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By T. W. ANDERSON
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0. Summary. The asymptotic distribution of the characteristic roots and
(normalized) vectors of a sample covariance matrix is given when the obser-
vations are from a multivariate normal distribution whose covariance matrix has
characteristic roots of arbitrary multiplicity. The elements of each characteristic
vector are the coefficients of a principal component (with sum of squares of
coefficients being unity), and the corresponding characteristic root is the variance
of the principal component. Tests of hypotheses of equality of population roots
are treated, and confidence intervals for assumed equal roots are given; these are
useful in assessing the importance of principal components. A similar study for
correlation matrices is considered.

1. Introduction. Let x be a p-component random vector? with mean vector

&z = u and covariance matrix §(z — u)(z — u)” = = (where the prime denotes
the transpose of the vector). The variance of a linear combination v is
(L1) &(yz — &) = &ly'(x — W)l = &' (z — w)(z — )y = 7v'2r.
The linear combination normalized by vy = 1 which has maximum variance
may be called the first principal component of x. The linear combination un-
correlated with the first principal component and similarly normalized which
has maximum variance may be called the second principal component. The other
p — 2 principal components are similarly defined. (See [2], Chapter 11, for more
detail; Hotelling [9] developed much of the theory.)

To give these linear combinations precisely we use the characteristic roots
and vectors of =. Let & = --- = §, > 0 be the p characteristic roots of 2 (as-
sumed to be positive definite). They are the roots of

(1.2) |2 — s8Il = 0.

Let v1, -+, v» be the corresponding normalized characteristic vectors; they
satisfy

(1.3) 2y = 0aYi,

(14) vivi = 1.
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If the characteristic roots are different,
(1.5) yivi = 0, i 7

if several characteristic roots are equal, the corresponding vectors have some in-

determinancy, but they can be taken so that (1.5) holds. The linear combina-

tions v; = yiz are the principal components of . They have the properties
Varv, = 8(vs — &0;)° = viZy; = 5,

(1.6) , o
Cov (Ui, Uj) = 8(1),; - 81),')(1)]' — 81)]') = 7,-27,- = 0, 1 7

A geometric interpretation of this algebra may be helpful. If z is normally
distributed, the contours of equal density are ellipsoids; a specific contour is
(z — u)' T« — u) = 1, which is an ellipsoid with center at u. If we ask for a
point on this contour that is at a maximum distance from y, that is, that maxi-
mizes (z — p)'(x — u) we find the solution to be u + 8}y: and the maximum
distance to be 8} . If we ask for a point on the intersection of the contour and
the hyperplane through u orthogonal to v; that is at a maximum distance from
4, we obtain u + 84y, at a distance of 8 .

The principal components are frequently defined alternatively as 83yiz. Then
(o%y,)" (8%y:) = 8;and (8%y:)'=7"(s%y;) = 1. We shall find it more convenient to
use the first normalization.

Let 21, - -+, @y be observations on z. The usual unbiased estimate of = is
S = [1/(N — 1)]4, where

N

(1.7) A=2 (xa— &)(2a — &)
a=1
and = (1/N)D_.t.. One estimates 3;, - -, 3, by the characteristic roots,
dy = -+ = d,,of S, that is, the roots of
(1.8) : [S —dI|l = |[[1I/(N — 1)]4 — dI| = 0,
and one estimates v;, - - - , ¥, by the normalized characteristic vectors, ¢;, -,
¢y, of S, that is, the vectors satisfying
(19) SC,; = d,-c,- )
(1.10) cic; = i,

where §;; is the Kronecker delta. If N — 1 = p, the roots of S are different
with probability one and (1.9) for ¢ 7 is automatically satisfied when cic; = 1.

In this paper we consider the asymptotic distribution of &y, ---,dp, 1, -+,
¢, when the distribution of z is multivariate normal. If the characteristic roots
of 2 are different, the deviations of di, -+, dp, €1, * -+, ¢, from the corre-
sponding population quantities are asymptotically normally distributed. When
some of the roots of 2 are equal, the asymptotic distribution cannot be described
so simply. A major purpose of this paper is to give the asymptotic distribution
of the sample roots and vectors when the population roots are equal in sets.
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In some exploratory work, an investigator wishes to study the variation in ;
he may wish to consider the principal components with considerable variances
and may wish to ignore the principal components with small variances. On the
basis of a sample he may want to be able to infer that some of the smaller roots
of = are small enough to be neglected. In this paper we consider statistical
procedures for making such inferences.

In other situations the investigator may cons1der hlS measurements z = 2 +

z® as made up of “systematic” or “true” values ™ and errors of measurement
m(2). If the error of measurement in each component is due to error in a measuring
device applied independently to obtain each component of z (for example, due
to the inherent inaccuracy of a micrometer in certam anthropological measure-
ments), one can assume that the components of z#® are uncorrelated and have
the same variance; that is, 2® has the covariance matrix o *I. The components
of 2 may vary in a g-dimensional space and have a covariance matrlx ¥ of
rank g(<p). Then Z = ¥ + oI, and the p — ¢ smallest roots of = are o' We

consider testing this hypothesis, namely that the p — ¢ smallest roots are equal.
We treat the likelihood ratio criterion for testing equality of any set of roots.

The principal component analysis can also be applied to correlation matrices.

Let B = (ps;), where p;; = 0'”/(0“0”) and let B = (ry;), where

ri = suf/(susis) = asif (aiiais)’.
Then R takes the place of = and R takes the place of S in the above discussion.
We also consider the asymptotic theory in this case, but it is too complicated
to be given in generality. The mathematical difficulties seem to reflect the diffi-
culties of interpretation for correlations.

The methods used in this paper are similar to those used in a previous paper
[1], though they are simpler in the present situation.

In the case of all the roots of = being different, Girshick [8] has glven the
asymptotic variances and covariances of dy , -+ , dp, and of dicr, - dpcp ;in
the case of all the roots of R being different, he has given the asymptotlc variances
and covariances of the roots of B. In the case of the smallest p — ¢ roots of
being equal and the others different, Lawley [10] has given the asymptotic
variances and covariances of dici, -+, dch (the sample vectors corresponding
to the different roots of the population matrix), but he did not argue asymptotic
normality. In this paper we obtain the asymptotic distribution of di, -+, dp,
¢, -, ¢, when the roots of = have any multiplicities; as a special case, the
vectors Lawley treats are shown to be asymptotically normal (a result not fol-
lowing directly and easily from the usual theory of maximum likelihood esti-
mates).

