime, we provide the first order

approximation of K∗
σ in the following proposition. This approximation is sufficient to

provide an exponential decay rate of v(σ).

Proposition 2. Under the conditions of Theorem 4, for σ sufficiently small, we have

the following results.

(i) For 0 < α < 1, the optimization problem (3.5) has a unique solution, denoted

by x∗(t).

(ii) We have the following approximations as σ → 0

x∗(t) = (1 + o(1))κσα−1 eµ(t)∫
T×T

C(s, t)eµ(s)+µ(t)dsdt
, (3.8)

K∗
σ = (1 + o(1))κ2σ2α−2K(eµ(·))−1.

The first o(1) term is uniform in t ∈ T as σ → 0.
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The approximations in Proposition 2(ii) are obtained via the first order expansion

of the integral
∫
T
eσf(t)+µ(t)dt. Better approximations of x∗ and K∗

σ can be obtained

by expanding higher orders. As mentioned previously, to maintain an accurate ap-

proximation, we need to reduce the accuracy to the level o(1). The necessary order

of expansions in fact depends on α and the derivation is doable but very tedious.

Thus, we seek for alternative numerical methods presented in the sequel. Combining

Theorem 4 and Proposition 2 we have the following approximation of log v(σ).

Corollary 1. Under the conditions of Theorem 4, for 0 < α < 1, as σ → 0,

log v(σ) = −(1 + o(1))
1

2
κ2σ2α−2K(eµ(·))−1.

Remark 2. An intuitive understanding of the above approximation result is given as

follows. As σ → 0, we approximate the interval by Taylor expansion
∫
T
eσf(t)+µ(t)dt ≈

∫
T
eµ(t)(1 + σf(t))dt. This suggests that v(σ) ≈ P(

∫
T
eµ(t)f(t)dt > κσα−1). Since

∫
T
eµ(t)f(t)dt is a Gaussian random variable with zero mean and finite variance, we

have approximation v(σ) ≈ exp{−O(κ2σ2α−2)}. This gives the order of the leading

term in Theorem 4.

We now consider that m(·) is a discrete measure on T with finitely many point

masses. For simplicity, we write the random field in terms of a random vector X =

(X1, .., Xn)
T that has a positive definite covariance matrix Σ. Furthermore, we replace

the function µ(t) with a vector µ = (µ1, .., µn)
T . The probability v(σ) becomes

v(σ) = P
( n∑

i=1

eσXi+µi > b
)
. (3.9)

Similarly to the continuous case, we define the squared Mahalanobis distance for

x ∈ Rn,

K̃(x) = xTΣx.

We further define K̃∗
σ through the optimization problem

K̃∗
σ = min

x
K̃(x) subject to the constraint

n∑

i=1

eσ(Σx)i+µi ≥ b, (3.10)
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where (Σx)i is the ith element of Σx. The next theorem presents an approximation

of v(σ) for 0 < α < 1, which is the discrete analogue of Theorem 4.

Theorem 5. The covariance matrix Σ is positive definite. Let K̃∗
σ be defined as in

(3.10) and b be defined as in (3.2). For 0 < α < 1, we have

v(σ) = (c2 + o(1))σ1−α exp
(
− K̃∗

σ

2

)
, as σ → 0, (3.11)

where c2 = κ−1
√

(2π)−1y∗TΣy∗ and

y∗ = (eµ1 , ..., eµn)T . (3.12)

We have the following discrete analogue of Proposition 2.

Proposition 3. Under the conditions of Theorem 5, for 0 < α < 1, we have the

following results.

(i) The optimization problem (3.10) has a unique solution x∗ ∈ Rn.

(ii) We have the following approximation

x∗ = (1 + o(1))κσα−1(y∗TΣy∗)−1y∗,

K̃∗
σ = (1 + o(1))κ2σ2α−2(y∗TΣy∗)−1,

where y∗ is given as in (3.12).

Combining the above proposition and Theorem 5, we have the following approxi-

mation of log v(σ).

Corollary 2. Under the conditions of Theorem 5, for 0 < α < 1, we have as σ → 0

log(v(σ)) = −(1 + o(1))
1

2
κ2(y∗TΣy∗)−1σ2α−2.

The approximations of the left-tail probabilities can be derived similarly as those of

the right tail. Therefore, we present the results as corollaries and omit the proof. For
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the case when m(·) is the Lebesgue measure, we redefine K∗
σ through the optimization

problem

K∗
σ = min

x∈C(T )
K(x) subject to the constraints

∫

T

eσC(x)(t)+µ(t)dt ≤
∫

T

eµ(t)dt− κσα and sup
t∈T

|x(t)| ≤ σα−1−ε. (3.13)

Corollary 3. With K∗
σ defined in (3.13), we have

P
(∫

T

eσf(t)+µ(t)dt <

∫

T

eµ(t)dt− κσα
)
= (c1 + o(1))σ1−α exp

(
− 1

2
K∗

σ

)
, as σ → 0,

where c1 is given as in (3.7).

When m(·) is a discrete measure with finitely many point masses, we redefine the

optimization problem as

K̃∗
σ = min

x
K̃(x) subject to

n∑

i=1

eσ(Σx)i+µi ≤
n∑

i=1

eµi − κσσ. (3.14)

Corollary 4. With K̃∗
σ defined in (3.14), we have

P
( n∑

i=1

eσXi+µi <

n∑

i=1

eµi − κσα
)
= (c2 + o(1))σ1−α exp

(
− K̃∗

σ

2

)
, as σ → 0,

where c2 = κ−1
√

(2π)−1y∗TΣy∗.

3.2.2 Numerical approximation for K∗
σ

As discussed previously, K∗
σ is not a closed form expression. In this section, we

present an iterative algorithm to solve (3.5) and m is the Lebesgue measure. The

case of discrete measure is similar and therefore is omitted. Let

B = {x ∈ C(T ) : ‖x‖∞ ≤ σα−1−ε},

where ‖x‖∞ = supt∈T |x(t)|. Define the function Λ(·) : B → [0,+∞) such that, for

each x ∈ B, λ = Λ(x) solves the following equation
∫

T

exp
{
σλC(eσC(x)+µ)(t) + µ(t)

}
dt = b. (3.15)

The next proposition ensures that Λ(·) is well defined.
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Proposition 4. For each x ∈ B, there is a unique solution Λ(x) satisfying equation

(3.15). Moreover, 0 ≤ Λ(x) ≤ κcσ
α−1, where κc is a positive constant depending only

on the covariance function C and the mean function µ.

We further define the operator S : B → B by

S(x)(t) = Λ(x)eσC(x)(t)+µ(t). (3.16)

Our algorithm to compute K∗
σ is based on the following proposition.

Proposition 5. S is a contraction mapping over B, that is, for x, y ∈ B,

‖S(x)− S(y)‖∞ ≤ κ0σ
α‖x− y‖∞, (3.17)

where κ0 is a positive constant depending only on the covariance function C and the

mean function µ. Furthermore, the solution x∗(·) to the optimization problem (3.5)

is the unique fixed point of S, that is, x∗ = S(x∗).

With the above proposition, we present an iterative algorithm to compute x∗ using

the above contraction mapping theorem.

1. Let

x̂∗
0 = κσα−1 eµ(t)∫

T

∫
T
C(s, t)eµ(s)+µ(t)dsdt

.

2. For each k, compute x̂∗
k according to

x̂∗
k = S(x̂∗

k−1).

We iterate step 2 until convergence. According to the contraction mapping theorem,

the rate of convergence is

‖x̂∗
k − x∗‖∞ ≤ (κ0σ

α)k‖x̂∗
0 − x∗‖∞ = O(σαk+α−1).

If we run the algorithm for k > 2(1− α)/α iterations, then ‖x̂∗
k−x∗‖∞ = O(σαk+α−1) =

o(σ1−α). We obtain that |K(x̂∗
k) −K∗

σ| = o(σ1−α) and the asymptotic results in the

previous theorems still hold by replacing K∗
σ with K(x̂∗

k).
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3.3 Proof

In this section, we present the proofs of Theorem 4 and Propositions 2, 4, and 5.

The proofs for Theorem 5 and Proposition 3 are completely analogous to those of

Theorem 4 and Proposition 2 and therefore are omitted.

We begin with some useful lemmas. The following lemma is known as the Borell-

TIS lemma, which is proved independently by Borell [1975a] and Tsirelson et al.

[1976].

Lemma 6 (Borell-TIS). Let f(t), t ∈ U , U is a parameter set, be a mean zero

Gaussian random field. f is almost surely bounded on U . Then, E[supU f(t)] < ∞,

and

P
(
sup
t∈U

f (t)− E[sup
t∈U

f (t)] ≥ b

)
≤ exp

(
− b2

2σ2
U

)
,

where σ2
U = supt∈U Var[f(t)].

The Borell-TIS lemma provides a general bound of the tail probabilities of supt f(t).

In most cases, E[supt f(t)] is much smaller than b. Thus, for b that is sufficiently large,

the tail probability can be further bounded by:

P
(
sup
t∈T

f(t) > b
)
≤ exp

(
− b2

4σ2
T

)
. (3.18)

To prove Theorem 4, the following lemma shows that f(t) can be localized to the

event

L =
{
f(t) : sup

t∈T
|f(t)| ≤ κfσ

α−1
}
,

and we only need to focus on L for our analysis.

Lemma 7. There exists a positive constant κf sufficiently large such that

P
(
sup
t∈T

|f(t)| > κfσ
α−1
)
= o(1)σ1−α exp

(
− 1

2
K∗

σ

)
.

Proof of Lemma 7. According to Proposition 2, whose proof is independent of the

current one, K∗
σ = (1 + o(1))κ2σ2α−2K(eµ(·))−1. We choose the constant κf >
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2σTκ
√

K(eµ(·))−1, then inequality (3.18) implies that

P
(
sup
t∈T

|f(t)| > κfσ
α−1
)
≤ 2 exp

(
−κ2σ2α−2K(eµ(·))−1

)
= o(1)σ1−α exp

(
− 1

2
K∗

σ

)
,

which yields the desired result.

We proceed to the proof of Theorem 4. We use a change of measure technique

to derive the asymptotic approximation. The change of measure is constructed such

that it focuses on the most likely sample path corresponding to the solution to the

optimization problem (3.5). The theoretical properties of the optimization problem

(3.5) are established in Propositions 2, 4 and 5. These three propositions are the key

elements of the proof.

Proof of Theorem 4. Let x∗(t) be the solution to (3.5). We define the exponential

change of measure

dQ

dP
= exp

(∫

T

x∗(t)f(t)dt− 1

2

∫

T

∫

T

x∗(s)C(s, t)x∗(t)dsdt
)
.

The introduced change of measure Q defines a translation of the original Gaussian

random field f(t). We state this result in the next lemma, whose proof is delayed

after the proof of Theorem 4.

Lemma 8. Under measure Q, f(t) is a Gaussian random field with mean function

C(x∗)(t) and covariance function C(s, t).

According to Lemma 7,

P
(∫

T

eσf(t)+µ(t) > b,Lc

)
= o(1)σ1−α exp

(
− 1

2
K∗

σ

)
.

Therefore, we only need to consider P(
∫
T
eσf(t)+µ(t) > b,L). By means of the change
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of measure Q, we have

P
(∫

T

eσf(t)+µ(t) > b,L
)

= EQ

[
dP

dQ
;

∫

T

eσf(t)+µ(t) > b, L
]

= exp

(
1

2

∫

T×T

x∗(s)C(s, t)x∗(t)dsdt

)
(3.19)

×EQ

[
e−

∫
T x∗(t)f(t)dt;

∫

T

eσf(t)+µ(t)dt > b,L
]
, (3.20)

where EQ denotes the expectation with respect to the measure Q. Let

f ∗ = C(x∗).

With this notation, we have

∫

T

eσf
∗(t)+µ(t)dt = b,

∫

T

f ∗(t)x∗(t)dt =

∫

T×T

x∗(s)C(s, t)x∗(t)dsdt.

The random field f ∗(t) + f(t) under P has the same distribution as f(t) under Q.

Thus, we replace the probability measure Q and f with P and f ∗ + f in (3.19) and

obtain

P
(∫

T

eσf(t)+µ(t) > b,L
)

= exp

(
1

2

∫

T×T

x∗(s)C(s, t)x∗(t)dsdt

)

×E
[
e−

∫
T x∗(t)(f∗(t)+f(t))dt;

∫

T

eσ(f
∗(t)+f(t))+µ(t)dt > b,L

]

= exp

(
−1

2

∫

T×T

x∗(s)C(s, t)x∗(t)dsdt

)

×E
[
e−

∫
T x∗(t)f(t)dt;

∫

T

(eσf(t) − 1)w(dt) > 0,L
]
, (3.21)

where

w(dt) =
y∗(t)dt∫
T
y∗(s)ds

and y∗(t) = eσf
∗(t)+µ(t).

We define

F =

{∫

T

(eσf(t) − 1)w(dt) > 0

}
.



CHAPTER 3. TAIL PROBABILITIES OF AGGREGATED LOGNORMAL
RANDOM FIELDS WITH SMALL NOISE 76

By the fact that ex − 1 ≥ x, we have
∫

T

(eσf(t) − 1)w(dt) ≥
∫

T

σf(t)w(dt).

Thus, F can be written as the union of two disjoint sets, F = F1 ∪ F2, where

F1 =

{∫

T

f(t)w(dt) > 0

}
and F2 =

{∫

T

f(t)w(dt) < 0,

∫

T

(eσf(t) − 1)w(dt) > 0

}
.

Thus, the expectation in (3.21) can be written as

E
[
e−

∫
T x∗(t)f(t)dt;

∫

T

(eσf(t) − 1)w(dt) > 0,L
]

= E
[
e−

∫
T x∗(t)f(t)dt;F1,L

]
+ E

[
e−

∫
T x∗(t)f(t)dt;F2,L

]
. (3.22)

We calculate each of the two terms on the right-hand side of the above equation

separately. First, we compute

E
[
e−

∫
T x∗(t)f(t)dt;

∫

T

f(t)w(dt) > 0,L
]
. (3.23)

According to Proposition 5, whose proof is independent of the current one, x∗ is the

fixed point of the contraction map S and thus

x∗(t) = S(x∗)(t) = Λ(x∗)eσC(x∗)(t)+µ(t) = Λ(x∗)y∗(t).

Therefore, x∗(t) and y∗(t) are different by a factor Λ(x∗). Thus,
∫
T
x∗(t)f(t)dt and

∫
T
f(t)w(dt) are different by a factor

∫
T
x∗(t)dt. Thanks to Proposition 2(ii), we have

∫

T

x∗(t)dt = (1 + o(1))
κσα−1

∫
T
eµ(t)dt∫

T×T
C(s, t)eµ(s)+µ(t)dsdt

.

As the result, we have
∫

T

x∗(t)f(t)dt =

∫

T

x∗(t)dt

∫

T

f(t)w(dt)

= (1 + o(1))
κσα−1

∫
T
eµ(t)dt∫

T×T
C(s, t)eµ(s)+µ(t)dsdt

∫

T

f(t)w(dt). (3.24)

Define

∆ =
κσα−1

∫
T
eµ(t)dt∫

T×T
C(s, t)eµ(s)+µ(t)dsdt

.
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The expectation (3.23) can be computed as follows

E
[
e−

∫
T x∗(t)f(t)dt;

∫

T

f(t)w(dt) > 0,L
]

= E
[
e−(1+o(1))∆

∫
T f(t)w(dt);

∫

T

f(t)w(dt) > 0,L
]

= (1 + o(1))E
[
e−(1+o(1))∆

∫
T f(t)w(dt);

∫

T

f(t)w(dt) > 0

]

= (1 + o(1))
1

∆
√
2πV ar(

∫
T
f(t)w(dt))

.

The second step in the above derivation is due to the fact that P(L) → 1 for κf chosen

sufficiently large. Furthermore, notice that w(t) = (1 + o(1))eµ(t)/
∫
eµ(s)ds. Then,

V ar

(∫

T

f(t)w(dt)

)
= (1 + o(1))

∫
T×T

eµ(s)+µ(t)C(s, t)dsdt

(
∫
T
eµ(t)dt)2

and

E
[
e−

∫
T x∗(t)f(t)dt;

∫

T

f(t)w(dt) > 0,L
]

= (1 + o(1))κ−1σ1−α

√
(2π)−1

∫

T×T

C(s, t)eµ(s)+µ(t)dsdt. (3.25)

Thus, we conclude the derivation of the first expectation on the right-hand side of

(3.22).

Now we proceed to the second expectation term. On the set L, by Taylor’s

expansion, we have that eσf(t) − 1 ≤ σf(t) + σ2f 2(t) and thus

∫

T

(eσf(t) − 1)w(dt) ≤
∫

T

σf(t)w(dt) +

∫

T

σ2f 2(t)w(dt).

So the event {
∫
T
(eσf(t) − 1)w(dt) ≥ 0} is a subset of {

∫
T
[f(t) + σf 2(t)]w(dt) ≥ 0}.

This gives an upper bound of the expectation

E
[
e−

∫
T x∗(t)f(t)dt;F2,L

]

≤ E
[
e−

∫
T x∗(t)f(t)dt;

∫

T

[f(t) + σf 2(t)]w(dt) ≥ 0,

∫

T

f(t)w(dt) < 0,L
]
.
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We write

Z1 = −
∫

T

f(t)w(dt) and Z2 =

∫

T

f 2(t)w(dt).

From (3.24), the right-hand side of the above inequality can be written as

E[e∆Z1 ;Z1 > 0, Z2 ≥ Z1/σ,L].

On the set {0 < Z1 ≤ σ1−α+ε}, this expectation is negligible as ∆ = O(σα−1), that

is,

E[e∆Z1 ; 0 < Z1 < σ1−α+ε] = O(P(0 < Z1 < σ1−α+ε)) = o(1). (3.26)

Furthermore, on the set L, we have supt |f(t)| ≤ κfσ
α−1 and thus Z1 < σα−1−ε for ε

and σ sufficiently small. Therefore, we only need to focus on the expectation

E
[
e∆Z1 ; σ1−α+ε < Z1 < σα−1−ε, Z2 > Z1/σ

]

=

∫ σα−1−ε

σ1−α+ε

e∆zP(Z2 > z/σ|Z1 = z)pZ1(z)dz, (3.27)

where pZ1(z) is the density function of Z1. We need the following lemma.

Lemma 9. For z ∈ [σ1−α+ε, σα−1−ε], there exists a constant ε0 > 0 such that

P(Z2 > z/σ|Z1 = z) ≤ e−ε0z/σ. (3.28)

Lemma 9 implies that the expectation (3.27) is bounded by

(3.27) ≤
∫ σα−1−ε

σ1−α+ε

e−(ε0/σ−∆)zpZ1(z)dz

=

∫ σα−1−ε

σ1−α+ε

e−(1+o(1))ε0z/σpZ1(z)dz

= O(σ).

(3.29)

Combining the results in (3.26) and (3.29), we have E[e−
∫
T x∗(t)f(t)dt;F2,L] = o(1) and

Theorem 4 is proved.
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Proof of Lemma 3.3. It is sufficient to show that, for any finite subset {t1, . . . , tk} ∈
T , the moment generating function of (f(t1), . . . , f(tk)) under the measure Q is the

same as that of the multivariate normal distribution with mean (C(x∗)(t1), . . . ,C(x∗)(tk))

and covariance matrix {C(ti, tj)}i,j=1,...,k. For any (λ1, ..., λk) ∈ Rk, we have

EQ
[
exp {λ1f(t1) + · · ·+ λkf(tk)}

]

= E
[
dQ

dP
exp {λ1f(t1) + · · ·+ λkf(tk)}

]

= exp

{
k∑

i=1

λiC(x∗)(ti) +
1

2

k∑

i

k∑

j=1

λiλjC(ti, tj)

}
,

which is the moment generating function of the target multivariate normal distribu-

tion. This completes the proof.

Proof of Lemma 9. Conditional on Z1 = z, {f(t) : t ∈ T} is still a Gaussian random

field, with the mean and variance given as follows:

µ̃(t) = E(f(t)|Z1 = z) = −
∫
T
C(s, t)w(ds)∫

T×T
C(s, t)w(ds)w(dt)

· z, (3.30)

V ar(f(t)|Z1 = z) = C(t, t)−
(∫

T×T

C(s, t)w(ds)w(dt)

)−1(∫

T

C(s, t)w(ds)

)2

.

We write the conditional random field as f(t) = µ̃(t) + g(t), then the probability in

(3.28) is bounded by

P
(∫

T

{µ̃(t) + g(t)}2w(dt) > z/σ

)
≤ P

(
sup
t∈T

|µ̃(t)|+ sup
T

|g(t)| >
√

z/σ

)
.

According to (3.30), for z ∈ [σ1−α+ε, σα−1−ε],

we have supt∈T |µ̃(t)| = O(z) = o(1)
√

z/σ. So the above probability can be further

bounded by

P
(
sup
T

|g(t)| > (1 + o(1))
√
z/σ

)
.

We obtain (3.28) by applying Lemma 6. This concludes our proof.
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The proof of Proposition 2 needs the results of Propositions 4 and 5. Thus, we

present the proofs of these two propositions first.

Proof of Proposition 4. For x ∈ B, we define

h(λ) =

∫

T

exp
(
σλC(eσC(x)+µ)(t) + µ(t)

)
dt.

We have

h(λ) ≥
∫

T

eµ(t)(1 + σλC(eσC(x)+µ)(t))dt (3.31)

=

∫

T

eµ(t)dt+ σλ

∫

T

eµ(t)C(eµ(1 + o(1)))(t)dt

=

∫

T

eµ(t)dt+ (1 + o(1))σλ

∫

T×T

eµ(s)C(s, t)eµ(t)dsdt.

The second equality holds because σC(x) = O(σα−ε) = o(1). If h(λ) = b, then,

together with the fact that b =
∫
T
eµ(t)dt+ κσα, the above display suggests that

λ ≤ (1 + o(1))κσα−1(

∫

T

∫

T

eµ(s)C(s, t)eµ(t)dsdt)−1.

This means that the equation h(λ) = b has no solution outside [0, κcσ
α−1] for some

constant κc large.

For λ ∈ [0, κcσ
α−1], we obtain the following approximation by Taylor’s expansion

h(λ) =

∫

T

eµ(t)dt+ σλ(1 + o(1))

∫

T

∫

T

eµ(s)C(s, t)eµ(t)dsdt

and h(λ) is approximately linear in λ as σ tends to 0. Because h(0) < b and

h(κcσ
α−1) > b for κc sufficiently large, there exists λ ∈ [0, κcσ

α−1] such that h(λ) = b.

Moreover, for λ ∈ [0, κcσ
α−1],

h′(λ) = (1 + o(1))σ

∫

T

∫

T

eµ(s)C(s, t)eµ(t)dsdt > 0,

so the solution is unique.
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Proof for Proposition 5. We first show that S is a contraction mapping. According

to the definition of S(x) in (3.16) we have that for x, y ∈ B

‖S(x)−S(y)‖∞ ≤ |Λ(x)−Λ(y)| · ‖eσC(x)+µ‖∞ +Λ(y)‖eσC(x)+µ − eσC(y)+µ‖∞. (3.32)

We give upper bounds for |Λ(x)− Λ(y)| and ‖eσC(x)+µ − eσC(y)+µ‖∞ separately. Ac-

cording to (3.15), we have

∫

T
exp

(
σΛ(x)C(eσC(x)+µ)(t) + µ(t)

)
dt−

∫

T
exp

(
σΛ(y)C(eσC(x)+µ)(t) + µ(t)

)
dt

(3.33)

=

∫

T
exp

(
σΛ(y)C(eσC(y)+µ)(t) + µ(t)

)
dt−

∫

T
exp

(
σΛ(y)C(eσC(x)+µ)(t) + µ(t)

)
dt.

(3.34)

We provide a bound for |Λ(x)−Λ(y)| by deriving approximations for both sides of the

above identity. Without loss of generality, we assume Λ(x) > Λ(y). By exchanging

the integration and derivative, the left-hand side is

(3.33) =

∫ Λ(x)

Λ(y)

∫

T

σC(eσC(x)+µ)(t) exp
(
σλC(eσC(x)+µ)(t) + µ(t)

)
dtdλ.

Thus, we have

(3.33) = (1 + o(1))σ|Λ(x)− Λ(y)| ×
∫

T

C(eσC(x)+µ)(t)eµ(t)dt.

Similarly, we have the right-hand side is

(3.34) ≤ (1 + o(1))σΛ(y)

∫

T

eµ(t)C(eσC(x)+µ − eσC(y)+µ)(t)dt.

Notice that ‖eσC(x)+µ − eσC(y)+µ‖∞ ≤ O(σ)‖x− y‖∞. Thus,

(3.34) = O(σ2)Λ(y)‖x− y‖∞ = O(σα+1)‖x− y‖∞.

By equating (3.33) and (3.34), we have

|Λ(x)− Λ(y)| = O(σα)‖x− y‖∞. (3.35)
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Thus, the first term in (3.32) is bounded from the above by

|Λ(x)− Λ(y)| · ‖eσC(x)+µ‖∞ = O(σα)‖x− y‖∞.

We proceed to the second term on the right side of (3.32). By Taylor’s expansion, we

have

‖eσC(x)+µ − eσC(y)+µ‖∞ ≤ O(σ)‖x− y‖∞. (3.36)

Thus we obtain (3.17) by combining (3.32), (3.35), (3.36), and the fact that Λ(x) ≤
κcσ

α−1.

We proceed to the proof that the fixed point of S is the solution to (3.5). We

define set

M =

{
x ∈ C(T ) :

∫

T

eσC(x)(t)+µ(t)dt ≥ b and ‖x‖∞ ≤ σα−1−ε

}
.

For x ∈ M, define function l(η) =
∫
T
eσηC(x)(t)+µ(t)dt that is monotonic increasing in

η, so all solutions to the optimization problem (3.5) lie on the boundary set

∂M =

{
x ∈ C(T ) :

∫

T

eσC(x)(t)+µ(t)dt = b and ‖x‖∞ ≤ σα−1−ε

}
.

We use arguments in calculus of variation to show the conclusion. Let g be an

arbitrary continuous function on T and s be a scalar close to 0. We compute the

derivative of the function

h(s) = K(x∗ + sg)− 2λ

σ
×
(∫

T

eσC(x∗+sg)(t)+µ(t)dt− b

)
,

where 2λ/σ is the Lagrange multiplier. We take derivative with respect to s

h′(0) = 2

∫

T

x∗(t)C(g)(t)dt− 2λ

∫

T

eσC(x∗)(t)+µ(t)C(g)(t)dt. (3.37)

The solution x∗ satisfies h′(0) = 0. Since g is arbitrary, we have that x∗ is a solution

to (3.5) is equivalent to the following conditions

x∗(t) = λeσC(x∗)(t)+µ(t) and

∫

T

eσC(x∗)(t)+µ(t)dt = b. (3.38)

We plug the formula of x∗ in the first identity into the second identity and obtain

that λ = Λ(x∗) and thus x∗ is a fixed point of S. This concludes the proof.



CHAPTER 3. TAIL PROBABILITIES OF AGGREGATED LOGNORMAL
RANDOM FIELDS WITH SMALL NOISE 83

Proof of Proposition 2. According to the contraction mapping theorem, the operator

S has a unique fixed point. According to Proposition 5 whose proof is independent

of the current one, this fixed point x∗ is the solution to optimization problem (3.5).

This implies that (3.5) has a unique solution in B.
To prove (ii), we expand the exponents in (3.38) and have that

x∗(t) = λeµ(t)(1 +O(σα−ε)) and

∫

T

eµ(t)[1 + σC(x∗)(t)]dt+O(σ2(α−ε)) = b.

Based on the above two identities, we solve

λ =
(1 + o(1))κσα−1

∫
T×T

C(s, t)eµ(s)+µ(t)dsdt
.

