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This paper investigates the asymptotic theory for a vector autoregressive moving
average–generalized autoregressive conditional heteroskedasticity~ARMA-
GARCH! model+ The conditions for the strict stationarity, the ergodicity, and the
higher order moments of the model are established+ Consistency of the quasi-
maximum-likelihood estimator~QMLE! is proved under only the second-order
moment condition+ This consistency result is new, even for the univariate auto-
regressive conditional heteroskedasticity~ARCH! and GARCH models+ More-
over, the asymptotic normality of the QMLE for the vector ARCH model is
obtained under only the second-order moment of the unconditional errors and
the finite fourth-order moment of the conditional errors+ Under additional mo-
ment conditions, the asymptotic normality of the QMLE is also obtained for the
vector ARMA-ARCH and ARMA-GARCH models and also a consistent estima-
tor of the asymptotic covariance+

1. INTRODUCTION

The primary feature of the autoregressive conditional heteroskedasticity~ARCH!
model, as proposed by Engle~1982!, is that the conditional variance of the
errors varies over time+ Such conditional variances have been strongly sup-
ported by a huge body of empirical research, especially in stock returns, in-
terest rates, and foreign exchange markets+ Following Engle’s pathbreaking idea,
many alternatives have been proposed to model conditional variances, form-
ing an immense ARCH family; see, for example, the surveys of Bollerslev,
Chou, and Kroner~1992!, Bollerslev, Engle, and Nelson~1994!, and Li, Ling,
and McAleer~2002!+ Of these models, the most popular is undoubtedly the
generalized autoregressive conditional heteroskedasticity~GARCH! model of
Bollerslev ~1986!+ Some multivariate extensions of these models have been
proposed; see, for example, Engle, Granger, and Kraft ~1984!, Bollerslev, En-
gle, and Wooldridge~1988!, Engle and Rodrigues~1989!, Ling and Deng~1993!,
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Engle and Kroner~1995!,Wong and Li~1997!, and Li, Ling, and Wong~1999!,
among others+ However, apart from Ling and Deng~1993! and Li, Ling, and
Wong ~1998!, it seems that no asymptotic theory of the estimators has been
established for these multivariate ARCH-type models+ In most of these multi-
variate extensions, the primary purpose has been to investigate the structure
of the model, as in Engle and Kroner~1995!, and to report of empirical findings+

In this paper, we propose a vector autoregressive moving average–GARCH
~ARMA-GARCH! model that includes the multivariate GARCH model of Bol-
lerslev~1990! as a special case+ The sufficient conditions for the strict station-
arity and ergodicity, and a causal representation of the vector ARMA-GARCH
model, are obtained as extensions of Ling and Li~1997!+ Based on Tweedie
~1988!, a simple sufficient condition for the higher order moments of the model
is also obtained+

The main part of this paper investigates the asymptotic theory of the quasi-
maximum-likelihood estimator~QMLE! for the vector ARMA-GARCH model+
Consistency of the QMLE is proved under only the second-order moment con-
dition+ Jeantheau~1998! proves consistency for the constant conditional mean
drift model with vector GARCH errors+ His result is based on a modified result
in Pfanzagl~1969!, in which it is assumed that the initial values consisting of
the infinite past observations are known+ In practice, of course, this is not
possible+

In the univariate case, the QMLE based on any fixed initial values has been
investigated by Weiss~1986!, Pantula~1989!, Lee and Hansen~1994!, Lums-
daine ~1996!, and Ling and Li~1997!+ Weiss ~1986! and Ling and Li~1997!
use the conditions of Basawa, Feign, and Heyde~1976!, whereby their consis-
tency results rely on the assumption that the fourth-order moments exist+ Lee
and Hansen~1994! and Lumsdaine~1996! use the conditions of Amemiya~1985,
pp+ 106–111!, but their methods are only valid for the simple GARCH~1,1!
model and cannot be extended to more general cases+ Moreover, the condi-
tional errors, that is, h0t whenm 5 1 in equation~2+3! in the next section, are
required to have the~2 1 k!th ~k . 0! finite moment by Lee and Hansen~1994!
and the 32nd finite moment by Lumsdaine~1996!+

The consistency result in this paper is based on a uniform convergence as a
modification of a theorem in Amemiya~1985, p+ 116!+ Moreover, the consis-
tency of the QMLE for the vector ARMA-GARCH model is obtained only un-
der the second-order moment condition+ This result is new, even for the univariate
ARCH and GARCH models+ For the univariate GARCH~1,1! model, our con-
sistency result also avoids the requirement of the higher order moment of the
conditional errors, as in Lee and Hansen~1994! and Lumsdaine~1996!+

This paper also investigates the asymptotic normality of the QMLE+ For the
vector ARCH model, asymptotic normality requires only the second-order
moment of the unconditional errors and the finite fourth-order moment of the
conditional errors+ The corresponding result for univariate ARCH requires the
fourth-order moment, as in Weiss~1986! and Pantula~1989!+ The conditions
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for asymptotic normality of the GARCH~1,1! model in Lee and Hansen~1994!
and Lumsdaine~1996! are quite weak+ However, their GARCH~1,1! model ex-
plicitly excludes the special case of the ARCH~1! model because they assume
that B1 Þ 0 ~see equation~2+7! in Section 2! for purposes of identifiability+
Under additional moment conditions, the asymptotic normality of the QMLE
for the general vector ARMA-GARCH model is also obtained+ Given the uni-
form convergence result, the proof of asymptotic normality does not need to
explore the third-order derivative of the quasi-likelihood function+ Hence, our
method is simpler than those in Weiss~1986!, Lee and Hansen~1994!, Lums-
daine~1996!, and Ling and Li~1997!+

It is worth emphasizing that, unlike Lumsdaine~1996! and Ling and Li~1997!,
Lee and Hansen~1994! do not assume that the conditional errorsh0t are inde-
pendently and identically distributed~i+i+d! instead of a series of strictly station-
ary and ergodic martingale differences+Although it is possible to use this weaker
assumption for our model, for simplicity we use the i+i+d+ assumption+

The paper is organized as follows+ Section 2 defines the vector ARMA-
GARCH model and investigates its properties+ Section 3 presents the quasi-
likelihood function and gives a uniform convergence result+ Section 4 establishes
the consistency of the QMLE, and Section 5 develops its asymptotic normality+
Concluding remarks are offered in Section 6+ All proofs are given in Appen-
dixes A and B+

Throughout this paper, we use the following notation+ The term6{6 denotes
the absolute value of a univariate variable or the determinant of a matrix; 7{7
denotes the Euclidean norm of a matrix or vector; A' denotes the transpose of
the matrix or vectorA; O~1! ~or o~1!! denotes a series of nonstochastic vari-
ables that are bounded~or converge to zero!; Op~1! ~or op~1!! denotes a series
of random variables that are bounded~or converge to zero! in probability; rp

~or rL! denotes convergence in probability~or in distribution!; r~A! denotes
the eigenvalue of the matrixA with largest absolute value+

2. THE MODEL AND ITS PROPERTIES

Bollerslev ~1990! presents anm-dimensional multivariate conditional covari-
ance model, namely,

Yt 5 E~Yt 6Ft21! 1 «0t , Var~«0t 6Ft21! 5 D0t G0 D0t , (2.1)

where Ft is the past information available up to timet, D0t 5
diag~h01t

102, + + + , h0mt
102!, and

G0 5 1
1 s012 J s01m

s021 1 s023 J

J

s0m,1 J s0m,m21 1
2 ,
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in which s0ij 5 s0ji + The main feature of this model is that the conditional
correlationE~«0it «0jt 6Ft21!YYME~«0it

2 6Ft21!E~«0jt
2 6Ft21! 5 s0ij is constant over

time, wherei Þ j and«0it is the i th element of«0t + By assuming

h0it 5 w0i 1 (
j51

r

a0ij «0it2j
2 1 (

j51

s

b0ij h0it2j , i 5 1, + + + ,m, (2.2)

that is, with only i -specific effects, Bollerslev~1990! models the exchange rates
of the German mark, French franc, and British pound against the U+S+ dollar+
His results provide evidence that the assumption of constant correlations is ad-
equate+ Tse ~2000! has developed the Lagrange multiplier test for the hypoth-
esis of constant correlation in Bollerslev’s model and provides evidence that
the hypothesis is adequate for spot and futures prices and for foreign exchange
rates+

It is possible to provide a straightforward explanation for the hypothesis of
constant correlation+ Suppose thath0it captures completely the past informa-
tion, with Eh0it 5 E«0it

2 + Thenh0it 5 «0it h0it
2102 will be independent of the past

information+ Thus, for each i, $h0it , t 5 0,61,62, + + + % will be a sequence of
i+i+d+ random variables, with zero mean and variance one+ In general, h0it and
h0jt are correlated fori Þ j , and hence it is natural to assume thath0t 5
~h01t , + + + ,h0mt!

' is a sequence of i+i+d+ random vectors, with zero mean and co-
varianceG0+ Thus, we can write

«0t 5 D0t h0t + (2.3)

Obviously, «0t in ~2+1! has the same conditional covariance matrix as that
in ~2+3!+

Now, the remaining problem is how to defineh0it so that it can capture
completely the past information+ It is obvious thath0it may have as many dif-
ferent forms as in the univariate case+ In the multivariate case, h0it should
contain some past information, not only from«0it but also from«0jt + Hence, a
simple specification such as~2+2! is likely to be inadequate+ In particular, if it
is desired to explain the relationships of the volatilities across different mar-
kets, it would be necessary to accommodate some interdependence of the«0it ,
«0jt , h0it , andh0jt in the model+ Note thatD0t depends only on~h01t , + + + , h0mt!