Bartlett in [4], [5] and [6] (summarized in [7]) has considered testing the
hypothesis that p — ¢ roots of = or of R are equal and suggests the use of a

criterion discussed in Section 8 of this paper. He recommends using x *distribu-
tions as approximate distributions and justifies his recommendations by finding
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the asymptotic distributions in some cases. Lawley [11] has investigated more
thoroughly the tests of equality of p — ¢ smallest roots of Z, evaluating the
expectation of the criterion to terms of order 1/(N — 1)* when the null hypothe-
sis is true, but he does not consider explicitly the distribution of the roots in-
volved. Besides a generalization of this work, another contribution in the present
paper is a new proposal for confidence intervals and test procedures for the
smallest roots. The approach here also gives some information about the similar
analysis of correlation matrices. A discussion of the procedures available and
their purposes indicates their usefulness (Section 6).

2. The asymptotic distribution of the characteristic roots and vectors of a
sample covariance matrix. The matrix A is distributed as D i#.%. , where
n = N — 1 and z, is distributed according to N (0, Z). The first two moments
of the elements of A are

(21) Saﬁ = Naij,
(2.2) &(ai; — o) (agn — nopm) = n(oaci, + o4,04m).

By the multivariate central limit theorem (1/n%) (4 — nZ) is asymptotically
normally distributed with mean 0 and covariances given by (2.2) divided by .
Let (y1 - -+ 7vp) = T. Then (1.3) can be summarized as

(2.3) ST = TA

where A is a diagonal matrix with 8, -+, 8, as the diagonal elements. From
I'T = I and (2.3), we find

(2.4) I'ZT = A

It will be convenient to carry out our analysis in terms of the transformed
variates I'z. The characteristic roots of the transform of 4, namely I'AT are
the roots of A, and the characteristic vectors of IVAT are I'c; = e;, say. A set
of characteristic vectors for A are {e;}, where (& - -+ ¢,) = I. We can, therefore,
study the asymptotic distribution of (d,, -+, ds, e1, -+, €,). We know that
(1/n)(I"AT — nA) = U, say, has a limiting normal distribution with mean 0
and covariances &usu,, = 8:8;(84dj, + 8485), where §;; is the Kronecker delta.
Because U is symmetric, %;; = u; . The functionally independent u;; are un-
correlated, and 8ui; = 257, 8us; = 8:8;for 7 = j.

Let 7 = I'ST = (1/a)I'AT. Then U = n*(T — A). The equations defining
e; and d; can be written

(2.5) TE = ED,
(2.6) E'E =1,

where D is a diagonal matrix with dy , - - - , d, as diagonal elements and £ =
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(e1 -+ ep). Equation (2.5) can be replaced by
(2.7) T = EDE'.

Equations (2.6) and (2.7), when di > -+ > d,, define D and E uniquely
except that e; can be replaced by —e;. We shall therefore require that e; >
0 (esx * 0 with probability 1).

Let us first consider the case of all characteristic roots of 2 equal, that is,
8 = --- = 8, = A, say. Then A = Al. Since the exact distribution of D and
E can be given simply (Theorems 13.3.2 and 13.3.3 of [2], for example), the
agsymptotic distribution is derived here because the demonstration introduces
methods and results to be used later. Let n%(D — M) = H. We have

(2.8) T =M + (1/n)U,

(2.9) EDE' = EQ\ + (1/)H)E'
=\ + (1/n))EHE'.

Thus

(2.10) U = EHFE .

This (with the ordering of the diagonal elements of H and the requirement that
the diagonal elements of £ be positive) defines £ and H uniquely as a con-
tinuous function of U except for a set of probability 0. It follows that the limiting
distribution of H and E is the distribution derived from (2.10) according to the
limiting distribution of U (justified by the theorem of Section 7, for example).
The limiting distribution of U = U’ is normal with mean 0 and &ul; = 2\’
gus; = N, ¢ # j, and functionally independent elements are uncorrelated. The
density of this distribution is proportional to

(2.11) exp [—tr UU'/(4\D)] = exp [—tr U/ (4\%)].

The density of the limiting distribution of 4, , - - - , &, (computed from (2.10)) is
4 K

(212) —5\;71%)2/—2 G—Eih%/(4)\2) :1I<I_1 (hz - hJ) = f(hly Y hp; )\7 p);

where h; > --- > h,and 0 otherwise and
»

(2.13) 1/K(p) = 22 I Thi(p + 1 = 9)).
i=1

This density is derived as Theorem 2 of [1] and Theorem 13.3.5 of [2].

The distribution of 7 (where = = \I) is the same as the distribution of P'TP
for any orthogonal matrix P. Hence the distribution of EP is the same as that
of E, except for the effect of requiring e;; > 0. The normalized Haar invariant
measure is the unique probability distribution on the group of orthogonal
matrices that has the property that the distribution of EP is the same as that
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of P. The distribution involved here is 2” times the Haar measure over orthogonal
matrices with positive diagonal elements. We shall call this the conditional Haar
invariant distribution. Thus # has the conditional Haar invariant distribution.
This distribution is discussed in more detail in Section 13.3 of [2]. It can be
considered as a uniform distribution of rotations; for instance, for p = 2, a
rotation is specified by one angle and it has a rectangular distribution. The
limiting distribution of E is, of course, this same Haar invariant distribution.
This also follows from the density of the limiting distribution of U, which is
invariant under the transformation P'TP.

We now proceed to the general case in which some of §; are equal; that is,
the multiplicities of the characteristic roots may be arbitrary. In particular,
this includes the case where the roots are all different, that is, of multiplicity 1;
in that case all the submatrices below are scalars.

Let the multiplicities of the roots of Zbe ¢1, ¢2, -+ -, ¢- . Let

51=...=§q1:}\1,
(214) BQ1+1 == 5<11+42 =N )
ap_q'r+1 = e = 61’ = AT )

where Ay > X > -+ > A\ > 0. We partition the matrices into submatrices
with ¢1, -+, ¢» rows and columns

A O - 0 MI0 0
(2.15) A0 & o0 [0 NI -0
0 0 - A 0 0 - NI
Ull UIZ tet Ulr
(2 16) U = U21 U22 tet U2r
(].Tl Uﬁ Urr
D, 0 - O H, 0 0
@y p=(% D 0 g0 & 2,
0 0 D, 0 0 H,
Ell EIZ et Elr
(2 18) E = E21 EZZ e E2r

E.rl E.rz vt E.rr

We shall now give a heuristic derivation of the general limiting distribuEion. A
rigorous proof is completed in Section 7. Let H; = n(Dy — M) and n*E,, =
Fkl, k 7 l Then
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0 ‘ Un Usp
O ]- U21 U22
. 4 —=1 . .
: VLA :
)\.7-] Ur] Ur2
?’I:_TF 1
n *Fo,
NI+ 0 H, 0
0 Nl 4+ n*H,
0 0
Ehn 07y o,
nFiz  En nF,
w7, w7 £,