This yields

x∗(t) = (1 + o(1))κσα−1 eµ(t)∫
T×T

C(s, t)eµ(s)+µ(t)dsdt
(3.39)

and

K∗
σ = (1 + o(1))κ2σ2α−2

(∫

T

∫

T

C(s, t)eµ(s)+µ(t)dsdt
)−1

.
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Chapter 4

Unbiased Sampling of Random

Elliptic Partial Differential

Equations

4.1 Introduction

Elliptic partial differential equation is a classic equation that are employed to describe

various static physics systems. In practical life, such systems are usually not described

precisely. For instance, imprecision could be due to microscopic heterogeneity or

measurement errors of parameters. To account for this, we introduce uncertainty

to the system by letting certain coefficients contain randomness. To be precise, let

U ⊂ Rd be a simply connected domain. We consider the following differential equation

concerning u : U → R

−∇ · (a(x)∇u(x)) = f(x) for x ∈ U, (4.1)

where f(x) is a real-valued function and a(x) is a strictly positive function. Just to

clarify the notation, ∇u(x) is the gradient of u(x) and “∇·” is the divergence of a

vector field. For each a and f , one solves u subject to certain boundary conditions
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that are necessary for the uniqueness of the solution. This will be discussed in the

sequel. The randomness is introduced to the system through a(x) and f(x). Thus,

the solution u as an implicit functional of a and f is a real-valued stochastic process

living on U . Throughout this chapter, we consider d ≤ 3 that is sufficient for most

physics applications.

Of interest is the distributional characteristics of {u(x) : x ∈ U}. The solution is

typically not in an analytic form of a and f and thus closed form characterizations

are often infeasible. In this dissertation, we study the distribution of u via Monte

Carlo. Let C(U) be the set of continuous functions on U . For a real-valued functional

Q : C(U) → R

satisfying certain regularity conditions, we are interested in computing

wQ = E{Q(u)}.

Such problems appear often in the studies of physics systems; see, for instance,

De Marsily et al. [2005]; Delhomme [1979].

The contribution of the current work is the development of an unbiased Monte

Carlo estimator of wQ with finite variance. Furthermore, the expected computational

cost of generating one such estimator is finite. The analysis strategy is a combination

of multilevel Monte Carlo and a randomization scheme. Multilevel Monte Carlo is a

recent advance in simulation and approximation of continuous processes Cliffe et al.

[2011]; Giles [2008]; Graham et al. [2011]. The randomization scheme is developed by

Rhee and Glynn [2012, 2013]. Under the current setting, a direct application of these

two methods leads to either an estimator with infinite variance or infinite expected

computational cost. This is mostly due to the fact that the accuracy of regular

numerical methods of the partial differential equations is insufficient. More precisely,

the mean squared error of a discretized Monte Carlo estimator is proportional to

the square of mesh size Charrier et al. [2013]; Teckentrup et al. [2013]. The technical

contribution of this chapter is to employ quadratic approximation to solve PDE under
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certain smoothness conditions of a(x) and f(x) and to perform careful analysis of the

numerical solver for equation (4.1).

Physics applications. Equation (4.1) has been widely used in many disciplines to

describe time-independent physical problems. The well-known Poisson equation or

Laplace equation is a special case when a(x) is a constant. In different disciplines, the

solution u(x) and the coefficients a(x) and f(x) have their specific physics meanings.

When the elliptic PDE is used to describe the steady-state distribution of heat (as

temperature), u(x) carries the meaning of temperature at x and the coefficient a(x)

is the heat conductivity. In the study of electrostatics, u is the potential (or voltage)

induced by electronic charges, ∇u is the electric field, and a(x) is the permittivity

(or resistance) of the medium. In groundwater hydraulics, the meaning of u(x) is

the hydraulic head (water level elevation) and a(x) is the hydraulic conductivity (or

permeability). The physics laws for the above three different problems to derive

the same type of elliptic PDE are called Fourier’s law, Gauss’s law, and Darcy’s

law, respectively. In classical continuum mechanics, equation (4.1) is known as the

generalized Hook’s law where u describes the material deformation under the external

force f . The coefficient a(x) is known as the elasticity tensor.

In this chapter, we consider that both a(x) and f(x) possibly contain randomness.

We elaborate its physics interpretation in the context of material deformation appli-

cation. In the model of classical continuum mechanics, the domain U is a smooth

manifold denoting the physical location of the piece of material. The displacement

u(x) depends on the external force f(x), boundary conditions, and the elasticity tensor

{a(x) : x ∈ U}. The elasticity coefficient a(x) is modeled as a spatially varying ran-

dom field to characterize the inherent heterogeneity and uncertainties in the physical

properties of the material (such as the modulus of elasticity, c.f. Ostoja-Starzewski

[2007]; Sobczyk and Kirkner [2001]). For example, metals, which lend themselves

most readily to the analysis by means of the classical elasticity theory, are actually
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polycrystals, i.e., aggregates of an immense number of anisotropic crystals random-

ly oriented in space. Soils, rocks, concretes, and ceramics provide further examples

of materials with very complicated structures. Thus, incorporating randomness in

a(x) is necessary to take into account of the heterogeneities and the uncertainties

under many situations. Furthermore, there may also be uncertainty contained in the

external force f(x).

The rest of the paper is organized as follows. In Section 4.2, we present the problem

settings and some preliminary materials for the main results. Section 4.3 presents the

construction of the unbiased Monte Carlo estimator for wQ and rigorous complexity

analysis. Numerical implementations are included in Section 4.4. Technical proofs

are included in the appendix.

4.2 Preliminary analysis

Throughout this chapter, we consider equation (4.1) living on a bounded domain

U ⊂ Rd with twice differentiable boundary denoted by ∂U . To ensure the uniqueness

of the solution, we consider the Dirichlet boundary condition

u(x) = 0, for x ∈ ∂U . (4.2)

We let both exogenous functions f(x) and a(x) be random processes, that is,

f(x, ω) : U × Ω → R and a(x, ω) : U × Ω → R

where (Ω,F ,P) is a probability space. To simplify notation, we omit the second

argument and write a(x) and f(x). As an implicit function of the input processes

a(x) and f(x), the solution u(x) is also a stochastic process living on U . We are

interested in computing the distribution of u(x) via Monte Carlo. In particular, for

some functional

Q : C(Ū) → R
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satisfying certain regularity conditions that will be specified in the sequel, we compute

the expectation

wQ = E[Q(u)] (4.3)

by Monte Carlo. The notation Ū is the closure of domain U and C(Ū) is the set of

real-valued continuous functions on Ū .

Let Ẑ be an estimator (possibly biased) of EQ(u). The mean square error (MSE)

E(Ẑ − wQ)
2 = V ar(Ẑ) + {E(Ẑ)− wQ}2. (4.4)

consists of a bias term and a variance term. For the Monte Carlo estimator in this

chapter, the bias is removed via a randomization scheme combined with multilevel

Monte Carlo. To start with, we present the basics of multilevel Monte Carlo and the

randomization scheme.

4.2.1 Multilevel Monte Carlo

Consider a biased estimator of wQ denote by Zn. In the current context, Zn is the

estimator corresponding to some numerical solution based on certain discretization

scheme, for instance, Zn = Q(un) where un is the solution of the finite element

method. The subscript n is a generic index of the discretization size. The detailed

construction of Zn will be provided in the sequel. As n → ∞, the estimator becomes

unbiased, that is,

E(Zn) → wQ.

Multilevel Monte Carlo is based on the following telescope sum

wQ = E(Z0) +
∞∑

i=0

E(Zi+1 − Zi). (4.5)

One may choose Z0 to be some simple constant. Without loss of generality, we choose

Z0 ≡ 0 and thus the first term vanishes. The advantage of writing wQ as the telescope

sum is that one is often able to construct Zi and Zi+1 carefully such that they are
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appropriately coupled and the variance of Yi = Zi+1 − Zi decreases fast as i tends

infinity. Let

∆i = E(Zi+1 − Zi) (4.6)

be estimated by

∆̂i =
1

ni

ni∑

j=1

Y
(j)
i

where Y
(j)
i , j = 1, ..., ni are independent replicates of Yi. The multilevel Monte Carlo

estimator is

Ẑ =
I∑

i=1

∆̂i (4.7)

where I is a large integer truncating the infinite sum (4.5).

4.2.2 An unbiased estimator via a randomization scheme

In the construction of the multilevel Monte Carlo estimator (4.7), the truncation level

I is always finite and therefore the estimator is always biased. In what follows, we

present an estimator with the bias removed. It is constructed based on the telescope

sum of the multilevel Monte Carlo estimator and a randomization scheme that is

originally proposed by Rhee and Glynn [2012, 2013].

Let N be a positive-integer-valued random variable that is independent of

{Zi}i=1,2,.... Let pn = P(N = n) be the probability mass function of N such that

pn > 0 for all n > 0. The following identity holds trivially

wQ =
∞∑

i=1

E(Zn − Zn−1) =
∞∑

n=1

E[Zn − Zn−1;N = n]

pn
= E

(ZN − ZN−1

pN

)
.

Therefore, an unbiased estimator of wQ is given by

Z̃ =
ZN − ZN−1

pN
. (4.8)

Let Z̃i, i = 1, ...,M be independent copies of Z̃. The averaged estimator

Z̃M =
1

M

M∑

i=1

Z̃i
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is unbiased for wQ with variance V ar(Z̃)/M if finite.

We provide a complexity analysis of the estimator Z̃. This consists of the calcula-

tion of the variance of Z̃ and of the computational cost to generate Z̃. We start with

the second moment

E(Z̃2) = E
[(ZN − ZN−1)

2

p2N

]
=

∞∑

n=1

E(Zn − Zn−1)
2

pn
. (4.9)

In order to have finite second moment, it is almost necessary to choose the random

variable N such that

pn > nE(Zn − Zn−1)
2 for all n sufficiently large. (4.10)

Furthermore, pn must also satisfy the natural constraint that

∞∑

n=1

pn = 1,

which suggests pn < n−1 for sufficiently large n. Combining with (4.10), we have

n−1 > pn > nE(Zn − Zn−1)
2 (4.11)

Notice that we have not yet specified a discretization method, thus (4.11) can typically

be met by appropriately indexing the mesh size. For instance, in the context of

solving PDE numerically, one may choose the mesh size converging to 0 at a super

exponential rate with n (such as e−n2
) and thus E(Zn − Zn−1)

2 decreases sufficiently

fast that allows quite some flexibility in choosing pn. Thus, constraint (4.11) alone

can always be satisfied and it is not intrinsic to the problem. It is the combination

with the following constraint that forms the key issue.

We now compute the expected computational cost for generating Z̃. Let cn be

the computational cost for generating Zn − Zn−1. Then, the expected cost is

C =
n∑

i=1

pncn. (4.12)

In order to have C finite, it is almost necessary that

pn < n−1c−1
n . (4.13)
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Based on the above calculation, if the estimator Z̃ has a finite variance and a fi-

nite expected computation time, then pn must satisfy both (4.11) and (4.13), which

suggests

E(Zn − Zn−1)
2 < n−2c−1

n . (4.14)

That is, one must be able to construct a coupling between Zn and Zn−1 such that

(4.14) is in place. In Section 4.3, we provide detailed complexity analysis for the

random elliptic PDE illustrating the challenges and presenting the solution.

4.2.3 Function spaces and norms

In this section, we present a list of notation that will be frequently used in later

discussion. Let U ⊂ Rd be a bounded open set. We define the following spaces of

functions.

Ck(Ū) = {u : Ū → R|u is k-time continuously differentiable}

Lp(U) = {u : U → R|
∫

U

|u(x)|pdx < ∞}

Lp
loc(U) = {u : U → R|u ∈ Lp(K) for any compact subset K ⊂ U}

C∞
c (U) = {u : U → R|u is infinitely differentiable

with a compact support that is a subset of U}.

Definition 4. For u, w ∈ L1
loc(U) and a multiple index α, we say w is the α-weak

derivative of u, and write

Dαu = w

if ∫

U

uDαφdx = (−1)|α|
∫

U

wφdx for all φ ∈ C∞
c (U),

where Dαφ in the above expression denote the usual α-partial derivative of φ.

If u ∈ Ck(Ū) and |α| ≤ k, then the α-weak derivative and the usual partial deriva-

tive are the same. Therefore, we can write Dαφ for both continuously differentiable

and weakly differentiable functions without ambiguous.
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We further define norms ‖ · ‖Ck(Ū) and ‖ · ‖Lp(U) on Ck(Ū) and Lp(U) respectively

as follows.

‖u‖Ck(Ū) = sup
|α|≤k,x∈Ū

|Dαu(x)|, (4.15)

and

‖u‖Lp(U) =
(∫

U

|u|pdx
)1/p

. (4.16)

We proceed to the definition of Sobolev space Hk(U) and Hk
loc(U)

Hk(U) = {u : U → R|Dαu ∈ L2(U) for all multiple index α such that |α| ≤ k},
(4.17)

and

Hk
loc(U) = {u : U → R| u|V ∈ Hk(V ) for all V ( U}

For u ∈ Hk(U), the norm ‖u‖Hk(U) and semi-norm |u|Hk(U) are defined as

‖u‖Hk(U) =
( ∑

|α|≤k

‖Dαu‖2L2(U)

)1/2
, (4.18)

and

|u|Hk(U) =
( ∑

|α|=k

‖Dαu‖2L2(U)

)1/2
. (4.19)

We define the space H1
0 (U) as

H1
0 (U) = {u ∈ H1(U) : u(x) = 0 for x ∈ ∂U}. (4.20)

On the space H1
0 (U) the norm ‖ · ‖H1(U) and the semi-norm | · |H1(U) are equivalent.

4.2.4 Finite element method for partial differential equation

We briefly describe the finite element method for partial differential equations. The

weak solution u ∈ H1
0 (U) to (4.1) under the Dirichlet boundary condition (4.2) is

defined through the following variational form

b(u, v) = L(v) for all v ∈ H1
0 (U), (4.21)
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where we define the bilinear and linear forms

b(u, v) =

∫

U

a(x)∇u(x) · ∇v(x)dx and L(v) =

∫

U

f(x)v(x)dx,

and “·” is the vector inner product. When the coefficients a and f are sufficiently

smooth, say, infinitely differentiable, the weak solution u becomes a strong solution.

The key step of the finite element method is to approximate the infinite dimensional

space H1
0 (U) by some finite dimensional linear space Vn = span{φ1, ..., φLn}, where

Ln is the dimension of Vn. The approximate solution un ∈ Vn is defined through the

set of equations

b(un, v) = L(v) for all v ∈ Vn. (4.22)

Both sides of the above equations are linear in v. Then, (4.22) is equivalent to

b(un, φi) = L(φi) for i = 1, ..., Ln.

We further write un =
∑Ln

i=1 diφi as a linear combination of the basis functions. Then,

(4.22) is equivalent to solving linear equations

Ln∑

j=1

djb(φj, φi) = L(φi) for i = 1, ..., Ln. (4.23)

The basis functions φ1, ..., φLn are often chosen such that (4.23) is a sparse lin-

ear system. Solving a sparse linear system requires a computational cost of order

O(Ln log(Ln)) as Ln → ∞.

4.3 Main results

In this section, we present the construction of Z̃ and its complexity analysis. We

use finite element method to solve the PDE numerically and then construct Zn. To

illustrate the challenge, we start with the complexity analysis of Z̃ based on usual

finite element method with linear basis functions, with which we show that (4.11) and

(4.13) cannot be satisfied simultaneously. Thus, Z̃ either has infinite variance or has
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infinite expected computational cost. We improve upon this by means of quadratic

approximation under smoothness assumptions on a and f . The estimator Z̃ thus can

be generated in constant time and has a finite variance.

4.3.1 Error analysis of finite element method

Piecewise linear basis functions. A popular choice of Vn is the space of piecewise

linear functions defined on a triangularization Tn of U . In particular, Tn is a partition

of U that is each element of Tn is a triangle partitioning U . The maximum edge

length of triangles is proportional to 2−n and Vn is the space of all the piecewise

linear functions over Tn that vanish on the boundary ∂U . The dimension of Tn is

Ln = O(2dn). Detailed construction of Tn and piecewise linear basis functions is

provided in Appendix 4.5.3 and Example 5 therein.

Once a set of basis functions has been chosen, the coefficients di’s are solved

according to the linear equations (4.23) and the numerical solution is given by

un(x) =
Ln∑

i=1

diφi(x).

For each functional Q, the biased estimator is

Zn = Q(un).

It is important to notice that, for different n, un are computed based on the same

realizations of a and f . Thus, Zn and Zn−1 are coupled.

We now proceed to verifying (4.14) for linear basis functions. The dimension of

Vn is of order Ln = O(2dn) where d = dim(U). We consider the case when Q is a

functional that involves weak derivatives of u. For instance, Q could be in the form

q(| · |H1(U)) for some smooth function q and Z = Q(u), where | · |H1(U) is defined as in

(4.19).

According to Proposition 4.2 of Charrier et al. [2013], under the conditions that

E[ 1
minx∈U ap(x)

] < ∞, E(‖a‖p
C1(Ū)

) < ∞, and E(‖f‖pL2(U)) < ∞ for all p > 0, E(Zn −
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Zn−1)
2 = O(2−2n) if un and un−1 are computed using the same sample of a and f .

The condition (4.14) becomes

n2−2(n−1) < n−12−dn| log 2−nd|−1.

A simple calculation yields that the above inequality holds only if d = 1. Therefore,

it is impossible to pick pn such that the estimator Z̃ has a finite variance and a finite

expected computational cost using the finite element method with linear basis functions

if d ≥ 2. The one-dimensional case is not of great interest given that u can be solved

explicitly. To establish (4.14) for higher dimensions, we need a faster convergence

rate of the PDE numerical solver.

Quadratic basis functions. We improve accuracy of the finite element method

by means of piecewise polynomial basis functions under smoothness conditions on

a(x) and f(x). Classical results (e.g. Knabner and Angermann [2003]) show that

finite element method with polynomial basis functions provides more accurate results

than that with piecewise linear basis functions. We obtain similar results for random

coefficients. Define the minimum and maximum of a(x) as

amin = min
x∈Ū

a(x) and amax = max
x∈Ū

a(x).

We make the following assumptions on the random coefficients a(x) and f(x).

A1. amin > 0 almost surely and E(1/apmin) < ∞, for all p ∈ (0,∞).

A2. a is almost surely continuously twice differentiable and E(‖a‖p
C2(Ū)

) < ∞
for all p ∈ (0,∞).

A3. f ∈ H1(U) almost surely and E(‖f‖pH1(U)) < ∞ for all p ∈ (0,∞).

A4. There exist non-negative constants p′ and κq such that for all w1, w2 ∈ H1
0 (U),

|Q(w1)−Q(w2)| ≤ κq max{‖w1‖p
′

H1(U), ‖w2‖p
′

H1}‖w1 − w2‖H1(U).
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With the assumptions A1-A4, we are able to construct an unbiased estimator for

wQ = E[Q(u)] with both finite variance and finite expected computational time.

Let k be a positive interger and Tn be a regular triangularization of the domain

U with mesh size supK∈Tn diam(K) = O(2−n), whose detailed definition is provided

in Appendix 4.5.3 and let V
(k)
n be the set of piecewise continuous polynomials on Tn

that have degrees no more than k and vanish on the boundary of U . To be more

specific, V
(k)
n is defined as follows

V (k)
n =

{
v ∈ C(Ū) : v|K is a polynomial with degree no more than k,

for each K ∈ Tn and v|Ū\Dn
= 0
}
,

where Dn = int(∪K∈Tn,K⊂ŪK) and int(A) denotes the interior of the set A. An

approximate solution u
(k)
n is obtained by solving (4.22) with Vn = V

(k)
n , that is,

u(k)
n ∈ V

(k)
h such that b(u(k)

n , v) = L(v), for all v ∈ V (k)
n . (4.24)

In what follows, we present a bound of the convergence rate of ‖u(k)
n −u‖H1(U), where

u is the solution to (4.21) and u
(k)
n is the solution to (4.24).

We start with the existence and the uniqueness of the solution. Notice that a(x)

is bounded below by positive random variables amin and above by amax. According

to Lax-Milgram Lemma, (4.21) has a unique solution almost surely.

Lemma 10 ( Charrier et al. [2013], Lemma 2.1.). Under assumptions A1-A3, (4.21)

has a unique solution u ∈ H1
0 (U) almost surely and

‖u‖H1(U) ≤ κ
‖f‖L2(U)

amin

.

The next theorem establishes the convergence rate of the approximate solution

u
(k)
n to the exact solution u.

Theorem 6. Let u
(k)
n be the solution to (4.24). For dim(U) ≤ 3 with a (k + 1)-time

differentiable boundary ∂U , if a(x) ∈ Ck(Ū) and f(x) ∈ Hk−1(U) for some positive
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integer k, then we have

‖u− u(k)
n ‖H1(U) = O

(
κ(a, k)‖f‖Hk−1(U)2

−kn
)
, (4.25)

where the constant κ(a, k) is defined as

κ(a, k) =
max(‖a‖Ck(Ū), 1)

k2

2
+ 9

2
k− 1

2

min(amin, 1)
k2

2
+ 7

2
k+ 3

2

.

The proof of Theorem 6 is given in Appendix 4.5.1. In our analysis, we focus on

the case k = 2 that is sufficient for our analysis. We state the results for this special

case.

Corollary 5. For dim(U) ≤ 3, if a(x) ∈ C2(Ū) and f(x) ∈ H1(U), then

‖u− u(2)
n ‖H1(U) = O

(max(‖a‖C2(Ū), 1)
10.5

min(amin, 1)10.5
‖f‖H1(U)2

−2n
)
.

Quadrature Error Analysis. The numerical solution u
(k)
n in (4.24) requires the

evaluation of the integrals b(w, v) =
∑

K∈Tn
∫
K
a(x)∇w(x) · ∇v(x)dx and L(v) =

∑
K∈Tn

∫
K
f(x)v(x)dx. This requires generating the entire continuous random fields

a(x) and f(x). For the evaluation of these integrals we apply quadrature approxima-

tion.

In our analysis, we use linear approximation to a(·) and f(·) on each simplex

K ∈ Tn, then the integrals can be calculated analytically. We will give a careful

analysis for the quadrature error of b(w, v). The analysis for L(v) is similar and thus

is omitted.

Let ã(·) be the linear interpolation of a(·) given its values on vertices such that

for all simplex K ∈ Tn, ã(x) = a(x) if x is a vertice of K, and ã|K is linear. Such

interpolation is easy to obtain using piecewise linear basis functions discussed in

Section 4.3.1. We define the bilinear form induced by ã(·) as

b̃n(w, v) =
∑

K∈Tn

∫

K

ã(x)∇w(x) · ∇v(x)dx,
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and denote by ũn ∈ V
(2)
n the solution to

b̃n(ũn, v) = L(v), for all v ∈ V
(2)
n . (4.26)

The next theorem establishes the convergence rate for ũn to the solution u. The proof

for Theorem 7 is given in Appendix 4.5.1.

Theorem 7. For dim(U) ≤ 3, if a(x) ∈ C2(Ū) and f(x) ∈ H1(U), then

‖u− ũn‖H1(U) = O
(min(‖a‖C2(Ū), 1)

11.5

min(amin, 1)11.5
‖f‖H1(U)2

−2n
)
.

This accuracy is sufficient for the unbiased estimator to have finite variance and

finite expected stopping time. Similarly, we let f̃ be the linear interpolation of f on

Tn and define L̃(v) =
∑

K∈Tn
∫
K
f̃(x)v(x)dx. We redefine ũn such that

b̃n(ũn, v) = L̃(v), for all v ∈ V
(2)
n . (4.27)

Similar approximation results as that of Theorem 7 can be obtained. We omit the

repetitive details.

4.3.2 Construction of the unbiased estimator

In this section, we apply the results obtained in Section 4.3.1 to construct an unbiased

estimator with both finite variance and finite expected computational cost through

(4.8). We start with providing an upper bound of E[Q(u)−Q(ũn)]
2.

Proposition 6. Under assumptions A1-A4, we have

E[Q(u)−Q(ũn)]
2 = O(κq2

−4n), (4.28)

where u is the solution to (4.21) and ũn is the solution to (4.27), and κq the Lipschitz

constant appeared in condition A4.

Proof. The proof is a direct application of Lemma 10, Theorem 7 and A4 and therefore

is omitted.
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We proceed to the construction of the unbiased estimator Z̃ via (4.8). Choose

P(N = n) = pn ∝ 2−
4+d
2

n.

For each n, let ũn−1 and ũn be defined as in (4.27) with respect to the same a and f .

Notice that the computation of ũn requires the values of a and f only on the vertices

of Tn. Then, Zn−1 and Zn are given by Zn−1 = Q(ũn−1) and Zn = Q(ũn). With this

coupling, according to Proposition 6, we have that

E(Zn − Zn−1)
2 ≤ 2E[Q(ũn)−Q(u)]2 + 2E[Q(ũn−1)−Q(u)]2 = O(2−4n).

According to equation (4.9), for d = dim(U) ≤ 3, we have

E(Z̃2) ≤
∞∑

n=1

2−4n/2−(4+d)n/2 < ∞.

Furthermore, (4.27) requires solving O(2dn) sparse linear equations. The computa-

tional cost of obtaining un is O(n2dn). According to (4.12), the expected cost of

generating a single copy of Z̃ is

E(C) =
∞∑

n=1

pncn ≤
∞∑

i=1

n2dn · 2−(4+d)n/2 < ∞.

This guarantees that the unbiased estimator Z̃ has a finite variance and can be gen-

erated in finite expected time.

4.4 Simulation Study

4.4.1 An illustrating example

We start with a simple example for which closed form solution is available and

therefore we are able to check the accuracy of the simulation. Let U = (0, 1)2,

f(x) = sin(πx1) sin(πx2) and a(x) = eW , where W is a standard normal distributed

random variable. In this example, the exact solution to (4.1) is

u(x1, x2) = (2π2)−1e−W sin(πx1) sin(πx2). (4.29)
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We are interested in the output functional Q(u) = |u|2H1(U) whose expectation is in a

closed form.

E|u|2H1(U) = E[(8π2)−1e−2W ] = (8π2)−1e2 ≈ 0.0936.

Let pn = 0.875× 0.125n and Zn = Q(ũn) for n > 0. Here Z0 is not a constant and we

estimate E(Z0) and E(Z−Z0) separately. To be more precise, we first estimate E(Z0)

using the usual Monte Carlo estimate with 10000 replicates and obtain Ẑ0 = 0.036

with standard error 0.0024. The estimator according to (4.8) is

Z̃ = Ẑ0 +
ZN − ZN−1

pN
. (4.30)

We perform Monte Carlo simulation with M = 10000 replications. The averaged es-

timator is 0.0939 with the standard deviation 0.0036. Figure 4.1 shows the histogram

of samples of Z̃ and log Z̃.

In order to conform our analytical results, we simulate the expectation for E(Zn−
Z)2 and cn for n = 0, .., 5, using 1000 Monte Carlo sample for each of them. The

scatter plot of n and log2(E(Zn − Z)2) is shown in Figure 4.2. The slope of the

regression line in this graph is −3.85, which is close to the theoretical value −4. The

scatter plot of n and log2 cn is shown in Figure 4.3. The slope of the regression line

in this graph is 2.031, which is close to the theoretical value 2.

4.4.2 Log-normal random field with Gaussian covariance k-

ernel

Here we let U = (0, 1)2, f = 1, and log a be modeled as a Gaussian random field with

the covariance function

Cov(log(a(x)), log(a(y))) = exp(−|x− y|2/λ).

with λ = 0.03. Such a log-normal random field is infinitely differentiable and satisfies

assumptions A1 and A2. We use the circulant embedding method (see Dietrich and

Newsam [1997]) to generate the random field log a exactly. We use the same estimator
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Figure 4.1: Histogram of Monte Carlo sample of Z̃ and log Z̃ that are defined in

Section 4.4.1.
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Figure 4.2: Scatter plots for n against log(E(Z − Zn)
2) in the example in Section

4.4.1.
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Figure 4.3: Scatter plots for n against log(cn) in the example in Section 4.4.1.

as in (4.30) and consider Q(u) = |u|2H1(U). We perform Monte Carlo simulation for

M = 100000 replications. The averaged estimator for the expectation EQ(u) is 0.0428

and the standard deviation is 0.0032 for the averaged estimator. Figure 4.4 shows

the histogram of the Monte Carlo sample.

4.5 Appendix to Chapter 4

4.5.1 Proof of the Theorems

In this section, we provide technical proofs of Theorem 6 and Theorem 7. Throughout

the proof we will use κ as a generic notation to denote large and not-so-important

constants whose value may vary from place to place. Similarly, we use ε as a generic

notation for small positive constants.

Proof of Theorem 6. Using Céa’s lemma (Theorem 2.17 of Knabner and Angermann

[2003]), the convergence rate of finite element method can be bounded according to
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Figure 4.4: Histogram of Monte Carlo sample of Z̃ when log a has a Gaussian covari-

ance.

the regularity property of u.