' ,
denoted byH0t + It is natural to defineH0t in the form of ~2+5!, which follows,
which has also been used by Jeantheau~1998!+ Specifying the conditional mean
part as the vector ARMA model, we define the vector ARMA-GARCH model
as follows:

F0~L!~Yt 2 m0! 5 C0~L!«0t , (2.4)

«0t 5 D0t h0t , H0t 5 W0 1 (
i51

r

A0i ?«0t2i 1 (
i51

s

B0i H0t2i , (2.5)

whereD0t andh0t are defined as in~2+3!, F0~L! 5 Im 2 F01L 2 {{{ 2 F0pLp

and C0~L! 5 Im 1 C01L 1 {{{ 1 C0qLq are polynomials inL, Ik is the k 3 k
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identity matrix, and ?«0t 5 ~«01t
2 , + + + ,«0mt

2 !' + The true parameter vector is de-
noted by l0 5 ~w0

' ,d0
' ,s0

'!' , where w0 5 vec~m0,F01, + + + ,F0p,C01, + + + ,C0q!,
d0 5 vec~W0,A01, + + + ,A0r , B01, + + + ,B0s!, and s0 5 ~s021, + + + ,s0m,1,s032, + + + ,
s0m,2, + + + ,s0m,m21!' + This model was used to analyze the Hang Seng index and
Standard and Poor’s 500 Composite index by Wong, Li , and Ling~2000!+ They
found that the off-diagonal elements inA01 are significantly different from
zero and hence can be used to explain the volatility relationship between the
two markets+

The model for the unknown parameterl 5 ~w ',d ',s '!' , with w, d, and s
defined in a similar manner tow0, d0, ands0, respectively, is

F~L!~Yt 2 m! 5 C~L!«t , (2.6)

Ht 5 W1 (
i51

r

Ai ?«t2i 1 (
i51

s

Bi Ht2i , (2.7)

whereHt 5 ~h1t , + + + , hmt!
' , ?«t 5 ~«1t

2 , + + + ,«mt
2 !' , andF~L! andC~L! are defined

in a similar manner toF0~L! and C0~L!, respectively+ First, the «t are com-
puted from the observationsY1, + + + ,Yn, from ~2+6!, with initial value PY0 5
~Y0, + + + ,Y12p,«0, + + + ,«12q!+ Then Ht can be calculated from~2+7!, with initial
values S«0 5 ~ ?«0, + + + , ?«12r ,H0, + + + ,H12s!+We assume that the parameter spaceQ
is a compact subspace of Euclidean space, such thatl0 is an interior point inQ
and, for eachl [ Q, we make the following assumptions+

Assumption 1+ All the roots of 6F~L!6 5 0 and all the roots of6C~L!6 5 0
are outside the unit circle+

Assumption 2+ The termsF~L! andC~L! are left coprime~i+e+, if F~L! 5
U~L!F1~L! and C~L! 5 U~L!C1~L!, then U~L! is unimodular with constant
determinant! and satisfy other identifiability conditions given in Dunsmuir and
Hannan~1976!+

Assumption 3+ The termG is a finite and positive definite symmetric ma-
trix, with the elements on the diagonal being 1 andr~G! having a positive
lower bound overQ; all the elements ofAi andBj are nonnegative, i 5 1, + + + , r,
j 5 1, + + + ,s; each element ofW has positive lower and upper bounds overQ;
and all the roots of6 Im 2 (i51

r Ai L
i 2 (i51

s Bi L
i 6 5 0 are outside the unit

circle+

Assumption 4+ The expressionsIm 2 (r51
r Ai L

i and(i51
s Bi L

i are left co-
prime and satisfy other identifiability conditions given in Jeantheau~1998! ~see
also Dunsmuir and Hannan, 1976!+

In Assumptions 2 and 4, we use the identifiability conditions in Dunsmuir
and Hannan~1976! and Jeantheau~1998!+ These conditions may be too strong+
Alternatively, we can use other identifiability conditions, such as the final form
or echelon form in Lütkepohl~1991, Ch+ 7!, under which the results in this
paper for consistency and asymptotic normality will still hold with some minor
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modifications+ These identifiability conditions are sufficient for the proofs of
~B+3! and~B+6! in Appendix B+

Note that, under Assumption 4, Bs Þ 0 and hence the ARCH and GARCH
models are nonnested+ We define the ARMA-ARCH model as follows:

F0~L!~Yt 2 m0! 5 C0~L!«0t , (2.8)

«0t 5 D0t h0t , H0t 5 W0 1 (
i51

r

A0i ?«0t2i + (2.9)

Similarly, under Assumption 2, it is not allowed that all the coefficients in the
ARMA model are zero, so that the ARMA-ARCH model does not include the
following ARCH model as a special case:

Yt 5 m0 1 «0t , (2.10)

«0t 5 D0t h0t , H0t 5 W0 1 (
i51

r

A0i ?«0t2i + (2.11)

In models~2+8! and~2+9! and~2+10! and~2+11!, we assume that all the compo-
nents ofA0i , i 5 1, + + + , r, are positive+ In practice, this assumption may be too
strong+ If the parameter matricesAi are assumed to have the nested reduced-
rank form, as in Ahn and Reinsel~1988!, then the results in this and the follow-
ing sections will still hold with some minor modifications+

The unknown parameter ARCH and ARMA-ARCH models are defined sim-
ilarly to models~2+6! and ~2+7!+ The true parameterl0 5 ~w0

' ,d0
' ,s0

'!' , with
d0 5 vec~W0,A01, + + + ,A0r !, s0 being defined as in models~2+4! and ~2+5!, and
w0 being defined as in models~2+4! and ~2+5! for models ~2+8! and ~2+9!,
and w0 5 m0 for models ~2+10! and ~2+11!+ Similarly, define the unknown
parameterl and the parametric spaceQ, with 0 , aijk

l # aijk # aijk
u , `,

whereaijk is the ~ j, k!th component ofAi , aijk
l and aijk

u are independent ofl,
i 5 1, + + + , r, and j, k 5 1, + + + ,m+1

The following theorem gives some basic properties of models~2+4! and~2+5!+
Whenm 5 1, the result in Theorem 2+1 reduces to that in Ling and Li~1997!
and the result in Theorem 2+2 reduces to Theorem 6+2 in Ling ~1999! ~see also
Ling and McAleer, 2002a, 2002b!+ When the ARMA model is replaced by a
constant mean drift, the second-order stationarity and ergodicity condition in
Theorem 2+1 appears to be the same as Proposition 3+1 in Jeantheau~1998!+
Our proof is different from that in his paper and provides a useful causal ex-
pansion+ Also note that, in the following theorems, Assumptions 2 and 4 are
not imposed and hence these results hold for models~2+8! and ~2+9! and mod-
els~2+10! and~2+11!+ However, for these two special cases, the matrix DA0t , which
follows, can simply be replaced by its~1,1! block+

THEOREM 2+1+ Under Assumptions 1 and 3, models (2.4) and (2.5) possess
anFt-measurable second-order stationary solution$Yt ,«0t ,H0t %, which is unique,
given theh0t, whereFt is a s-field generated by$h0k : k # t %. The solutions
$Yt % and $H0t % have the following causal representations:
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Yt 5 (
k50

`

Y0k«0t2k, a+s+ , (2.12)

H0t 5 W0 1 (
j51

`

c'S)
i51

j

DA0t2iDjt2j21, a+s+ , (2.13)

whereF0
21~L!C0~L! 5 (k50

` Y0kLk, jt 5 @~ Ih0t W0!',0, + + + ,0,W0
' ,0, + + + ,0# ~r1s!m31

' ,
that is, the subvector consisting of the first m components isIh0tW0 and the
subvector consisting of the~rm 1 1!th to ~r 1 1!mth components is W0; Ih0t 5
diag~h01t

2 , + + + ,h0mt
2 !, c' 5 ~0, + + + ,0, Im,0, + + + ,0!m3~r1s!m with the subvector con-

sisting of the~rm 1 1!th to ~r 1 1!mth columns being Im; and

DA0t 5 1
Ih0t A01 J Ih0t A0r Ih0t B01 J Ih0t B0s

Im~r21! Om~r21!3m Om~r21!3ms

A01 J A0r B01 J B0s

Om~s21!3mr Im~s21! Om~s21!3m

2 +
Hence,$Yt ,«0t ,H0t % are strictly stationary and ergodic.

THEOREM 2+2+ Suppose that the assumptions of Theorem 2.1 hold. If
r@E~ DA0t

Jk!# , 1, with k being a strictly positive integer, then the2kth mo-
ments of$Yt ,«0t % are finite, where DA0t is defined as in Theorem 2.1 and AJk is
the Krönecker product of the k matrices A.

3. QUASI-MAXIMUM-LIKELIHOOD ESTIMATOR

The estimators of the parameters in models~2+4! and~2+5! are obtained by max-
imizing, conditional on~ PY0, S«0!,

Ln~l! 5
1

n (
t51

n

l t ~l!, l t ~l! 5 2
1

2
ln6Dt GDt 62

1

2
«t
'~Dt GDt !

21«t , (3.1)

whereLn~l! takes the form of the Gaussian log-likelihood andDt 5 diag~h1t
102,

+ + + , hmt
102!+ Because we do not assume thath0t is normal, the estimators from

~3+1! are the QMLEs+ Note that the processes«i andDi , i # 0, are unobserved
and hence they are only some chosen constant vectors+ Thus, Ln~l! is the like-
lihood function that is not conditional on the true~ PY0, S«0! and, in practice, we
work with this likelihood function+

For convenience, we introduce the unobserved process$~«t
e ,Ht

e! : t 5 0,61,
62, + + + % , which satisfies

F~L!~Yt 2 m! 5 C~L!«t
e , (3.2)

Ht
e 5 W1 (

i51

r

Ai ?«t2i
e 1 (

i51

s

Bi Ht2i
e , (3.3)
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where ?«t
e 5 ~«1t

e2, + + + ,«mt
e2!' andHt

e 5 ~h1t
e , + + + , hmt

e !' + Denote sY0 5 ~Y0,Y21, + + + !+
The unobserved log-likelihood function conditional onsY0 is

Ln
e ~l! 5

1

n (
t51

n

l t
e~l!, l t

e~l! 5 2
1

2
ln6Dt

e GDt
e 62

1

2
«t

e '~Dt
e GDt

e!21«t
e , (3.4)

whereDt
e 5 diag~h1t

e , + + + , hmt
e !+ Whenl 5 l0, we have«t

e 5 «0t , Ht
e 5 H0t , and

Dt
e 5 D0t + The primary difference in the likelihoods~3+1! and~3+4! is that~3+1!

is conditional on any initial values, whereas~3+4! is conditional on the infinite
past observations+ In practice, the use of~3+4! is not possible+ Jeantheau~1998!
investigates the likelihood~3+4! for models~2+4! and~2+5! with p 5 q 5 0, that
is, with the conditional mean part identified as the constant drift+ By modifying
a result in Pfanzagl~1969!, he proves the consistency of the QMLE for a spe-
cial case of models~2+4! and~2+5!+ An improvement on his result requires only
the second-order moment condition+ However, the method of his proof is valid
only for the log-likelihood function~3+4!, and it is not clear whether his result
also holds for the likelihood~3+1!+

The likelihood functionLn~l! and the unobserved log-likelihood function
Ln

« ~l! for models~2+8! and ~2+9! and models~2+10! and ~2+11! are similarly
defined as in~3+1! and~3+4!+

The following uniform convergence theorem is a modification of Theo-
rem 4+2+1 in Amemiya~1985!+ This theorem, and also Lemma 4+5 in the next
section, makes it possible to prove the consistency of the QMLE from the like-
lihood ~3+1! under only a second-order moment condition+

THEOREM 3+1+2 Let g~ y,u! be a measurable function of y in Euclidean
space for eachu [ Q, a compact subset of Rm (Euclidean m-space), and
a continuous function ofu [ Q for each y. Suppose that yt is a sequence
of strictly stationary and ergodic time series, such that Eg~ yt ,u! 5 0 and
E supu[Q6g~ yt ,u!6 , `. Thensupu[Q 6n21 (t51

n g~ yt ,u!6 5 op~1!.