MEnEn 0 e 0

_| 0  NExHm - 0
0 0 oo ME,E.
EnH.E1 MEnFs: + NFuBs,

1
'l'%

+ (1/n)M,

)\1F 21E {1 + )\2E22F {2

EooHoE s

)\lFrlEl,.l _i" )\rErrF{r )\2F72E2/2 —i— )\TEMFér

Ulr
UZT

Urr

M+ 0,

MEnFy + NFLE,,
NoEuFre + NFoE,,

B.H,E,,

where the submatrices of M are sums of products of K, , v, Hy, Frrand 1 /nl.
The orthogonality of E implies

EnEvn 0 0

0 ExEp - 0

EuFl + FuE.,
EuF + Fy B,

)

0

(.) () tre j 6 (') ETT.E:T
(2.20) 0 , EuFy + FEs
1 [ FuEi+ ExFy 0
+ ! X
\/n I4 : ! I4 : 14
F71E11+EMF17< Fr2E22+ErrF2r
+ (1/n)W,
where the submagtrices of W are sums of products of Fi;. From (2.20) we see
that
(2.21) EuBu = I — (1/n) Wi .
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When this is inserted in (2.19), the first matrix on the right hand side is simply
A plus 1/n times a matrix with diagonal blocks —M\Wy . Then the other sub-
matrix equations in (2.19) and (2.20) (multiplied by n?) are

(2.22) Uw. = BuHiBEw + (1/0)) (M — MWi),
(2.23) Uit = MEwFi + NFuBL + (1) My, & 5 1,
(2.24) 0 = EuFu + FuBn + (/o)W k = L

From (2.21) and (2.22) we argue (and prove in Section 7) that the limiting
distribution of E, and H, is the unique distribution such that Ej; is orthogonal
and the distribution of EwHiEy; is the limiting distribution of Uy ; that is, it is
the limiting distribution given before (with A replaced by A and p replaced by
qr). From (2.24) we see that EwF1 and —Fy,E7; are asymptotically equivalent,
and from (2.23) we see that the limiting distribution of either is the limiting
distribution of [1/(M\ — N\;)]Us; . The limiting distribution of Uy, is normal and
has density with exponent —2 tr UgUsr,/(Ae\;); hence the density is the same
for PUyQ where P and Q are arbitrary orthogonal matrices. Since the limiting
distributions of Uy (which determines Ej) and Uy, are independent, the limiting
distribution of the elements of either Fy;, or — F; is normal with means 0, var-
iances Mo/ (M — \;)® and correlations 0. Note that n}(EwEm — I ) converges
stochastically to 0.

Tarorem 1. Let d; > do > -+ > d, be the characteristic roots and e, , -+ - , e,
the corresponding characteristic vectors (normalized by eie; = 1 and ey > 0) of a
covariance matriz based on a sample of n 4+ 1 from N (u, A) where A has the struc-
ture indicated by (2.15) and N is of multiplicity qp (M > Ae > -+ > \,). Let the
diagonal matrix with diagonal elements dy , - - - , d, be D and the matriz (e1 - - - e,)
be E partitioned as in (2.18). Then n*(Dy, — M) = Hy, B, and n’By = Fiy
k < 1, are independent in the limiting distribution. The limiting distribution of the
diagonal elements of Hy, has density f(x1, -+, Tg ; M, @) given by (2.10); the
limiting distribution of Ew is the conditional Haar snvariant distribution; and the
limiting distribution of the elements of Fri , k < I, is normal with means 0, variances
M/ (N — A%, and correlations 0. (EwFu + FuEr) converges stochastically to
0 fork =1

Now consider these results in terms of the original coordinates. The char-
acteristic roots are the same but the characteristic vectors make up the matrix
C=TE Let C = (C,C:--- C;)and T = (I --- T). Then

(Bu Ew -+ Eu
(0102 C'r) — (P1P2 Pr) -E:21 E:22 ,E:zr
(225) E;rl E.r2 et Err

(?—-"i I En 121 TWEy - ; PZElr>;

(2.26) Cr = ThEu + n'%l;k | 7
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If & = 1, then C} is a vector, say c¢;, the ¢th column of C. Then Ei. = e con-
verges stochastically to 1; in fact n'(e; — 1) converges stochastically to 0.
Then n%( ¢; — v:) has a limiting normal distribution with mean 0 and the covar-
iance between its gth and hth elements is

(2-27) Z [aj’ai/(aj - 5@')2]701’)’1»1' .

I
Note that the multiplicities of roots other than the ¢th one are irrelevant. If
the ¢th and jth columns of T' correspond to roots of multiplicity 1, the covariance
between the gth element of the 7th column of C and the Ath element of the jth
column is

(2.28) —[8:85/(8: — ;) Wvasvni, & 5 .

If g» > 1, Ei is a random matrix with the invariant distribution of orthogonal
matrices as its limiting distribution. (2.25) shows B, = I'tCi . From (2.26) we
see that

14k Ik

has a limiting (singular) multivariate normal distribution with means 0 and
variances and covariances derived from the theorem.

If the other normalization for the principal components is used, we treat
d?cm-. If 8; is a root of multiplicity 1, then n%[dfcgi — &by, is asymptotically
distributed as

(2.30) W64 (cgr — vpi) + nlyps(ds — 65)/(260)

and the two terms are asymptotically independent. The asymptotic variances and
covariances can be calculated from the above results. Similarly we can treat the
estimates of vy,:(8; — )\,)%, where the last root is ., of multiplicity ¢,, which
was the normalization Lawley [10] used. The theory of this paper includes
asymptotic normality, which Lawley’s did not.

3. Statistical inference about characteristic roots of covariance matrices. The
population covariance matrix = can be written as TAT, where T is an orthogonal
matrix with v,;; > 0 and A is a diagonal matrix with diagonal elements 8, = -+ =
d, ; the representation is unique if the roots §; are all different and no v, is 0.
The sample convariance matrix S can similarly be represented as CDC’, and
the representation is unique with probability 1. If the population representation
is assumed unique, €' is the maximum likelihood estimate of I' and (n/N)D is
the maximum likelihood estimate of A.

TaroreM 2. If the characteristic roots of the population covariance matrixz are

M > o > N with multiplicities ¢, - - -, @ , respectively, the maximum likelthood

estimate of ;18

(3.1) N = (1/qe)(n/N) 2 ds, k=1,
jeLy

where Ly, 1s the set of infegers g1 + -+ + e+ 1, -+ , 0 + -+« + @, and the
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maximum likelthood estimate of Ty is C, multiplied by any (g X qx) orthogonal
matriz on the right such that 4;; > 0.