‖u− u(k)
n ‖H1(U) ≤ (

amax

amin

)1/2 inf
v∈V (k)

n

‖u− v‖H1(U). (4.31)

Furthermore, if u ∈ Hk+1(U), standard interpolation result (See Theorem 3.29 of

Knabner and Angermann [2003]) gives an upper bound of the right-hand side of the

inequality (4.31)

inf
v∈V (k)

n

‖u− v‖H1(U) = O
(
2−kn‖u‖Hk+1(U)

)
. (4.32)

According to (4.31) and (4.32), it is sufficient to derive an upper bound of ‖u‖Hk+1(U),

which is given in the following proposition.

Proposition 7. Under the setting of Theorem 6, we have

‖u‖Hk+1(U) ≤ κ
max(‖a‖Ck(Ū), 1)

k2

2
+ 9

2
k−1

min(amin, 1)
k2

2
+ 7

2
k

(
‖f‖Hk−1(U) + ‖u‖L2(U)

)
.
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Combining (4.32) and Proposition 7 we have

inf
v∈V (k)

n

‖u−v‖H1(U) ≤ 2−knκ
max(‖a‖Ck(Ū), 1)

k2

2
+ 9

2
k− 1

2

min(amin, 1)
k2

2
+ 7

2
k+ 1

2

(
‖f‖Hk−1(U)+‖u‖L2(U)

)
. (4.33)

According to the Poincaré’s lemma (Theorem 2.18 of Knabner and Angermann [2003])

‖u‖L2(U) ≤ κ‖u‖H1(U).

Thanks to Lemma 10, the above display can be further bounded by

‖u‖L2(U) ≤ κ
‖f‖L2(U)

amin

.

We complete the proof by combining the above expression and (4.33).

Proof of Theorem 7. According to Lemma 3.12 of Knabner and Angermann [2003],

‖u− ũn‖H1(U) ≤ inf
v∈V (k)

n

{
(1 +

amax

amin

)‖u− v‖H1(U) +
1

amin

sup
w∈V (k)

n

|b(v, w)− b̃(v, w)|
‖w‖H1(U)

}
.

(4.34)

Notice that ã is a linear interpolation of a with O(2−n) mesh size, so the difference

between ã and a is O(‖a‖C2(Ū)2
−2n) and

|b(v, w)− b̃(v, w)| = |
∑

K∈Tn

∫

K

(ã(x)− a(x))∇v · ∇wdx|

≤ κ‖a‖C2(Ū)2
−2n

∑

K∈Tn

∫

K

|∇v| · |∇w|dx.

Therefore, for all v ∈ V
(k)
n , we have

‖u− ũn‖H1(U) ≤ κ(1 +
amax

amin

)‖u− v‖H1(U) +
‖a‖C2(Ū)

amin

‖v‖H1(U)2
−2n.

Let v = u
(2)
n . According to Lemma 10, Theorem 6, and the above display, we complete

the proof.
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For the rest of the section, we provide the proof for Proposition 7. Proposition 7

is similar to Theorem 5 in Chapter 6.3 of Evans [1998] but we provide explicitly the

dependence of constants on a and f .

Proof of Proposition 7. We prove Proposition 7 by proving the following result for

the weak solution w ∈ H1
0 (U) to a more general PDE,




−∇ · (A∇w) = f in U

w = 0 on ∂U,
(4.35)

where A(x) = (Aij(x))1≤i,j≤d is a symmetric positive definite matrix function in the

sense that there exist Amin > 0 satisfying

ξTA(x)ξ ≥ Amin|ξ|2 (4.36)

for all x ∈ Ū and ξ ∈ Rd. Assume that Aij(x) ∈ Ck(Ū) for all i, j = 1, ..., d. Then, it

is sufficient to show that

‖w‖Hk+1(U) ≤ κr(A, k)
(
‖f‖Hk−1(U) + ‖w‖L2(U)

)
, (4.37)

where κr(A, k) = κ
max(‖A‖

Ck(Ū)
,1)

k2

2 +9
2 k−1

min(Amin,1)
k2
2 +7

2 k
, and ‖A‖Ck(Ū) = max1≤i,j≤d ‖Aij‖Ck(Ū).

Let B0(0, r) denote the open ball {x : |x| < r} and Rd
+ = {x ∈ Rd : xd > 0}. We

will first prove that if U = B0(0, r) ∩Rd
+ and V = B0(0, t) ∩Rd

+, then for all t and r

such that and 0 < t < r,

‖w‖Hm+2(V ) ≤ κr,t,m+1

max(‖A‖Ck(Ū), 1)
(m+1)2

2
+ 9

2
(m+1)−1

min(Amin, 1)
(m+1)2

2
+ 7

2
(m+1)

(
‖f‖Hm(U) + ‖w‖L2(U)

)
,

(4.38)

where κr,t,m+1 is a constant depending only on r, t, and m+ 1. The following lemma

establish (4.38) for m = 0.

Lemma 11 (Boundary H2-regularity). Assume ∂U is twice differentiable and A(x)

satisfies (4.36). Assume that Aij(x) ∈ C1(Ū) for all i, j = 1, ..., d. Suppose further-

more w ∈ H1
0 (U) is a weak solution to the elliptic PDE with boundary condition
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(4.35). Then w ∈ H2(U) and

‖w‖H2(U) ≤ κ
max(‖A‖C1(Ū), 1)

4

min(Amin, 1)4

(
‖f‖L2(U) + ‖w‖L2(U)

)
.

We establish (4.38) by induction. Suppose for some m

‖w‖Hm+1(W ) ≤ κt,s,m

max(‖A‖Ck(Ū), 1)
m2

2
+ 9

2
m−1

min(Amin, 1)
m2

2
+ 7

2
m

(‖f‖Hm−1(U) + ‖w‖L2(U)), (4.39)

where

W = B0(0, s) ∩Rd
+, and s =

t+ 1

2
. (4.40)

Since w is a weak solution to (4.35), it satisfies the integration equation
∫

D

∇w(x)TA(x)∇v(x)dx =

∫

D

f(x)v(x)dx, for all v ∈ H1
0 (U). (4.41)

Let α = (α1, ..., αd) be a multiple index with such that αd = 0 and |α| = m. We

consider the multiple weak derivative w̄ = Dαw and investigate the PDE that w̄

satisfies. For any v̄ ∈ C∞
c (W ), where C∞

c (W ) is the space of infinitely differentiable

functions that have compact support in W , we plug v = (−1)|α|Dαv̄ into (4.41). With

some calculations, we have
∫

W

(∇w̄(x))TA(x)∇v̄(x) =

∫

W

f̄(x)v̄(x)dx,

where

f̄ = Dαf −
∑

β≤α,β 6=α

(
α

β

)[
−∇ · (Dα−βA∇Dβw)

]
. (4.42)

Consequently, w̄ is a weak solution to the PDE

−∇ · (A∇w̄) = f̄ for x in W. (4.43)

Furthermore, we have the boundary condition w̄(x) = 0 for x ∈ ∂W ∩ {xd = 0}. By
the induction assumption (4.39) and (4.42), we have

‖f̄‖L2(W ) ≤ ‖f‖Hm(U) + κt,s,m

max(‖A‖Ck(Ū), 1)
m2

2
+ 9

2
m−1

min(Amin, 1)
m2

2
+ 7

2
m

× ‖A‖Cm+1(Ū)

(
‖f‖Hm−1(U) + ‖w‖L2(U)

)
. (4.44)
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According to the definition of w̄, we have

‖w̄‖L2(W ) ≤ ‖w‖Hm(W ). (4.45)

Applying Lemma 11 to w̄ with (4.44) and (4.45), we have

‖Dαw‖H2(V )

≤ κt,s,mκ
max(‖A‖C1(Ū), 1)

4

min(Amin, 1)4
max(‖A‖Ck(Ū), 1)

m2

2
+ 9

2
m−1

min(Amin, 1)
m2

2
+ 7

2
m

× ‖A‖Cm+1(Ū)

(
‖f‖Hm(U) + ‖w‖L2(U)

)
. (4.46)

Because α is an arbitrary multi-index such that αd = 0, and |α| = m, (4.46) implies

that Dβw ∈ L2(W ) for any multiple index β such that |β| ≤ m + 2 and βd = 0, 1, 2.

We now extend this result to multiple index β whose last component is greater than

2. Suppose for all β such that |β| ≤ m+ 2 and βd ≤ j , we have

‖Dβw‖H2(V ) ≤ κ(j)
r

(
‖f‖Hm(U) + ‖w‖L2(U)

)
, (4.47)

where κ
(j)
r is a constant depending on A, m and j that we are going to determine

later. We establish the relationship between κ
(j)
r and κ

(j+1)
r . For any γ that is a

multiple index such that |γ| = m + 2 and γd = j + 1, we use (4.47) to develop an

upper bound for ‖Dγw‖H2(V ). In particular, let β = (γ1, .., γd−1, j − 1). According to

the remark (ii) after Theorem 1 of Chapter 6.3 in Evans [1998], we have that

−∇ · (A∇(Dβw)) = f † in W a.e, (4.48)

where

f † = Dβf −
∑

δ≤β,δ 6=β

(
β

δ

)[
−∇ · (Dβ−δA∇Dδw)

]
. (4.49)

Notice that

−∇ · (A∇(Dβw))

= −AddD
γw

+ sum of terms involves at most j times weak derivatives of w

with respect to xd and at most m+ 2 times derivatives in total.
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According to (4.47), (4.48), (4.49), and the above display, we have

‖Dγw‖L2(U) ≤ κ
1

min(Amin, 1)

{
‖A‖Cm+1(Ū)κ

(j)
r

(
‖f‖Hm(U) + ‖w‖L2(U)

)
+ ‖f‖Hm(U)

}
.

Therefore,

‖Dγw‖L2(U) ≤ κ(j+1)
r

(
‖f‖Hm(U) + ‖w‖L2(U)

)
,

where

κ(j+1)
r = κ(j)

r

max(‖A‖Cm+1(Ū), 1)

min(Amin, 1)
. (4.50)

The above expression provides a relationship for κ
(j+1)
r and κ

(j)
r . According to (4.46),

κ(2)
r = κt,s,mκ

max(‖A‖C1(Ū), 1)
4

min(Amin, 1)4
max(‖A‖Ck(Ū), 1)

m2

2
+ 9

2
m−1

min(Amin, 1)
m2

2
+ 7

2
m

max(‖A‖Cm+1(Ū), 1).

Using (4.50) and the above initial value for the iteration, we have

κ(m+2)
r = κt,s,mκ

max(‖A‖C1(Ū), 1)
4

min(Amin, 1)4
max(‖A‖Ck(Ū), 1)

m2

2
+ 9

2
m−1

min(Amin, 1)
m2

2
+ 7

2
m

×max(‖A‖Cm+1(Ū), 1)
{max(‖A‖Cm+1(Ū), 1)

min(Amin, 1)

}m

. (4.51)

Consequently,

‖w‖Hm+2(V ) ≤ κt,s,mκ
max(‖A‖Ck(Ū), 1)

m2

2
+ 11

2
m+4

min(Amin, 1)
m2

2
+ 9

2
m+4

(
‖f‖Hm(U) + ‖w‖L2(V )

)
.

Using induction, we complete the proof of (4.37) for the case where U is a half ball.

Now we extend the result to the case that U has a Ck+1 boundary ∂U . We

first prove the theorem locally for any point x0 ∈ ∂U . Because ∂U is (k + 1)-time

differentiable, with possibly relabeling, the coordinates of x there exist a function

γ : Rd−1 → R and r > 0 such that,

B(x0, r) ∩ U = {x ∈ B(x0, r) : xd > γ(x1, ..., xd−1)}.

Let Φ = (Φ1, ...,Φd)
T : Rd → Rd be a function such that

Φi(x) = xi for i = 1, ..., d− 1 and Φd(x) = xd − γ(x1, ..., xd−1).
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Let y = Φ(x) and choose s > 0 sufficiently small such that

U∗ = B0(0, s) ∩ {yd > 0} ⊂ Φ(U ∩ B(x0, r)).

Furthermore, we let V ∗ = B0(0, s
2
) ∩ {yd > 0} and set

w∗(y) = w(x) = w(Φ−1(y)).

With some calculation, we have that w∗ is a weak solution to the PDE

−∇ ·
(
A∗(y)∇w∗(y)

)
= f ∗(y),

where A∗(y) = J(y)A(Φ−1(y))JT (y) and J(y) is the Jacobian matrix for Φ with

Jij(y) = ∂Φi(x)
∂xj

|x=Φ−1(y), and f ∗(y) = f(Φ−1(y)). In addition, w∗ ∈ H1(U∗) and

w∗(y) = 0 for y ∈ ∂U∗∩{yd = 0}. It is easy to check A∗ is symmetric and A∗
ij ∈ Ck(Ū)

for all 1 ≤ i, j ≤ d. Furthermore, according to the definition of J and Φ, all the

eigenvalues of J(y) are 1 and thus ζTA∗(y)ξ ≥ Amin|JT (y)ξ|2 ≥ εAmin|ξ|2 for all

ξ ∈ Rd. By substituting U , V , A, f with U∗, V ∗, A∗ and f ∗ in (4.38) we have

‖w∗‖H2(V ∗) ≤ κr(A, k)
(
‖w∗‖L2(U∗) + ‖f ∗‖Hk−1(U∗)

)
.

According to the definitions of w∗ and f ∗, the above display implies

‖w‖H2(Φ−1(V ∗)) ≤ κr(A, k)
(
‖w‖L2(U) + ‖f‖Hk−1(U)

)
.

Because U is bounded, ∂U is compact and thus can be covered by finitely many sets

Φ−1(V ∗
1 ), ..,Φ

−1(V ∗
K) that are constructed similarly as Φ−1(V ∗). We finish the proof

by combining the result for points around ∂U and the following Lemma 12 for interior

points.

Lemma 12 (Higher order interior regularity). Under the setting of Lemma 11, we

assume that ∂U is Ck+1, Aij(x) ∈ Ck(U) for all i, j = 1, ..., d, and f ∈ Hk−1(U),

and that w ∈ H1(U) is one of the weak solutions to the PDE (4.35) without boundary

condition. Then, w ∈ Hk+1
loc (U). For each open set V $ U

‖w‖Hk+1(V ) ≤ κi(A, k)
(
‖f‖Hk−1(U) + ‖w‖L2(U)

)
,

where κi(A, k) =
max(‖A‖

Ck(Ū)
,1)3k−1

min(Amin,1)2k
κ, and κ is a constant depending on V .
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4.5.2 Proof of supporting lemmas

In this section, we provide the proofs for lemmas that are necessary for the proof of

Proposition 7. We start with a useful lemma showing w ∈ H2
loc(U) which will be used

in the proof of Lemma 11

Lemma 13 (Interior H2-regularity). Under the setting of Lemma 11, we further

assume that Aij(x) ∈ C1(Ū) for all i, j = 1, ..., d, and f ∈ L2(U), and that w ∈ H1(U)

is one of the weak solutions to the PDE (4.35) without boundary condition. Then,

w ∈ H2
loc(U). For each open subset V $ U , there exist κ depending on V such that

‖w‖H2(V ) ≤ κ
max(‖A‖C1(U), 1)

2

min(Amin, 1)2

(
‖f‖L2(U) + ‖w‖L2(U)

)
,

where we define the norm ‖A‖C1(Ū) = max1≤i,j≤d ‖Aij‖C1(Ū).

Proof of Lemma 13. Let h be a real number whose absolute value is sufficiently small,

we define the difference quotient operator

Dh
kw(x) =

w(x+ hek)− w(x)

h
,

where ek is the kth unit vector in Rd. According to Theorem 3 in Chapter 5.8 of

Evans [1998], if there exist a positive constant κ such that ‖Dh
kw‖L2(U) ≤ κ for all h,

then ∂w
∂xk

∈ L2(U) and ‖ ∂w
∂xk

‖L2(U) ≤ κ. We use this theorem and seek for an upper

bound of ∫

V

|Uh
k∇w|2dx, (4.52)

for k = 1, ..., d for the rest of the proof.

We derive a bound of (4.52) by plugging an appropriate v in (4.41). Let W be an

open set such that V $ W $ U . We select a smooth function ζ such that

ζ = 1 on V, ζ = 0 on W c, and 0 ≤ ζ ≤ 1.
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We plug

v = −D−h
k (ζ2Dh

kw)

into (4.41), and have

−
∫

D

∇wTA∇[D−h
k (ζ2Dh

kw)]dx = −
∫

D

fD−h
k (ζ2Dh

kw)dx. (4.53)

We give a lower bound of the left-hand side of (4.53) and an upper bound of the right-

hand. We use two basic formulas that are similar to integration by part and derivative

of product respectively. For any functions w1, w2 ∈ L2(U), such that w2(x) = 0 if

dist(x, ∂U) < h, we have
∫

D

w1D
−h
k w2dx = −

∫

D

Dh
kw1w2dx and Dh

k(w1w2) = wh
1D

h
kw2 + w2D

h
kw1,

where we define wh
1 (x) = w1(x + hek). Similarly, we define the matrix function

Ah = A(x + hek). Applying the above formulas to the left hand side of (4.53), we

have

−
∫

D

∇wTA∇[D−h
k (ζDh

kw)]dx

=

∫

D

Dh
k(∇wTA)∇(ζ2Dh

kw)dx

=

∫

D

Dh
k(∇wT )Ah∇(ζ2Dh

kw) +∇wTDh
kA∇(ζ2Dh

kw)dx

=

∫

D

ζ2Dh
k∇wTAhDh

k∇wdx

︸ ︷︷ ︸
J1

+

∫

D

2ζ(Dh
k∇wTAh∇ζ)Dh

kw + 2ζ(∇wTDh
kA∇ζ)Dh

kw + ζ2∇wTDh
kAD

h
k∇wdx

︸ ︷︷ ︸
J2

.

J1 in the above expression has a lower bound

J1 ≥ Amin

∫

D

ζ2|Dh
k∇w|2dx

due to the positively definitiveness of A(x). |J2| is bounded above by

|J2| ≤ κ‖A‖C1(Ū)

(∫

D

ζ|Dh
k∇w||Dh

kw|+ ζ|∇w||Dh
kw|+ ζ|∇w||Dh

k∇w|dx
)
. (4.54)
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The expression (4.54) can be further bounded by

|J2| ≤
Amin

2

∫

D

ζ2|Dh
k∇w|2dx+ κ‖A‖C1(Ū) × (1 +

‖A‖C1(Ū)

Amin

)

∫

W

|∇w|2 + |Dh
kw|2dx.

(4.55)

thanks to Cauchy-Schwarz inequality. According to Theorem 3 in Chapter 5.8 of

Evans [1998], ∫

W

|Dh
kw|2dx ≤ κ

∫

W

|∇w|2dx. (4.56)

Therefore, (4.55) is bounded above by

|J2| ≤
Amin

2

∫

D

ζ2|Dh
k∇w|2dx+ κ2‖A‖C1(Ū) × (1 +

‖A‖C1(Ū)

Amin

)

∫

W

|∇w|2dx. (4.57)

Combining (4.54) and (4.57), we have

LHS of (4.53)

= J1 + J2 ≥ J1 − |J2|

≥ Amin

2

∫

D

ζ2|Dh
k∇w|2dx− κ2‖A‖C1(Ū) × (1 +

‖A‖C1(Ū)

Amin

)

∫

W

|∇w|2dx.(4.58)

We proceed to an upper bound of the right hand side of (4.53). According to (4.56),

we have

∫

D

|D−h
k (ζ2Dh

kw)|2dx

≤ κ

∫

D

|∇(ζ2Dh
kw)|2dx

≤ κ

∫

W

4|Dh
kw|2|∇ζ|2ζ2 + ζ2|Dh

k∇w|2dx

≤ κ3

∫

W

|∇w|2 + ζ2|Dh
k∇w|2dx. (4.59)

Apply Cauchy’s inequality to the right-hand side of (4.53), we have

RHS of (4.53)

≤
∫

D

|f ||D−h
k (ζ2Dh

kw)|dx ≤ 2κ3

Amin

∫

D

|f |2dx+
Amin

4κ3

∫

D

|D−h
k (ζ2Dh

kw)|2dx. (4.60)
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We combine (4.59) and (4.60),

RHS of (4.53) ≤ Amin

4

∫

W

ζ2|Dh
k∇w|2dx+

Amin

4

∫

W

|∇w|2dx+
2κ3

Amin

∫

W

|f |2dx.
(4.61)

Combining (4.58) and (4.61), we have

∫

D

ζ2|Dh
k∇w|2dx ≤ 8κ3

A2
min

∫

W

|f |2dx+
[
1+4κ2‖A‖C1(Ū)

‖A‖C1(Ū) + Amin

A2
min

] ∫

W

|∇w|2dx.
(4.62)

Therefore,

∫

D

ζ2|Dh
k∇w|2dx ≤ κ

max(‖A‖C1(Ū), 1)
2

min(Amin, 1)2

(∫

W

|f |2dx+

∫

W

|∇w|2
)
. (4.63)

Now we give an upper bound of
∫
D
|∇w| by taking v = ζ̃2w in (4.41), where we choose

ζ̃ to be a smooth function such that ζ̃ = 1 on W and ζ̃ = 0 on U c. Using similar

arguments as that for (4.63), we have

∫

W

|∇w|2dx ≤ κ
max(‖A‖C1(Ū), 1)

2

min(Amin, 1)2

(∫

W

|f |2dx+

∫

W

|∇w|2
)
. (4.64)

(4.63) and (4.64) together give

∫

D

ζ2|Dh
k∇w|2dx ≤ κ

max(‖A‖C1(Ū), 1)
4

min(Amin, 1)4

∫

D

|f |2 + |w|2dx. (4.65)

We complete our proof by combining (4.65) for all k = 1, ..., d.

Proof of Lemma 11. We first consider a special case when U is a half ball

U = B0(0, 1) ∩Rd
+.

Let V = B0(0, 1
2
) ∩Rd

+, and select a smooth function ζ such that

ζ = 1 on B(0,
1

2
), ζ = 0 on B(0, 1)c, and 0 ≤ ζ ≤ 1.

For k = 1, ..., d− 1, we plug

v = −D−h
k (ζ2Dh

kw)
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into (4.41). Using the same arguments for deriving (4.62) as in the proof for Lem-

ma 13, we obtain that

∫

V

|Dh
k∇w|2dx ≤ κ

max(‖A‖C1(Ū), 1)
2

min(Amin, 1)2

∫

W

|f |2 + |∇w|2dx.

The above display holds for arbitrary h, so we have

d∑

i,j=1,i+j<2d

∫

V

| ∂2w

∂xi∂xj

|2dx ≤ κ
max(‖A‖C1(Ū), 1)

2

min(Amin, 1)2

∫

W

|f |2 + |∇w|2dx. (4.66)

We proceed to an upper bound for

∫

V

| ∂2w

∂xd∂xd

|2dx.

According to the remark (ii) after Theorem 1 in Chapter 6.3 of Evans [1998], with

the interior regularity obtained by Lemma 13, w solves (4.35) almost everywhere in

U . Consequently,

Add
∂2w

∂xd∂xd

= −
d∑

i,j=1,i+j<2d

Aij
∂2w

∂xi∂xj

−
d∑

i,j=1

∂Aij

∂xj

∂w

∂xi

− f a.e.

Note that Add ≥ Amin, so the above display implies that

| ∂2w

∂xd∂xd

| ≤ κ
‖A‖C1(Ū)

Amin

( d∑

i,j=1,i+j<2d

| ∂2w

∂xi∂xj

|+ |∇w|+ |f |
)
.

Combining the above display with (4.66), we have

‖w‖H2(V ) ≤ κ
max(‖A‖C1(Ū), 1)

2

min(Amin, 1)2

(
‖|∇w|‖L2(U) + ‖f‖L2(U)

)
.

According to (4.64), the above display implies

‖w‖H2(V ) ≤
max(‖A‖C1(Ū), 1)

4

min(Amin, 1)4

(
‖w‖L2(U) + ‖f‖L2(U)

)
.

Similar to the proof for Proposition 7, this result can be extended to the case where

U has a twice differentiable boundary. We omit the details.
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Proof of Lemma 12. We use induction to prove Lemma 12. When k = 1, Lemma 13

gives

‖w‖H2(V ) ≤ κi(A, 1)
(
‖f‖L2(U) + ‖w‖L2(U)

)
.

Suppose for k = 1, ...,m, Lemma 12 holds. We intend to prove that for k = m+ 1,

‖w‖Hm+2(V ) ≤ κi(A,m+ 1)
(
‖f‖Hm(U) + ‖w‖L2(U)

)
.

By induction assumption, we have w ∈ Hm+1
loc (U) and for any W such that V ( W (

U

‖w‖Hm+1(W ) ≤ κi(A,m)
(
‖f‖Hm−1(U) + ‖w‖L2(U)

)
. (4.67)

Denote by α = (α1, .., αd)
T a multiple index with |α| = α1+...+αd = m. With similar

arguments as for (4.43), we have that w̄ = Dαw is a weak solution to the PDE (4.43)

without boundary condition. Similar to the derivation for (4.46), w ∈ Hm+2(V ) and

‖w‖Hm+2(V ) ≤ κi(A, 1)κi(A,m)max(‖A‖Cm+1(Ū), 1)
(
‖f‖Hm(U) + ‖w‖L2(U)

)
.

We complete the proof by induction.

4.5.3 Triangularization

The triangularization Tn is a partition of U into triangles parametrized with the mesh

size maxK∈Th diam(K) = O(2−n), and satisfies the following properties,

(1) Ū ⊂ ∪K∈TnK;

(2) For any K ∈ Tn, the vertices of K lie either all in Ū or all in U c;

(3) For K,K ′ ∈ Tn, K 6= K ′, int(K)∩int(K ′) = ∅ where int(K) denote the interior

of the triangle K;

(4) If K 6= K ′ but K ∩K ′ 6= ∅, then K ∩K ′ is either a point or a common edge of

K and K ′.
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Example 5. Here we provide an example of Vn and Tn defined over the region U =

(0, 1)2. The detailed definition of Tn and the finite dimensional subspace Vn is given

in Appendix 4.5.3. In Figure 4.5, Tn is the set of triangles that partitions (0, 1)2. The

shaded area is the support for the basis function φ1 of the space V2. In particular,

φ1 is a piecewise linear function on each triangle (and is constant if the triangle is

outside the support) and φ1(0.25, 0.25) = 1, φ1(0.25, 0) = φ1(0.5, 0) = φ1(0.5, 0.25) =

φ1(0.25, 0.5) = φ1(0, 0.5) = 0. Similar basis functions φ2, ..., φ9 can be constructed

corresponding to the nine inner nodes (circled points in Figure 4.5).

(0, 0) (1, 0)

(0, 1) (1, 1)

Figure 4.5: Triangularization T2 on (0, 1)2.
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Chapter 5

Chernoff Index for the Generalized

Likelihood Ratio Test

5.1 Introduction

Cox [1961, 1962] introduced the problem of testing two separate parametric families.

Let X1, . . . , Xn be independent and identically distributed real-valued observations

from a population with density f with respect to some baseline measure µ. Let

{gθ, θ ∈ Θ} and {hγ, γ ∈ Γ} denote two separate parametric families of density

functions with respect to the same measure µ. Consider testing H0: f ∈ {gθ, θ ∈
Θ} against H1: f ∈ {hγ, γ ∈ Γ}. To avoid singularity, we assume that all the

distributions in the families gθ and hγ are mutually absolutely continuous so that the

likelihood ratio stays away from zero and infinity. Furthermore, we assume that the

model is correctly specified, that is, f belongs to either the g-family or the h-family.

Recently revisiting this problem, Cox [2013] mentioned several applications such

as the one-hit and two-hit models of binary dose-response and testing of interactions

in a balanced 2k factorial experiment. Furthermore, this problem has been studied in

econometrics [Davidson and MacKinnon, 1981; Pesaran and Deaton, 1978; Pesaran,

1974; Vuong, 1989; White, 1982a,b]. For more applications of testing separate fami-



CHAPTER 5. CHERNOFF INDEX FOR THE GENERALIZED LIKELIHOOD
RATIO TEST 118

lies of hypotheses, see Berrington de González and Cox [2007] and Braganca Pereira

[2005], and the references therein. Furthermore, there is a discussion of model mis-

specification, that is, f belongs to neither the g-family nor the h-family, which is

beyond the current discussion. For semiparametric models, Fine [2002] proposed a

similar test for non-nested hypotheses under the Cox proportional hazards model

assumption.