4. CONSISTENCY OF THE QMLE

In ~3+4!, Dt
e is evaluated by an infinite expansion of~3+3!+We need to show that

such an expansion is convergent+ In general, all the roots of6 Im 2 (i51
r Ai L

i 2

(i51
s Bi L

i 65 0 lying outside the unit circle does not ensure that all the roots of
6 Im 2 (i51

s Bi L
i 6 5 0 are outside the unit circle+ However, because all the ele-

ments ofAi andBi are negative, we have the following lemma+

LEMMA 4 +1+ Under Assumption 3, all the roots of6 Im 2 (i51
s Bi L

i 65 0 are
outside the unit circle.

We first present five lemmas+ Lemma 4+2 ensures the identification ofl0+
Lemmas 4+3, 4+4, and 4+6 ensure that the likelihoodLn~l! of the ARMA-
GARCH, ARMA-ARCH, and ARCH models converges uniformly in the whole
parameter space, with its limit attaining a unique maximum atl0+ Lemma 4+5
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is important for the proof of Lemma 4+6 under the second-order moment
condition+

LEMMA 4 +2+ Suppose that Yt is generated by models (2.4) and (2.5)
satisfying Assumptions 1–4, or models (2.8) and (2.9) satisfying Assumptions
1–3, or models (2.10) and (2.11) satisfying Assumption 3. Let cw and c be
constant vectors, with the same dimensions asw and d, respectively. Then
cw
' ~]«t

e ' 0]w! 5 0 a.s. only if cw 5 0, and c'~]Ht
e ' 0]d! 5 0 a.s. only if c5 0.

LEMMA 4 +3+ Define L~l! 5 E @l t
e~l!# . Under the assumptions of Lemma

4+2, L~l! exists for alll [ Q and supl[Q 6Ln
e ~l! 2 L~l!6 5 op~1!.

LEMMA 4 +4+ Under the assumptions of Lemma 4.2, L~l! achieves a unique
maximum atl0.

LEMMA 4 +5+ Let Xt be a strictly stationary and ergodic time series, with
E6Xt 6 , `, andjt be a sequence of random variables such that

sup
1#t#n

6jt 6 # C and n21 (
t51

n

6jt 65 op~1!+

Then n21 (t51
n Xt jt 5 op~1!.

LEMMA 4 +6+ Under the assumptions of Lemma 4.2,supl[Q 6Ln
e ~l! 2

Ln~l!6 5 op~1!.

Based on the preceding lemmas, we now have the following consistency
theorem+

THEOREM 4+1+ Denote Zln as the solution tomaxl[Q Ln~l!. Under the as-
sumptions of Lemma 4.2,Zln rp l0.

5. ASYMPTOTIC NORMALITY OF THE QMLE

To prove the asymptotic normality of the QMLE, it is inevitable to explore the
second derivative of the likelihood+ The method adopted by Weiss~1986!, Lee
and Hansen~1994!, Lumsdaine~1996!, and Ling and Li~1997! uses the third
derivative of the likelihood+ By using Theorem 3+1, our method requires only
the second derivative of the likelihood, which simplifies the proof and reduces
the requirement for higher order moments+

For the general models~2+4! and~2+5!, the asymptotic normality of the QMLE
would require the existence of the sixth moment+ However, for models~2+8!
and ~2+9! or models~2+10! and ~2+11!, the moment requirements are weaker+
Now we can state some basic results+

LEMMA 5 +1+ Suppose that Yt is generated by models (2.4) and (2.5) satis-
fying Assumptions 1–4, or models (2.8) and (2.9) satisfying Assumptions 1–3,
or models (2.10) and (2.11) satisfying Assumption 3. Then, it follows that
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E sup
l[Q

** ]«t
e '

]w
~Dt

e GDt
e!21

]«t
e

]w ' ** , ` and EF ]«t
e '

]w
~Dt

e GDt
e!21

]«t
e

]w '
G . 0,

(5.1)

where a matrix A. 0 means that A is positive definite.

LEMMA 5 +2+ Suppose that Yt is generated by models (2.4) and (2.5) satis-
fying Assumptions 1–4 and E7Yt74 , `, or models (2.8) and (2.9) satisfying
Assumptions 1–3 and E7Yt74 , `, or models (2.10) and (2.11) satisfying As-
sumption 3 and E7h0t74 , `. ThenV0 5 E @~]l0t

e 0]l!~]l0t
e 0]l' !# is finite+ Fur-

thermore, if V0 . 0, then

1

Mn (
t51

n ]l0t

]l
rL N~0,V0!,

where]l0t
« 0]l 5 ]l t

«0]l 6l0
and ]l0t 0]l 5 ]l t 0]l 6l0

.

LEMMA 5 +3+ Suppose that Yt is generated by models (2.4) and (2.5) satis-
fying Assumptions 1–4 and E7Yt76 , `, or models (2.8) and (2.9) satisfying
Assumptions 1–3 and E7Yt74 , `, or models (2.10) and (2.11) satisfying As-
sumption 3. Then,

E sup
l[Q

** ]Ht
e '

] Dl
Dt

e22Dt
e Dt

e22
]Ht

e

] Dl' ** , `, (5.2)

where Dl 5 ~w ',d '!', Dt
e 5 Iht

e G21 Iht
e 1 DDt

e Iht
e , DDt

e 5 diag~e1G21ht
e , + + + ,emG21ht

e!,
ei 5 ~0, + + + , 0,1,0, + + + ,0!' of which the ith element is 1,ht

e 5 ~h1t
e , + + + ,hmt

e !', and
Iht
e 5 diag~h1t

e , + + + ,hmt
e ! with hit

e 5 «it
e0hit

e102, i 5 1, + + + ,m.

LEMMA 5 +4+ Under the assumptions of Lemma 5.3,

(a) sup
l[Q

** 1

n (
t51

n ]2l t
e

]l]l'
2 EF ]2l t

e

]l]l' G**5 op~1!,

(b) sup
l[Q

** 1

n (
t51

n F ]2l t
e

]l]l'
2

]2l t
]l]l' G**5 op~1!+

By straightforward calculation, we can show that

S0 [ EF ]2l t
e

]l]l'
G

l0

5 2S S Dl0 S Dls0

S Dls0
'

1

2
P'PD,

where S Dl0 5 E @~]«0t
e ' 0] Dl!~D0t G0 D0t !

21~]«0t
e 0] Dl' !# 1 E @~]H0t

e ' 0] Dl!D0t
22 3

CD0t
22~]H0t

e 0] Dl'!#04, S Dls0 5 E @~]H0t
e ' 0] Dl!D0t

22#C1 P02, ]«0t
e 0] Dl' 5 ]«t

e0] Dl' 6l0
,

]H0t
e 0] Dl' 5 ]Ht

e0] Dl' 6l0
, P 5 ~Im J G0

21!K, C1 5 ~C11, + + + ,C1m!, C1i is an
m 3 m matrix with the~i, i !th component being 1 and the other components
zero, K 5 ] vec~G!0]s ' is a constant matrix, andC 5 G0

21 ( G0 1 Im, where
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A ( B 5 ~aij bij ! for two matricesA 5 ~aij ! and B 5 ~bij !+ In practice, S0 is
evaluated by

ZSn 5 2S ZS Dl ZS Dls

ZS Dls
'

1

2
ZP' ZPD,

where ZGn 5 G6 Zln
,

ZS Dl 5
1

n (
t51

n F ]«t
'

] Dl
~Dt GDt !

21
]«t

] Dl' G Zln

1
1

4n (
t51

n F ]Ht
'

] Dl
Dt

22 ZCn Dt
22

]Ht

] Dl' G Zln

,

ZS Dls 5
1

2n (
t51

n F ]Ht
'

] Dl
Dt

22G
Zln

C1 ZP, ZP 5 ~Im J ZGn
21!K,

ZCn 5 ZGn
21 ( ZGn 1 Im+

LEMMA 5 +5+ Under the assumptions of Lemma 5.3,7S07 , ` and ZSn 5
S0 1 op~1! for any sequenceln, such thatln 2 l0 5 op~1!. If G0

21 ( G0 $ Im,
then2S0 . 0.

From the proof, we can see that the sixth-order moment in models~2+4! and
~2+5! is required only for Lemma 5+4~a!, whereas the fourth-order moment is
sufficient for Lemma 5+4~b!+ If we can show that the convergent rate of the
QMLE is Op~n2102!, then the fourth-order moment is sufficient for models~2+4!
and~2+5!+ However, it would seem that proving the rate of convergence is quite
difficult +

LEMMA 5 +6+ Under the assumptions of Lemma 5.2, ifMn~ln 2 l0! 5
Op~1!, then

(a)
1

n (
t51

n F ]l t
e

]l

]l t
e

]l'
2

]l0t
e

]l

]l0t
e

]l'
G

ln

5 op~1!,

(b) ZVn [
1

n (
t51

n F ]l t
]l

]l t
]l'

G
ln

5 V0 1 op~1!+

THEOREM 5+1+ Suppose that Yt is generated by models (2.4) and (2.5)
satisfying Assumptions 1–4 and E7Yt76 , `, or models (2.8) and (2.9) satis-
fying Assumptions 1–3 and E7Yt74 , `, or models (2.10) and (2.11) satisfy-
ing Assumption 3 and E7h0t74 , `. If V0 . 0 and G0

21 ( G0 $ Im, then
Mn~ Zln 2 l0! rL N~0,S0

21V0S0
21!. Furthermore, S0 and V0 can be estimated

consistently by ZSn and ZVn, respectively.