Proor. The logarithm of the likelihood function after maximization with
respect to u is

32) —iNlog |3 — +tr =S = —1iN log [I‘AI"[ — 3n tr ra~'r'epc’
' = —1Nlog|A| — intr AT'P'DP,

where P = C'T. The trace term can be written as

(3.3) é Ig dgae/Ne

where qi = > i pi;for j e Ly . Since P is orthogonal, >or, g = g and
i qu = 1.
k=1

Then (3.3) is minimized by ¢a = 1,7 & Ly , and qs = 0, 7 2 L , and the minimum
is D i D e £, di/ N, because for any other set of ¢’s the sum can be decreased.
To demonstrate this fact let [ be the smallest index % for which ¢ < 1 for some
ieL;, and let j be the smallest of such indices 7. Then g4 = 1, 7e L, and
g = 0,12 g, fork < I, because Diqa = q;and ga = Ofors < j, i &Ly,
because 2 i ga = 1. Thus there is an index & > [ such that ¢z > 0 and there
isanindex ¢ > j (4 > ¢ + - + ¢.) such that ¢;; > 0. If Ag;; is the smaller
of ¢ and ¢s, the sum can be decreased by replacing ¢;1, ¢, gu and gs by
qi1 + Ags, g — A, ga — Agjand g + Agji, respectively; the change in
(38.3) is

A WS S A 8 S
(34) Agn <)\l e ~ + >\k) Agsi(d; ds) <)\l )\k>7

which is negative. This shows that (3.3) is minimized \lvith respect to P by
Pi; = 0 for éng and j e L;, k # [, and any orthogonal Py, = (94;), %, j € Ln,.
Then T' = CP. The resulting likelihood function

(3.5) —iNY grlogh — dn) Do (di/Ne)
k=1 k=1ieLy
is maximized by (3.1). Q.E.D.

As an example, if = is assumed to be ¥ 4+ ¢°I, where ¥ is positive semi-definite
of rank ¢, the maximum likelihood estimate of ¢° is n/N times the mean of the
p — ¢ smallest roots of S. (Note that if = = ¥ + ¢’I, each root of Z is the
corresponding root of ¥ plus ¢°.)

CoroLLARY 1. The likelihood ratio criterion for testing the hypothesis

(3.6) BgrteHgpertl = Ogptee ety
s
(37) (1T a/(a* 32 di)].

JjeLy jeLy
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The criterion is a8 monotonic function of the geometric mean of the relevant
roots divided by the arithmetic mean. When the hypothesis (3.6) is equality
of all population roots, the criterion involves all sample roots

D P
Hld,- = |S| and Edi = tr 8.
7= =
The hypothesis then specifies that ellipsoids of constant densities are spheres,
and it is called the hypothesis of sphericity [15]. In general the hypothesis (3.6)
specifies that g of the principal axes are equal in length, ¢ + - -+ + @1 are
larger than the ¢, equal ones, and gz + - -+ + ¢, are smaller. The likelihood
ratio criterion for a hypothesis consisting of several sets of equalities (3.6) is
the produect of the corresponding quantities (3.7).

The limiting distributions considered in the preceding sections yield the
limiting distribution of the test criterion. The logarithm of (3.7) multiplied by
—2 is asymptotically equivalent under the null hypothesis to

2. di

—nlog [] di + ng; log iq
i &

Z()\k—i—n’h)
qr

(3.8) = g Z log( ) + qi log (1 + Z}\:;%>£

3 e R [Z’L (32 19° }g
R I E e T F P R
n ° ki 4+ (0,

T 2\in T 2qp N n

= —nZlog(M—l—n *h:) + ngx log -

where the sum is over the set L; . By a familiar argument the asymptotic dis-
tribution of this quantity is the asymptotic distribution of

[/ 2 0 = (1/g) (2ha)] = /(2] [tr Uk — (1/@) (tr Uw)’]

(3.9) = [1/(2M)] ltr Use Uz — (1/q2) (tr Uw)™
= [1/(2\)] [2 ;; ui; + ; uis — (1/qn) (Xi: uiz)").
In the limit u;; (¢ < j) are independently normal with means 0 and variances

A, and u are independently normal with means 0 and variances 2\; . Thus
> i< usi/A is asymptotically x* with gx(gx — 1) degrees of freedom;

%[Ez: wi — (Z wir) /el /M
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is asymptotically x” with ¢ — 1 degrees of freedom; and (3.9) is asymptotically
x* with 3gx(gx + 1) — 1 degrees of freedom. In the case of ¢, = p, the criterion
is the product of the criterion that the covariances are 0 (that is, that the vari-
ables are independent) and the criterion that the variances are equal given that
the covariances are 0; asymptotically these two criteria correspond to the two
x”’s considered above. It should be noted that the hypothesis does not specify
the size of the hypothesized equal roots.

Suppose that it is assumed that g, roots are equal, let us say the last ¢, roots.
The estimate of \, is d = 25,41 di/g- . Then

- D
(3.10) n(d —N\) = (e Un)/g = (1/g0) Z+1 Ui
DP—qy
is asymptotically nornllally distributed with mean 0 and variance 2\/q, . Thus
asymptotically (3ng.)*(d — \,)/A, has the standardized normal distribution.
Let ¢, be such that

(3.11) f_t“ /eMle™ du=1— a

12

Then asymptotically with probability 1 — «
(3.12) [ng,(d — A)°1/(2N) <t

This gives the asymptotic confidence interval (with asymptotic confidence
1 — a) of

(3.13) d/1 + (2/{ng))id < \* < d/11 — (2/{ng.})d],

where 7, ¢, and « are such that the denominator on the right is positive.

Suppose we wish to consider whether the smallest ¢, roots of Z are so small
that we wish to ignore the last ¢, principal components. If we assume that the
last g, roots of = are equal, say, \., then we can use a one-sided confidence
interval instead of (3.13). We then have

(3.14) A < A/ — (2/{ng.]) ).