In the discussion of Cox [1962], the test statistic l = lg(θ̂)−lh(γ̂)−Egθ̂
{lg(θ̂)−lh(γ̂)}

is considered. The functions lg(θ) and lh(γ) are the log-likelihood functions under the

g-family and the h-family and θ̂ and γ̂ are the corresponding maximum likelihood

estimators. Rigorous distributional discussions of statistic l can be found in Huber

[1967] and White [1982a,b]. In the current chapter and Chapter 6, we consider the

generalized likelihood ratio statistic

LRn =
maxγ∈Γ

∏n
i=1 hγ(Xi)

maxθ∈Θ
∏n

i=1 gθ(Xi)
= elh(γ̂)−lg(θ̂) (5.1)

that is slightly different from Cox’s approach. We are interested in the Chernoff

efficiency, whose definition is provided in Section 5.2.1, of the generalized likelihood

ratio test.

In the hypothesis testing literature, there are several measures of asymptotic rel-

ative efficiency for simple null hypothesis against simple alternative hypothesis. Let

n1 and n2 be the necessary sample sizes for each of two testing procedures to perform

equivalently in the sense that they admit the same type I and type II error proba-

bilities. Then, the limit of ratio n1/n2 in the regime that both sample sizes tend to

infinity represents the asymptotic relative efficiency between these two procedures.

Relative efficiency depends on the asymptotic manner of the two types of error

probabilities with large samples. Under different asymptotic regimes, several asymp-

totic efficiency measures are proposed and they are summarized in Chapter 10 of Ser-

fling [1980]. Under the regime of Pitman efficiency, several asymptotically equivalent

tests to Cox test exist. Furthermore, Pesaran [1984] and Rukhin [1993] applied Ba-

hadur’s criterion of asymptotic comparison [Bahadur, 1960, 1967] to tests for separate
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families and compared different tests for lognormal against exponential distribution

and for non-nested linear regressions. There are other efficiency measures that are

frequently considered, such as Kallenberg efficiency [Kallenberg, 1983].

In the context of testing a simple null hypothesis against a fixed simple alter-

native hypothesis, Chernoff [1952] introduces a measure of asymptotic efficiency for

tests based on sum of independent and identically distributed observations, a special

case of which is the likelihood ratio test. This efficiency is introduced by showing no

preference between the null hypothesis and the alternative hypothesis. The rejection

region is setup such that the two types of error probabilities decay at the same expo-

nential rate ρ. The rate ρ is later known as the Chernoff index. A brief summary of

the Chernoff index is provided in Section 5.2.1.

The basic strategy of Chernoff [1952] is applying large deviations techniques to the

log-likelihood ratio statistic and computes/approximates the probabilities of the two

types of errors. Under the situation when either the null hypothesis or the alternative

hypothesis is composite, one naturally considers the generalized likelihood ratio test.

To the authors’ best knowledge, the asymptotic behavior of the generalized likelihood

ratio test under the Chernoff’s regime remains an open problem. This is mostly be-

cause large deviations results are not directly applicable as the test statistic is the

ratio of the supremums of two random functions. This paper fills in this void and

provides a definitive conclusion of the asymptotic efficiency of the generalized likeli-

hood ratio test under Chernoff’s asymptotic regime. We define the Chernoff index

via the asymptotic decay rate of the maximal type I and type II error probabilities

that is also the minimax risk corresponding to the zero-one loss function.

We compute the generalized Chernoff index of the generalized likelihood ratio test

for two separate parametric families that keep a certain distance away from each other.

That is, the Kullback-Leibler distance between gθ and hγ are bounded away from zero

for all θ ∈ Θ and γ ∈ Γ. We use ρθγ to denote the Chernoff index of the likelihood ratio

test for the simple null H0 : f = gθ against simple alternative H1 : f = hγ. Under
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mild moment conditions, we show that the exponential decay rate of the maximal

error probabilities is simply the minimum of the one-to-one Chernoff index ρθγ over

the parameter space, that is, ρ = minθ,γ ρθγ . This result suggests that the generalized

likelihood ratio test is asymptotically the minimax strategy in the sense that with the

same sample size it achieves the optimal exponential decay rate of the maximal type

I and type II error probabilities when they decay equally fast. The present result

can also be generalized to asymptotic analysis of Bayesian model selection among

two or more families of distributions. A key technical component is to deal with

the excursion probabilities of the likelihood functions, for which random field and

non-exponential change of measure techniques are applied. This paper also in part

corresponds to the conjecture in Cox [2013] “formal discussion of possible optimality

properties of the test statistics would, I think, require large deviation theory” though

we consider a slightly different statistic.

We further extend the analysis to the cases when the two families may not be

completely separate, that is, one may find two sequences of distributions in each

family and the two sequences converge to each other. For this case, the Chernoff in-

dex is zero. We provide asymptotic decay rate of the type I error probability under a

given distribution gθ0 in H0. To have the problem well-posed, the minimum Kullback-

Leibler divergence between gθ0 and all distributions in H1 has to be bounded away

from zero. The result is applicable to both separated and non-separated families and

thus it provides a means to approximate the error probabilities of the generalized like-

lihood ratio test for general parametric families. This result has important theoretical

implications in hypothesis testing, model selection, and other areas where maximum

likelihood is employed. We provide a discussion concerning variable selection for

regression models.

The rest of this chapter is organized as follows. We present our main results for

separate families of hypotheses in Section 5.2. Further extension to more than two

families and Bayesian model selection is discussed in Section 5.3. Results for possibly
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non-separate families are presented in Section 5.4. Numerical examples are provided

in Section 5.5. Lastly a concluding remark is give in Section 5.6.

5.2 Main results

5.2.1 Simple null against simple alternative – a review of

Chernoff index

In this section we state the main results and their implications. To start with, we

provide a brief review of Chernoff index for simple null versus simple alternative;

then, we proceed to the case of simple null versus composite alternative; furthermore,

we present the generalized Chernoff index for the composite null versus composite

alternative.

Under the context of simple null hypothesis versus simple alternative hypothesis,

we have the null hypothesis H0 : f = g and the alternative hypothesis H1 : f = h. We

write the log-likelihood ratio of each observation as li = log h(Xi)− log g(Xi). Then,

the likelihood ratio is LRn = exp(
∑n

i=1 l
i). We use l to denote the generic random

variable equal in distribution to li. We define the moment generating function of l

under distribution g as Mg(z) = Eg(e
zl) =

∫
{h(x)/g(x)}zg(x)µ(dx), which must be

finite for z ∈ [0, 1] by the Hölder inequality. Furthermore, define the rate function

mg(t) = max
z

[zt− log{Mg(z)}].

The following large deviations result is established by Chernoff (1952).

Proposition 8. If −∞ < t < Eg(l), then logPg(LRn < ent) ∼ −n × mg(t); if

Eg(l) < t < ∞, then logPg(LRn > ent) ∼ −n×mg(t).

We write an ∼ bn if an/bn → 1 as n → ∞. The above proposition provides an

asymptotic decay rate of the type I error probability: for any t > Eg(l)

Pg(LRn > ent) = e−{1+o(1)}n×mg(t) as n → ∞.



CHAPTER 5. CHERNOFF INDEX FOR THE GENERALIZED LIKELIHOOD
RATIO TEST 122

Similarly, we switch the roles of g and h and define Mh(z) and mh(t) by flipping the

sign of the log-likelihood ratio l = log g(X)−log h(X) and computing the expectations

under h. One further defines ρ(t) = min{mg(t),mh(−t)} that is the slower rate among

the type I and type II error probabilities. A measure of efficiency is given by

ρ = max
Eg(l)<t<Eh(l)

ρ(t) (5.2)

that is known as the Chernoff index between g and h.

In the decision framework, we consider the zero-one loss function

L(C, f,X1, ..., Xn) =





1 if f = g and (X1, ..., Xn) ∈ C

1 if f = h and (X1, ..., Xn) /∈ C

0 otherwise

(5.3)

where C ⊂ Rn and f is a density function. Then, the risk function is

R(C, f) = Ef{L(C, f,X1, ..., Xn)} =





Pg(C) if f = g

Ph(C
c) if f = h

. (5.4)

The Chernoff index is the asymptotic exponential decay rate of the minimax risk

minC maxf R(C, f) within the family of tests. In the following section, we will gener-

alize the Chernoff efficiency following the minimaxity definition.

Using the fact that Mg(z) = Mh(1 − z), one can show that the optimization in

(5.2) is solved at t = 0 and

ρ = ρ(0). (5.5)

Both mg(t) and mh(−t) are monotone functions of t and (5.5) suggests that ρ =

mg(0) = mh(0). To achieve the Chernoff index, we reject the null hypothesis if the

likelihood ratio statistic is greater than 1 and the type I and type II error probabilities

have identical exponential decay rate ρ.

To have a more concrete idea of the above calculations, Figure 5.1 shows one par-

ticular− log{Mg(z)} as a function of z where g(x) is a lognormal distribution and h(x)

is an exponential distribution. There are several useful facts. First, − log{Mg(z)} is
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Figure 5.1: Plot of − log{Mg(z)} (y-coordinate) against z (x-coordinate) for the

example of lognormal distribution versus exponential distribution

a concave function of z and − log{Mg(0)} = − log{Mg(1)} = 0. The maximization

maxz[zt − log{Mg(z)}] is solved at d log{Mg(z)}/dz = t. Furthermore, the Chernoff

index is achieved at t = 0. We insert t = 0 into the maximization and the Chernoff

index is ρ = maxz[− log{Mg(z)}].

5.2.2 Generalized Chernoff index for testing composite hy-

pothesis

In this subsection, we develop the corresponding results for testing composite hy-

potheses. Some technical conditions are required as follows.

A1 Complete separation: minθ∈Θ,γ∈Γ Egθ{log gθ(X)− log hγ(X)} > 0.

A2 The parameter spaces Θ and Γ are compact subsets of Rdg and Rdh with con-

tinuously differentiable boundary ∂Θ and ∂Γ, respectively.

A3 Define lθγ = log hγ(X)− log gθ(X), S1 = supθ,γ |∇θlθγ|, and S2 = supθ,γ |∇γlθγ|.
There exists some η, x0 > 0, that are independent with θ and γ, such that for
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x > x0

sup
θ∈Θ,γ∈Γ

max{Pgθ(Si > x),Phγ (Si > x)} ≤ e−(log x)1+η

, (i = 1, 2). (5.6)

Remark 3. Condition A3 requires certain tail conditions of Si. It excludes some sin-

gularity cases. This condition is satisfied by most parametric families. For instance,

if gθ(x) = g0(x)e
θx−ϕg(θ) and hγ = h0(x)e

γx−ϕh(γ) are exponential families, then

|∇θlθγ| = |x− ϕ′
g(θ)| ≤ |x|+O(1).

Thus (5.6) is satisfied if |x| has a finite moment generating function.

If gθ = g(x− θ) is the scale family, then

|∇θlθγ| =
∣∣∣g

′(x− θ)

g(x− θ)

∣∣∣

that usually has finite moment generating function for light-tailed distributions (Gaus-

sian, exponential, etc) and is usually bounded for heavy-tailed distributions (e.g. t-

distribution). Similarly, one may verify (5.6) for scale families. Thus, A3 is a weak

condition and is applicable to most parametric families practically in use.

We start the discussion for a simple null hypothesis against a composite alternative

hypothesis

H0 : f = g and H1 : f ∈ {hγ : γ ∈ Γ}. (5.7)

In this case, the likelihood ratio takes the following form

LRn =
maxγ∈Γ

∏n
i=1 hγ(Xi)∏n

i=1 g(Xi)
. (5.8)

For each distribution hγ in the alternative family, we define ργ to be the Chernoff

index of the likelihood ratio test for H0 : f = g against H1 : f = hγ, whose form is

given as in (5.2). The first result is given as follows.

Lemma 14. Consider the hypothesis testing problem given as in (5.7) and the gen-

eralized likelihood ratio test with rejection region Cλ = {(x1, ..., xn) : LRn > λ} where
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LRn is given by (5.8). If conditions A1-3 are satisfied and we choose λ = 1, then

the asymptotic decay rate of the type I and maximal type II error probabilities are

identical, more precisely,

logPg(C1) ∼ sup
γ∈Γ

logPhγ (C
c
1) ∼ −n×min

γ
ργ.

For composite null versus composite alternative

H0 : f ∈ {gθ : θ ∈ Θ} against H1 : f ∈ {hγ : γ ∈ Γ} (5.9)

similar results can be obtained. The generalized likelihood ratio statistic is given by

(5.1). For each single pair (gθ, hγ), we let ρθγ denote the corresponding Chernoff index

of the likelihood ratio test for H0 : f = gθ and H1 : f = hγ. The following theorem

states the main result.

Theorem 8. Consider a composite null hypothesis against a composite alternative

hypothesis given as in (5.9) and the generalized likelihood ratio test with rejection

region Cλ = {(x1, ..., xn) : LRn > λ} where LRn is given by (5.1). If conditions A1-3

are satisfied and we choose λ = 1, then the asymptotic decay rate of the maximal type

I and type II error probabilities are identical, more precisely,

sup
θ∈Θ

logPgθ(C1) ∼ sup
γ∈Γ

logPhγ (C
c
1) ∼ −n× min

θ∈Θ,γ∈Γ
ρθγ . (5.10)

We call

ρ = min
θ,γ

ρθγ

the generalized Chernoff index between the two families {gθ} and {hγ} that is the

exponential decay rate of the maximal type I and type II error probabilities for the

generalized likelihood ratio test. We would like to make a few remarks. Suppose that

ρθγ is minimized at θ∗ and γ∗. The maximal type I and type II error probabilities

of C1 have identical exponential decay rate as that of the error probabilities of the

likelihood ratio test for the simple null H0 : f = gθ∗ versus simple alternative H1 :

f = hγ∗ problem. Then, according to the Neyman-Pearson lemma, we have the
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following statement. Among all the tests for (5.9) that admit maximal type I error

probabilities that decays exponentially at least at rate ρ, their maximal type II error

probabilities decay at most at rate ρ. This asymptotic efficiency can only be obtained

at the particular threshold λ = 1, at which the maximal type I and the type II error

probabilities decay exponentially equally fast. Consider the loss function as in (5.3)

and the risk function is

R(C, f) =





Pf (C) if f ∈ {gθ : θ ∈ Θ}
Pf (C

c) if f ∈ {hγ : γ ∈ Γ}
. (5.11)

According to the above discussion, the maximum risk of the rejection region C1 =

{LRn > 1} achieves the same asymptotic decay rate as that of the minimax risk that

is

min
C⊂Rn

max
f∈{gθ}∪{hγ}

log{R(C, f)}
n

→ −ρ.

Upon considering the exponential decay rate of the two types of error probabilities,

one can simply reduce the problem to testing H0 : f = gθ∗ against H1 : f = hγ∗ .

Each of these two distributions can be viewed as the least favorable distribution

if its own family is chosen to be the null family. The results in Lemma 14 and

Theorem 8 along with their proofs suggest that the maximal type I and type II error

probabilities are achieved at f = gθ∗ and f = hγ∗ . In addition, under the distribution

gθ∗ and conditional on the event C1, in which H0 is rejected, the maximum likelihood

estimator γ̂ converges to γ∗; vice versa, under the distribution f = hγ∗ , if H0 is not

rejected, the maximum likelihood estimator θ̂ converges to θ∗.

5.2.3 Relaxation of the technical conditions

The results of Lemma 14 and Theorem 8 require three technical conditions. Condition

A1 ensures that the two families are separated and it is crucial for the exponential

decay of the error probabilities. Condition A2, though important for the proof, can

be relaxed for most parametric families. They can be replaced by certain localization

conditions for the maximum likelihood estimator. We present one as follows.
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A4 There exist parameter-dependent compact sets Aθ, Ãγ ⊂ Γ and Bγ, B̃θ ⊂ Θ

such that for all θ and γ

lim inf
n→∞

1

n
logPgθ(θ̂ ∈ B̃c

θ or γ̂ ∈ Ac
θ) < −ρ, (5.12)

lim inf
n→∞

1

n
logPhγ (θ̂ ∈ Bc

γ or γ̂ ∈ Ãc
γ) < −ρ

where θ̂ and γ̂ are the maximum likelihood estimators under the two families.

Condition A3 is satisfied if the maximization in the definition of Si is taken on

the set Aθ and B̃θ when the tail is computed under gθ and is taken on the set

Ãγ and Bγ when the tail is computed under hγ.

Remark 4. Assumption A4 can be verified by means of large deviations of the maxi-

mum likelihood estimator; see Arcones [2006]. Under regularity conditions, the prob-

ability that the maximum likelihood estimator deviates from the true parameter by a

constant decreases exponentially. One can choose the constant large enough so that it

decays at a faster rate than ρ and thus Assumption 4 is satisfied.

Consider the first probability in (5.12) under gθ. We typically choose B̃θ to be a

reasonably large compact set containing θ and thus Pgθ(θ̂ ∈ B̃c
θ) decays exponentially

fast at a higher rate than ρ. For the choice of Aθ, we first define

γθ = argmax
γ∈Γ

Egθ{log hγ(X)}

that is the limit of γ̂ under gθ. Then, we choose Aθ be a sufficiently large compact

set containing γθ so that the decay rate of Pgθ(γ̂ ∈ Ac
θ) is higher than ρ. Similarly,

we can choose Bγ and Ãγ. Furthermore, the maximum score function for a single

observation over a compact set usually has a sufficiently light tail to satisfy condition

A4, for instance, Pgθ(supθ∈B̃θ,γ∈Aθ
|∇θlθγ| > x) ≤ e−(log x)1+η

.

Corollary 6. Consider a composite null hypothesis against composite alternative hy-

pothesis given as in (5.9). Suppose that conditions A1 and A4 are satisfied. Then,
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the asymptotic decay rates of the maximal type I and type II error probabilities are

identical, more precisely,

sup
θ∈Θ

logPgθ(C1) ∼ sup
γ∈Γ

logPhγ (C
c
1) ∼ −n×min

θ,γ
ρθγ.

5.3 Extensions

5.3.1 On the asymptotic behavior of Bayes factor

The result in Theorem 8 can be further extended to the study of Bayesian model

selection. Consider the two families in (5.9) each of which is endowed with a prior

distribution on its own parameter space, denoted by φ(θ) and ϕ(γ). We use M to

denote the family membership: M = 0 for the g-family and M = 1 for the h-family.

Then, the Bayes factor is

BF =
p(X1, ..., Xn|M = 1)

p(X1, ..., Xn|M = 0)
=

∫
γ∈Γ ϕ(γ)

∏n
i=1 hγ(Xi)dγ∫

θ∈Θ φ(θ)
∏n

i=1 gθ(Xi)dθ
. (5.13)

With a similar derivation as that of Bayesian information criterion [Schwarz, 1978],

the marginalized likelihood p(X1, ..., Xn|M = i) is the maximized likelihood multi-

plied by a polynomial prefactor depending on the dimension of the parameter space.

Therefore, we can approximate the Bayesian factor by the generalized likelihood ratio

statistic as follows

κ−1n−β ≤ BF

LRn

≤ κnβ (5.14)

for some κ and β sufficiently large. Therefore, logBF = logLRn+O(log n). Since the

expectation of logLRn is of order n, the O(log n) term does not affect the exponential

rate. Therefore, we have the following result.

Theorem 9. Consider two families of distributions given as in (5.9) satisfying con-

ditions A1-3. The prior densities ϕ and φ are positive and Lipschitz continuous. We

select M = 1 if BF > 1 and M = 0 otherwise where BF is given by (5.13). Then,
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the asymptotic decay rate of selecting the wrong model are identical under each of the

two families. More precisely,

log

∫

θ∈Θ
Pgθ(BF > 1)φ(θ)dθ ∼ sup

θ∈Θ
logPgθ(BF > 1)

∼ log

∫

γ∈Γ
Phγ (BF ≤ 1)ϕ(γ)dγ ∼ sup

γ∈Γ
logPhγ (BF ≤ 1) ∼ −n×min

θ,γ
ρθγ .

The proof of the above theorem is an application of Theorem 8 and (5.14) and thus

we omit it. The above result does not rely on the validity of the prior distributions.

Therefore, model selection based on Bayes factor is asymptotically efficient even if

the prior distribution is misspecified. That is, the Bayes factor is calculated based on

the probability measures with density functions ϕ and φ that are different from the

true prior probability measures under which θ and γ are generated.

5.3.2 Extensions to more than two families

Suppose that there are K non-overlapping families {gk,θk : θk ∈ Θk} for k = 1, ..., K,

among which we would like to select the true family to which the distribution f

belongs. Let

Lk(θk) =
n∏

i=1

gk,θk(Xi)

be the likelihood of family k. A natural decision is to select the family that has the

highest likelihood, that is,

k̂ = arg max
k=1,...,K

sup
θk

Lk(θk).

According to the results in Theorem 8, we obtain that

sup
k,θk

logPgk,θk
(k̂ 6= k) ∼ −nρ

where ρ is the smallest generalized Chernoff indices, defined as in Theorem 8, among

all the (K − 1)K/2 pairs of families. To obtain the above limit, one simply considers

each family k as the null hypothesis and the union of the rest K− 1 altogether as the

alternative hypothesis.
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With the same argument as in Section 5.3.1, we consider Bayesian model selection

among the K families each of which is endowed with a prior φk(θk). Consider the

marginalized maximum likelihood estimator

k̂B = argmax
k

∫
Lk(θk)φk(θk)dθk

that admits the same misclassification rate

sup
k,θk

logPgk,θk
(k̂B 6= k) ∼ sup

k
log

∫
Pgk,θk

(k̂B 6= k)φk(θk)dθk ∼ −nρ.

5.4 Results for possibly non-separated families

5.4.1 The asymptotic approximation of error probabilities

In this section we extend the results to the cases when the g-family and the h-family

are not necessarily separated, that is,

min
θ∈Θ,γ∈Γ

Egθ{log gθ(X)− log hγ(X)} = 0. (5.15)

In the case of (5.15), the Chernoff index is trivially zero. We instead derive the

asymptotic decay rate of the following error probabilities. For some θ0 ∈ Θ such that

min
γ

Egθ0
{log gθ0(X)− log hγ(X)} > 0,

we consider the type I error probability

Pgθ0
(LRn > enb) as n → ∞ (5.16)

where LRn is the generalized likelihood ratio statistic as in (5.1). For b, we require

that

sup
γ∈Γ

Egθ0
{log hγ(X)− log gθ0(X)} < b (5.17)

ensuring that Pgθ0
(LRn > enb) eventually converges to zero.
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The statement of the theorem requires the following construction. For each θ and

γ, we first define the moment generating function of log hγ(X)− log gθ(X)− b

Mgθ0
(θ, γ, λ) = Egθ0

[
exp{λ(log hγ(X)− log gθ(X)− b)}

]
(5.18)

and consider the optimization problem

M †
gθ0

, inf
θ∈Θ

sup
γ∈Γ

inf
λ∈R

Mgθ0
(θ, γ, λ). (5.19)

Under Assumption A2, there exists at least one solution to the above optimization

we assume one of the solutions is

(θ†, γ†, λ†) = arg inf
θ∈Θ

sup
γ∈Γ

inf
λ∈R

Mgθ0
(θ, γ, λ).

Furthermore, we define a measure Q† that is absolutely continuous with respect to

Pgθ0

dQ†

dPgθ0

= exp
{
λ†(log hγ†(X)− log gθ†(X)− b)

}
/M †

gθ0
. (5.20)

Definition 5 (Solid tangent cone). For a set A ⊂ Rd and x ∈ A, the solid tangent

cone TxA is defined as the set

{y ∈ Rd : ∃ ym and λm such that ym → y, λm → 0 as m → ∞, and x+ λmym ∈ A}.

If A has continuously differentiable boundary and x ∈ ∂A, then TxA consists of

all the vectors in Rd that have negative inner products with the normal vector to ∂A

at x pointing outside of A; if x is in the interior of A, then TxA = Rd. We consider

the following technical conditions for the main theorem in this section.

A5 The moment generating function Mgθ0
is twice differentiable at (θ†, γ†, λ†).

A6 Under Q†, the the solution to the Euler condition is unique, that is, the equation

with respect to θ and γ

EQ†{y⊤∇θ log gθ(X)} ≤ 0 for all y ∈ TθΘ (5.21)

EQ†{y⊤∇γhγ(X)} ≤ 0 for all y ∈ TγΓ
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has a unique solution (θ̄, γ̄). In addition,

EQ†{sup
θ∈Θ

|∇2
θ log gθ(X)|} < ∞ and EQ†{sup

γ∈Γ
|∇2

γ log hγ(X)|} < ∞.

We also assume that under measure Q† as n → ∞,

√
n(θ̂ − θ̄) = OQ†(1) and

√
n(γ̂ − γ̄) = OQ†(1),

where θ̂ and γ̂ are the maximum likelihood estimators

θ̂ = arg sup
θ

n∑

i=1

log gθ(Xi) and γ̂ = arg sup
γ

n∑

i=1

log hγ(Xi),

and a random sequence an = OQ†(1) means it is tight under measure Q†.

A7 We assume that gθ0 does not belong to the closure of the family of distributions

{hγ : γ ∈ Γ}, that is, infγ∈Γ D(gθ0‖hγ) > 0.

Assumption A6 requires n−1/2 convergence of θ̂ and γ̂ under Q†. It also requires

the local maximum of the function EQ† log gθ(X) and EQ† log hγ(X) to be unique.

We elaborate the Euler condition for θ ∈ int(Θ) and θ ∈ ∂Θ separately. If θ ∈
int(Θ), then TθΘ = Rdg . The Euler condition is equivalent to EQ†∇θ log gθ(X) = 0,

which is the usual first order condition for a local maximum. If θ ∈ ∂Θ, then the

Euler condition requires that the directional derivative of EQ†{log gθ(X)} along a

vector pointing towards inside Θ is non-positive. Assumption A7 guarantees that the

probability limn→∞ Pgθ0
(LRn > enb) = 0 for some b.

Theorem 10. Under Assumptions A2-A3 and A5-A7, for each b satisfying (5.17),

we have

logPgθ0
(LRn > enb) ∼ −n× ρ†gθ0

,

where ρ†gθ0
= − logM †

gθ0
and M †

gθ0
is defined in (5.19).

This theorem provides a means to approximate the type I and type II error prob-

abilities for general parametric families. The above results are applicable to the both
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cases that the two families are separated or not separated. According to standard

large deviations calculation for random walk, we have that for each θ ∈ Θ and γ ∈ Γ,

logPgθ0

( n∑

i=1

log hγ(Xi)− log gθ(Xi)− nb > 0
)
∼ inf

λ
logMgθ0

(θ, γ, λ).

Theorem 10 together with the above display implies that

logPgθ0
(LRn > 1) ∼ inf

θ
sup
γ

logPgθ0

( n∑

i=1

log hγ(Xi)− log gθ(Xi) > nb
)

∼ logPgθ0

( n∑

i=1

log hγ†(Xi)− log gθ†(Xi) > nb
)

The exponential decay rate of the error probabilities under gθ0 is the same as the

exponential decay rate of the probability that hγ† is preferred to gθ† .

One application of Theorem 10 is to compute the power function asymptotically.

Consider the fixed type I error α and the critical region of the generalized likelihood

ratio test is determined by the quantile of a χ2 distribution, that is {LRn > eλα}
where 2λα is the (1−α)th quantile of the χ2 distribution. This correspond to choosing

b = o(1). For a given alternative distribution hγ, one can compute the type II error

probability asymptotically by means of Theorem 10 switching the role of the null and

the alternative families. Thus, the power function can be computed asymptotically.

5.4.2 Application to model selection in generlized linear mod-

els

We discuss the application of Theorem 10 on model selection for generalized linear

models [McCullagh and Nelder, 1989]. Let Yi be the response of the ith observation

and X(i) = (Xi1, ..., Xip)
T and Z(i) = (Zi1, ..., Ziq)

T be two sets of predictors, i =

1, ..., n. Consider a generalized linear model with canonical link function and the true

conditional distribution of Yi is

gi(yi, β
0) = exp

{
(β0)TX(i)yi − b((β0)TX(i)) + c(yi)

}
, i = 1, 2, ..., n, (5.22)
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where f(y) = ec(y) is the base-line density, b(·) is the logarithm of the moment gener-

ating function, β0 = (β0
1 , ..., β

0
p)

T is the vector of true regression coefficients, and X

is the set of true predictors. Let the null hypothesis be

H0 : gi(yi, β) = exp
{
βTX(i)yi − b(βTX(i)) + c(yi)

}
, i = 1, 2, ..., n; (5.23)

the alternative hypothesis is

H1 : hi(yi, γ) = exp
{
γTZ(i)yi − b(γTZ(i)) + c(yi)

}
, i = 1, 2, ..., n. (5.24)

We further assume that H1 does not contain (5.22). Conditional on the covariates X

and Z, we consider the asymptotic decay rate of the type I error probability

Pβ0(LRn ≥ 1),

where LRn =
supγ

∏n
i=1 hi(Yi,γ)

supβ
∏n

i=1 gi(Yi,β)
is the generalized likelihood ratio.