Whenm5 1 or 2, we can show thatG0
21 ( G0 $ Im, and hence, in this case,

2S0 . 0+ However, it is difficult to prove G0
21 ( G0 $ Im for the general case+

WhenG0 5 Im, it is straightforward to show that2S0 . 0 andV0 are positive
definite+ Whenh0t follows a symmetric distribution,
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V0 5 E1
]l0t

e

]w

]l0t
e

]w '
0

0
]l0t

e

] Dd
]l0t

e

] Dd '
2 and S0 5 2SSw0 0

0 S Dd0
D,

in which Dd 5 ~d ',s '!' ,

Sw0 5 EF ]«0t
e '

]w
~D0t G0 D0t !

21
]«0t

e

]w '
G1

1

4
EF ]H0t

e '

]w
D0t

22CD0t
22

]H0t
e

]w '
G ,

S Dd0 5 S Sd0 Sds0

Sds0
'

1

2
P'PD,

where Sd0 5 E @]H0t
e ' 0]dD0t

22CD0t
22]H0t

e 0]d ' #04 and Sds0 5 E @]H0t
e ' 0

]dD0t
22#C1 P02+ Furthermore, if h0t is normal, it follows that 2S0 5 V0+ Note

that the QMLE here is the global maximum over the whole parameter space+
The requirement of the sixth-order moment is quite strong for models~2+4! and
~2+5! and is used only because we need to verify the uniform convergence of
the second derivative of the log-likelihood function, that is, Lemma 5+4~a!+ If
we consider only the local QMLE, then the fourth-order moment is sufficient+
For univariate cases, such proofs can be found in Ling and Li~1998! and Ling
and McAleer~2002c!+

6. CONCLUSION

This paper presented the asymptotic theory for a vector ARMA-GARCH model+
An explanation of the proposed model was offered+ Using a similar idea, dif-
ferent multivariate models such as E-GARCH, threshold GARCH, and asym-
metric GARCH can be proposed for modeling multivariate conditional
heteroskedasticity+ The conditions for the strict stationarity and ergodicity of
the vector ARMA-GARCH model were obtained+ A simple sufficient condi-
tion for the higher order moments of the model was also provided+ We estab-
lished a uniform convergence result by modifying a theorem in Amemiya
~1985!+ Based on the uniform convergence result, the consistency of the QMLE
was obtained under only the second-order moment condition+ Unlike Weiss
~1986! and Pantula~1989! for the univariate case, the asymptotic normality of
the QMLE for the vector ARCH model requires only the second-order mo-
ment of the unconditional errors and the finite fourth-order moment of the
conditional errors+ The asymptotic normality of the QMLE for the vector
ARMA-ARCH model was proved using the fourth-order moment, which is an
extension of Weiss~1986! and Pantula~1989!+ For the general vector ARMA-
GARCH model, the asymptotic normality of the QMLE requires the assump-
tion that the sixth-order moment exists+ Whether this result will hold under
some weaker moment conditions remains to be proved+
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NOTES

1+ For models~2+8! and ~2+9! and ~2+10! and ~2+11!, Bi in Assumption 3 reduces to the zero
matrix, wherei 5 1, + + + ,s+

2+ The co-editor has suggested that this theorem may not be new, consisting of Lemma 2+4 and
footnote 18 of Newey and McFadden~1994!+
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APPENDIX A: PROOFS OF THEOREMS 2+1
AND 2+2

Proof of Theorem 2.1. Multiplying ~2+5! by Ih0t yields

?«0t 5 Ih0t W0 1 (
i51

r

Ih0t A0i ?«0t2i 1 (
i51

s

Ih0t B0i H0t2i + (A.1)

Now rewrite~A+1! in vector form as

Xt 5 DA0t Xt21 1 jt , (A.2)

whereXt 5 ~ ?«0t
' , + + + , ?«0t2r11

' ,H0t
' , + + + ,H0t2s11

' !' andjt is defined as in~2+9!+ Let

Sn, t 5 jt 1 (
j51

n S)
i51

j

DA0t2i11D jt2j , (A.3)
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wheren 5 1,2, + + + + Denote thekth element of~) i51
j DA0t2i !jt2j21 by sn, t + We have

E6sn, t 6 5 ek
'ES)

i51

j

DA0t2iDjt2j21

5 ek
'S)

i51

j

E DA0t2iDEjt2j21 5 ek
' DAjc*, (A.4)

whereek 5 ~0, + + + ,0,1,0, + + + ,0!m~r1s!31
' and 1 appears in thekth position, c* 5 Ejt is a

constant vector, and

DA 5 1
A01 J A0r B01 J B0s

Im~r21! Om~r21!3m Om~r21!3ms

A01 J A0r B01 J B0s

Om~s21!3mr Im~s21! Om~s21!3m

2 + (A.5)

By direct calculation, we know that the characteristic polynomial ofDA is

f ~z! 5 6z6~r1s!m6 Im 2 (
i51

r

Ai z2i 2 (
i51

s

Bi z2i 6+ (A.6)

By Assumption 3, it is obvious that all the roots off ~z! lie inside the unit circle+ Thus,
r~ DA! , 1, and hence each component ofDAi is O~ r i !+ Therefore, the right-hand side of
~A+4! is equal toO~ r j !+ Note that Ih0t is a sequence of i+i+d+ random matrices and each
element of DA0t andjt is nonnegative+ We know that each component ofSn, t converges
almost surely~a+s+! asn r `, as doesSn, t + Denote the limit ofSn, t by Xt + We have

Xt 5 jt 1 (
j51

` S)
i51

j

DA0t2iDjt2j21, (A.7)

with the first-order moment being finite+
It is easy to verify thatXt satisfies~A+2!+ Hence, there exists anFt -measurable second-

order solution«0t to ~2+5! with i th element«0it 5 h0itMh0it 5 h0it ~erm1i
' Xt !

102, with the
representation~2+13!+

Now we show that such a solution is unique to~2+5!+ Let «t
~1! be anotherFt -measur-

able second-order stationary solution of~2+5!+ As in ~A+2!, we haveXt
~1! 5 DA0t Xt21

~1! 1

jt , whereXt
~1! 5 ~ ?«t

~1!' , + + + , ?«t2r11
~1!' ,Ht

~1!' , + + + ,Ht2s11
~1!' !' andHt

~1! 5 W0 1 (i51
r A0i ?«t2i

~1! 1

(i51
s B0i Ht2i

~1! with ?«t
~1! 5 ~«1t

~1!2, + + + ,«mt
~1!2!' + Let Ut 5 Xt 2 Xt

~1!+ Then Ut is first-order
stationary and, by ~A+2!, Ut 5 ~) i50

n DA0t2i !Ut2n21+ Denote thekth component ofUt

asuk, t + Then, as each element ofDAt is nonnegative,

6ukt 6 # 6ek
'S)

i50

n

DA0t2iDUt2n216# ek
'S)

i50

n

DA0t2iD6Ut2n216, (A.8)

whereek is defined as in~A+4! and 6Ut 6 is defined as~6u1t 6, + + + ,6u~r1s!m, t 6!' + As Ut is
first-order stationary andFt -measurable, by ~A+8!, we have

E6ukt 6 # ek
'ES)

i50

n

DA0t2iDE6Ut2n2165 ek
' DAnc1

*r 0 (A.9)
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asn r `, wherec1
* 5 E6Ut 6 is a constant vector+ So ukt 5 0 a+s+, that is, Xt 5 Xt

~1! a+s+
Thus, hit 5 hit

~1! a+s+, and hence«0t 5 «0t
~1! 5 h0it h0it

102 a+s+ That is, «0t satisfying~2+5! is
unique+

For the unique solution«0t , by the usual method, we can show that there exists a
uniqueFt -measurable second-order stationary solutionYt satisfying~2+4!, with the ex-
pansion given by

Yt 5 (
k50

`

Y0k«0t2k+ (A.10)

Note that the solution$Yt ,«0t ,H0t % is a fixed function of a sequence of i+i+d+ random
vectorsh0t and hence is strictly stationary and ergodic+ This completes the proof+ n

The proof of Theorem 2+2 first transforms models~2+4! and~2+5! into a Markov chain
and then uses Tweedie’s criterion+ Let $Xt ; t 5 1,2, + + + % be a temporally homogeneous
Markov chain with a locally compact completely separable metric state space~S,B!+
The transition probability isP~x,A! 5 Pr~Xn [ A6Xn21 5 x!, wherex [ S andA [ B+
Tweedie’s criterion is the following lemma+

LEMMA A +1+ ~Tweedie, 1988, Theorem 2!+ Suppose that$Xt % is a Feller chain.

(1) If there exist, for some compact set A[ B, a nonnegative function g and« . 0
satisfying

E
Ac

P~x,dy!g~ y! # g~x! 2 «, x [ Ac, (A.11)

then there exists as-finite invariant measurem for P with 0 , m~A! , `.
(2) Furthermore, if

E
A

m~dx!FE
Ac

P~x,dy!g~ y!G , `, (A.12)

thenm is finite, and hencep 5 m0m~S! is an invariant probability.
(3) Furthermore, if

E
Ac

P~x,dy!g~ y! # g~x! 2 f ~x!, x [ Ac, (A.13)

thenm admits a finite f-moment, that is,

E
S

m~dy! f ~ y! , `+ (A.14)

The following two lemmas are preliminary results for the proof of Theorem 2+2+

LEMMA A +2+ Suppose that E~7h0t72k! , ` andr@E~ DA0t
Jk!# , 1. Then there exists a

vector M . 0 such that@Im 2 E~ DA0t
Jk!' #M . 0, where a vector B. 0 means that each

element of B is positive.
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Proof. From the condition given, Im 2 E~ DA0t
Jk! is invertible+ Because each element

of E~ DA0t
Jk! is nonnegative, we can choose a vectorL1 . 0 such that

M :5 @Im 2 E~ DA0t
Jk!' #21L1 5 L1 1 (

i51

`

@E~ DA0t
Jk!' # iL1 . 0+

Thus, @Im 2 E~ DA0t
Jk!' #M 5 L1 . 0+ This completes the proof+ n

LEMMA A +3+ Suppose that there is a vector M. 0 such that

@Im 2 E~ DA0t
Jk!' #M . 0+ (A.15)

Then there exists a compact set A5 $x : Ixk [ ~(i51
~r1s!mxi !

k # D% , R0
~r1s!m with R0 5

~0,`!, a function g1~x!, and k . 0 such that the function g, defined by g~x! 5 1 1
~xJk!'M, satisfies

E~g~Xt !6Xt21 5 x! # g~x! 1 g1~x!, x [ R0
~r1s!m, (A.16)

and

E~g~Xt !6Xt21 5 x! # ~12 k!g~x!, x [ Ac, (A.17)

where Ac 5 R~r1s!m 2 A, xi is the ith component of x,maxx[A g1~x! , C0, Xt is defined
as in (A.2), and C0, k, andD are positive constants not depending on x.