Ifd/[1 — (2/ {nq,})%tga] is sufficiently small, we may decide to study only the
first p — ¢ principal components.
If the last ¢, roots are all different

is asymptotically normal with mean 0 and variance 2> 2 w103/qr, which is
greater than 2¢,( > ,.410:/¢:)". Thus the assumption of equality of roots will
lead to underestimating the asymptotic variances of d when the roots are not
equal and also to reducing the confidence interval. A more conservative pro-
cedure is to estimate the asymptotic covariance of d by the consistent estimate



134 : T. W. ANDERSON

2> di/¢t and use as a confidence interval

1-u[(z 2 @) /o] <) 3 s

P—a 1

cas[.5,4) /o]

(3.16)

or

» P 3
G ) 3 s<atwl(2 3 a) /o).
p—grt+1 p—g,+1
The last inequality gives an upper asymptotic confidence bound on the average
of the variances of the last ¢, principal components. If the investigator finds
this sufficiently small, he may want to neglect the last ¢, components.
Another null hypothesis that might be considered is that some gz 8;’s are equal
to a specified number say A. The likelihood ratio criterion for this hypothesis is

i
n _injRy, %
(3.18) I;I (N di> . W[E 25 —a)
A

)

where the index ¢ runs over the ¢; relevant values. This criterion is the product
of (3.7), the criterion for equality of roots, and

SN ag

n _nfrs, &
(3.19) Lgdi|  rEES el

gr M

the eriterion that the common value of the roots is A if the roots are assumed
equal. This last criterion is a function only of D_:d; . The asymptotic normality
of this sum implies that the logarithm of (3.19) multiplied by (—2) has a
limiting x*-distribution with 1 degree of freedom.

There are other test procedures that might be considered. If the last ¢, roots
are assumed equal, one might use the largest of the ¢. smallest sample roots to
evaluate the assumed equal population roots. The asymptotic theory would be
based on the distribution of the largest of the ¢, variables with density f(dp—g,+1,
-+, dp; N\, ¢). A number of procedures have been suggested for testing 2 =
oI (see [16], for example); they depend on the p sample roots of S (and are
hence invariant under orthogonal transformations); any such procedure based
on the ¢, smallest roots of S can be used to test equality of the ¢. smallest roots
of Z.

If the smallest population roots are assumed different, one might want to
determine whether the largest of these roots is small enough to be neglected;
the asymptotic distribution of this root is normal. Another hypothesis is that
the ratio of “unexplained variance” to the total is not greater than a fraction
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f; that is, that
D »
(3.20) DIRIESDIFS
i=gt1 =1
for some ¢. This hypothesis could be tested by use of
» D q »
(3.21) Sidi = di= —f>di+ (1 =)D ds,
g+1 1 1 g+1

which is asymptotically normal.
It might also be pointed out that the general asymptotic theory of the roots
shows that the tests considered in this section are consistent.

4. Principal component analysis of a correlation matrix, Let B = (r;;), where
ri; = aii/(asa;;)t Let A¥ = (a3;), where af; = ai;/(cucj;)}; then 4% is dis-
tributed in a fashion similar to that of A, but with o;; replaced by p:; . Let

(4.1) nHA4* — ) = X.

Then X is asymptotically normally distributed with mean 0 and covariances
(4.2) ETijTgh = PigPin + PitPjs »

and #'(R — R) is asymptotically distributed as

(4.3) X — {RXy + XoR),

where X, is a diagonal matrix with z;; as diagonal elements.
Let B = (Bi;) be an orthogonal matrix such that

(4.4) RB = BO, B'RB =0,

where © is a diagonal matrix with diagonal elements ¢; = -+ = 6, , the charac-
teristic roots of B. Then n’B'(R — R)B = n*(B'RB — 0) is asymptotically
distributed as

Z=BXB-31®BXyB+B X,BO),

(4.5)
' B = Z BaxiiBin — 3(06 + 01)2 BisxiiBi -
23 i
Then
8zk:lzmr = akel[akmélr + Bkralm]
(4.6) — [(8; 4 60)8mbr - 6:0:(0m + 07’)]2 BB imBir

+ (6 + 62)(6m + 8,) 2 BuBiBymBorpls -

In particular,

(4.7) Gzmzu = 20500 — 20:0:(6x + 01)2 BiBi + 20#’12 BiByini, -
% ng
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The characteristic roots of B, d; = -+ = d,, are the characteristic roots of

B'RB. Let the characteristic vectors of B be C' = (¢; -+ ¢,) and the charac-
teristic vectors of B'RB be E; then BE = €. We wish to find the asymptotic

distribution of dy, - - -, dp and C. Because ps;; = 1, we have
(4.8) Z(h=tr®=trl§=p,
(4.9) diag BOB' = diag I.

There are similar conditions on B, D and C. The theory in this case is much more
complicated than for covariance matrices; we cannot give general results in as
simple a form.

Consider first the case of all population roots equal. This condition implies
the common root is 1 and B = © = I. Then we can take' B = I, and Z =
X — X, . Thus z;; = 0 and for ¢ £ j z;; = x; have variance 1 and are uncorre-
lated. Then

(4.10) R =0DC" = C(I +n*H)C' = [ + nlCHC,

where tr H = 0 and diag CHC' = diag 0. Then CHC' is asymptotically equiva-
lent to Z. Since the limiting distribution of PZP’ for orthogonal P is not the
same as that of Z, C' does not have the invariant distribution as a limiting dis-
tribution.

The second case of interest is that of two different roots. Some aspects of this
case are considered in Section 5, and this case when the larger root is distinct
and the smaller root is of multiplicity p — 1 is treated in Appendix A.

In the general case suppose the roots are Ay > Ny > -+ > )\, of muliplicities
qi, Gz, ", G, respectively. Then @, Z, D, H and E are partitioned as A,
U, D, H, and E were previously. The limiting distribution of Hy, Ew. , and
Fu = n'By, k 5 1, is obtained from the limiting distribution of Z by use of

(4.11) Zw = EuHEi I = EuBEu,
Zi = MEuFu 4 )\lFlclE;l; k=1
(4.12) , ,
0 = EwFu + FrulEu, k=1

b. Statistical inference about characteristic roots of a correlation matrix. We
can use (3.7) to test the hypothesis that g, of the #’s are equal (where d; in
(3.7) are roots of RB). The limiting distribution of —2 times the logarithm of
the criterion is the limiting distribution of [tr Zi, — (tr Zw)’/q:)/(2\8). The
distribution is that of a quadratic form in normally distributed variables with 0
means. In general this distribution will not be x°. However, for p = 3, r = 2,
and ¢ = 2 the criterion is asymptotically distributed as (1 — A\3/3)x: (See
Appendix A). For p = 4, r = 2 and ¢ = 3, the criterion is asymptotically dis-
tributed as x5 + (1 — 2\))x: . Lawley [13] has solved the general case when
g =p— L

We can consider an asymptotic confidence interval for A, = 0,00 = +++ =
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6. W(_e know that d converges stochastically to A, but in general the variance
of n*(d — \,) = tr Zn/gr = 25,41 2isgr will depend on the other roots and
B as well. In one particular case, however we can get a simple evaluation of