We present the construction of the rate function as follows. For each β ∈ Rp,

γ ∈ Rq and λ ∈ R, define

ρ̃n(β, γ, λ)

=
1

n

n∑

i=1

{
λ
[
b(γTZ(i))−b(βTX(i))

]
+b((β0)TX(i))−b

(
(β0)TX(i)+λ(γTZ(i)−βTX(i))

)}
.

(5.25)

Taking derivative with respect to λ, we have

∂

∂λ
ρ̃n(β, γ, λ)

=
1

n

n∑

i=1

{
b(γTZ(i))−b(βTX(i))−b′

(
(β0)TX(i)+λ(γTZ(i)−βTX(i))

)
(γTZ(i)−βTX(i))

}
.

(5.26)

According to fact that b(·) is a convex function, we have

lim sup
λ→+∞

∂

∂λ
ρ̃n(β, γ, λ) < 0,
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if βTX(i) 6= γTZ(i) for some i. Define the set Bn ⊂ Rp such that

Bn = {β : inf
γ

∂

∂λ
ρ̃n(β, γ, 0) ≥ 0}.

Then for each β ∈ Bn and γ ∈ Rq, there is a λ ≥ 0 such that ∂
∂λ
ρ̃n(β, γ, 0) = 0.

Thanks to the convexity of b, β0 ∈ Bn and thus Bn is never empty. The second

derivative is

∂2

(∂λ)2
ρ̃n(β, γ, λ) = − 1

n

n∑

i=1

b′′
(
(β0)TX(i)+λ(γTZ(i)−βTX(i))

)
(γTZ(i)−βTX(i))2 < 0,

if βTX(i) 6= γTZ(i) for some i. Therefore, there is a unique solution to the maximiza-

tion supλ ρ̃n(β, γ, λ). We further consider the optimization

ρ̃†n = sup
β∈Bn

inf
γ
sup
λ

ρ̃n(β, γ, λ). (5.27)

We consider the following technical conditions.

A8 For each n, the solution to (5.27) exists, denoted by (β†
n, γ

†
n, λ

†
n). There exists a

constant κ1 such that

‖β†
n‖ ≤ κ1, ‖γ†

n‖ ≤ κ1 and λ†
n ≤ κ1 for all n.

Here, ‖ · ‖ is the Euclidean norm.

A9 There exists a constant δ1 > 0 such that infγ supλ ρ̃n(β
0, γ, λ) > δ1 for all n.

A10 There exists a constant κ2 such that ‖X(i)‖ ≤ κ2 and ‖Z(i)‖ ≤ κ2 for all i.

Additionally, there exits δ2 > 0 such that for all n the smallest eigenvalue of

1
n

∑n
i=1 X

(i)X(i)T is bounded below by δ2.

A11 For any compact set K ⊂ R, infu∈K b′′(u) > 0. In addition, b(·) is four-time

continuously differentiable.

Assumption A8 requires that the solution of the optimization (5.27) does not tend

to infinity as n increases, which is a mild condition. In particular, if the Kullback-

Leibler divergence D(gi(·, β0)|gi(·, β)) tend to infinity uniformly for all i as ‖β‖ goes
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to infinity, then Bn is a bounded subset of Rp and ‖β†
n‖ is also bounded. Similar

checkable sufficient conditions can be obtained for γ†
n and λ†

n.

Theorem 11. Under Assumptions A8-A11, conditional on the covariates X(i) and

Z(i), i = 1, ..., n, we have

logPβ0(LRn ≥ 1) ∼ −n× ρ̃†n,

where ρ̃†n is defined in (5.27).

For generalized linear models, the moment generating function of likelihood ratio

is

Eβ0

{
λ

n∑

i=1

[log hi(Yi, γ)− log gi(Yi, β)]
}
= e−nρ̃n(β,γ,λ).

Therefore, ρ̃†n is a natural generalization of ρ†gθ0
for the nonidentical distribution case.

Theorem 11 provides the asymptotic rate of selecting the wrong model by max-

imizing the likelihood. The asymptotic rate as a function of the true regression

coefficients β0 quantifies the strength of the signals. The larger the rate is, the easier

it is to select the correct variables. The rate also depends on covariates. If Z is highly

correlated with X, then the rate is small. Overall, the rate serves as an efficiency

measure of selecting the true model from families that mis-specifies the model.

5.5 Numerical examples

In this section, we present numerical examples to illustrate the asymptotic behavior

of the maximal type I and type II error probabilities and the sample size tends to

infinity. The first one is an example of continuous distributions and the second one is

an example of discrete distributions. The third one is an example of linear regression

models where the null hypotheses and alternative are not separated. In these exam-

ples, we compute the error probabilities using importance sampling corresponding to

the change of measure in the proof with sufficiently large number of Monte Carlo

replications to ensure that our estimates are sufficiently accurate.
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Example 6. Consider the lognormal distribution and exponential distribution. For

x > 0, let

gθ(x) =
1

x(2πθ)1/2
e−

(log x)2

2θ Θ = (0,+∞), hγ(x) =
1

γ
e−

x
γ Γ = (0,+∞)

be the density functions of the lognormal distribution and the exponential distribution.

For each θ and γ, we compute ρθγ numerically. Figure 5.2 shows the contour plot

of ρθ,γ. The minimum of ρθγ is 0.020 and is obtained at (θ∗, γ∗) = (1.28, 1.72). From

the theoretical analysis, the maximal type I and type II error probabilities for the test

decay at rate e−nρθ∗γ∗ .

Figure 5.3 is the plot of the maximal type I and type II error probabilities as a

function of the sample size for the composite versus composite test

H0 : f ∈ {gθ; θ ∈ Θ} against H1 : f ∈ {hγ; γ ∈ Γ}

and simple versus simple test

H0 : f = gθ∗ against H1 : f = hγ∗ .

We also fit a straight line to the logarithm of error probabilities against the sample sizes

using least squares and the slope is −0.022. This confirms the theoretical findings. The

error probabilities shown in Figure 5.3 range from 7× 10−5 to 0.12 and the range for

sample size is from 50 to 370.

Example 7. We now proceed to the Poisson distribution versus the geometric distri-

bution. Let

gθ(x) =
e−θθx

x!
Θ = [1,+∞), hγ(x) =

γx

(1 + γ)x+1
Γ = [0.5,+∞),

for x ∈ Z+. The parameter γ is the failure to success odds. The minimum Chernoff

index without constraint is attained at θ = γ = 0 and ρ00 = 0. Thus we truncate the

parameter spaces away from zero to separate the two families.
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Figure 5.2: Contour plot for ργ,θ in Example 6. The triangle point indicates the

minimum.

The Chernoff index ρθ,γ can be computed numerically and is minimized at (θ∗, γ∗) =

(1, 0.93), with ρθ∗,γ∗ = 0.023. Figure 5.4 shows the contour plot of ρθ,γ. Same as in

the previous example, we compute the maximal type I and type II error probabilities of

the composite versus composite test and simple versus simple test. Figure 5.5 shows

the maximal type I and type II error probabilities as a function of the sample size.

The error probabilities appeared in Figure 5.5 range from 1.0× 10−4 to 0.10 with the

sample sizes range from 40 to 400. We also fit a straight line to the logarithm of

error probabilities against the sample sizes and the slope is −0.025. This numerical

analysis confirms our theorems.

Example 8. We consider two regression models,

H0 : Y = β1X1 + β2X2 + ε1 against H1 : Y = β1X1 + ζ1Z1 + ε2,

where (X1, X2, Z1) jointly follows the multivariate Gaussian distribution with mean

(0, 0, 0)T and the covariance matrix Σ. The random noises ε1 and ε2 follow the normal
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Figure 5.3: Decay rate of type I and type II error probabilities (y-coordinate) as a

function of sample size (x-coordinate) in Example 6.

distributions N(0, σ2
1) and N(0, σ2

2) respectively and are independent of (X1, X2, Z1).

We assume the true model to be

Y = β0
1X1 + β0

2X2 + ε,

with the following parameters

β0
1 = 1, β0

2 = 2, ε ∼ N(0, 1), and Σ =




1 0.1 0.1

0.1 1 0.1

0.1 0.1 1


 .

Let (Xi1, Xi2, Zi1, Yi)
T be i.i.d. copies of (X1, X2, Z1, Y ) generated under the true mod-

el, for i = 1, ..., n. Let θ = (β1, β2) and γ = (β1, ζ1) be the regression coefficients for

the null and the alternative hypotheses respectively. The maximum likelihood estima-

tors for θ and γ are the least square estimators

θ̂ = (X̃⊤X̃)−1X̃⊤Ỹ and γ̂ = (Z̃⊤Z̃)−1Z̃⊤Ỹ ,
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where

X̃ =




X11 X12

X21 X22

· · · · · ·
Xn1 Xn2



, Z̃ =




X11 Z11

X21 Z21

· · · · · ·
Xn1 Zn1



, and Ỹ =




Y1

Y2

· · ·
Yn




are the design matrices for linear models under H0 and H1. We consider the error

probability that the maximized log-likelihood of H0 is smaller than that of H1, equiva-

lently, the residual sum of squares under H0 is larger than that under H1

Pβ0,Σ

(
‖Ỹ − X̃θ̂‖2 > ‖Ỹ − Z̃γ̂‖2

)
.

From the theoretical analysis, the above probability decays at rate e
−nρ†gθ0 as n → ∞,

where the definition of ρ†gθ0
is given in Theorem 10. We solve the optimization problem

(5.19) numerically and obtain ρ†gθ0
= 0.45. Figure 5.6a and Figure 5.6b are scatter

plots of the error probability in the above display as a function of the sample size

with different ranges for error probabilities. In Figure 5.6a, the range of the error

probability is from 10−4 to 0.25 and the range of sample size is from 3 to 18. In

Figure 5.6b, the range of error probabilities is from 1.2× 10−8 to 4.0× 10−6 with the

sample size from 24 to 36. We fit straight lines for logPβ0,Σ

(
‖Ỹ −X̃θ̂‖2 > ‖Ỹ −Z̃γ̂‖2

)

against n using least square. The fitted slope in Figure 5.6a is −0.52 and the fitted

slope in Figure 5.6b is −0.47. This confirms our theoretical results.

5.6 Concluding remarks

The generalized likelihood ratio test of separate parametric families that was put

forth by Cox in his two seminal papers has received a great deal of attention in the

statistics and econometrics literature. The present investigation takes the viewpoint

of an early work by Chernoff (1952) where testing a simple null versus a simple

alternative is considered. By imposing that the two types of error probabilities decay

at the same rate, we extend the Chernoff index to the case of the Cox test.
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Figure 5.4: Contour plot for ργ,θ in Example 7. The triangle point indicates the

minimum.

Our results are under the basic assumption that the data come from one of the

parametric families under consideration. It is often the case that none is the true

model. It would be of interest to formulate error probabilities for this case and to see

if similar exponential decay results continue to hold.

An initial motivation that led to the Cox formulation of the problem comes from

the survival analysis where different models are used to fit failure time data. The

econometrics literature also contains much subsequent development. Semiparametric

models that contain infinite dimensional nuisance parameters are widely used in both

econometrics and survival analysis. It would be of interest to develop parallel results

for testing separate semiparametric models.
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Figure 5.5: Maximal type I and type II error probabilities (y-coordinate) as a function

of sample size (x-coordinate) in Example 7.

5.7 Appendix to Chapter 5

5.7.1 Proof of Lemma 14

Throughout the proof, we adopt the following notation an ∼= bn if log an ∼ log bn. We

define the log-likelihood ratio as

lγ(x) = log hγ(x)− log g(x).

The generalized log-likelihood ratio statistic is defined as

l = sup
γ

n∑

i=1

liγ

where liγ = lγ(Xi). The generalized likelihood ratio test admits the rejection region

Cλ = {el > λ}.

We consider the case that λ = 1 and show that for this particular choice of λ the

maximal type I and type II error probabilities decay exponentially fast with the same
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Figure 5.6: Error probability(y-coordinate) in Example 8 as a function of sample

size(x-coordinate).

rate. We let γ∗ = arg inf ργ and thus ρ = ργ∗ .

Based on Chernoff’s calculation of large deviations for the log-likelihood ratio

statistic, we proceed to the calculation of the type I error probability

Pg(l > 0) = Pg

(
sup
γ

n∑

i=1

liγ > 0
)
.

We now provide an approximation of the right-hand side, which requires a lower

bound and an upper bound. We start with the lower bound by noticing that

Pg

(
sup
γ

n∑

i=1

liγ > 0
)
≥ sup

γ
Pg

( n∑

i=1

liγ > 0
)

(5.28)

that is a simple lower bound. According to Proposition 8, the right-hand side is

bounded from below by

≥ e−{1+o(1)}nρ
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where ρ = min ργ. For the upper bound and with some β > 0, we split the probability

Pg

(
sup
γ

n∑

i=1

liγ > 0
)

≤ Pg

(
sup
γ

n∑

i=1

liγ > 0, sup
γ

∣∣∣
n∑

i=1

∇liγ

∣∣∣ < en
1−β
)

+ Pg

(
sup
γ

∣∣∣
n∑

i=1

∇liγ

∣∣∣ ≥ en
1−β
)
. (5.29)

The first term on the right-hand side is bounded by Lemma 15.

Lemma 15. Consider a random function ηn(θ) living on a d-dimensional compact

domain θ ∈ D, where n is an asymptotic parameter that will be send to infinity.

Suppose that ηn(θ) is almost surely differentiable with respect to θ and for each θ,

there exists a rate ρ(θ) such that

P{ηn(θ) > ζn} ∼= e−nρ(θ) for all ζn/n → 0 as n → ∞

where the above convergence is uniform in θ. Then, we have the following approxi-

mation

lim inf
n→∞

− 1

n
logP{sup

θ∈D
ηn(θ) > 0, sup

θ∈D
|∇ηn(θ)| < en

1−β} ≥ min
θ

ρ(θ)

for all β > 0.

With the aid of Proposition 8, we have that the random function
∑n

i=1 l
i
γ satisfies

the assumption in Lemma 15 with ρ(γ) = ρθγ . Then the first term in (5.29) is bounded

from the above by e−{1+o(1)}nρ. For the second term in (5.29), according to condition

A3, we choose β sufficiently small such that

Pg

(
sup
γ

∣∣∣
n∑

i=1

∇liγ

∣∣∣ ≥ en
1−β
)
≤ n× Pg(sup

γ
|∇liγ| > n−1en

1−β

) = o(e−nρ).

Thus, we obtain an upper bound

Pg

(
sup
γ

n∑

i=1

liγ > 0
)
≤ e−n{ρ+o(1)}.

Then, the type I error probability is approximated by

e−nρ ∼= sup
γ

Pg

( n∑

i=1

liγ > 0
)
≤ Pg

(
sup
γ

n∑

i=1

liγ > 0
)
≤ e−n{ρ+o(1)}. (5.30)
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We now consider the type II error probability α2 = supγ Phγ (l < 0). For each γ,

note that

Phγ (l < 0) = Phγ

(
sup
γ1

n∑

i=1

liγ1 < 0
)
≤ Phγ

( n∑

i=1

liγ < 0
)
.

Note that the right-hand side is the type II error probability of the likelihood ratio

test. According to Chernoff’s calculation, we have that

Phγ (l < 0) ≤ Phγ

( n∑

i=1

liγ < 0
)
∼= e−nργ

for all γ. We take maximum with respect to γ on both sides and obtain that

sup
γ

Phγ (l < 0) ≤ sup
γ

Pg

( n∑

i=1

liγ > 0
)
∼= e−nminγ ργ . (5.31)

Thus, the maximal type II error probability has an asymptotic upper bound that

decays at the rate of the Chernoff index.

In what follows, we show that this asymptotic upper bound is asymptotically

achieved. We choose λn possibly depending on g such that

Pg

(
sup
γ

n∑

i=1

liγ > 0
)
= Pg

( n∑

i=1

liγ∗ > nλn

)
.

Note that g is fixed and the probabilities on both sides of the above identity decay

at the rate e−nρ. Together with the continuity of the large deviations rate function,

it must be true that λn → 0−. We apply Neyman-Pearson lemma to the simple null

H0 : f = g versus simple alternative H1 : f = hγ∗ . Note that {∑n
i=1 l

i
γ∗ > nλn} is a

uniformly most powerful test and {supγ

∑n
i=1 l

i
γ > 0} is a test with the same type I

error probability. Then, we have that

Phγ∗

(
sup
γ

n∑

i=1

liγ < 0
)
≥ Phγ∗

( n∑

i=1

liγ∗ < nλn

)
. (5.32)

That is, the type II error probability of the generalized likelihood ratio test must be

greater than that of the likelihood ratio test under the simple alternative hγ∗ . Note
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that λn → 0−. Thanks to the the continuity of the large deviations rate function, we

have that

Phγ∗

( n∑

i=1

liγ∗ < nλn

)
∼= Phγ∗

( n∑

i=1

liγ∗ < 0
)
∼= e−nρ. (5.33)

Put together (5.31), (5.32), and (5.33), we have that

sup
γ

Phγ (l < 0) ∼= e−nρ.

Thus, we conclude the proof.

5.7.2 Proof of Theorem 8

The one-to-one log-likelihood ratio is

lθγ(x) = log hγ(x)− log gθ(x).

The generalized log-likelihood ratio statistic is

l = sup
γ

n∑

i=1

log hγ(Xi)− sup
θ

n∑

i=1

log gθ(Xi) = inf
θ
sup
γ

n∑

i=1

liθγ

and the rejection region is

Cλ = {el > λ}.

We define that γ(θ) = arg infγ ρθγ , and θ(γ) = arg infθ ρθγ , and (θ∗, γ∗) = arg infθ,γ ρθγ.

Note that the null and the alternative are now symmetric, thus we only need to

consider one of the two types of error probabilities. We consider the type II error

probability. We now define

kθ = sup
γ

n∑

i=1

liθγ .

For each given θ and γ, we have a simple upper bound

Phγ (kθ < 0) ≤ Phγ

( n∑

i=1

liθγ < 0
)
∼= e−nρθγ . (5.34)

We now proceed to the type II error probability if hγ is the true distribution, that is

Phγ (inf
θ
kθ < 0) ≤ Phγ (inf

θ
kθ < 0; sup

θ
|∇kθ| < en

1−β

) + Phγ (sup
θ

|∇kθ| ≥ en
1−β

).
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The first term on the right-hand-side is bounded by Lemma 15 combined with (5.34)

Phγ (inf
θ
kθ < 0; sup

θ
|∇kθ| < en

1−β

) ≤ e−n{infθ ρθγ+o(1)}.

For the second term, we have that

Phγ{sup
θ

|∇(sup
γ

n∑

i=1

liθγ)| ≥ en
1−β} ≤ Phγ (sup

θ
sup
γ

n∑

i=1

|∇liθγ| ≥ en
1−β

)

≤ nPhγ (sup
θ

sup
γ

|∇liθγ| ≥ n−1en
1−β

) = o(e−nρ).

Thus, we have that

Phγ (inf
θ
kθ < 0) = Phγ (l < 0) ≤ e−n{infθ ρθγ+o(1)},

which provides an upper bound for the type II error probability

sup
γ

Phγ (l < 0) ≤ e−n{infθ,γ ρθγ+o(1)}.

We now provide a lower bound. For a given θ and γ(θ) = arg infγ ρθγ , applying

proof of Lemma 14 for the type II error probability by considering H0 : f = gθ and

H1 : f ∈ {hγ : γ ∈ Γ}, we have that

Phγ(θ)
(kθ < 0) ∼= e−nρθγ(θ) .

and thus

Phγ(θ)
(inf

θ
kθ < 0) ≥ Phγ(θ)

(kθ < 0) ∼= e−nρθγ(θ) .

We set θ = θ∗ in the above asymptotic identity and conclude the proof.

5.7.3 Proof of Lemma 15

We consider a change of measure on the continuous sample path space Qζ that admits

the following Radon-Nikodym derivative

dQζ

dP
=

mes(Aζ)∫
D
P{ηn(θ) > ζ}dθ , (5.35)
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where Aζ = {θ ∈ D : ηn(θ) > ζ} and mes(·) is the Lebesgue measure. Throughout

the proof, we choose ζ = −1. To better understand the measure Qζ , we provide

another description of the sample path generation of ηn from Qζ , that requires the

following three steps

1. Sample a random index τ ∈ D following the density function

h(τ) =
P{ηn(τ) > ζ}∫

D
P{ηn(θ) > ζ}dθ ;

2. Sample ηn(τ) given that ηn(τ) > ζ;

3. Sample {ηn(θ) : θ 6= τ} from the original conditional distribution given the

realized value of ηn(τ), that is, P{·|ηn(τ)}.

To verify that the measure induced by the above sampling procedure is the same as

that given by (5.35), see Adler et al. [2012] that provides a discrete analogue of the

above change of measure.

With these constructions, the interesting probability is given by

P{sup
θ∈D

ηn(θ) > 0, sup
θ∈D

|∇ηn(θ)| < en
1−β}

= EQζ

{ dP
dQζ

; sup
θ∈D

ηn(θ) > 0, sup
θ∈D

|∇ηn(θ)| < en
1−β
}

= EQζ

{ 1

mes(Aζ)
; sup
θ∈D

ηn(θ) > 0, sup
θ∈D

|∇ηn(θ)| < en
1−β
}

×
∫

D

P(ηn(θ) > ζ)dθ

Via the condition of this lemma, we have that

∫

D

P(ηn(θ) > ζ)dθ ∼= e−nminθ ρ(θ).

Thus, it is sufficient to show that

EQζ

{ 1

mes(Aζ)
; sup
θ∈D

ηn(θ) > 0, sup
θ∈D

|∇ηn(θ)| < en
1−β
}
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cannot be too large. On the set {supθ∈D ηn(θ) > 0, supθ∈D |∇ηn(θ)| < n1−β}, the
volume mes(Aζ) is in fact lower bounded. Let θ∗ be the maximizer of ηn(θ) and

thus ηn(θ∗) > 0. On the other hand, the gradient of ηn is upper bounded by en
1−β

.

Therefore, there exists a small region of radius e−n1−β
in which ηn will be above

ζ = −1. Thus, mes(Aζ) is lower bounded by ε0e
−dn1−β

. Thus, the bound

P(sup
θ∈D

ηn(θ) > 0, sup
θ∈D

|∇ηn(θ)| < nβ) ≤ edn
1−β

ε0

∫

D

P(ηn(θ) > ζ)dθ ∼= e−nminθ ρ(θ)

concludes the proof.

5.7.4 Proof of Corollary 6

The proof is very similar to that of Theorem 8 and therefore we omit some repetitive

steps. We first consider the type I error probability,

sup
θ∈Θ

Pgθ(LRn > 1).

For each θ ∈ Θ, we establish an upper bound for

Pgθ(LRn > 1) = Pgθ

(
sup
γ∈Γ

log hγ(Xi)− sup
θ∈Θ

log gθ(Xi) > 0
)
. (5.36)

The event

{sup
γ∈Γ

log hγ(Xi)− sup
θ∈Θ

log gθ(Xi) > 0}

implies

{sup
γ∈Γ

log hγ(Xi)− log gθ(Xi) > 0}.

Thus, we have

Pgθ(LRn > 1) ≤ Pgθ

(
sup
γ∈Γ

log hγ(Xi)− log gθ(Xi) > 0
)
.

We split the probability

Pgθ

(
sup
γ∈Γ

log hγ(Xi)− log gθ(Xi) > 0
)

≤ Pgθ

(
sup
γ∈Γ

log hγ(Xi)− log gθ(Xi) > 0, γ̂ ∈ Aθ

)
+ Pgθ

(
γ̂ ∈ Ac

θ

)

≤ Pgθ

(
sup
γ∈Aθ

log hγ(Xi)− log gθ(Xi) > 0
)
+ Pgθ

(
γ̂ ∈ Ac

θ

)
. (5.37)
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According to Assumption A4, the second term is o(e−nρ). For the first term, notice

that Aθ is a compact subset of Rdg . The conditions for Lemma 14 are satisfied.

According to Lemma 14, the first term in (5.37) is bounded above by

e−(1+o(1))n×minγ∈Aθ
ρθγ ≤ e−(1+o(1))n×minγ∈Γ ρθγ ≤ e−(1+o(1))n×minθ,γ ρθγ .

Combining the upper bounds for the first and second terms in (5.37), we have

Pgθ(LRn > 1) ≤ e−(1+o(1))n×minθ,γ ρθγ .

The above derivation is uniform in θ. We obtain an upper bound for the type I error

sup
θ

Pgθ(LRn > 1) ≤ e−(1+o(1))n×minθ,γ ρθγ .

Similarly, we obtain an upper bound for the type II error probability

sup
γ

Phγ (LRn ≤ 1) ≤ e−(1+o(1))n×minθ,γ ρθγ .

Now we proceed to a lower bound for the type I error probability. Upon having the

upper bounds for both type I and type II error probabilities, the lower bounds for

type I and type II error probabilities can be derived using the same argument as that

in the proof of Theorem 8. We omit the details.

5.7.4.1 Proof of Theorem 10

The proof of the theorem consists of establishing upper and lower bounds for the

probability

Pgθ0
(LRn > enb) = Pgθ0

(
sup
γ∈Γ

inf
θ∈Θ

n∑

i=1

[log hγ(Xi)− log gθ(Xi)] > nb
)
.

Upper bound The event

{
sup
γ∈Γ

inf
θ∈Θ

n∑

i=1

log hγ(Xi)− log gθ(Xi) > nb
}
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implies
{
sup
γ∈Γ

n∑

i=1

log hγ(Xi)− log gθ†(Xi) > nb
}
.

Therefore, we have an upper bound

Pgθ0
(LRn > 1) ≤ Pgθ0

(
sup
γ

n∑

i=1

log hγ(Xi)− log gθ†(Xi) > nb
)
. (5.38)

We split the probability

Pgθ0

(
sup
γ

n∑

i=1

[log hγ(Xi)− log gθ†(Xi)] > nb
)

(5.39)

≤ Pgθ0

(
sup
γ

n∑

i=1

[log hγ(Xi)− log gθ†(Xi)] > nb, sup
γ

∣∣∣
n∑

i=1

∇γ log hγ(Xi)
∣∣∣ < en

1−β
)

+Pgθ0

(
sup
γ

n∑

i=1

∣∣∣∇γ log hγ(Xi)
∣∣∣ ≥ en

1−β
)
.

We establish upper bounds of the first and second terms in (5.39) separately. For the

first term, let ηn(γ) =
∑n

i=1[log hγ(Xi)− log gθ†(Xi)]−nb. For each γ, the exponential

decay rate of the probability

logPgθ0
(ηn(γ) ≥ 0) ≤ n log inf

λ
Mgθ0

(λ, γ, θ†). (5.40)

is established through standard large deviation calculation. Thanks to Lemma 15

and (5.40), the first term in (5.39) is bounded above by

sup
γ

inf
λ
{Mgθ0

(θ†, λ, γ)}(1+o(1))n = e
−(1+o(1))nρ†gθ0 .

For the second term, according to the Assumption A3,

Pgθ0

(
sup
γ

n∑

i=1

∣∣∣∇γ log hγ(Xi)
∣∣∣ ≥ en

1−β
)
≤ nPgθ0

(sup
γ

|∇γ log hγ(Xi)| > n−1en
1−β

) = o(e
−nρ†

gθ0 ).

Combining the analyses for both the first and the second term, we arrive at an upper

bound

Pgθ0
(LRn > enb) ≤ e

−(1+o(1))nρ†gθ0 .
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Lower bound Recall that

dQ†

dPgθ0

= exp
{
λ†(log hγ†(X)− log gθ†(X))− nb

}
/M †

gθ0
.