Proof. We illustrate the proof fork 5 3+ The technique fork Þ 3 is analogous+
For anyx [ R0

~r1s!m, by straightforward algebra, we can show that

E @~jt 1 DA0t x!J3# 'M

5 ~xJ3!'E~ DA0t
J3!'M 1 C1

'M 1 x 'C2
'M 1 ~xJ2!'C3

'M

# ~xJ3!'E~ DA0t
J3!'M 1 c~11 Ix 1 Ix2!, (A.18)

whereC1, C2, andC3 are some constant vectors or matrices with nonnegative elements,
which do not depend onx, andc 5 maxk$all components of C1

'M, C2
'M, and C3

'M % +
By ~A+2! and~A+18!, we have

E @g~Xt !6Xt21 5 x# 5 1 1 E @~jt 1 DA0t x!J3# 'M

# 11 ~xJ3!'E~ DA0t
J3!'M 1 g1~x!

5 11 ~xJ3!'M 2 ~xJ3!'M * 1 g1~x!

5 g~x!F12
~xJ3!'M *

g~x!
1

g1~x!

g~x!
G , (A.19)

whereM * 5 @Im 2 E~ DA0t
J3!' #M andg1~x! 5 c~1 1 Ix 1 Ix2!+

Denote

A 5 $x : Ix3 # D, x [ R0
~r1s!m%, c1 5 min$all components of M* %,

c2 5 max$all components of M%, c3 5 min$all components of M%+

6 6

ECT192-3B 17031 11020002 7:55 am Page:294

V

V

V

294 SHIQING LING AND MICHAEL MCALEER



It is obvious thatA is a compact set onR0
~r1s!m+ BecauseM *,M . 0, it follows that

c1,c2,c3 . 0+ From ~A+19!, we can show that

E @g~Xt !6Xt21 5 x# # g~x! 1 g1~x!, x [ R0
~r1s!m, (A.20)

where maxx[A g1~x! , C0~D! andC0~D! is a constant not depending onx+
Let D . max$10c2,1% + Whenx [ Ac,

c3 D , c3 Ix3 # g~x! # 1 1 c2 Ix3 # 2c2 Ix3+ (A.21)

Thus,

~xJ3!'M *

g~x!
$

c1 Ix3

2c2 Ix3 5
c1

2c2

, (A.22)

and furthermore, because 11 Ix # 2 Ix asx [ Ac, we can show that

g1~x!

g~x!
#

g1~x!

c3 Ix3 #
C

D
, (A.23)

whereC is a positive constant not depending onx andD+ By ~A+19!, ~A+22!, and~A+23!,
asx [ Ac,

E @g~Xt !6Xt21 5 x# # g~x!S12
c1

2c2

1
C

DD+
Provided 0, c104c2 , k , c102c2 and D . max$1, 10c2, C0~c102c2 2 k!% , then
E @g~Xt !6Xt21 5 x# # g~x!~1 2 k!+ This completes the proof+ n

Proof of Theorem 2.2. Obviously, Xt defined as in~A+2! is a Markov chain with
state spaceR0

~r1s!m+ It is straightforward to prove that, for each bounded continuous
function g on R0

~r1s!m, E @g~Xt !6Xt21 5 x# is continuous inx, that is, $Xt % is a Feller
chain+ In a similar manner to Lemma A+3, in the following discussion we illustrate
only that the conditions~A+11!–~A+13! are satisfied fork 5 3+

From Lemmas A+2 and A+3, we know that there exists a vectorM . 0, a compact set
A 5 $x : Ix3 5 ~(i51

~r1s!mxi !
3 # D% , R0

~r1s!m, andk . 0 such that the function defined
by g~x! 5 1 1 ~xJ3!'M satisfies

E @g~Xt !6Xt21 5 x# # g~x! 1 g1~x!, x [ R0
~r1s!m (A.24)

and

E @g~Xt !6Xt21 5 x# # ~12 k!g~x!, x [ Ac, (A.25)

where maxx[A g1~x! , C0 andC0, k, andD are positive constants not depending onx+
Becauseg~x! $ 1, it follows that E @g~Xt !6Xt21 5 x! # g~x! 2 k+ By Lemma A+1,

there exists as-finite invariant measurem for P with 0 , m~A! , `+
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Denotec2 5 max$all components of M% andc3 5 min$all components of M% + From
~A+24!, asx [ A, it is easy to show that

E @g~Xt !6Xt21 5 x# # 1 1 c2S (
i51

~r1s!m

xiD3

1 g1~x!

# D1 , `,

whereD1 is a constant not depending onx+ Hence,

E
A

m~dx! HE
Ac

P~x,dy!g~ y!J
# E

A
m~dx!E @g~Xt !6Xt21 5 x# # D1m~A! , `+

This shows that$Xt % has a finite invariant measurem and hencep 5 m0m~R0
~r1s!m! is

an invariant probability measure of$Xt % ; that is, there exists a strictly stationary solu-
tion satisfying~A+2!, still denoted byXt +

Let f ~x! be the function onR0
~r1s!m defined byf ~x! 5 c3k~(i51

~r1s!mxi !
3+ Then, by

~A+25!, asx [ Ac, we have

E
Ac

P~x,dy!g~ y! # E @g~Xt !6Xt21 5 x#

# g~x! 2 kg~x! # g~x! 2 f ~x!+

By Lemma A+1~3!, we know thatEp@ f ~Xt !# 5 c3kE @~(i51
~r1s!mxit !

3# , `, where p
is the stationary distribution of$Xt % , where xit is the i th component ofXt + Thus,
Ep1
7«0t76 , `, where p1 are the stationary distributions of$«0t % + Now, because

Ep1
7«0t76 , `, it is easy to show thatEp2

7Yt76 , `, wherep2 is the stationary dis-
tribution of Yt +

By Hölder’s inequality, Ep1
7«0t72 , ~Ep1

7«0t72k!10k , `+ Similarly, we have
Ep2
7Yt72 , `+ Thus, $Yt ,«0t % is a second-order stationary solution of models~2+4! and

~2+5!+ Furthermore, by Theorem 2+1, the solution$Yt ,«0t % is unique and ergodic+ Thus,
the process$Yt ,«0t % satisfying models~2+4! and ~2+5! has a finite 2kth moment+ This
completes the proof+ n

APPENDIX B: PROOFS OF RESULTS
IN SECTIONS 3–5

Proof of Theorem 3.1. The proof is similar to that of Theorem 4+2+1 in Amemiya
~1985!, except that the Kolmogorov law of large numbers is replaced by the ergodic
theorem+ This completes the proof+ n
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Proof of Lemma 4.1. Note that

DA f SO O

O DBD,
where DA is defined as in~A+5!, DB 5 SB01 J

Im~s21!

B0s

Om~s21!3m
D , and here “the matrixA f the

matrix B” means that each component ofA is larger than or equal to the corresponding
component ofB+ Thus, we have

DAi f SO O

O DBiD+ (B.1)

By Assumption 3, r~ DA! , 1, and hence(i50
k DAi converges to a finite limit ask r `+

By ~B+1!, (i50
k DBi also converges to a finite limit ask r `, and hencer~ DB! , 1, which

is equivalent to all the roots of6 Im 2 (i51
s Bi Li 6 5 0 lying outside the unit circle+ This

completes the proof+ n

In the following discussion, we prove Lemmas 4+2–4+4, Lemma 4+6, and Theo-
rem 4+1 only for models~2+4! and~2+5!+ The proofs for models~2+8! and~2+9! and~2+10!
and~2+11! are similar and simpler and hence are omitted+

Proof of Lemma 4.2. First, by ~3+2!,

«t
e 5 C~L!21F~L!~Yt 2 m!,

]«t
e

]w '
5 C21~L!@2F~1!,Xt21 J Im# , (B.2)

where Xt21 5 ~Yt21
' 2 m', + + + ,Yt2p11

' 2 m',«t21
e ' , + + + ,«t2q11

e ' ! and the preceding vector
differentiation follows rules in Lütkepohl~1993, Appendix A!+ DenoteUt 5 ]«t

e0]w '

andVt 5 @2F~1!,Xt21 J Im# + Then

Ut 1 C1Ut21 1 {{{ 1 CqUt2q 5 Vt + (B.3)

If Ut cw 5 0 a+s+, then Vt cw 5 0 a+s+ Let c1 be the vector consisting of the firstm ele-
ments ofcw, whereasc2 is the vector consisting of the remaining elements ofcw+ Then
2F~1!c1 1 ~Xt21 J Im!c2 5 0+ BecauseXt21 is not degenerate, ~Xt21 J Im!c2 5 0
andF~1!c1 5 0+ By Assumption 1, F~1! is of full rank, and hencec1 5 0+ By Assump-
tion 2, we can show thatc2 5 0+ Thus, cw 5 0+

Next, by ~3+3!,

Ht
e 5 SIm 2 (

i51

s

Bi LiD21FW1S(
i51

r

Ai LiD ?«t
eG , (B.4)

]Ht
e

]d '
5 SIm 2 (

i51

s

Bi LiD21

~Im, EHt21
e J Im!, (B.5)

where EHt21
e 5 ~ ?«t21

e ' , + + + , ?«t2r
e ' ,Ht21

e ' , + + + ,Ht2s
e ' !+ Denoting U1t 5 ]Ht

e0]d ' and V1t 5
~Im, EHt21

e J Im!, we have the following recursive equation:

U1t 5 B1U1t21 1 {{{ 1 BsU1t2s 1 V1t + (B.6)
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If U1t c 5 0 a+s+, then V1t c 5 0 a+s+ By Assumptions 3 and 4, in a similar manner to
Vt cw 5 0, we can concludec 5 0 ~also refer to Jeantheau, 1998, the proof of Proposi-
tion 3+4!+ This completes the proof+ n

Proof of Lemma 4.3. As the parameter spaceQ is compact, all the roots ofF~L! lie
outside the unit circle, and the roots of a polynomial are continuous functions of its
coefficients, there exist constantsc0,c1 . 0 and 0, ® , 1, independent of alll [ Q,
such that