Var [(tr Z..)/q:];
this is when 6; = --+ = 0, = A, 0411 = +++ = 6, = Ay. Then we have

(5.1)  &zmzu = 2N (6, — 2\ BiBir Z BiBaipa), klzaqg.
7 g
In this case g\ + ¢As = p, and

» g1 2
(5.2) L= 2 8 = N2 B+ % 2 6
= i=

j=q1+

This implies Y %g,41 835 = g2/p. Thus

D 2 P
& <Z 2/clc> =2\ D ) (8 — 2\2 D B B + Z B2 By pig)
k21

g+1 kyl=gq1+ i

= D3 — 20 Z (qo/P)* + Xgl (g2/D)’pis)
= 203(g: — 2%(qe/P)* + (@/P) N+ @ M}) = 2N e \)/p
and M = [p — ¢As)/q1 . Then
(5:4) n'(d — M)/ a(p — M) }](pauge/2)*

is asymptotically normally distributed with mean 0 and variance 1. From this
result we can set up confidence intervals for A;.

(5.3)

6. Uses of principal component analysis. One of the uses of principal component
analysis is in exploratory studies. The investigator has available many meas-
urements—in fact, many more than he wants to subject to close scrutiny—
and he wants to “reduce” the data. He is interested in studying what varies
from individual to individual; hence variance is a measure of importance. He
thus asks for a small number of linear combinations of the original variables
that account for most of the variability. The sum of the variances of the full
et of principal components is the sum of the variances of the original variables.
The investigator will be satisfied with the principal components accounting for
most of the total variance. This idea is made precise by the specification that
he will be satisfied with ¢ components if the sum of the variances of the p — ¢
other components is less than a certain amount, which is equivalent to the con-
dition that the average of the p — ¢ smallest roots of 2 is less than a specified
amount. He sees whether the (one-sided) confidence interval includes only
values of the average less than the specified amount; if so, he is satisfied with
the first ¢ principal components.

For this use of principal component analysis in exploratory studies the vari-
ables have to be in the same units or at least in comparable units because the
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linear combinations are normalized by having the sum of coefficients squared
to be unity and because the sum of variances is used. (When different units of
measurement are involved the variables might be sealed according to inherent
importance.) In these kinds of studies the principal components do not need
to have any intrinsic meaning (that is, one cannot necessarily give them mean-
ingful names).

In another situation, referred to in the introduction, all measurements are
made in the same units and by the same kind of measuring device. Mathemati-
cally specified, the errors of measurement in all variables have the same vari-
ance, are mutually independent, and are independent of the true measurements
(or systematic parts). Then the covariance matrix of the observed variables is
= = ¥ + o', where ¥ is the covariance matrix of the true measurements and
¢’ is the variance of error. The roots of = are ¢” plus the roots of ¥ (positive
semi-definite) ; if ¥ is of rank ¢, then the last p — ¢ roots are ¢°. In this caseit is
crucial that the units of the different variables are the same. Of course, the hy-
pothesis holds if = is the sum of any positive semi-definite matrix of rank ¢
and a nonnegative multiple of theidentity matrix. The multiple might be larger
than just the ‘“error” variance. The hypothesis specifies nothing about the
size of the common root (except that the other g are larger). The interpretation
is that o’I represents randomness in the sense of independence and constant
variance.

If one has in mind a specific value of the error variance, one can test that the
last p — ¢ roots are equal and equal to the specified value. The criterion (3.18)
can be used. Alternatively one can test equality of roots and then use a one-
gided test that the common root has the specified value (against alternatives
that it is larger). The two criteria are asymptotically independent.

Lawley [11], [12] has shown that if (—%N) times the logarithm of the cri-
terion (3.7) is multiplied by

(61) n =g =200 — ) + 1+ 2/(p — O + N3 /(3 — V)

the resulting quantity has the moments of the proper x’-distribution to order
1/n® when the last p — ¢ roots are equal to A and (3.7) involves the smallest
p — q sample roots. The multiplying factor for (3.18) is

n—q—320p -9 +1-12/(p—q+ DI

(62) W — a4 1)]’[1:21 5.5 — )\):I I i [1/(8: — M.

When measurements are made in different units and there is no substantive
basis on which to scale them, resort has been made to the correlation matrix
which is dimensionless. Let us see what the methods imply in such cases. Suppose

(6.3) 3=V + K,

where K is diagonal. Here k., is interpreted as the variance of the error in the
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7th variable. The correlations are

(6.4) pis = 1, pij = ¥ii/[(as + ki) (55 + Ki)?l, T 7 J.
The correlation matrix is of the form ¥* + I if
(6.5) 0" = ka/ (Yas + ki) = 1/[(Yus/boss) + 11;

that is, if the ratio ¥.:s/ks; of “systematic” variance to error variance is the same
for all variables. In the case of treating a covariance matrix the null hypothesis
is true if the error variances are equal, but in the case of treating a correlation
matrix the null hypothesis is true if the error variances are proportional to the
systematic variances. It should be noted that the hypotheses are equivalent
if all of the systematic variances are equal.

Another procedure with correlation matrices is to determine ¢ linear com-
binations of the normalized variables with maximum variance;let Z = ¥, + ¥,
where ¥; is made up from the ¢ linear combinations of the variables not norma-
lized and ¥, = (Y{7) is the residual covariance matrix. The diagonal entries
of the residual part of the correlation matrix are 2 /oy . Testing that the resid-
ual “variance” in the correlation matrix is sufficiently small is testing that
> 0P /oy is sufficiently small; that is, that the average fraction of residual
variance in the variance of each variable is sufficiently small.

The procedures with correlation matrices seem a little incongruous, for first
the individual variances are standardized to unity (in a sense eliminating
variances) and then one goes back to maximizing variances of linear combina-
tions. Besides the difficulty of interpretation there are the formal mathematical
difficulties. The criterion for testing equality of the p — ¢ smallest roots of
R is asymptotically distributed as a quadratic form, whose distribution is that of
> i aixi, . In most cases this is not x*, though possibly it can be approximated
by cxa for suitable ¢ and d. However, the coefficients a; depend on unknown
parameters. A conservative treatment is to use significance points from the x*
distribution with degrees of freedom appropriate to the covariance case.