Then, the probability can be written as

Pgθ0
(LRn > enb) = EQ†

{dPgθ0

dQ† ;
n∑

i=1

[log hγ̂(Xi)− log gθ̂(Xi)] > nb
}
,

where γ̂ and θ̂ are the maximum likelihood estimators for the h-family and the g-

family respectively. According to the definition of Q†, the above display is equal

to

e
−nρ†gθ0EQ†

{
e−λ†[

∑n
i=1 log hγ†

(Xi)−log g
θ†

(Xi)−nb];
n∑

i=1

log hγ̂(Xi)−log gθ̂(Xi) > nb
}
, (5.41)

where ρ†gθ0
= − logM †

gθ0
. We now establish a lower bound for

I , EQ†
{
e−λ†[

∑n
i=1 log hγ†

(Xi)−log g
θ†

(Xi)−nb];
n∑

i=1

log hγ̂(Xi)− log gθ̂(Xi) > nb
}
.

Because e−λ†[
∑n

i=1 log hγ†
(Xi)−log g

θ†
(Xi)−nb] is positive, we have

I ≥ EQ†
{
e−λ†[

∑n
i=1 log hγ†

(Xi)−log g
θ†

(Xi)−nb];
n∑

i=1

log hγ̂(Xi)− log gθ̂(Xi) > nb,E1

}
,

(5.42)

where

E1 =
{∣∣∣

n∑

i=1

log hγ†(Xi)− log gθ†(Xi)− nb
∣∣∣ ≤

√
n
∣∣∣
}
.

On the set E1, we have the following inequality of the integrand

e−λ†[
∑n

i=1 log hγ†
(Xi)−log g

θ†
(Xi)−nb] ≥ e−|λ†|√n.

We plug the above inequality back to (5.42) and obtain a lower bound for

I ≥ e−|λ†|√nQ†
(
{

n∑

i=1

log hγ̂(Xi)− log gθ̂(Xi) > nb} ∩ E1

)
. (5.43)
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For the rest of the proof, we develop a lower bound for the probability

Q†
(
{

n∑

i=1

log hγ̂(Xi)− log gθ̂(Xi) > nb} ∩ E1

)
.

The maximum likelihood estimator γ̂ satisfies the inequality

n∑

i=1

{log hγ̂(Xi)− log hγ†(Xi)} ≥ 0. (5.44)

Furthermore, with the aid of Rolle’s Theorem, there exists θ̃ such that

n∑

i=1

{log gθ̂(Xi)− log gθ†(Xi)}

= (θ̂ − θ†) ·
n∑

i=1

∇θ log gθ†(Xi) +
1

2
(θ̂ − θ†)⊤

n∑

i=1

∇2
θgθ̃(Xi)(θ̂ − θ†), (5.45)

where “∇2
θ” denotes the Hessian matrices with respect to θ and “·” denotes the inner

product between vectors. (5.44) and (5.45) together give

n∑

i=1

{log hγ̂(Xi)− log gθ̂(Xi)} −
n∑

i=1

{log hγ†(Xi)− gθ†(Xi)}

≥ −(θ̂ − θ†) ·
n∑

i=1

∇θ log gθ†(Xi)−
1

2
(θ̂ − θ†)⊤

n∑

i=1

∇2
θgθ̃(Xi)(θ̂ − θ†). (5.46)

We define

E2 =
{
(θ̂ − θ†)⊤

n∑

i=1

∇θ log gθ†(Xi) ≤
√
n

4

}
,

E3 =
{1
2
|θ̂ − θ†|2 sup

θ

n∑

i=1

|∇2
θ log gθ(Xi)| ≤

√
n

4

}
,

E4 =
{√n

2
<

n∑

i=1

[log hγ†(Xi)− log gθ†(Xi)]− nb ≤ √
n
}
.

Based on (5.46), we have that

(E2 ∩ E3 ∩ E4) ⊂ {
n∑

i=1

log hγ̂(Xi)− log gθ̂(Xi) > nb} ∩ E1.

We insert this to (5.42), and obtain that

I ≥ e−|λ†|√nQ†(E2 ∩ E3 ∩ E4) ≥ e−|λ†|√n
{
Q†(E4)−Q†(Ec

2)−Q†(Ec
3)
}
. (5.47)
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For the rest of the proof, we develop upper bounds for Q†(Ec
2) and Q†(Ec

3) and a

lower bound for Q†(E4). For Q
†(E4), because λ† = arg infλ Mgθ0

(θ†, γ†, λ), we have

∂

∂λ
Mgθ0

(θ†, γ†, λ†) = 0.

Consequently,

EQ†

(log hγ†(X)− log gθ†(X)− b) = (M †
gθ0

)−1 ∂

∂λ
Mgθ0

(θ†, γ†, λ†) = 0.

According to the central limit theorem, there exists ε0 > 0 such that

lim inf
n→∞

Q†(E4) > ε0.

Thus a lower bound for Q†(E4) has been derived. Before we proceed to upper bounds

for Q†(Ec
2) and Q†(Ec

3), we establish the following lemma, whose proof is provided in

Appendix 5.7.5.1.

Lemma 16. Under the settings of Theorem 10, we have

γ† = γ̄ and θ† = θ̄.

We now proceed to an upper bound of Q†(Ec
2). We split the sum

(θ̂ − θ†)⊤
n∑

i=1

∇θ log gθ†(Xi) (5.48)

= (θ̂ − θ†)⊤
n∑

i=1

[∇θ log gθ†(Xi)− EQ†∇θgθ†(Xi)] + n(θ̂ − θ†)⊤EQ†∇θgθ†(X)

Note that θ̂ ∈ Tθ†Θ, according to Assumption A6 and Lemma 16, we have that

(θ̂ − θ†)⊤EQ†∇θgθ†(X) ≤ 0. Therefore, (5.48) implies

(θ̂ − θ†)⊤
n∑

i=1

∇θ log gθ†(Xi) ≤ (θ̂ − θ†)⊤
n∑

i=1

[∇θ log gθ†(Xi)− EQ†∇θgθ†(Xi)]. (5.49)

Using Chebyshev’s inequality and the fact E(|∇θ log gθ†(X)|2) < ∞, we have

n− 3
4

n∑

i=1

[∇θ log gθ†(Xi)− EQ†∇θgθ†(Xi)] → 0 in probability Q†.



CHAPTER 5. CHERNOFF INDEX FOR THE GENERALIZED LIKELIHOOD
RATIO TEST 155

According to Slutsky’s theorem and
√
n(θ̂ − θ†) = OQ†(1), we have

√
n(θ̂ − θ†)⊤n− 3

4

n∑

i=1

∇θ log gθ†(Xi) → 0 in probability Q†.

Consequently,

lim
n→∞

Q†
(
(θ̂ − θ†)⊤

n∑

i=1

[∇θ log gθ†(Xi)− EQ†∇θgθ†(Xi)] >

√
n

4

)
= 0.

According to (5.49) and the above display, we have

lim
n→∞

Q†
(
(θ̂ − θ†)⊤

n∑

i=1

∇θ log gθ†(Xi) >

√
n

4

)
= 0.

Thus, Q†(Ec
2) → 0 as n → ∞. We provide an upper bound of Q†(Ec

3) using a similar

method. With the aid of Chebyshev’s inequality, we have

n− 5
4

n∑

i=1

sup
θ

|∇2
θ log gθ(Xi)|→0 in probability Q†.

According to Slutsky’s theorem and
√
n(θ̂ − θ†) = OQ†(1), we have

n|θ̂ − θ†|2 × n− 5
4

n∑

i=1

sup
θ

|∇2
θ log gθ(Xi)| d→ 0.

Consequently,

lim
n→∞

Q†
(
|θ̂ − θ†|2 sup

θ

n∑

i=1

|∇2
θ log gθ(Xi)| >

√
n

4

)

≤ lim
n→∞

Q†
(
|θ̂ − θ†|2

n∑

i=1

sup
θ

|∇2
θ log gθ(Xi)| >

√
n

4

)

= 0.

Therefore, Q†(E3) → 0 as n → ∞. We combine the results for Q†(Ec
2), Q

†(Ec
3),

Q†(E4), and (5.47),

I ≥ ε0
2
e−|λ†|√n for n sufficiently large.

Combining the above display with (5.41), we arrive at the lower bound

Pgθ0
(LRn > enb) ≥ e

−n(1+o(1))ρ†gθ0 .

We complete the proof by combining the lower bound and upper bound for the prob-

ability Pgθ0
(LRn > 1).
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5.7.5 Proof of Theorem 11

The proof is similar to that of Theorem 10. Throughout the proof, we will use κ as

a generic notation to denote large and not-so-important constants whose value may

vary from place to place. Similarly, we use ε as a generic notation for small positive

constants. The proof of the theorem consists of establishing upper and lower bounds

for the probability

Pβ0(LRn ≥ 1) = Pβ0

(
sup
γ

inf
β

n∑

i=1

[log hi(Yi, γ)− log gi(Yi, β)] ≥ 0
)
.

Upper bound Similar to (5.38), we have

Pβ0(LRn ≥ 1) ≤ Pβ0

(
sup
γ

n∑

i=1

[log hi(Yi, γ)− log gi(Yi, β
†
n)] ≥ 0

)

According to the definition of hi(Yi, γ) and gi(Yi, β), we have
n∑

i=1

[log hi(Yi, γ)− log gi(Yi, β)]

=
n∑

i=1

[γTZ(i)Yi − b(γTZ(i))]−
n∑

i=1

[β†T
n X(i)Yi − b(β†T

n X(i))].

Consequently, we have

Pβ0(LRn ≥ 1) ≤ Pβ0

(
(
1

n

n∑

i=1

Z(i)Yi,
1

n

n∑

i=1

X(i)Yi) ∈ An

)
, (5.50)

where

An =
{
(s1, s2) : s1 ∈ Rp, s2 ∈ Rqand

sup
γ
[γT s2 −

1

n

n∑

i=1

b(γTZ(i))] ≥ [β†T
n s1 −

1

n

n∑

i=1

b(β†T
n X(i))]

}
.

We consider the change of measure

dQ†

dP
(5.51)

= exp
{
λ†
n

n∑

i=1

(γ†T
n Z(i)Yi − β†T

n X(i)Yi) (5.52)

−
n∑

i=1

[b((β0)TX(i) + λ†
n{γ†T

n Z(i) − β†T
n X(i)})− b((β0)

T
X(i))]

}
. (5.53)
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According to (5.50), we have

Pβ0(LRn ≥ 1) ≤ EQ†
[ dP
dQ† ; (

1

n

n∑

i=1

Z(i)Yi,
1

n

n∑

i=1

X(i)Yi) ∈ An.
]

The above display and (5.51) together gives

Pβ0(LRn ≥ 1)

≤ exp
{ n∑

i=1

[
b
(
(β0)

T
X(i) + λ†

n{γ†T
n Z(i) − β†T

n X(i)}
)
− b
(
(β0)

T
X(i)

)]}

× EQ†
[
e−λ†

n
∑n

i=1(γ
†T
n Z(i)Yi−β†T

n X(i)Yi); (
1

n

n∑

i=1

Z(i)Yi,
1

n

n∑

i=1

X(i)Yi) ∈ An

]
. (5.54)

The next lemma shows a property of β†
n and An.

Lemma 17. For all (s1, s2) ∈ An,

[γ†T s2 −
1

n

n∑

i=1

b(γ†TZ(i))] ≥ [β†T
n s1 −

1

n

n∑

i=1

b(β†T
n X(i))].

According to Lemma 17, the right-hand side of (5.54) is further bounded above

by

Pβ0(LRn ≥ 1) (5.55)

≤ exp
{ n∑

i=1

[
b
(
(β0)

T
X(i) + λ†

n{γ†T
n Z(i) − β†T

n X(i)}
)
− b((β0)

T
X(i))

]
(5.56)

−λ†
n

n∑

i=1

[
b
(
γ†T
n Z(i)

)
− b
(
β†T
n X(i)

)]}
(5.57)

×Q†
[
(
1

n

n∑

i=1

Z(i)Yi,
1

n

n∑

i=1

X(i)Yi) ∈ An

]
. (5.58)

Because Q†
[
( 1
n

∑n
i=1 Z

(i)Yi,
1
n

∑n
i=1 X

(i)Yi) ∈ An

]
≤ 1, we arrive at

Pβ0(LRn ≥ 1)

≤ exp
{ n∑

i=1

[b((β0)
T
X(i) + λ†

n{γ†T
n Z(i) − β†T

n X(i)})− b((β0)
T
X(i))]

−λ†
n

n∑

i=1

[b(γ†T
n Z(i))− b(β†T

n X(i))]
}
.
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According to the definition of ρ̃†n, the right-hand side of the above inequality equals

e−nρ̃†n . Therefore, we arrive at the upper bound

Pβ0(LRn ≥ 1) ≤ e−nρ̃†n .

Lower bound Notice that the event

{
n∑

i=1

log hi(Yi, γ
†
n)− sup

β

n∑

i=1

log gi(Yi, β) ≥ 0}.

implies the event

{sup
γ

n∑

i=1

log hi(Yi, γ)− sup
β

n∑

i=1

log gi(Yi, β) ≥ 0}.

Therefore, a lower bound for the probability Pβ0(LRn ≥ 1) is

Pβ0

( n∑

i=1

log hi(Yi, γ
†
n)− sup

β

n∑

i=1

log gi(Yi, β) ≥ 0
)
.

According to the definition of Q† in (5.51), the above probability equals

exp
{ n∑

i=1

[b((β0)
T
X(i) + λ†

n{γ†T
n Z(i) − β†T

n X(i)})− b((β0)
T
X(i))]

}

× EQ†
[
e−λ†

n
∑n

i=1(γ
†T
n Z(i)Yi−β†T

n X(i)Yi);E
]
, (5.59)

where the event

E =
{ n∑

i=1

γ†T
n Z(i)Yi − β̂T

nX
(i)Yi − b(γ†T

n X(i)) + b(β̂T
nX

(i)) ≥ 0
}
,

and β̂n is the maximum likelihood estimator

β̂n = arg sup
β

n∑

i=1

βTX(i)Yi − b(βX(i)).

Notice that

e−nρ̃†n

= exp
{ n∑

i=1

[b((β0)
T
X(i) + λ†

n{γ†T
n Z(i) − β†T

n X(i)})− b((β0)
T
X(i))]

−λ†
n[b(γ

†T
n Z(i))− b(β†T

n X(i))]
}
.
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Therefore,

Pβ0(LRn ≥ 1) ≥ e−nρ̃n × J, (5.60)

where we define the quantity

J = EQ†
[
e−λ†

n[
∑n

i=1 γ
†T
n Z(i)Yi−β†T

n X(i)Yi−b(γ†T
n X(i))+b(β†T

n X(i))];E
]
.

We proceed to establishing a lower bound of J . We consider two events

E1 =
{√n

2
<

n∑

i=1

γ†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i)) ≤ √
n
}

and

E2 =
{ n∑

i=1

[β̂T
nX

(i)Yi − β†T
n X(i)Yi − b(β̂T

nX
(i)) + b(β†T

n X(i))] ≤
√
n

2

}
.

Because E1 together with E2 implies E, we have E ⊃ E1 ∩ E2. Consequently,

J ≥ EQ†
[
e−λ†

n[
∑n

i=1 γ
†T
n Z(i)Yi−β†T

n X(i)Yi−b(γ†T
n X(i))+b(β†T

n X(i))];E1 ∩ E2

]
.

Notice that on the set E1,
∑n

i=1 γ
†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i)) ≤ √
n. Therefore,

J ≥ e−λ†
n
√
nQ†(E1 ∩ E2) ≥ e−λ†

n
√
n
(
Q†(E1)−Q†(Ec

2)
)
. (5.61)

We provide an upper bound for Q†(E1) and a lower bound for Q†(Ec
2).

Lemma 18. Let

vn = V arQ
†
( n∑

i=1

γ†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i))
)
,

then vn = O(n) as n → ∞. Furthermore, we have

L
(
v
− 1

2
n

[ n∑

i=1

γ†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i))
])

→ N(0, 1).

Here, L(·) denotes the law of random variables and N(0, 1) is the distribution of

standard normal.
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According to Lemma 18, there exists a constant ε > 0 such that

Q†(E1) ≥ ε. (5.62)

We proceed to a lower bound for Q†(E2). Define the function for µ ∈ Rp

u(µ, β) = (β − β†
n)

Tµ−
n∑

i=1

[b(βTX(i))− b(β†
nX

(i))].

We further define the function

v(µ) = sup
β

u(µ, β).

Lemma 19. Let

µ† =
n∑

i=1

b′
(
λ†
n(γ

†T
n Z(i) − β†

nX
(i)) + (β0)

T
X(i)

)
X(i),

then v(µ) is twice continuous differentiable around µ†, with v(µ†) = 0 and ∇v(µ†) = 0.

Moreover, we have

∇2v(µ) =
[ n∑

i=1

b′′
(
β(µ)TX(i)

)
X(i)X(i)T

]−1

,

where β(µ) = arg supβ u(µ, β).

According to Lemma 19 and Taylor expansion of v(µ) around µ†, we have

{
v(µ) ≥

√
n

2

}
⊂
{1
2
‖µ− µ†‖2‖∇2v(µ†)‖2 ≥

√
n

2

}
, (5.63)

where ‖ · ‖2 is denotes the spectral norm of matrices. According to Lemma 19 and

Assumptions A10 and A11, ‖∇2v(µ†)‖2 = O(n). Therefore, (5.63) implies

{
v(µ) ≥

√
n

2

}
⊂
{
‖µ− µ†‖ ≥ εn

3
4

}
.

Notice that the event Ec
2 = {v(∑n

i=1 X
(i)Yi) ≥

√
n
2
}, we have

Q†(Ec
2) ≤ Q†

(
‖

n∑

i=1

X(i)Yi − µ†‖ ≥ εn
3
4

)
.
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With the aid of Chebyshev’s inequality, the above display implies

Q†(Ec
2) ≤ (ε−2n− 3

2 )EQ†‖
n∑

i=1

X(i)Yi − µ†‖2

Because EQ†‖∑n
i=1 X

(i)Yi − µ†‖2 = O(n), we have Q†(Ec
2) tend to zero as n goes to

infinity. Combining this result with (5.61) and (5.62), we arrive at a lower bound for

J

J ≥ ε

2
e−λ†

n
√
n.

The above inequality together with (5.60) gives a lower bound

P(LRn ≥ 1) ≥ ε

2
e−nρ̃†n−λ†

n
√
n. (5.64)

According to Assumption A9, ρ̃†n ≥ infγ supλ ρ̃n(β
0, γ, λ) ≥ δ1, so λ†

n

√
n = o(1)nρ̃†n.

Therefore, (5.64) implies Pβ0(LRn ≥ 1) ≥ e−nρ̃†n(1+o(1)). We complete the proof by

combining the lower and upper bound for Pβ0(LRn ≥ 1)

5.7.5.1 Proof of Lemma 16

Proof of Lemma 16. According to condition A6, it is sufficient to show that for all

y ∈ Tγ†Γ,

EQ†

y⊤∇γhγ†(X) ≤ 0, (5.65)

and for all y ∈ Tθ†Θ,

EQ†

y⊤∇θgθ†(X) ≤ 0. (5.66)

We first prove (5.65). We discuss two cases: γ† ∈ int(Γ) and γ† ∈ ∂Γ, where int(Γ)

denotes the interior of Γ.

Case 1: γ† ∈ int(Γ) Because λ† = arg infλ Mgθ0
(θ†, γ†, λ), we have

∂
∂λ
Mgθ0

(θ†, γ†, λ†) = 0. According to the definition of γ†, (γ†, λ†) is a solution of the

constrained optimization problem,

max
γ,λ

Mgθ0
(θ†, γ, λ) such that

∂

∂λ
Mgθ0

(θ†, γ, λ) = 0, (5.67)
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and thus it satisfies the Karush-Kuhn-Tucker conditions. That is, there exists a

constant µ such that




∇γMgθ0
(θ†, γ†, λ†) = µ∇γ

∂
∂λ
Mgθ0

(θ†, γ†, λ†)

∂
∂λ
Mgθ0

(θ†, γ†, λ†) = µ ∂2

∂2λ
Mgθ0

(θ†, γ†, λ†)

∂
∂λ
Mgθ0

(θ†, γ†, λ†) = 0

.

The second and third equations in the above display together imply that µ = 0. We

plug µ = 0 to the first equation and obtain that

∇γMgθ0
(θ†, γ†, λ†) = 0. (5.68)

According to the definition of Mgθ0
(θ, γ, λ), we have

∇γMgθ0
(θ, γ, λ) = λEgθ0

exp{λ(log hγ(X)−log gθ(X)−b)}∇γ log hγ(X)/M †
gθ0

. (5.69)

We plug this in (5.68), and obtain

EQ†∇γ log hγ†(X) = 0.

Consequently, for all y ∈ Rdh , (5.65) holds.

Case 2: γ† ∈ ∂Γ Because ∂Γ is continuously differentiable, with possibly relabeling

the coordinate of γ, there exists a continuously differentiable function v : Rdh−1 → R

and r > 0 such that

B(γ†, r) ∩ Γ = {γ ∈ B(γ†, r) : γdh ≥ v(γ1, ..., γdh−1)}, (5.70)

where B(γ†, r) = {γ : |γ − γ†| ≤ r} is a closed ball centered around γ†. Similar to

Case 1, we consider the constrained optimization problem (5.67) with the additional

constraint

γdh ≥ v(γ1, ..., γdh−1).

The definition of γ† implies that (γ†, λ†) is a local maximum to this optimization

problem. Again, it satisfies the Karush-Kuhn-Tucker conditions for optimization
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problem with inequality constraint. That is, there exists constant µ1 and µ2 such

that µ1 ≥ 0 and





∂
∂γi

Mgθ0
(θ†, γ†, λ†) = µ1

∂
∂γi

v(γ†
1, ..., γ

†
dh−1) + µ2∇γ

∂
∂λ
Mgθ0

(θ†, γ†, λ†), i ≤ dh − 1

∂
∂γd

Mgθ0
(θ†, γ†, λ†) = −µ1 + µ2∇γ

∂
∂λ
Mgθ0

(θ†, γ†, λ†)

∂
∂λ
Mgθ0

(θ†, γ†, λ†) = µ2
∂2

∂2λ
Mgθ0

(θ†, γ†, λ†)

∂
∂λ
Mgθ0

(θ†, γ†, λ†) = 0

.

Similar to the Case 1, the third and the fourth equalities together imply that µ2 = 0.

We plug this in the first and the second equalities and obtain that

∇γMgθ0
(θ†, γ†, λ†) = µ1(∇v(γ†

1, ..., γ
†
dh−1)

T ,−1)T . (5.71)

We now prove that γ† satisfies (5.65). Notice that ∂Γ is continuously differentiable,

therefore the tangent cone is

Tγ†Γ = {y ∈ Rdh : y · (∇v(γ†
1, ..., γ

†
dh−1)

T ,−1)T ≤ 0}.

Consequently, for all y ∈ Tγ†Γ, (5.71) implies

∇γMgθ0
(θ†, γ†, λ†) · y = µ1y · (∇v(γ†

1, ..., γ
†
dh−1)

T ,−1)T ≤ 0. (5.72)

Notice that

∂

∂λ
Mgθ0

(θ†, γ†, 0) = Egθ0
[log hγ†(X)− log gθ†(X)− b] < 0,

and

∂2

∂2λ
Mgθ0

(θ†, γ†, λ) = Egθ0

{
eλ[log hγ(X)−log gθ(X)−b][log hγ†(X)− log gθ†(X)− b]2

}
> 0.

Thus λ† > 0. We prove (5.65) by plugging (5.69) in (5.72) and notice that λ† > 0.

Now we proceed to the proof of (5.66). Again, we consider two cases: γ† ∈ int(Γ)

and γ† ∈ ∂Γ.
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Case 1: γ† ∈ int(Γ). According to the definition of (θ†, γ†, λ†) and (5.68), (θ†, γ†, λ†)

is a local minimum of the optimization problem

inf
θ,γ,λ

Mgθ0
(θ, γ, λ) such that

∂

∂λ
Mgθ0

(θ, γ, λ) = 0, and ∇γMgθ0
(θ, γ, λ) = 0.

We prove (5.66) using a similar proof as that for (5.65) and treating θ† and (γ†, λ†)

as γ† and λ† respectively. The details are omitted.

Case 2: γ† ∈ ∂Γ. We will first transform the Case 2 to Case 1. Recall the definition

of v and r in (5.70), for γ ∈ B(γ†, r) ∩ ∂Γ, we have

γd = v(γ1, ..., γdh−1).

Let Φ : Rdh → Rdh−1 be a function such that Φ(γ) = (γ1, ..., γdh−1)
T . Let ξ = Φ(γ),

and ξ† = Φ(γ†), then for γ ∈ B(γ†, r) ∩ ∂Γ, γ = (ξT , v(ξ))T . We abuse the notation

a little and write

M̃gθ0
(θ, ξ, λ) = Mgθ0

(θ, γ, λ),

where γ = (ξT , v(ξ))T . We further let Ξ = Φ(B(γ†, r) ∩ Γ). We compute the partial

derivatives of M̃gθ0
(θ, ξ, λ) at (θ†, ξ†, λ†),

∂

∂λ
M̃gθ0

(θ†, ξ†, λ†) =
∂

∂λ
Mgθ0

(θ†, γ†, λ†) = 0, (5.73)

and

∇ξM̃gθ0
(θ†, ξ†, λ†) =

dγ

dξ
(ξ†)T∇γMgθ0

(θ†, γ†, λ†), (5.74)

where dγ
dξ

is a dh × (dh − 1) Jacobian matrix

dγ

dξ
=


 Idh−1

∇v(ξ†)T


 ,

and Idh−1 is the (dh − 1) × (dh − 1) identity matrix. We plug (5.71) and the above

expression in (5.73), and obtain

∇ξM̃gθ0
(θ†, ξ†, λ†) = µ1(∇v(ξ†)−∇v(ξ†))T = 0.
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Therefore, (θ†, ξ†, λ†) is a local minimum under the constrained optimization problem

inf
θ,ξ,λ

M̃gθ0
(θ, ξ, λ) such that ∇ξM̃gθ0

(θ, ξ, λ) = 0 and
∂

∂λ
M̃gθ0

(θ, ξ, λ) = 0.

We complete the proof by replacing γ and Γ by ξ and Ξ respectively in the proof for

Case 1.

5.7.6 Proof of Lemma 17

Define the function

w(s1, s2) = sup
γ
[γT s2 −

1

n

n∑

i=1

b(γTZ(i))]− [β†T
n s1 −

1

n

n∑

i=1

b(β†T
n X(i))].

Then An = {(s1, s2) : w(s1, s2) ≥ 0}. Let

s†1 =
1

n

n∑

i=1

b′
(
λ†
n(γ

†T
n Z(i) − β†T

n X(i)) + (β0)
T
X(i)

)
X(i)

and

s†2 =
1

n

n∑

i=1

b′
(
λ†
n(γ

†T
n Z(i) − β†T

n X(i)) + (β0)
T
X(i)

)
Z(i).

With similar proof as that for (5.65), we have that γ†
n satisfies first order conditions

∇γ ρ̃n(β
†
n, γ

†
n, λ

†
n)

= λ†
n

1

n

n∑

i=1

[
b′(γ†T

n Z(i))Z(i) − b′
(
λ†
n(γ

†T
n Z(i) − β†T

n X(i)) + (β0)
T
X(i)

)
Z(i)
]
= 0q.

(5.75)

(5.75) is also the first order condition for the optimization problem

sup
γ
[γT s†2 −

1

n

n∑

i=1

b(γTZ(i))]− [β†T
n s†1 −

1

n

n∑

i=1

b(β†T
n X(i))].

Notice that this optimization is concave in γ. Therefore, γ†
n is a solution of the above

optimization problem, and

w(s†1, s
†
2) = sup

γ
[γT s†2 −

1

n

n∑

i=1

b(γTZ(i))]− [β†T
n s†1 −

1

n

n∑

i=1

b(β†T
n X(i))]

= γ†T
n s†2 −

1

n

n∑

i=1

b(γ†T
n Z(i))− [β†T

n s†1 −
1

n

n∑

i=1

b(β†T
n X(i))]. (5.76)
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Also notice that λ†
n = arg supλ ρ̃n(β

†
n, γ

†
n, λ). Therefore, it satisfies the first order

condition

0 =
∂

∂λ
ρ̃n(β

†
n, γ

†
n, λ

†
n)

=
1

n

n∑

i=1

b(γ†
nZ

(i))− b(β†
nX

(i)) (5.77)

−b′
(
λ†
n(γ

†T
n Z(i) − β†T

n X(i)) + (β0)
T
X(i)

)
[γ†T

n Z(i) − β†T
n X(i)].

(5.76) and (5.77) together gives

w(s†1, s
†
2) = 0.