7«t
e7 # c0 1 c1 (

i50

`

® i 7Yt2i 7[ «t
*+ (B.7)

Thus, E supl[Q7«t
e72 , ` by Theorem 2+1+ Note that, by Assumption 3, 6Dt

e GDt
e 6 has

a lower bound uniformly overQ+ We haveE supl[Q @«t
e '~Dt

e GDt
e!21«t

e# , `+ By As-
sumption 3 and Lemma 4+1, we can show that

7Ht
e7 # c2 1 c3 (

i51

`

®1
i 7Yt2i 72 [ «ht

* , (B.8)

where c2, c3 . 0 and 0, ®1 , 1 are constants independent of alll [ Q+ Thus,
E supl[Q7Ht

e7 , `, and henceE supl[Q 6Dt
e GDt

e 6 , `+ By Jensen’s inequality,
E supl[Q 6 ln6Dt

e GDt
e 66 , `+ Thus, E6 l te~l!6 , ` for all l [ Q+ Let g~ sYt ,l! 5 l t

e 2 Elt
e ,

where sYt 5 ~Yt ,Yt21, + + + !+ ThenE supl[Q6g~ sYt ,l!6 , `+ Furthermore, becauseg~ sYt ,l!
is strictly stationary withEg~ sYt ,l! 5 0, by Theorem 3+1, supl[Q 6n21 (t51

n g~ sYt , l!6 5
op~1!+ This completes the proof+ n

Proof of Lemma 4.4. First,

2 E ln6Dt
e GDt

e 62 E @«t
e '~Dt

e GDt
e!21«t

e#

5 2E ln6Dt
e GDt

e 62 E @~«t
e 2 «0t 1 «0t !

'~Dt
e GDt

e!21~«t
e 2 «0t 1 «0t !#

5 $2E ln6Dt
e GDt

e 62 E @«0t
' ~Dt

e GDt
e!21«0t #%

2 E @~«t
e 2 «0t !

'~Dt
e GDt

e!21~«t
e 2 «0t !# [ L1~l! 1 L2~l!+ (B.9)

The termL2~l! obtains its maximum at zero, and this occurs if and only if«t
e 5 «0t +

Thus,

«t
e 2 «0t 5

]«t
e

]w ' *w* ~w 2 w0! 5 0+ (B.10)

By Lemma 4+2, we know that equation~B+10! holds if and only ifw 5 w0+

L1~l! 5 2E ln6Dt
e GDt

e 62 Etr~Mt !

5 2@2E ln6Mt 61 Etr~Mt !# 2 E ln6D0t G0 D0t 6, (B.11)

whereMt 5 ~Dt
e GDt

e!2102~D0t G0 D0t !~Dt
e GDt

e!2102+ Note that, for any positive definite
matrix M, 2f ~M ! [ 2ln6M 6 1 trM $ m ~see Johansen, 1995, Lemma A+6!, and hence

2 E ln6Mt 61 Etr~Mt ! $ m+ (B.12)
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When Mt 5 Im, we havef ~Mt ! 5 f ~Im! 5 2m+ If Mt Þ Im, then f ~Mt ! , f ~Im!, so
that Ef ~Mt ! # Ef ~Im! with equality only if Mt 5 Im with probability one+ Thus, L1~l!
reaches its maximum2m 2 E ln~D0t G0D0t !, and this occurs if and only ifDt

e GDt
e 5

D0t G0D0t + From the definition ofG, we havehit 5 h0it , and henceG 5 G0+ Note that

max
l[Q

L~l! # max
l[Q

L1~l! 1 max
l[Q

L2~l!+

The expression maxl[Q L~l! 5 2m2 E ln~D0t G0D0t ! if and only if maxl[Q L2~l! 5 0
and maxl[Q L1 ~l! 5 2m 2 E ln~D0t G0D0t !, which occurs if and only ifw 5 w0, G 5
G0, andhit 5 h0it + From w 5 w0 andhit 5 h0it , we have

~Ht
e 2 H0t !6w5w0

5
]Ht

e

]d ' *~w0,d
* !

~d 2 d0! 5 0 (B.13)

with probability one, whered * lies betweend andd0+ By Lemma 4+2, ~B+13! holds if
and only if d 5 d0+ Thus, L~l! is uniquely maximized atl0+ This completes the proof+n

Proof of Lemma 4.5. First, for any positive constantM,

*1

n (
t51

n

Xt jt I ~6Xt 6 . M !* #
C

n (
t51

n

6Xt 6 I ~6Xt 6 . M !, (B.14)

whereI ~{! is the indicator function+ For any smalle,k . 0, becauseE6Xt 6 , `, there
exists a constantM0 such that

PS*1

n (
t51

n

Xt jt I ~6Xt 6 . M0!* . kD
#

1

k
ES*1

n (
t51

n

Xt jt I ~6Xt 6 . M0!*D
#

C

k
ES1

n (
t51

n

6Xt 6 I ~6Xt 6 . M0!D
#

C

k
E
6x6.M0

6x6dF~x! ,
e

2
, (B.15)

whereF~x! is the distribution ofXt + For such a constantM0, by the given condition,
there exists a positive integerN such that, whenn . N,

PS*1

n (
t51

n

Xt jt I ~6Xt 6 # M0!* . kD # PS1

n (
t51

n

6jt 6 . k0M0!D ,
e

2
+ (B.16)

By ~B+15! and~B+16!, asn . N, P~6n21 (t51
n Xt jt 6 . 2k! , e, that is, n21 (t51

n Xt jt 5
op~1!+ This completes the proof+ n

Proof of Lemma 4.6. For convenience, let the initial values be PY0 5 0 and S«0 5 0+
When the initial values are not equal to zero, the proof is similar+ By Assumption 1, «t

e

and«t have the expansions
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«t
e 5 (

k50

`

Yk~Yt2k 2 m!, «t 5 (
k50

t21

Yk~Yt2k 2 m!, (B.17)

whereF21~L!C~L! 5 (k50
` YkLk+ By ~B+17!,

7«t
e 2 «t7 # c1 (

k5t

`

®1
k7Yt2k 2 m7, (B.18)

where 0, ®1 , 1 and c1 and ®1 are constants independent of the parameterl+ By
Assumption 3 and Lemma 4+1, we have

Ht
e 5 (

k50

`

GkFW1S(
i51

r

Ai LiD ?«t2k
e G , Ht 5 (

k50

t21

GkFW1S(
i51

r

Ai LiD ?«t2kG , (B.19)

where~Im 2 (i51
s Bi Li !21 5 (k50

` GkLk+ By ~B+19!

7Ht
e 2 Ht7 # (

k5t

`

®2
k~c2 1 c37 ?«t2k

e 2 ?«t2k7!, (B.20)

where 0, ®2 , 1 andc2, c3, and®2 are constants independent of the parameterl+ By
~B+18! and~B+20!, we have

E sup
l[Q

~«it
e 2 «it !

2 5 O~® t ! and E sup
l[Q

6hit
e 2 hit 65 O~® t !, (B.21)

wherei 5 1, + + + ,m, 0 , ® , 1, andO~{! holds uniformly in allt+ Becausehit has a lower
bound, by ~B+21!, it follows that

1

n (
t51

n

E sup
l[Q

6 ln6Dt
e GDt

e 62 ln6Dt GDt 66

5 (
i51

m F 1

n (
t51

n

E sup
l[Q* lnS hit

e

hit
D*G

# (
i51

m F 1

n (
t51

n

E sup
l[Q*

hit
e 2 hit

hit
*G

5 O~1! (
i51

m F 1

n (
t51

n

E sup
l[Q

6hit
e 2 hit 6G

5 O~1! (
i51

m 1

n (
t51

n

O~® t ! 5 o~1!+ (B.22)

Again, becausehit
« andhit have a lower bound uniformly in allt, i , andl,

(
i51

m

* «it
e

Mhit
e

2
«it

Mhit
*

2

# (
i51

m F«it
e2* 1

Mhit
e

2
1

Mhit
*

2

1 ~«it
e 2 «it !

2GO~1!, (B.23)
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whereO~1! holds uniformly in allt+ We have

6«t
e '~Dt

e GDt
e!21«t

e 2 «t
'~Dt GDt !

21«t 6

5 62«t
e 'Dt

e21G21~Dt
e21«t

e 2 Dt
21«t ! 2 ~«t

e 'Dt
e21 2 «t

'Dt
21!G21~Dt

e21«t
e 2 Dt

21«t !6

# S(
i51

m

* «it
e

Mhit
e

2
«it

Mhit *
2D102

7«t
e7O~1! 1S(

i51

m

* «it
e

Mhit
e

2
«it

Mhit *
2DO~1!

# (
i51

m F7«t
e76«it

e 6* 1

Mhit
e

2
1

Mhit *1 «it
e2* 1

Mhit
e

2
1

Mhit *
2GO~1!

1 (
i51

m

@7«t
e76«it

e 2 «it 61 ~«it
e 2 «it !

2#O~1!