We have considered procedures which split = (or alternatively &) into a sum
of two matrices. The lack of importance of the second matrix has been evaluated
on two different bases; one is that it is proportional to the identity (p — ¢
smallest roots equal) and the other that the trace is small. Quite a different
basis for considering the second matrix unimportant (that is, that the first
matrix is the part of interest) is that the second matrix is diagonal with no
specification of the size of the diagonal elements. This hypothesis does not
involve the units of measurement and hence can be treated in terms of correla-
tions as well as covariances. Factor analysis is primarily based on this approach;
the first matrix (which the investigator hopes is of low rank) involves the com-
mon factors and the second matrix, which is diagonal, involves the specific
factors and errors, which are uncorrelated from one variable to another. Statis-
tical methods in factor analysis have been considered in another paper [3]
and that discussion will not be repeated here. It might be emphasized, however,
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that factor analysis can be done without using variances of either the original
variables or of components. Sometimes one of the procedures described in this
paper is used when it is the hypothesis of independence that it is desired to test;
it would seem preferable in such a case to use a test for independence (such as
discussed in [3]) or at least look for an approximation to such a test, rather than
test a hypothesis that is not called for.

Roy [16] has proposed statistical techniques which are useful in a different
approach to the problem of reducing the number of variables in an exploratory
study. He has indicated how to use S to set up simultaneous confidence bounds
on oy (i =1, -+, p) and as well as on all linear combination of the elements of
= of the form v =v/ (7'7). On this basis the investigator might eliminate vari-
ables that have sufficiently small variances and concentrate his attention on
the other variables. The details of the sereening of variables by use of such joint
confidence bounds have not been worked out; presumably a variable would not
be discarded unless its contribution to the variance of every linear combination
were small. Since the subject of the present paper is principal component analy-
sis, a detailed study of this procedure will not be made.

Selection of the principal components with largest variances may have the
disadvantage that all of the original variables (or almost all of them) may enter
into some of the selected principal components with nonzero weights. This
feature suggests that selected principal components might be modified moder-
ately to give some variables zero weights if the modification does not decrease
the variance of the linear combinations much (or cause them to be correlated
much).

7. Justification of the asymptotic distribution of roots and vectors in the general
case. The proof of the theorem of Section 2 is based on the following special case
of a theorem due to Rubin [17] and proved in Appendix D:

TueEOREM ON LiviTiNg DisTriBurioNs. Let F.(u) be the cumulative dis-
tribution function of a random matriz U, . Let V, be a (matriz-valued) function
of Un, Vi = fu(Us), and let G,.(v) be the (énduced) distribution of V., . Suppose
LMy Fo(u) = F(u) [in every continuity point of F(u)] and suppose for every
continuity point wu of F(u), bMusew fultn) = f(u), when limn.o t, = u. Let
G(v) be the distribution of the random matriz V = f(U), where U has the dis-
tribution F(u). If the probability of the set of discontinuities of f(u) according to
F(u) 73 0, then

(7.1) lim,se Gu(v) = G(v)

[in every continuity point of G(v)].

In our case H, Ew , and Fy; are functions of U, and depend on n. To apply
the theorem we need to show that if a sequence of symmetric (nonrandom)
matrices U, converges to U then the corresponding sequences of [Hx(n), Ew(n),
Fri(n)] converges to the solution of

(7.2) Ui = BB , I = ElclcElck,
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Ui = NeBiF i 4+ MFuE , ko# 1L

(7.3) ’ '
0 = Ewl'y + Fruli, k #1,

for almost every symmetric U. The distribution of (random) H;, E and
Fy: can be defined either in the p(p -+ 1)/2 dimensional space of h;, e:;, 7 < j,
and fi;, ¢ < j, or in the p* + p dimensional space of ki, e;, and fi;. (In the
latter case the probability is concentrated on a surface.)

First let us show that as U, — U, hi{n) — h;. Consider di(n) > --- >
dg,(n), the ¢ largest characteristic roots of A + n*U, . Then

(n) = 7}(d(n) — M) > -+ > hgy(n) = n'(dyy(n) — M)
are the ¢; largest roots of
0=I|A+ 27U, — (\ + n7'R)I|

(74} ’ [U11<7l/) - hI] n_%U*(n)
- n*U*(n) A* =M I 4+ 27U (n) — I

H

where

(M0 _{ Un(n) U*(n)’
(7.5) A = (0 A*>’ U, = [U*(n) U**(n)] .

When we factor n° out of the first ¢, columns of the matrix we obtain the de-
terminant

Uuln) — bl 7 U%(n)’
U*(n) A* =M I + w7 U (n) — BRI

which is a polynomial of degree p in ¢. As n — « and U, — U, the coefficients
of the polynomial approach the coefficients of the polynomial (of degree ¢)

(7.7) |Uy — RI||A* — NI,

and ¢, roots of (7.6) set equal to O approach the ¢ roots of |Uy — hI| =

(because the roots are continuous functions of the coefficients). These ¢y roots
of (7.7) must be the largest ones because for each ¢ > g1, iy + n “hi(n) — i
for some 7 > 1. This proves the result for the first ¢ roots; the other roots are

treated similarly.
Now consider the vector associated with the first root ki (n). Let

_ (un(n) wi(n) w, v (Ui(n)

(7.8) Uu(n) = <uf(n) Tj(n) , - U(n) = U*(n)' .

Then the components of the first vector are proportional to the cofactors of the
first column in

un(n) — h(n) ui (n)’ *Ul(n)
(7.9) ui (n) Uln) — hl(n)I _TU (n)

(7.6)

Ui (n) U*(n) NI 4 n U (n) — ()T
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The first cofactor is

U(n)_— h(n)I n_%IU*(n)'
(7.10) U*(n) A — M T + 07U (n) — ha(n)]

1
= Q1 + n il.bln )

where ay, — a; and by, — by ; this can be seen by expanding (7.10) by minors
of the first ¢; — 1 columns. Expansion of other cofactors by minors of the first
@ — 1 columns shows that for ¢ < ¢, the element is as + 7 °bs and for
1> q it Is 7 ?b;, . Then the normalized elements of the first characteristic
vector are

a1 21 !
(a/in + n_%bin) / [Z a'gn + 271_% Z Qin bi” + (1/77:) Z bfn:l ’
T 1
| 7 = ]-; Ty,
a1 &L
(nbsn) / I:Z din + 2070 2 aiban + (1/n) 2 bfn:l
T 1

i=q+lp,

This shows that the first ¢; elements of the first characteristic vector converge
to finite limits and that n* times each other element converges. A similar argu-
ment shows that the elements of Fy(n) converge and the elements of Fy;(n) =
n*Er(n) converge.