Therefore, (s†1, s
†
2) is a boundary point of An. Furthermore, we have

∇s1w(s
†
1, s

†
2) = 0p and ∇s2w(s

†
1, s

†
2) = β†

n.

Consequently, the normal vector of An at (s†1, s
†
2) is −(∇s1w(s

†
1, s

†
2),∇s2w(s

†
1, s

†
2)) =

−(0p, γ
†
n). Because An is a convex set, for all (s1, s2) ∈ An, we have

−(s1 − s†1, s2 − s†2) · (0p, γ†
n) ≤ 0.

We complete the proof by combining the above display and that w(s†1, s
†
2) = 0.

5.7.7 Proof of Lemma 18

Because Yis are independent, we have

vn =
n∑

i=1

(γ†T
n Z(i) − β†T

n X(i))2V arQ
†

(Yi)

=
n∑

i=1

(γ†T
n Z(i) − β†T

n X(i))2b′′
(
λ†
n(γ

†T
n Z(i) − β†T

n X(i)) + (β0)
T
X(i)

)
.

According to Assumption A10 and A11, we have vn = O(n). We define a triangular

array for n, i ≥ 1

Un,i = v
− 1

2
n

[
γ†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i))
]
.
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It is sufficient to show that Un,i satisfies conditions for the Lyapuvov central limit

theorem [Billingsley, 1995, page 362] for triangular arrays. That is,

lim
n→∞

n∑

i=1

EQ† |Un,i|3 = 0. (5.78)

According to Assumption A11, b(·) is four times continuously differentiable. This

guarantees that

n∑

i=1

EQ†
[
γ†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i))
]3

= O(n).

Now we show that v−1
n = O(n−1). According to Assumptions A10 and A11 and (5.25),

we have

|ρ̃†n| ≤ κ
1

n

n∑

i=1

|γ†T
n Z(i) − β†T

n X(i)| ≤ κ
( 1
n

n∑

i=1

(γ†T
n Z(i) − β†T

n X(i))2
) 1

2
.

On the other hand, Assumption A9 implies that

ρ̃†n ≥ inf
γ
sup
λ

ρ̃n(β
0, γ, λ) ≥ δ1.

Therefore,
1

n

n∑

i=1

(γ†T
n Z(i) − β†T

n X(i))2 ≥ δ21κ
−2.

According to Assumption A11 and (5.78), vn ≥ ε
∑n

i=1(γ
†T
n Z(i)−β†T

n X(i))2. Together

with the above display, we have v−1
n = O(n−1). Therefore,

n∑

i=1

EQ† |Un,i|3

= lim
n→∞

v
− 3

2
n

n∑

i=1

EQ†
[
γ†T
n Z(i)Yi − β†T

n X(i)Yi − b(γ†T
n X(i)) + b(β†T

n X(i))
]3

= O(n− 1
2 ),

(5.79)

and (5.78) is proved.
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5.7.8 Proof of Lemma 19

Let β(µ) = arg supβ u(µ, β), then β(µ) satisfies

∂

∂β
u(µ, β(µ)) = 0. (5.80)

We first show that β(µ†) = β†
n. Similar to (5.66), we have

∇β ρ̃n(β
†
n, γ

†
n, λ

†
n)

= λ†
n

1

n

n∑

i=1

[
− b′(β†T

n X(i))X(i) + b′
(
λ†
n(γ

†T
n Z(i) − β†T

n X(i)) + (β0)
T
X(i)

)
X(i)

]
= 0.

Therefore, we have

∂

∂β
u(µ†, β†

n) = µ† −
n∑

i=1

b′(β†T
n X(i))X(i) = 0.

Notice that supβ u(µ
†, β) is a strictly concave optimization problem. Therefore, β†

n is

its unique solution β(µ). Now we compute ∇v(µ).

∇v(µ) = ∇u(µ, β(µ)) =
∂

∂µ
u(µ, β(µ)) +

d

dµ
β(µ)

∂

∂β
u(µ, β(µ)).

The above display together with (5.80) gives

∇v(µ) =
∂

∂µ
u(µ, β(µ)) = β(µ)− β†

n. (5.81)

Because β(µ†) = β†
n, we have that v(µ) is continuously differentiable and v(µ†) = 0

and ∇v(µ†) = 0. We proceed to the second derivatives of v(µ). Applying implicit

function theorem to (5.80), we have

∇β(µ) = − ∂2

(∂β)2
u(µ, β)−1 ∂2

∂µ∂β
u(µ, β(µ)) = − ∂2

(∂β)2
u(µ, β)−1.

According to (5.81) and the above equation, we complete the proof.
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Chapter 6

Generalized Sequential Probability

Ratio Test for Separate Families of

Hypotheses1

6.1 Introduction

Sequential analysis starts with testing a simple null hypothesis against a simple al-

ternative hypothesis. The fixed sample size problem of this classic test is solved by

Neyman and Pearson [1933b] who lay down the theoretical foundation of likelihood-

based hypothesis testing. The sequential probability ratio test (SPRT), formulated

via the boundary crossing of the likelihood ratio statistic, is proved to be optimal in

terms of minimal expected sample size for fixed type I and type II error probabilities

[Wald and Wolfowitz, 1948; Wald, 1945]. In this chapter, we consider a natural ex-

tension of this classical problem to testing two families of composite hypotheses, that

1 This chapter is based on an accepted manuscript of an article published in Sequential Analysis

online, October 22, 2014, available online:

http://tandfonline.com/doi/full/10.1080/07474946.2014.961861.
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is,

H0 : f ∈ {gθ : θ ∈ Θ} against HA : f ∈ {hγ : γ ∈ Γ} (6.1)

where the two families are completely separated from each other. Motivated by

the optimality of the sequential probability ratio test, we consider a sequential test

based on the generalized likelihood ratio statistic. The sampling stops after the nth

observation if the generalized likelihood ratio crosses either of the two boundaries

Ln > eA or Ln < e−B where

Ln =
supγ∈Γ

∏n
i=1 hγ(Xi)

supθ∈Θ
∏n

i=1 gθ(Xi)
.

The null hypothesis is rejected if Ln > eA and is accepted otherwise where A and B

are positive numbers determined by the type I and type II error probabilities. We call

this procedure the generalized sequential probability ratio test (generalized SPRT).

The generalized sequential probability ratio test is a very natural generalization

of the sequential probability ratio test both in terms of the problem formulation and

the stopping rule. However, to the authors’ best knowledge, there is no rigorous

discussion on this sequential procedure in the literature. The results in this chapter

fill in this void by providing asymptotic descriptions of the type I and type II error

probabilities in terms of the levels A and B, the expected sample size (stopping time),

and its asymptotic optimality in terms of expected sample size. As a corollary of these

results, the generalized SPRT is asymptotically optimal in the following sense. As

the maximal type I and type II error probabilities tend to zero possibly with different

rates, the expected stopping time of the generalized SPRT achieves its asymptotic

lower bound. For the test as general as (6.1) with a fixed sample size, the uniformly

most powerful test usually does not exist. Therefore, we do not expect the optimal

sequential test in terms of expected sample size (as optimal as SPRT) for (6.1) to

exist. The asymptotic optimality is naturally the next level of optimality to consider.

The current result for the generalized SPRT is parallel to the optimality result for

SPRT.
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From the technical point of view, the challenges mainly lie in the fact that the

generalized likelihood ratio statistic is the ratio of two maximized likelihood functions.

Usual techniques, such as large deviations theory for independently and identically

distributed random variables, exponential tilting for random walks, and Bayesian

arguments employed by Wald and Wolfowitz [1948], are no longer applicable. The

technical contribution of this chapter is the proposal of a set of tools for the large

deviations studies of the generalized likelihood ratio statistic. A key element is the

construction of a change of measure for developing approximations of the type I and

type II error probabilities. This change of measure is not of the traditional exponential

tilting form and therefore is nonstandard. Similar change of measure techniques for

the computation of small probabilities have been employed under various settings by

Adler et al. [2012]; Naiman and Priebe [2001]; Shi et al. [2007].

Testing separate families of hypotheses, originally introduced by Cox [1961, 1962],

is an important and fundamental problem in statistics. Cox recently revisited this

problem in Cox [2013] that mentions several applications such as the one-hit and

two-hit models of binary dose-response and testing of interactions in a balanced 2k

factorial experiment. Furthermore, this problem has been studied in econometrics

[Vuong, 1989]. Another application is in psychometrics. Under the one-dimensional

item response theory models, each examinee is assigned with a scalar θ indicating this

person’s ability. The so-called mastery test is interested in testing whether θ < θ−

or θ > θ+. Item response theory usually employs logistic models that fall into the

exponential family for which there is a vast literature [Bartroff and Lai, 2008; Bartroff

et al., 2008; Lai and Shih, 2004; Shih et al., 2010]. However, some more complicated

models go beyond exponential family, for which existing results do not apply. For

instance, the normal ogive model is not of the canonical form and the three-parameter

logistic model includes a guessing parameter. The current results fill in this void.

For more applications of testing separate families of hypotheses, see Berrington de

González and Cox [2007], Braganca Pereira [2005], and the references therein.
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There is a vast literature on sequential tests starting with seminal works Ho-

effding [1960]; Kiefer and Weiss [1957]; Wald and Wolfowitz [1948]; Wald [1945] for

testing simple null hypothesis against simple alternative hypothesis. An important

generalization to SPRT is the 2-SPRT by Lorden [1976]. For composite hypotheses,

a univariate or multivariate exponential family is usually assumed. Under such a

setting, sequential testing procedures for two separate families of hypotheses are dis-

cussed by Lai and Zhang [1994]; Lai [1988]; Pollak and Siegmund [1975]. For testing

non-exponential families, random walk based sequential procedures are discussed in

the textbook Bartroff et al. [2013]. Another relevant work is given by Pavlov [1987,

1990] who considers testing/selecting among multiple composite hypotheses. The au-

thor establishes asymptotic efficiency of a different sequential procedure (similar to

2-SPRT). The efficiency results are similar to those in this chapter. Therefore, the

generalized sequential probability ratio test admits the same asymptotic efficiency

as that in Pavlov’s papers. Recent applications of sequential tests are included in

Bartroff et al. [2008]; Lai and Shih [2004]. Additional references can be found in the

textbook Bartroff et al. [2013].

The rest of this chapter is organized as follows. The generalized sequential prob-

ability ratio test and its asymptotic properties are described in Section 6.2. Possible

relaxation of some technical conditions are provided in Section 6.3. Numerical exam-

ples are given in Section 6.4. Proofs of the theorems are provided in Section 6.5.

6.2 Main Results

6.2.1 Generalized Sequential Probability Ratio Test

Let X1,...,Xn,... be independently and identically distributed samples following a

density f with respect to a baseline measure µ. We consider the problem of testing

two separate families of hypotheses

H0 : f ∈ {gθ : θ ∈ Θ} and HA : f ∈ {hγ : γ ∈ Γ}, (6.2)
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where gθ and hγ are density functions with respect to a common measure µ. To avoid

singularity, we assume that gθ and hγ are mutually absolutely continuous for all θ

and γ. The generalized sequential probability ratio test is based on the generalized

likelihood ratio statistic

Ln =
supγ∈Γ

∏n
i=1 hγ(Xi)

supθ∈Θ
∏n

i=1 gθ(Xi)
. (6.3)

For two positive numbers A and B, we define stopping time

τ = inf{n : Ln > eA or Ln < e−B}. (6.4)

Under very mild conditions, τ is almost surely finite under all distributions in the two

families. The null hypothesis is rejected if Lτ > eA and is not rejected if Lτ < e−B.

We further define the notation for the Kullback-Leibler divergence

Dg(θ|γ) = Egθ{log gθ(X)− log hγ(X)} and Dh(γ|θ) = Ehγ{log hγ(X)− log gθ(X)},

where Egθ and Ehγ are expectations under the corresponding distributions. We present

the following technical conditions.

A1 The two families are completely separate, that is, infθ,γ Dg(θ|γ) > ε0 and

infθ,γ Dh(γ|θ) > ε0 for some ε0 > 0. In addition, for each θ and γ, the so-

lutions to the minimizations infθ Dh(γ|θ) and infγ Dg(θ|γ) are unique. Lastly,

both Dg(θ|γ) and Dh(γ|θ) are twice continuously differentiable with respect to

θ and γ.

A2 The parameter spaces Θ ⊂ Rd1 and Γ ⊂ Rd2 are compact.

A3 Let ξ(θ, γ) = log hγ(X)− log gθ(X). There exists α > 1 and x0 such that for all

θ, γ, and x > x0

Pgθ(sup
γ∈Γ

|∇γξ(θ, γ)| > x) ≤ e−| log x|α and Phγ (sup
θ∈Θ

|∇θξ(θ, γ)| > x) ≤ e−| log x|α .

Condition A1 is important for the analysis that guarantees the exponential decay

of error probabilities as a function of the expected sample size. A sufficient condition
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for the complete separation is that the Hellinger distances between any two distribu-

tions in the two families are strictly positive. Condition A2 can be further relaxed

and replaced by some other conditions that will be discussed subsequently. Condition

A3 imposes certain tail conditions on the score function that has a tail decaying faster

than any polynomial.

6.2.2 The Main Theorems

We start the discussion with a simple null H0 : f = g0 against composite alternative

HA : f ∈ {hγ : γ ∈ Γ}. In this case, the generalized likelihood ratio statistic is given

by

Ln =
supγ∈Γ

∏n
i=1 hγ(Xi)

g0(Xi)
. (6.5)

The definition of the stopping time τ remains. The following theorem provides the

asymptotic type I and type II error probabilities of the generalized sequential proba-

bility ratio test under this setting.

Theorem 12. In the case of the simple null hypothesis against composite hypothesis,

consider the generalized probability ratio test with stopping time (6.4) and the gener-

alized likelihood ratio statistic given by (6.5). Under Conditions A1-3, the type I and

maximal type II error probabilities admit the following approximations

logPg0(Lτ > eA) ∼ −A, sup
γ∈Γ

logPhγ (Lτ < e−B) ∼ −B as A, B → ∞.

The analysis technique of Theorem 12 and its intermediate results are central to

all the analyses. For the general case of composite null hypothesis against composite

alternative hypothesis, we establish similar asymptotic results that are given by the

following theorem.

Theorem 13. Consider the composite null hypothesis against composite alternative

hypothesis given as in (6.2). The generalized sequential probability ratio test admits
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stopping time (6.4) and the generalized likelihood ratio statistic (6.3). Under Condi-

tions A1-3, the maximal type I and type II error probabilities are approximated by

sup
θ∈Θ

logPgθ(Lτ > eA) ∼ −A, sup
γ∈Γ

logPhγ (Lτ < e−B) ∼ −B as A, B → ∞. (6.6)

In the power calculation of SPRT for the simple null hypothesis versus simple

alternative hypothesis, if the likelihood ratio has zero overshoot, then we have the

following equalities A = log 1−α2

α1
and B = log 1−α1

α2
where α1 is the type I error

probability and α2 is the type II error probability. They have exactly the same

asymptotic decay rate as (6.6). Lastly, we provide the asymptotic approximations of

the expected stopping time.

Theorem 14. Under the setting and the conditions of Theorem 13, the expected

stopping time admits the following asymptotic approximation

Egθ(τ) ∼
B

infγ∈Γ Dg(θ|γ)
, Ehγ (τ) ∼

A

infθ∈Θ Dh(γ|θ)
, as A, B → ∞ for all θ and γ.

Based on the results of Theorems 13 and 14, we now discuss the asymptotic

optimality of the generalized SPRT. Consider type I and type II error probabilities

α1 and α2 that approach zero possibly with different rates. Theorem 13 suggests

that we need to choose A ∼ − logα1 and B ∼ − logα2 for the generalized SPRT to

achieve such levels of error probabilities. Then, the corresponding expected stopping

time is given by Theorem 14. In what follows, we show that the expected stopping

time in Theorem 14 is asymptotically the shortest. Consider an arbitrarily chosen

sequential procedure testing between the g-family and the h-family with stopping

time τ ′. The two types of error probabilities of this test are less than or equal to α1

and α2 respectively. Then, its expected stopping time is bounded from below by

Egθ(τ
′) ≥ (1 + o(1))Egθ(τ) and Ehγ (τ

′) ≥ (1 + o(1))Ehγ (τ)

for all θ and γ.

We establish the above asymptotic inequalities via the optimality results of SPRT.

For each θ and γ, we consider the testing problem of the simple null H0 : f = gθ
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against the simple alternative HA : f = hγ. We further consider SPRT for this test

with stopping boundaries eÃ and e−B̃. We choose Ã and B̃ such that the type I error

and type II error probabilities of SPRT for the simple (gθ) versus simple (hγ) test are

(or slightly larger than, but of the same order as) α1 and α2 respectively. According

to Theorem 13 and standard results of SPRT, we have that A ∼ Ã ∼ − logα1 and

B ∼ B̃ ∼ − logα2 if the overshoot is of order O(1). Let τ̃ be the stopping time of

SPRT. According to classic results on random walks, we have that

Egθ(τ̃) ∼ B/Dg(θ|γ) and Ehγ (τ̃) ∼ A/Dh(γ|θ).

Furthermore, we view the test with stopping time τ ′ in the previous paragraph as

a testing procedure for the simple null (gθ) versus simple alternative (hγ) problem.

According to the definition of α1 and α2, the type I and type II error probabilities of

this test for the simple versus simple problem are bounded from the above by α1 and

α2. Therefore, according to the optimality of SPRT we have that

Egθ(τ
′) ≥ Egθ(τ̃) = (1+o(1))B/Dg(θ|γ) and Ehγ (τ

′) ≥ Ehγ (τ̃) = (1+o(1))A/Dh(γ|θ).

For the first inequality, the left-hand-side does not depend on γ and furthermore Γ

is a compact set. Thus, the o(1) is uniformly small for γ ∈ Γ. We maximize the

right-hand-side with respect to γ and obtain that

Egθ(τ
′) ≥ (1 + o(1))

B

infγ Dg(θ|γ)
.

Note that the right-hand-side of the above inequality is precisely the asymptotic

expected stopping time in Theorem 14. With the same argument, we have that

Ehγ (τ
′) ≥ (1 + o(1))

A

infθ Dh(γ|θ)
.

Summarizing the above discussion, we have the following corollary

Corollary 7. Let T (α1, α2) be the class of sequential tests with their type I and type II

errors bounded above by α1 and α2, respectively. Each test in T (α1, α2) corresponds
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to a stopping time τ ′ and a decision function D′. Let αA,B
1 = supθ Pgθ(Lτ > eA)

and αA,B
2 = supγ Phγ (Lτ < e−B). Then, under the setting of Theorem 13 and under

Conditions A1-3, the generalized sequential probability test is asymptotically optimal

in the sense that

Egθ(τ) ∼ inf
(τ ′,D′)∈T (αA,B

1 ,αA,B
2 )

Egθ(τ
′)

as A → ∞ and B → ∞.

6.3 Further Discussion on the Conditions

In this section, we provide further discussion on Condition A1, A2, and A3 and

possible relaxations. Condition A1 requires that the two families of hypotheses are

completely separate. This condition is crucial for the exponential decay of the er-

ror probabilities in Theorems 12 and 13. The uniqueness of the minimization of

the Kullback-Leibler divergence ensures the convergence of the maximum likelihood

estimators and validity of the stopping time analysis. Therefore, Condition A1 is nec-

essary for the theorems. In what follows, we provide further discussions on Conditions

A2 and A3.

6.3.1 Relaxing Condition A2 and Analysis for Non-compact

Spaces

When the parameter spaces Θ and Γ are non-compact, the expected stopping time

of the generalized sequential probability ratio test can usually be approximated sim-

ilarly as that of Theorem 14 with mild regularity conditions such as almost sure

convergence of the maximum likelihood estimators. For the asymptotic decay rate of

the type I and type II error probabilities, the generalization to non-compact spaces

is not straightforward and additional nontrivial conditions are necessary. We start

the discussion with a counterexample in which Theorem 13 fails when the parameter

spaces are non-compact.
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Example 9. Consider the null hypothesis being the lognormal distributions

gθ(x) = x−1(2πθ)−1/2e−
(log x)2

2θ

and the alternative hypothesis being the exponential distributions

hγ(x) = γ−1e−x/γ.

Both distributions live on the positive real line. The maximum likelihood estimators for

the parameters based on n observations are θ̂n = 1
n

∑n
i=1(logXi)

2 and γ̂n = 1
n

∑n
i=1 Xi.

The generalized log-likelihood ratio statistic based on one sample is log hγ̂1(X1) −
log gθ̂(X1) = log | logX1| − 1

2
+ 1

2
log(2π) and L1 =

√
2π/e × | log(X1)|. The type I

error probability is bounded from below by

sup
θ∈Θ

Pgθ(Lτ > eA) ≥ sup
θ∈Θ

Pgθ(L1 > eA) ≥ lim
θ→∞

Pgθ{
√
2π/e× | log(X1)| > eA} = 1

regardless of the choice of A. The last equality holds because log(X1) follows a normal

distribution with mean 0 and variance 2πθ/e.

Therefore, it is nontrivial and additional conditions are certainly needed to gener-

alize the results of Theorem 13 to non-compact parameter spaces and to rule out cases

such as Example 9. Let ξi(θ, γ), i = 1, 2... be i.i.d. copies of ξ(θ, γ). The log-likelihood

ratio based on n observations is defined as

Sn(θ, γ) =
n∑

i=1

ξi(θ, γ). (6.7)

We further define Sn = supγ infθ
∑n

i=1 ξi(θ, γ) and τ = inf{n : Sn < −B or Sn > A}.
To rule out the cases such as Example 9, we need to carefully go through the proof of

Theorem 13 (Section 6.5) that consists of the development of an upper and a lower

bound of the error probabilities. The lower bound does not require the compactness

of the parameter spaces and is generally applicable. It is the development of the

upper bound where the compactness plays an important role in the analysis. Define

HA,θ =
∞∑

n=1

∫

Γ

Pgθ(Sn(θ, γ) > A)dγ. (6.8)

The condition for non-compact parameter spaces is
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A2′ Let HA,θ be defined as in (6.8) and lim supA→∞ supθ∈Θ
1
A
logHA,θ ≤ −1. Sym-

metrically, we define

GB,γ =
∞∑

n=1

∫

Θ

Phγ (Sn(θ, γ) < −B)dθ

that satisfies lim supB→∞ supθ∈Θ
1
B
logGB,θ ≤ −1.

Condition A2′ is usually difficult to check. Therefore, we provide a set of sufficient

conditions for A2′.

Lemma 20. Assume that the following conditions hold.

B1 For each θ, let γθ = arg infγ∈Γ Dh(γ|θ). There exist ε and δ positive such that

Dh(γ|θ) ≥ Dh(γθ|θ) + δ|γ − γθ|l,

for some l > (d+1)/2, all θ ∈ Θ, and all |γ−γθ| > ε, where d is the dimension

of Γ.

B2 The log-likelihood ratio ξ(θ, γ) has bounded variance under hγ for all θ ∈ Θ and

γ ∈ Γ.

B3 There exists ε > 0 such that ε < Dg(θ|γ)/Dh(γ|θ) < ε−1 for all θ and γ.

Then, lim supA→∞ supθ∈Θ
1
A
logHA,θ ≤ −1.

For the two families of distributions in Example 9, Condition A2′ is not satisfied.

With Condition A2′ in addition to Conditions A1 and A3, we expect to obtain similar

approximation results as in Theorem 13. Given that the techniques are similar but

substantially more tedious, we do not provide the details.

6.3.2 Relaxing Condition A3

We now consider the situation in which Condition A3 is violated. For instance, if the

alternative hypothesis hγ is the exponential distributions, then the partial derivative
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∂γξ(θ, γ) is infinity when γ → 0. For these types of families, we need to replace

Condition A3 by some localization condition. Let γ̂n be the maximum likelihood

estimator based on n i.i.d. samples. The localization condition to replace A3 is as

follows.

A3′ There exists a family of sets Γ′
A ⊂ Γ indexed by A such that Pgθ(γ̂n /∈ Γ′

A) ≤
e−(n+1)A and for some α > 1, β ∈ (α−1, 1) and all θ ∈ Θ

Pgθ( sup
γ∈Γ′

A

|∂γξ(θ, γ)| > eA
β

x) ≤ e−| log x|α .

Similarly, there exists Θ′
B ⊂ Θ such that Phγ (θ̂n /∈ Θ′

B) ≤ e−(n+1)B and

Phγ (sup
θ∈Θ′

b

|∂θξ(θ, γ)| > eA
β

x) ≤ e−| log x|α .

For the two hypotheses in Example 9, we have α = 2 and for some 1/2 < β < 1 let

Γ′ = [e−Aβ′

,∞) where 1/2 < β′ < β.

Then, we can verify that such the choice of Γ′ satisfies Condition A3′. We summarize

the discussion in this section as follows.

Theorem 15. Under Conditions A1, A2′, and A3′, the approximations in (6.6) holds.

Given that the proof of the above theorem is basically identical to that of Theorem

13 and therefore we do not provide the details.

6.4 Numerical Examples

6.4.1 Poisson Distribution against Geometric Distribution

In this section, we provide numerical examples to illustrate the results of the theorems.

We start with the Poisson distribution against the geometric distribution. Let

gθ(x) =
e−θθx

x!
Θ = [0.5, 2], hγ(x) =

γx

(1 + γ)x+1
Γ = [0.5, 2]
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where x is a non-negative integer and 1/(1 + γ) is the success probability of the

geometric trials. We truncate the parameter spaces from above for Condition A2

and from below to make these two families of distributions completely separated for

Condition A1. The test statistic is

Ln =

∏n
i=1 hγ̂(Xi)∏n
i=1 gθ̂(Xi)

where θ̂ = γ̂ = max{min(
1

n

n∑

i=1

Xi, 2), 0.5}.

For B fixed to be 4, we compute the type I error probabilities for different values of

A via Monte Carlo. Figure 6.1 plots the logarithm of the type I error probabilities

against the boundary parameter A. For fixed A = 4, we compute the expected sample

size under the distribution g0.5(x), g1(x), and g1.5(x) for different values of B as shown

in Figure 6.2. Similarly, for fixed B = 4, we compute the expected sample size under

the distribution h0.5(x), h1(x), and h1.5(x) for different values of A as shown in Figure

6.3.

The slope of the fitted line in Figure 6.1 is -1.02. The fitted slopes in Figure

6.2 are 35.50, 12.12, and 6.81. The fitted slopes in Figure 6.3 are 26.22, 8.22, and

4.61. From Theorems 2 and 3, the theoretical values of the slope in Figure 6.1 is

−1, and the theoretical values of the slopes in Figure 6.2 are {infγ D(g0.5|hγ)}−1 =

36.85 , {infγ D(g1|hγ)}−1 = 12.28, and {infγ D(g1.5|hγ)}−1 = 6.99. The theoretical

slopes in Figure 6.3 are {infθ D(gθ|h0.5)}−1 = 26.97, {infθ D(gθ|h1)}−1 = 8.23, and

{infθ D(gθ|h1.5)}−1 = 4.30. The numerical fitted values are close to the theoretical

ones.

6.4.2 Gaussian Distribution against Laplace Distribution

We proceed to testing Gaussian distribution against Laplace distribution, for which

the distributions are non-compact. Let

gθ(x) = (2πθ)−1/2e−x2/(2θ) Θ = (0,∞) hγ(x) = (2γ)−1e−|x|/γ Γ = (0,∞)
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Figure 6.1: Logarithm of the type I error probabilities (y-coordinate) against bound-

ary parameter A (x-coordinate) for Poisson distribution against geometric distribu-

tion with B fixed to be 4.

The generalized likelihood statistics is

Ln =

∏n
i=1 hγ̂(Xi)∏n
i=1 gθ̂(Xi)

where γ̂ = 1
n

∑n
i=1 |Xi| and θ̂ = 1

n

∑n
i=1 X

2
i .

For B fixed to be 4 and different A values, we compute the type I error probabilities of

the generalized sequential probability ratio test. Figure 6.4 is the plot for the logarith-

m of the type I error probabilities against the boundary parameter A. Furthermore,

for fixed A = 4 and different B values, we calculate the expected sample size under

probability g1 and for fixed B = 4 with different A values we calculate the expeted

sample size under h2. Figure 6.5 is the plot for the expected sample size against B,

and Figure 6.6 is the plot for expected sample size against A. We fit straight lines to

each of the three plots via least square. The slopes of the fitted line in Figure 6.4, 6.5,

and 6.6 are −1.00, 20.60, and 14.42 respectively. The theoretical values of these three

slopes should be −1, {infγ∈Γ D(g1|hγ)}−1 = 20.65 and {infθ∈Θ D(gθ|h2)}−1 = 13.82

that are close to the numerically fitted values.
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Figure 6.2: Eg0.5(τ), Eg1(τ) and Eg1.5(τ) (y-coordinate) against boundary parameter

B (x-coordinate) for Poisson distribution against geometric distribution with A fixed

to be 4.