5 O~1!R1t 1 O~1!R2t , (B.24)

where O~1! holds uniformly in all t and the second inequality comes from~B+23!+
By ~B+7! and ~B+21!, it is easy to show thatn21 (t51

n supl[Q R2t 5 op~1!+ Thus,
it is sufficient to show thatn21 (t51

n supl[Q R1t 5 op~1!+ Let Xt 5 «t
*2 and jt 5

supl[Q 6hit
e2102 2 hit

210262, where«t
* is defined by~B+7!+ Then, Xt is a strictly stationary

and ergodic time series, with EXt , ` and6jt 6 # C, a constant+ Furthermore, by ~B+21!,

1

n (
t51

n

jt 5
1

n (
t51

n

sup
l[Q* hit

e 2 hit

Mhit
e hit ~Mhit

e 1Mhit ! *
2

#
1

n (
t51

n

sup
l[Q

6hit
e 2 hit 6~hit

e 1 hit !

hit
e hit ~Mhit

e 1Mhit !2

# O~1!
1

n (
t51

n

sup
l[Q

6hit
e 2 hit 6

5 O~1!
1

n (
t51

n

Op~® t ! 5 op~1!+

By Lemma 4+5, n21 (t51
n Xt supl[Q 6hit

e2102 2 hit
210262 5 op~1!+ Similarly, we can show

that n21 (t51
n Xt supl[Q 6hit

e2102 2 hit
21026 5 op~1!+ Thus,

1

n (
t51

n

sup
l[Q

R1t # (
i51

m H 1

n (
t51

n FXt sup
l[Q

6hit
e2102 2 hit

210262

1 Xt sup
l[Q

6hit
e2102 2 hit

21026GJ 5 op~1!+

This completes the proof+ n

Proof of Theorem 4.1. First, the spaceQ is compact andl0 is an interior point inQ+
Second, Ln~l! is continuous inl [ Q and is a measurable function ofYt , t 5 1, + + + , n for
all l [ Q+ Third, by Lemmas 4+3 and 4+4, Ln

e ~l! rp L~l! uniformly in Q+ From Lemma
4+6, we have
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sup
l[Q

6Ln~l! 2 L~l!6 # sup
l[Q

6Ln
e ~l! 2 L~l!61 sup

l[Q

6Ln
e ~l! 2 Ln~l!65 op~1!+

Fourth, Lemma 4+4 showed thatL~l! has a unique maximum atl0+ Thus, we have es-
tablished all the conditions for consistency in Theorem 4+1+1 in Amemiya~1985!+ This
completes the proof+ n

Proof of Lemma 5.1. In the proof of Lemma 4+3, we have shown that
E supl[Q7«t

e72 , `+ With the same argument, it can be shown thatE supl[Q7~]«t
e '0

]w!72 , `+ BecauseDt
e GDt

e has a lower bound uniformly for alll [ Q, we have
E supl[Q7~]«t

e ' 0]w!~Dt
e GDt

e!21~]«t
e0]w ' !7 , `+ Let c be any constant vector with

the same dimension asw+ If c'E @~]«t
e ' 0]w!~Dt

e GDt
e!21~]«t

e0]w ' !#c 5 0, then
c'~]«t

e ' 0]w!~Dt
e GDt

e!2102 5 0 a+s+, and hencec']«t
e ' 0]w 5 0 a+s+ By Lemma 4+2, c 5 0+

ThusE @~]«t
e ' 0]w!~Dt

e GDt
e!21 ~]«t

e0]w ' !# . 0+ This completes the proof+ n

Proof of Lemma 5.2. First,

]l t
e

]w
5 2

]«t
e '

]w
~Dt

e GDt
e!21«t

e 2
1

2

]Ht
e '

]w
Dt

e22zt , (B.25)

]Ht
e

]w '
5 SIm 2 (

i51

s

Bi LiD21S(
i51

r

Ai LiDS2 ?«t
*

]«t
e

]w 'D, (B.26)

]l t
e

]d
5 2

1

2

]Ht
e '

]d
Dt

e22zt , (B.27)

]l t
e '

]s
5 2

1

2

] vec'~G!

]s
vec~G21 2 G21Dt

e21«t
e «t

e 'Dt
e21G21!, (B.28)

where ?«t
*5 diag~«1t

e , + + + ,«mt
e !, zt 5 P 2 Iht

e G21ht
e , P 5 ~1, + + + ,1!m31

' , andht
e and Iht

e are
defined as in Lemma 5+3+Whenl 5 l0, ht

e 5 h0t and, in this case, we denotezt and Iht
e

by z0t and Ih0t
e , respectively+

For models~2+10! and~2+11!,

]Ht
e

]m'
5 22 (

i51

r

Ai ?«t2i
* + (B.29)

Because6«jt2i
e2 6 # hjt

e 0aiij andaiij $ aiij
l . 0, j 5 1, + + + ,m and i 5 1, + + + , r, we have

** ]Ht
e '

]m
Dt

e22** # k1 (
j51

m

(
i51

r 6«jt2i
e 6

hjt
e

, k2, (B.30)

where k1 and k2 are some constants independent ofl+ Furthermore, because all the
terms in ]hit 0]d appear inhit

e , 7~]Ht
e ' 0]d! Dt

e227 , M, a constant independent ofl+
BecauseEh0it

4 , ` andE7z0t72 , `, it follows that V0 , `+
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For models~2+4! and ~2+5!, because~B+25! and ~B+26!, E7z0t72 , `, E7Yt74 , `,
andD0t has a lower bound, we have

E** ]l0t
e

]w **
2

# 2E** ]«0t
e '

]w **
2

1
1

2
E** ]H0t

e '

]w
D0t

22**
2

E7z0t72 , `+

Similarly, we can show thatE7]l0t
e 0]d72 is finite+ It is obvious thatE7]l0t

e 0]s72 , `+
Thus, we also haveV0 , `+ In a similar manner, it can be shown thatV0 , ` for
models~2+8! and~2+9!+

Let St 5 (t51
n c']l0t

e 0]l, where c is a constant vector with the same dimension
as l+ Then Sn is a martingale array with respect toFt + By the given assumptions,
ESn0n 5 c'E @]l0t

e 0]l]l0t
e 0]l' #c . 0+ Using the central limit theorem of Stout~1974!,

n2102Sn converges toN~0,c'V0c! in distribution+ Finally, by the Cramér–Wold device,
n2102 (t51

n ]l0t
e 0]l converges toN~0,V0! in distribution+

In a similar manner to the proof of Lemma 4+6, we can show that

1

Mn (
t51

n

** ]l0t
e

]l
2

]l0t

]l ** 5 op~1!+

Thus, n2102 (t51
n ]l0t 0]l converges toN~0,V0! in distribution+ This completes the proof+

n

Proof of Lemma 5.3. For models~2+10! and ~2+11!, from the proof of Lemma 5+2,
we have shown that

sup
l[Q

7~]Ht
e ' 0] Dl!Dt

e227 , C , ` with probability one,

whereC is a nonrandom constant+ Furthermore,

sup
l[Q

7Dt
e7 # k17ht

e72 # k17«t
e72 # k3«t

*2,

where «t
* is defined as in ~B+7!+ Thus, E supl[Q7~]Ht

e ' 0] Dl!Dt
e22Dt

e Dt
e22~]Ht

e0
] Dl' !7 , `+

For models~2+8! and~2+9!,

]Ht
e

]w '
5 2 (

i51

r

Ai ?«t2i
*

]«t
e

]w '
,

where ?«t
* is defined as in~B+26!+ Thus, with probability one,

** ]Ht
e '

]w
Dt

e22** # k1 (
j51

m

(
i51

r 6«jt2i
e 6

hjt
e ** ]«t

e '

]w ** # k2 (
j51

m

(
i51

r ** ]«t2i
e '

]w **, (B.31)

wherek1 andk2 are constants independent ofl+ Because all the components in]Ht
« ' 0]d

also appear inDt
e2, we have

sup
l[Q

** ]Ht
e '

]d
Dt

e22** , C , `, (B.32)
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whereC is a nonrandom constant independent ofl+ By ~B+31! and~B+32!, it is easy to
show that, if E7Yt74 , `, E supl[Q7~]Ht

e ' 0] Dl!Dt
e22Dt

e Dt
e22 ~]Ht

e0 ] Dl'!7 , `+
For models~2+4! and~2+5!, becauseE7Yt76 , `,

E sup
l[Q

** ]Ht
e '

] Dl
Dt

e22Dt
e Dt

e22
]Ht

e

] Dl' ** # CE sup
l[Q

** ]Ht
e '

] Dl
Dt

e
]Ht

e

] Dl' ** , `,

whereC is a nonrandom constant independent ofl+ This completes the proof+ n

Proof of Lemma 5.4. By direct differentiation of~B+25! and~B+27! and~B+28!, we
have

]2l t
e

] Dl] Dl'
5 2Rt

~1! 2 Rt
~2! 2 Rt

~3! , (B.33)

where

Rt
~1! 5

]«t
e '

] Dl
~Dt

e GDt
e!21

]«t
e

] Dl'
, Rt

~2! 5
1

4

]Ht
e '

] Dl
Dt

e22Dt
e Dt

e22
]Ht

e

] Dl'
,

Rt
~3! 5 ~«t

e ' J Im!
]

] Dl'
vecF ]«t

e '

] Dl
~Dt

e GDt
e!21G

1 ~zt
' J Im!

]

] Dl'
vecF 1

2

]Ht
e '

] Dl
Dt

e22G
2

1

2

]Ht
e '

] Dl
Dt

e22@ Iht
« G21Dt

e21 1 DDt
e Dt

e21#
]«t

e

] Dl'
,

and Dt
e , DDt

e , and Iht
e are defined as in Lemma 5+3+ By Lemmas 5+1 and 5+3, we have

E supl[Q Rt
~1! , ` and E supl[Q Rt

~2! , `+ Similarly, we can show thatE supl[Q

Rt
~3! , `+ Thus, by ~B+33!, E supl[Q7]2l t

e0] Dl] Dl' 7 , `+ Furthermore,

]2l t
e

]w]s '
5

]«t
e '

]w
~«t

e 'Dt
e21G21 J Dt

e21G21!K 2
1

2

]Ht
e '

]w
Dt

e22
]zt

]s '
,

]2l t
e

]d]s '
5 2

1

2

]Ht
e '

]d
Dt

e22
]zt

]s '
,

]zt

]s '
5 ~ht

e ' G21 J Iht
e!~Im J G21!K,

]2l t
e

]s]s '
5

1

2
K'~G21 J Im!@Im 2 ~G21Dt

e21«t
e «t

e 'Dt
e21 J Im!

2 ~Im J G21Dt
e21«t

e «t
e 'Dt

e21!# ~Im J G21!K+

In a similar manner, it is straightforward to show thatE supl[Q7]2l t
e0]w]s ' 7 , `,

E supl[Q7]2l t
e0]d]s ' 7 , `, andE supl[Q7]2l t

e0]s]s ' 7 , `+ Finally, by the triangle
inequality, we can show thatE supl[Q7]2l t

e0]l]l' 7 , `+ By Theorem 3+1, ~a! holds+
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The proof of~b! is similar to that of Lemma 4+6, and hence the details are omitted+ This
completes the proof+ n

Proof of Lemma 5.5. By Lemmas 5+1 and 5+3, we know7S07 , `+ By Lemma 5+4,
we haveSn 5 S0 1 op~1!+

Let c be a constant vector with the same dimension asd+ If c'E @]H0t
e ' 0]dD0t

24]
H0t

e 0]d ' #c 5 0, then c'~]H0t
e ' 0]d!D0t

22 5 0 and hencec']H0t
e ' 0]d 5 0+ By Lemma 4+2,

c 5 0+ Thus, E @]H0t
e ' 0]dD0t

24]H0t
e 0]d ' # . 0+

Denote

Sd0 5 E31
1

2

]H0t
e '

]d
D0t

22 0

0 P'2S
C C1

C1
' Im2 02D1

1

2
D0t

22
]H0t

e

]d '
0

0 P24 +
By the condition given, C $ 2Im+ Thus, it is easy to show thatSC

C1
'

C1

Im2 02D is positive by

Theorem 14+8+5 in Harville ~1997!+ Because P'P 5 K'~G0
21 J G0

21!K and
E @]H0t

e ' 0]dD0t
24]H0t

e 0]d ' # are positive, we know thatSd0 is positive+

2 S0 5 1EF ]«0t
'

]w
~D0t G0 D0t !