6.4.3 Lognormal Distribution against Exponential Distribu-

tion

We proceed to the lognormal distribution against exponential distribution

gθ(x) =
1

x
√
2πθ

e−
(log x)2

2θ Θ = [0, 1], hγ(x) =
1

γ
e−

x
γ Γ = [0, 1]

As explained in Example 9, we consider θ and γ on compact sets for Condition A2.

The generalized likelihood ratio statistic is

Ln =

∏n
i=1 hγ̂(Xi)∏n
i=1 gθ̂(Xi)

where γ̂ = min(
1

n

n∑

i=1

Xi, 1), θ̂ = min
{ 1
n

n∑

i=1

(logXi)
2, 1
}

For a fixed B= 4 and different values of A, we compute the type I error probabilities of

the generalized sequential probability ratio test under the distribution g1(x). Figure

6.7 is the scatter plot for the logarithm of the type I error probabilities against

the boundary parameter A. Furthermore, for a fixed A and different B values, we

compute the expected sample size under g0.5(x) and g1(x) via Monte Carlo. For a

fixed B and different A, we also compute the expected sample size under probability

measure h0.5 and h1(x). Figure 6.8 is the scatter plot of expected sample size under
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Figure 6.3: Eh0.5(τ), Eh1(τ) and Eh1.5(τ) (y-coordinate) against boundary parameter

A (x-coordinate) for Poisson distribution against geometric distribution with B fixed

to be 4.

probability measure g0.5 and g1 against B. Figure 6.9 is the scater plot of expected

sample size under probability measure h0.5 and h1 against A. We fit straight lines

to each of the three plots via least square. The slope of the fitted line in Figure

6.7 is −0.92. The slopes of the regression lines in Figure 6.8 are 4.67, and 4.75. .

The slopes of the regression lines in Figure 6.9 are 1.08, and 3.28. From Theorems

13 and 14, the theoretical value of the slope in Figure 6.7 should be −1, and the

slopes in Figure 6.8 are {infγ∈Γ D(g0.5|hγ)}−1 = 4.72, and {infγ∈Γ D(g1|hγ)}−1 = 4.54.

The theoretical value of slopes in Figure 6.9 are {infθ∈Θ D(gθ|h0.5)}−1 = 1.03 and

{infθ∈Θ D(gθ|h1)}−1 = 3.02.

6.5 Technical Proofs

6.5.1 Proof of Theorem 12

We write an ∼= bn if log an ∼ log bn as n → ∞. To make the discussion smooth, we

delay the proof of the supporting lemmas to the appendix.
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Figure 6.4: Logarithm of the type I error probabilities (y-coordinate) against bound-

ary parameter A (x-coordinate) for Gaussian distribution against Laplace distribution

with B = 4.

Proof of Theorem 12. Define the log-likelihood ratio of a single observation

ξ(γ) = log hγ(X)− log g0(X)

and ξi(γ) = log hγ(Xi)− log g0(Xi) be i.i.d. copies of it. The log-likelihood ratio based

on n i.i.d. samples is

Sn(γ) =
n∑

i=1

ξi(γ).

The generalized log-likelihood ratio statistic is logLn = Sn = supγ∈Γ Sn(γ). The

stopping time can be equivalently written as τ = inf{n : Sn < −B or Sn > A}.
We reject the null hypothesis if Sτ > A and do not reject otherwise. Let γ∗ =

arg supγ Eg0{ξ(γ)}, −µγ
g = Eg0{ξ(γ)} = Dg0(0|γ), and µγ

h = Ehγ{ξ(γ)} = −Dhγ (γ|0).
We now proceed to the computation of the type I and type II error probabilities. The

decay rate of the type I error probability is given by the following lemmas that is the

key result of the remaining derivations.

Lemma 21. Under the setting and conditions of Theorem 12, the type I error prob-

ability is approximated by

e−(1+o(1))A ≤ Pg(Sτ > A) ≤ Pg(sup
n

sup
γ

Sn(γ) > A) ≤ κAα0HA
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Figure 6.5: Expected sample size Eg1(τ) (y-coordinate) against boundary parameter

B (x-coordinate) for Gaussian distribution against Laplace distribution with A = 4.

for some ε0, α0, and κ > 0 and

HA =
∞∑

n=1

∫

Γ

P(Sn(γ) > A− 1)dγ.

The constant κ depends on the dimension of Γ and α0 depends on α in Condition A3.

Lemma 22. Let mes(Γ) =
∫
I(t ∈ Γ)dt be the Lebesgue measure of the parameter set

Γ and let Dh(γ|0) = Ehγ{log hγ(X) − log g0(X)} be the Kullback-Leibler divergence.

Under the setting and conditions of Theorem 12, there exists some κ0 > 0 such that

for A sufficiently large HA defined as in Lemma 21 admits the following bound

HA ≤ κ0mes(Γ)Ae−A

minγ Dh(γ|0)
.

Therefore, we finished the analysis of the type I error probability. We focus on

the type II error computation α2 = supγ∈Γ Phγ (Sτ < −B). For each γ0, notice that

Sn ≥ Sn(γ0) and thus

Phγ0
(Sτ < −B) < Phγ0

(Sτ(γ0)(γ0) < −B) ≤ e−B

where τ(γ0) = inf{n : Sn(γ0) < −B or Sn(γ0) > A}. The last step of the above

display is a classical large deviations result of random walk. This provides an upper
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Figure 6.6: Expected sample size Eh2(τ) (y-coordinate) against boundary parameter

A (x-coordinate) for Gaussian distribution against Laplace distribution with B = 4.

bound of α2. We now show that this upper bound is achieved in the sense of “∼=”. In

particular, we wish to show that

lim inf
A,B→∞

logPhγ∗
(Sτ < −B)

B
≥ −1. (6.9)

We establish the above inequality via contradiction. Suppose that (6.9) is not true,

that is, there exist two sequences Ai, Bi → ∞ as i → ∞ and ε0 > 0 such that

logPhγ∗
(Sτ < −Bi)

Bi

< −1− ε0

and equivalently Phγ∗
(Sτ < −Bi) < e−(1+ε0)Bi . Recall that, from the type I error

computation, we have that Pg0(Sτ > Ai) ∼= e−Ai .

Now we consider the simple null f = g0 against the simple alternative f = hγ∗

and SPRT with stopping time

τ̃i = inf{n : Sn(γ∗) < −B̃i or Sn(γ∗) > Ãi}.

The threshold Ãi and B̃i is chosen such that the SPRT has exactly the same (or

slightly larger) type I and type II error probability as the generalized SPRT, that is,

e−Ãi ∼= Pg0(Sτ̃i(γ∗) > Ãi) ∼= Pg0(Sτ > Ai) ∼= e−Ai
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Figure 6.7: Logarithm of the type I error probabilities (y-coordinate) against bound-

ary parameter A (x-coordinate) for lognormal distribution against exponential distri-

bution where B is fixed to be 4

and

e−B̃i ∼= Phγ∗
(Sτ̃i(γ∗) < −B̃i) ∼= Phγ∗

(Sτ < −Bi) < e−(1+ε0)Bi .

Therefore, we have that Ãi ∼ Ai and B̃i > (1 + ε0/2)Bi. Furthermore, notice that

the expected stopping time for SPRT is

Eg(τ̃i) ∼ B̃i/µ
γ∗
g , Ehγ∗

(τ̃i) ∼ Ãi/µ
γ∗
h .

Note that µγ∗
g = infγ∈Γ Dg(θ|γ). According to Theorem 14 (whose proof is indepen-

dent of the current one), we have that Eg(τ̃i) > Eg(τ) ∼ Bi/µ
γ∗
g that contradicts the

optimality result of SPRT [Wald and Wolfowitz, 1948]. Thus, (6.9) must be true and

we establish that

α2 = sup
γ∈Γ

Phγ (Sτ < −B) ∼= e−B as A, B → ∞.

6.5.2 Proof of Theorem 13

With the above proof, Theorem 13 can be obtained rather easily. This proof also

requires some intermediate results in the proof of Theorem 12.
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Figure 6.8: Expected sample size Eg0.5(τ) and Eg1(τ) (y-coordinate) against boundary

parameter B (x-coordinate) for lognormal distribution against exponential distribu-

tion, where A is fixed to be 4.

Proof of Theorem 13. Let Sn(θ, γ) be defined as in (6.7). We define notation

Sn = sup
γ

inf
θ

n∑

i=1

ξi(θ, γ), τ = inf{n : Sn < −B or Sn > A}.

As the two types of errors are completely symmetric, we only derive the type I error.

We start with the upper bound. For each θ, by slightly abusing the notation, define

Sn(θ) = sup
γ

Sn(θ, γ), τ1(θ) = inf{n : Sn(θ) < −B or Sn(θ) > A}.

Then, an upper bound is given by

Pgθ(Sτ > A) ≤ Pgθ(Sτ1(θ)(θ) > A) ≤ κAα0

∞∑

n=1

∫

Γ

Pgθ(Sn(θ, γ) > A− 1)dγ. (6.10)

The last step follows from the fact that the right-hand-side is precisely the type I

error probability of the simple null gθ versus composite alternative {hγ : γ ∈ Γ}. We

now consider the lower bound. For each given γ and θ∗ = arg infθ∈Θ Dh(γ|θ), we have
that

Pgθ∗
(sup

γ′

inf
θ′

Sτ (θ
′, γ′) > A) ≥ Pgθ∗

(inf
θ
Sτ2(γ)(θ, γ) > A) ∼= e−A

where τ2(γ) = inf{n : infθ Sn(θ, γ) < −B or supγ Sn(θ, γ) > A}. Once again, the last

step is thanks to the type II error proof in Theorem 12.
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Figure 6.9: Expected sample size Eh0.5(τ) and Eh1(τ) (y-coordinate) against boundary

parameter A (x-coordinate) for lognormal distribution against exponential distribu-

tion, where B is fixed to be 4.

6.5.3 Proof of Theorem 14

The proof of this theorem uses a change of measure. Suppose that ξ(x) is a stochastic

process living on some d-dimensional compact parameter space x ∈ X ⊂ Rd. A

generic probability measure is denoted by P. The following change of measure helps

to compute the tail probability of supx ξ(x). In particular, this change of measure is

introduced in two ways. We first define it through the Radon-Nikodym derivative

dQb

dP
= H−1

b

∫

X
I(ξ(x) > b− 1)µ(dx)

where I(·) is the indicator function, µ is a positive measure, and

Hb =

∫

X
P(ξ(x) > b− 1)µ(dx).

To better understand this measure Qb, we provide a procedure generating sample

paths of ξ(x) under Qb. This provides an alternative distributional description of

ξ(x) under Qb. The corresponding sample path generation is given as follows.

1. Sample a random index x∗ ∈ X according to the density function (with respect

to measure µ)

qn(x∗) = P(ξ(x∗) > b− 1)/Hb.
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2. Conditional on the realized x∗, sample ξ(x∗) conditional on ξ(x∗) > b− 1 under

the measure P.

3. Sample the rest of the process {ξ(x) : x 6= x∗} conditional on the realization

ξ(x∗) under the original measure P.

It is not hard to verify that the above three-step sample path generation is consistent

with the Radnon-Nikodym derivative. Some variations of this change of measure will

be used in the proof of other lemmas.

Proof of Theorem 14. Without loss of generality, we derive the approximation for

Eg0(τ), that is, the true θ is 0. Using the notation in the proof of Theorem 13, we

consider the limiting process of Sn(θ, γ). To start with, we consider a large constant

M > 0 and split the expected stopping time

Eg0(τ/B) = Eg0(τ/B; τ/B ≤ M) + Eg0(τ/B; τ/B > M). (6.11)

Let θ̂n = arg infθ Sn(θ, γ) and γ̂n = arg supγ Sn(θ, γ). Then, as n → ∞, we have the

following almost sure convergence, θ̂ → 0 and γ̂ → γ0 , arg infγ Dg(0|γ). Thus, we

have the following weak convergence

{S⌊Bt⌋(θ̂n, γ̂n)/B : t ∈ [0,M ]} ⇒ {−t× inf
γ
Dg(θ|γ) : t ∈ [0,M ]}

where “⇒” is weak convergence. Thus, the first term is approximated by

Eg0(τ/B; τ/B ≤ M) → 1/Eg0{ξ(γ0)} = 1/ inf
γ
Dg(0|γ) as B → ∞. (6.12)

In what follows, we show that the second term Egθ(τ/B; τ/B > M) → 0 as

B → ∞ for M sufficiently large. Let τ ′ = inf{n : supγ Sn(0, γ) < −B}. We observe

that τ ′ ≥ τ and thus it is sufficient to bound Egθ(τ
′/B; τ ′/B > M). For each λ > 0,

we consider the probability Pg0(τ
′ > λB). Notice that Sn(0, γ) has a negative drift

that is bounded from the above by −ε and thus supγ E{SλB(0, γ)} < −ελB. For
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λ > M with M sufficiently large, we have that supγ E{SλB(0, γ)} < −B − ελB/2.

Note that

Pg0(τ
′ > λB) ≤ Pg0(sup

γ
SλB(0, γ) ≥ −B).

The last issue is to provide a bound of Pg0(supγ SλB(0, γ) ≥ −B). We consider the

change of measure

dQ−B

dPg0

= H−1
−B

∫

Γ

I(SλB(0, γ) ≥ −B − 1)dγ

where H−B =
∫
Pg0(SλB(0, γ) ≥ −B − 1)dγ and thus

Pg0

(
sup
γ

SλB(0, γ) ≥ −B

)
≤ Pg0

(
sup
k≤λB

|∂ξ(0, γ)| ≥ e(λB)β
)

+ Pg0

(
SλB(0, γ) ≥ −B; sup

k≤λB
|∂ξ(0, γ)| < e(λB)β

)
.

The first term is bounded by

Pg0

(
sup
k≤λB

|∂ξ(0, γ)| ≥ e(λB)β
)

≤ λBe−(λB)αβ

.

We use the change of measure for the second term

Pg0

(
SλB(0, γ) < −B; sup

k≤λB
|∂ξ(0, γ)| < e−(λB)β

)

= H−BEQ−B

[∫

Γ
I(SλB(0, γ) ≥ −B − 1)dγ;SλB(0, γ) ≥ −B; sup

k≤λB
|∂ξ(0, γ)| < e(λB)β

]
.

By means of standard large deviations analysis,

H−B ≤ e−ε0λB.

For the expectation, on the set {SλB(0, γ) ≥ −B}, there exists at least one γ0 such that

SλB(0, γ0) ≥ −B. In addition, the derivative of SλB(0, γ) is bounded by λBe(λB)β . Thus,

we have a lower bound
∫

Γ
I(SλB(0, γ) ≥ −B − 1)dγ ≥ δ0λ

dBded(λB)β .

Plugging the above bound back, we have that

Pg0

(
SλB(0, γ) < −B; sup

k≤λB
|∂ξ(0, γ)| < e−(λB)β

)
≤ e−ε0λB/2
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and with λ sufficiently large

Pg0(τ
′ > λB) ≤ e−ε0λB/2.

With the above bound, we have that

Egθ(τ
′/B; τ ′/B > M) = o(1)

as B → 0. Together with the approximation in (6.12), we put this estimate back to (6.15)

and conclude the proof.

6.6 Conclusion

In this chapter, we study the asymptotic properties of the generalized sequential

probability ratio test for the composite null hypothesis against composite alternative

hypothesis. We derived the exponential decay rate of the maximal type I and type

II error probabilities as the crossing levels tend to infinity. In particular, we show

that these two probabilities decay to zero at rate e−A and e−B, respectively, which

are the same as those of the classic sequential probability ratio test. With such

approximations, we are able to establish the asymptotic optimality of the generalized

SPRT, that is, it admits asymptotically the shortest expected sample size among all

the sequential tests with the same maximal type I and type II error probabilities.

These results serve as a natural extension to those of the classic optimality results for

the sequential probability ratio test.
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6.7 Appendix to Chapter 6

6.7.1 Other technical proofs

The proofs need some variations of the change of measure Qb introduced in the pre-

vious section. Given that all the calculations for the rest of the proof are under the

distribution g0, we let P = Pg0 through out this section. To start with, we introduce

two measures that are special cases of the measure in the beginning of Section 6.5.3.

A change of measure. Define measure Q via the Radon-Nikodym

dQ

dP
=

1

HA

∞∑

n=1

∫

Γ

I(Sn(γ) > A− 1)dγ

where I(·) is the indicator function and

HA =
∞∑

n=1

∫

Γ

P(Sn(γ) > A− 1)dγ.

The measure Q depends on A. To simplify the notation, we omit the index A in

notation Q. The sample path generation requires three steps.

1. Sample two random indices (n∗, γ∗) jointly according to the density/mass func-

tion

q(n∗, γ∗) = P(Sn∗
(γ∗) > A− 1)/HA.

Note that n∗ is integer-valued and q as a function of n∗ is a probability mass

function. Furthermore, γ∗ is a continuous variable and q as a function of γ∗ is

a density function.

2. Conditional on the realized n∗ and γ∗, sample Sn∗
(γ∗) conditional on Sn∗

(γ∗) >

A− 1 under the measure P.

3. Sample the rest of the process {Sn(γ) : n 6= n∗, γ 6= γ∗} conditional on the

realization Sn∗
(γ∗) under the original measure P.
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A second change of measure. This change of measure is defined for Sn(γ) with

n fixed and γ ∈ Γ. Define measure Qn via the Radon-Nikodym

dQn

dP
= H−1

n

∫

Γ

I(Sn(γ) > −1)dγ

where I(·) is the indicator function and

Hn =

∫

Γ

P(Sn(γ) > −1)dγ.

The corresponding sample path generation is given as follows.

1. Sample two random indices γ∗ according to the density function

qn(γ∗) = P(Sn(γ∗) > −1)/Hn.

2. Conditional on the realized γ∗, sample Sn(γ∗) conditional on Sn(γ∗) > −1 under

the measure P.

3. Sample the rest of the process {Sn(γ) : γ 6= γ∗} conditional on the realization

Sn(γ∗) under the original measure P.

Proof of Lemma 21. We start the proof by deriving a lower bound. Notice that Sτ ≥
Sτ (γ) for all γ. Thus, we have

P(sup
n

sup
γ

Sn(γ) > A) ≥ P(Sτ > A) ≥ P(Sτ(γ) > A) ∼= e−A

where τ(γ) = inf{n : Sn(γ) < −B or Sn(γ) > A}. The last step in the above display

is a classic large deviations result. We now proceed to the derivation of an upper

bound of P(supn supγ Sn(γ) > A) and start with a localization on the set

LA = ∪∞
n=1{sup

γ
|∂ξn(γ)| > nζeA

β}
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for some α−1 < β < 1 and ζ sufficiently large. According to Condition A3, we have

that

P(Lc
A) ≤

∞∑

n=1

P{sup
γ

|∂ξn(γ)| > nζeA
β} ≤

∞∑

n=1

n−(α−1)ζAβ

e−Aαβ

= o(e−A).

Define

τA = inf{n : sup
γ

Sn(γ) > A}

and thus supn supγ Sn(γ) > A if τA < ∞. We now derive an upper bound for

P(τA < ∞, LA) via the change of measure Q as follows

P(sup
n

sup
γ

Sn(γ) > A,LA) = HAEQ

([ ∞∑

n=1

∫

Γ

I{Sn(γ) > A− 1}dγ
]−1

, τA < ∞, LA

)
.

Note that on the set {τA < ∞}, there exists at least one γ such that SτA(γ) > A.

Furthermore, on the set LA, the gradient |∇SτA(γ)| is bound by eA
β
τ ζ+1
A . Therefore,

we have the following lower bound

∞∑

n=1

∫

Γ

I{Sn(γ) > A− 1}dγ ≥
∫

Γ

I{SτA(γ) > A− 1}dγ ≥ {edAβ

τ
(ζ+1)d
A }−1.

Thus,

P(sup
n

sup
γ

Sn(γ) > A,LA) ≤ edA
β

HAEQ(τ
(ζ+1)d
A ; τA < ∞).

The last step is to control the moment EQ(τ
(ζ+1)d
A ). Let n∗ and γ∗ be the random

indices generated from Step 1 of the three-step sample path generation fromQ. There-

fore, we split the expectation

EQ(τ
(ζ+1)d
A ; τA < ∞) ≤ EQ(τ

(ζ+1)d
A ; τA ≤ n∗) + EQ(τ

(ζ+1)d
A ; τA < ∞, n∗ < τA < ∞)

≤ EQ{n(ζ+1)d
∗ }+ EQ(τ

(ζ+1)d
A ; τA < ∞, n∗ < τA < ∞)

≤ O(A(ζ+1)d) + EQ(τ
(ζ+1)d
A ;n∗ < τA < ∞).

We now focus on the last term by starting with the probability

Q(τA = n∗ + k).
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Note that τA > n∗ implies that A − 1 < Sn∗
(γ∗) < A and Sn(γ) < A for all n ≤ n∗

and γ ∈ Γ. Therefore, we have

Q(τA = n∗ + k) ≤ P(sup
γ

Sk(γ) > 0).

To obtain an estimate of the above probability, we use the change of measure Qn

P
[
sup
γ

Sk(γ) > 0;∪k
n=1{sup

γ
|∂ξn(γ)| > ek

β}
]

= HkEQk

[
(

∫

Γ

I(Sk(γ) > −1)dγ)−1; sup
γ

Sk(γ) > 0,∪k
n=1{sup

γ
|∂ξn(γ)| > ek

β}
]

and

P(∪k
n=1{sup

γ
|∂ξn(γ)| > ek

β}) ≤ ke−kαβ

. (6.13)

For the normalizing constant, we have that

Hk = O(e−ε0k).

For the integral
∫
Γ
I(Sk(γ) > −1)dγ inside the expectation, on the set {supγ Sk(γ) >

0}, there exists at least one γ0 such that Sk(γ0) > 0. Furthermore, the derivative is

bounded from the above by ek
β
. Thus, the integral is bounded from below by

∫

Γ

I(Sk(γ) > −1)dγ ≥ δ0k
−de−dkβ .

Thus, we have

P(sup
γ

Sk(γ) > 0;∪k
n=1{sup

γ
|∂ξn(γ)| > ek

β}) = O(e−ε0k/2). (6.14)

We put together (6.13) and (6.14) and obtain that

Q(τA = n∗ + k) ≤ P(sup
γ

Sk(γ) > 0) = O(ke−kαβ

+ e−ε0k/2).

Therefore, we have that

EQ(τ
(ζ+1)d
A ;n∗ < τA < ∞) = O(E(n(ζ+1)d

∗ )) = O{A(ζ+1)d}.

Thereby, we conclude the proof.
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Proof of Lemma 22. We now prove an important fact that HA
∼= e−A. Recall the

notation ξ(γ) = log hγ(X) − log g0(X). For each pair (n, γ), we consider the prob-

ability P(Sn(γ) > A − 1). For each ε > 0 small enough but not changing with A,

we approximate the tail probability via large deviations theory stated as follows. Let

ϕγ(θ) = log[E{eθξ(γ)}] and the rate function is

P{Sn(γ) > A− 1} ≤ e−nI(n,γ)

where the rate function is I(n, γ) = θ∗
A−1
n

− ϕγ(θ∗) and θ∗ solves identity ϕ′
γ(θ∗) =

A−1
n

. For each given γ, n × I(n, γ) is minimized at n(γ) = (A − 1)/Ehγ{ξ(γ)} and

minn n× I(n, γ) = A− 1. Thus, we have that

P{Sn(γ)(γ) > A− 1} ≤ e−A+1.

We switch the order of summation and integral by taking the sum with respect to

n first. We derive the upper bound of HA by splitting the summation (for some

M = κ1/minγ Dh(γ|0) and κ1 large)

∞∑

n=1

P(Sn(γ) > A− 1) =
MA∑

n=1

P(Sn(γ) > A− 1) +
∞∑

n=MA+1

P(Sn(γ) > A− 1).

Therefore, the first term is bounded by

MA∑

n=1

P(Sn(γ) > A− 1) ≤ MAe−A+1.

Notice that, as n/A → ∞, the rate function I(n, γ) → − infθ ϕγ(θ) > 0. Therefore,

the large deviations approximation becomes

− 1

n
logP{Sn(γ) > A− 1} → inf

θ
ϕγ(θ) > I(n(γ), γ)

as n/A → ∞ and A → ∞. Therefore, if we choose κ1 sufficiently large depending

and M = κ1/minγ Dh(γ|0), then the second term is

∞∑

n=MA+1

P(Sn(γ) > A− 1) ∼=
∞∑

n=MA+1

e−n infθ ϕγ(θ) = o(e−A)
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and therefore
∑∞

n=1 P(Sn(γ) > A−1) ≤ (MA+1)e−A. Since Γ is a compact set, then

with κ0 sufficiently large

HA =

∫

γ∈Γ

∞∑

n=1

P(Sn(γ) > A− 1)dγ ≤ κ0mes(Γ)Ae−A/min
γ

Dh(γ|0)

Proof of Lemma 20. We first switch the sum and integration

HA,θ =

∫

Γ

∞∑

n=1

Pgθ{Sn(θ, γ) > A}dγ.

Furthermore, notice the following approximation (for some κ large)

Pgθ{sup
n

Sn(θ, γ) > A} ≤
∞∑

n=1

Pgθ{Sn(θ, γ) > A} ≤ AκPgθ{sup
n

Sn(θ, γ) > A}.

The first inequality is due to the inclusion and exclusion formula and the second step

can be obtained by standard large deviations analysis, Condition B2 and B3. In

addition, the choice of κ is independent of θ and γ. Then, it is sufficient to show that

lim sup
A→∞

sup
θ∈Θ

1

A
log
[ ∫

Γ

Pgθ{sup
n

Sn(θ, γ) > A}dγ
]
≤ −1.

We now consider the tail probability Pgθ{supn Sn(θ, γ) > A} for each θ and γ. The

tail probability has a universal upper bound

w(θ, γ) , Pgθ{sup
n

Sn(θ, γ) > A} ≤ e−A

and the equality holds only when the overshoot is zero. Therefore, we have split the

integral for M sufficiently large

∫

|γ−γθ|<MA1/l

w(θ, γ)dγ ≤ κdA
d/le−A +

∫

|γ−γθ|≥MA1/l

w(θ, γ)dγ (6.15)

where κd is the volume of the d-dimensional unit ball. We now show that w(θ, γ)eA →
0 as |γ − γθ| → ∞. Let τA = inf{n : Sn(θ, γ) > A}. We choose M sufficiently large
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such that Ehγ{ξ(θ, γ)} = Dh(γ|θ) > 3A. Then, the tail probability has the following

upper bound

w(θ, γ) = Ehγ{e−SτA
(θ,γ);SτA(θ, γ) > A}

≤ e−APhγ [ξ1(θ, γ)

< {Dh(γ|θ) + 1}/2] + Ehγ [e
−SτA

(θ,γ); ξ1(θ, γ) > {Dh(γ|θ) + 1}/2].

The second term of the above inequality is bounded from the above by

e−{Dh(γ|θ)+1}/2 ≤ e−{1+Dh(γθ|θ)+δ|γ−γθ|l}/2 ≤ e−A−ε0|γ−γθ|l .

For the first term, notice that ξ1(θ, γ) has meanDh(γ|θ) and bounded second moment.

By Chebyshev’s inequality (noting that Ehγ{ξ1(θ, γ)} = Dh(γ|θ)), we have that

Phγ [ξ1(θ, γ) < {Dh(γ|θ) + 1}/2] = O(1)A−2Dh(γ|θ)−2 ≤ O(1)A−2|γ − γθ|−2l

Therefore, the integral has an upper bound

∫

|γ−γ∗|≥MA1/l

w(θ, γ)dγ ≤
∫

|γ−γ∗|≥MA1/l

O(1)A−2e−A|γ − γθ|−2ldγ.

Since l > (d + 1)/2, the above integral is O(A−2e−A). We insert this bound back to

(6.15) and obtain that
∫
Γ
w(θ, γ)dγ = O(Ad/le−A) and conclude the proof.
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