21
]«0t

]w '
G 0

0 02 1S Sw0 Swds0

Swds0
' Sd0

D,
where Sw0 5 E @~]H0t

e ' 0]w!D0t
22CD0t

22~]H0t
e 0]w ' !#04, Swds0 5 ~Swd0,Sws0!, Swd0 5

E @~]H0t
e ' 0]w!D0t

22CD0t
22~]H0t

e 0]d ' !#04, and Sws0 5 E @~]H0t
e ' 0]w!D0t

22# C1P02+ Let c 5
~c1
' ,c2
' !' be any constant vector with the same dimension asl and letc1 have the same

dimension asw, that is, m 1 ~ p 1 q!m2 for models~2+4! and ~2+5! and ~2+8! and ~2+9!
and m for models~2+10! and ~2+11!+ If 2c'S0c 5 0, then c1

' E @~]«0t
' 0]w!~D0t G0 D0t !

21

~]«0t 0]w '!#c1 5 0+ By Lemma 5+1, c1 5 0+ Thus, c2
' Sd0c2 5 0+ As we have shown that

Sd0 is positive definite, c2 5 0+ Thus, 2S0 is positive definite+ This completes the
proof+ n

Proof of Lemma 5.6. We only present the proof for models~2+4! and ~2+5!+ The
proofs for models~2+8! and ~2+9! and models~2+10! and ~2+11! are similar, except that
~B+29! and ~B+30! are used to avoid the requirement of moments+ In the following, ci

andri are some constants independent ofl, with 0 , ri , 1+ By ~B+2!, we can show
that

** ]«t
e

]w ** # c2 1 c3 (
i51

`

r1
i 7Yt2i 7[ X1t + (B.34)

BecauseX1t is a strictly stationary time series withEX1t
2 , `, we have~see Chung,

1968, p+ 93!

1

Mn
max
1#t#n

sup
l[Q

** ]«t
e

]w ** 5 op~1!+ (B.35)
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By ~B+5!, ~B+7!, ~B+8!, and~B+26!, it follows that

sup
l[Q

** ]Ht
e

] Dl ** # c4 1 c5 (
i51

`

r2
i 7Yt2i 72 [ X2t + (B.36)

BecauseX2t is a strictly stationary time series withEX2t
2 , `, we have

1

Mn
max
1#t#n

sup
l[Q

** ]Ht
e

] Dl ** 5 op~1!+ (B.37)

In the following discussion, zt is defined as in~B+27! and Iht
e andht

e are defined as in
Lemma 5+3+ Denoteht

e , Iht
e , zt , andDt

e by hnt
e , Ihnt

e , znt, andDnt
e , respectively, whenl 5

ln+ By ~B+35! and~B+37!,

6hnit
e 2 h0it 6 # 6«nit

e 2 «0it 6
1

hnit
e102 1 6hnit

e102 2 h0it
1026

6«0it 6

h0it
102hnit

e102

# 7Mn~ Dln 2 Dl0!7F 1

hnit
e102Mn

max
1#t#n

S** ]«t
e

] Dl ***l1n
*
D

1
6«0it 6

h0it
102hnit

e102 6
1

Mn
max
1#t#nS** 1

hit
e102

]hit
e

] Dl ***
l2n
*
D

5 op~1! 1 op~1!6h0it 6, (B.38)

whereop~1! holds uniformly in allt, i 5 1, + + + ,m, andl1n
* andl2n

* lie betweenl0 and
ln+ From ~B+38!, we have

7znt 2 z0t7 5 7 Ihnt
e Gn

21hnt
e 2 Ih0t G0

21h0t7

# 7 Ihnt
e 77 Ih0t77Gn

21 2 G0
217

1 27 Ihnt
e 2 Ih0t77G0

21h0t71 7 Ihnt
e 2 Ih0t727G0

217

5 op~1! 1 op~1!7h0t72, (B.39)

whereop~1! holds uniformly in allt+ By ~B+37!,

max
1#t#n

6hnit
e21 2 h0it

216 5 7Mn~ Dln 2 Dl0!7
1

Mn
max
1#t#nS** 1

hit
e2

]hit
e

] Dl **
l3n
*
D

5 op~1!, (B.40)

wherel3n
* lies in betweenl0 andln+ By ~B+39! and~B+40!,

7Dnt
e22znt 2 D0t

22z0t7 # 7Dnt
e22 2 D0t

2277z0t71 7Dnt
e2277znt 2 j0t7

5 op~1! 1 op~1!7h0t72+ (B.41)
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By ~B+41!,

7Dnt
e22znt znt

' Dnt
e22 2 D0t

22z0t z0t
' D0t

227

# 27Dnt
e22znt 2 D0t

22zt77D0t
22z0t71 7Dnt

e22znt 2 D0t
22zt72

5 op~1! 1 op~1!7h0t
4 7+ (B.42)

In a similar manner to~B+37!, we can show that

sup
l[Q

** ]2hit
e

] Dl] Dl ** # c6 1 c7 (
j51

`

r3
j 7Yt2j 72 [ X3it , (B.43)

wherei 5 1, + + + ,m+ By ~B+42! and~B+43!, we can show that

** ]Hnt
e '

] Dl
Dnt

e22znt znt
' Dnt

e22
]Hnt

e '

] Dl
2

]H0t
'

] Dl
D0t

22z0t z0t
' D0t

22
]H0t
'

] Dl **
# ** ]Hnt

e '

] Dl
D0t

22z0t z0t
' D0t

22
]Hnt

e '

] Dl
2

]H0t
'

] Dl
D0t

22z0t z0t
' D0t

22
]H0t
'

] Dl **
1 ** ]Hnt

e '

] Dl **
2

@op~1! 1 op~1!7h0t74#

# 2** ]Hnt
e '

] Dl
2

]H0t
'

] Dl **** ]H0t
'

] Dl **7D0t
22z0t z0t

' D0t
227

1 ** ]Hnt
e '

] Dl
2

]H0t
'

] Dl **
2

7D0t
22z0t z0t

' D0t
2271 ** ]Hnt

e '

] Dl **
2

@op~1! 1 op~1!7h0t74#

#
1

Mn
Op~1!7Mn~ Dln 2 Dl0! (

i51

m

X3it** ]H0t
'

] Dl **7yz0t72

1
1

Mn
7Mn~ Dln 2 Dl0!72S(

i51

m

X3itD2

7z0t72 1 X2t
2 ~11 7h0t74!op~1!

5 op~1!F(
i51

m

X3it** ]H0t
'

] Dl **1S(
i51

m

X3itD2

1 X2t
2G~11 7h0t74!

[ op~1!Xt
*~11 7h0t74!, (B.44)

whereOp~1! andop~1! hold uniformly in all t+ Note thatXt
*~1 1 7h0t74! is strictly sta-

tionary, with E @Xt
*~1 1 7h0t74!# 5 EXt

*E~1 1 7h0t74! , `+ By the ergodic theorem, we
haven21 (t51

n Xt
*~1 1 7h0t74! 5 Op~1!+ Thus, by ~B+44!, we have

1

n (
t51

n ** ]Hnt
e '

] Dl
Dnt

e22znt znt
' Dnt

e22
]Hnt

e '

] Dl
2

]H0t
'

] Dl
D0t

22z0t z0t
' D0t

22
]H0t

] Dl' ** 5 op~1!+ (B.45)
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Similarly, we can show that

1

n (
t51

n ** ]«nt
e '

]w
~Dnt

e GDnt
e !21«nt

e «nt
e '~Dnt

e GDnt
e !21

]«nt
e '

]w

2
]«0t
'

]w
~D0t G0 D0t !

21«0t «0t
' ~D0t GD0t !

21
]«0t

]w ' ** 5 op~1! (B.46)

and

1

n (
t51

n

** ]lnt
e

]s

]l nt
e

]s '
2

]l0t
e

]s

]l0t
e

]s ' ** 5 op~1!+ (B.47)

Thus, by ~B+45!–~B+47! and the triangle inequality, we can show that

1

n (
t51

n

** ]lnt
e

]l

]l nt
e

]l'
2

]l0t
e

]l

]l0t
e

]l' ** 5 op~1!+ (B.48)

Thus, ~a! holds+ In a similar manner to the proof of Lemma 4+6, we can show that

1

n (
t51

n

** ]lnt
e

]l

]l nt
e

]l'
2

]lnt

]l

]lnt

]l' ** 5 op~1!+ (B.49)

Note that ~]l0t
e 0]l!~]l0t

e 0]l' ! is strictly stationary and ergodic withE7~]l0t
e 0]l!

~]l0t
e 0]l' !7 , `+ By the ergodic theorem, we haven21 (t51

n 7~]l0t
e 0]l!~]l0t

e 0]l' !7 5
V0 1 op~1!+ Furthermore, by ~B+48! and ~B+49!, ~b! holds+ This completes the proof+

n

Proof of Theorem 5.1. We need only to verify the conditions of Theorem 4+1+3 in
Amemiya ~1985!+ First, by Theorem 4+1, the QMLE Zln of l0 is consistent+ Second,
n21 (t51

n ~]l t
20]l]l' ! exists and is continuous inQ+ Third, by Lemmas 5+4 and 5+5,

we can immediately obtain thatn21 (t51
n ~]lnt

2 0]l]l' ! converges toS0 . 0 for
any sequenceln, such that ln r l0 in probability+ Fourth, by Lemma 5+2,
n2102 (t51

n ~]l0t 0]l! converges toN~0,V0! in distribution+ Thus, we have established all
the conditions in Theorem 4+1+3 in Amemiya ~1985!, and hencen102~ Zln 2 l0! con-
verges toN~0,S0

21V0S0
21!+ Finally, by Lemmas 5+5 and 5+6, S0 andV0 can be estimated

consistently by ZSn and ZVn, respectively+ This completes the proof+ n
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