Now let us return to (2.21) to (2.24), where these are now considered to
refer to (nonrandom) Uwi(n), Hi(n), Ew(n) and Fi(n). Then as n —
the terms n*Mj; and n*W,; converge to 0 because their elements are poly-
nomials in n~* and elements of H,(n), Ew(n) and Fi(n) which converge to
finite limits. Then the limits satisfy (7.2) and (7.3) as was to be shown.

The discontinuities only occur because of indeterminacies in Ey; due to mul-
tiple roots of U but such matrices are of (Lesbesgue) measure 0.

AprprENDIX A. The case of the correlation matriz when the p — 1 smallest roots
are equal. Let & = -+ =8, = X and B = (B,B;). Since

p=trR=686+(p—1\ &=1+(p—1)(1—2N).

(7.11)

1
2
)

Then
(A1) R = BOB = 8,88 + AB:B; = 8,881 + MI — BiB1).
In particular '

(A2) pi = 1 = 8 + N1 — B),

and hence 3,4 = :I:p_%. Let us assume that the signs of x; are taken so 8;; = p_%.
Let p=1—X; then N=1—p and & =1+ (p — 1)p. Then
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i , I/p -+ 1/p
R=N+ (=M= 1 —p) + pp{ :
p -+ 1/p
(A3) 1 p p
_|° 1 P
P r; 1

This is the case of all pairs of_variables having the same correlation.
Y =X — ¥{RX, + X,R), then

: Y 'YB
(A4) Z = B'YB = <‘61,> Y(8:B:) = <B1, B 131, 2>.
B B,YB, BiYBs

2
Then
tr Zw = tr BiYB, = tr YBoB; = tr Y(I — Bi81)

Y — B = —(1/p) 2y = —(2/p) L v -
tr (Zs)® = tr BsYByB:Y B, = tr YByB;YB:B,
tr Y(I — 880 Y (I — B481)
(A6) =tr ¥’ — tr YB/Y — tr Y’881 + tr YBBIYB:81

= tr YY" — 2 81V’ + (B1VB)’

= ; Yii — (2/27)2,% Yaldiw + (1/202)(; yai)".
Then we find Q,(Z) = tr Z3s — (tr Zas)?/(p — 1) in terms of Y. For example,
(A7) Qu(Zx) = 8/9yt + Yis + Yos — Yuskis — Yoy — Yasys).

To find the limiting distribution of @ we use the fact that Y is agymptotically
normally distributed with variances and covariances

(A5)

Il

(A8) sy = N(1+p)?, 5,
(A9) &Yy = \0(2 + 3p), NI
(A10) &Yy = 220", no subseripts equal.

As an example of the asymptotic distribution of the criterion consider the case
of p = 3. Then the criterion is

(A11) Q% = Qs(Zn)/(2\Y) = 4/9(uls + uls + uss — Usslhss — UssUsg — Ungliss)
where y;; = Aug; and 8ui;; = (14 p)°, ¢ # 4, and
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Then the distribution of Q* is by} -+ bzxf, where b; and b, are the nonzero roots of
4/9 —-2/9 —2/9
—2/9 4/9 —2/9
—-2/9 —2/9 4/9
(1+a)  (¢/2)(2430) (a/2)(2 + 3a)
(a/2)(2 + 3a) (1 + a)? (a/2)(2 + 3a) | — ul| = 0.
(a/2)(2 + 3a)  (a/2)(2 + 3a) (1 + a)?

These are both 1 — \*/3. Thus Q* is asymptotically distributed as (1 — 3?/3)x3
forp = 3.

AppeNDIX B. An asymplotic iest for a given principal component. Consider
testing the null hypothesis that v;, the vector of coefficients of the first prin-
cipal component, is a specified vector ¥1(y1vi = 1) under the assumption that
this characteristic vector of = corresponds to a characteristic root of multiplie-
ity 1. We use the fact that n'(e; — v1) = y, say, has a limiting normal distribu-
tion with mean 0 and covariance matrix

(A13)

ra

(B1) 2 6183/ (81 — 89)Tvvi = T*A’TY,
£

where

(B2) T = (v2 - 7p),

(8:8)Y/ (81 — &) - 0
A= ; : :
0 s (818,)Y/ (81 — 8,)

Then z = A~'T™y has a Hmiting normal distribution with mean 0 and covari-
ance matrix

(B3) AT (DAY TAT = L
Thus
(B4) Zz = y'T*ATITYy

has a limiting x’-distribution with p — 1 degrees of freedom. The matrix of
the quadratic form in y is

(81/82) — 2 + 8/00 - 0
: . P*,

0 e (84/8,) — 2 + (5,/00)
8(Z7 = (1/a)vivi) — 2(1 — vavd) + (1/8)(2 — dvavi)
sz — 2l 4 (1/8)2,

since TA7'T' = =7, I'T' = I and TAT' = Z. Thus

A = <
(B5)

I
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(B6) nler — 1) (8,27 — 21 + (1/6)2) (e1 — v1)

has a limiting x’-distribution with p — 1 degrees of freedom.
For v, , the characteristic vector of = with root & and of = with root 617,

(B7) (827" — 21 + (1/6) )71 = 0
Then (B6) is
(B8) mei(8:Z7 — 21 + (1/8)2)e; = n(8:c1Z s + (1/8)c1Zer — 2).

If we want to test the null hypothesis that the population covariance matrix is a
given = of which a given vector v} is the first characteristic vector against the
alternative that the covariance matrix has a different vector as first characteris-
tic vector, we can use (B8) and refer this criterion to the x*-distribution with
p — 1 degrees of freedom.

If the entire matrix = is not specified, we can estimate Z, ™" and & consist-
ently by S, S~ and d; , respectively. Then the asymptotic equivalent of (B6),

n(er — v1) [dS™ — 2I + (1/d1)S)(er — v1)
= n[dﬁis—l’h + (l/dl)’)’iS’Yl - 2]

has a limiting x*-distribution with p — 1 degrees of freedom when ¥, is the first
characteristic vector of =. Thus for a given vector v, , (B9) can be used to test
the hypothesis that it is the first characteristic vector of 2.

An asymptotic confidence region for the first characteristic vector of Z con-
sists of all vectors y1(y1y1 = 1) such that (B9) is not greater than the signifi-
cance point of the x’-distribution at significance level the complement of the
desired confidence coefficient.

For convenience the above discussion has been carried on in terms of the first
characteristic vector. Similar results are true for any other characteristic vector
corresponding to a root of multiplicity 1.

Mallows [14] has considered confidence regions for characteristic vectors with-
out specifying that the vector is associated with any particular ordered root.

AprPENDIX C. Some inequalities. Since d; is the largest characteristic root of S,

(B9)

(C1) dy = max, .y ¢'Sc = y1871 .

As noted in Section 1, iz has variance 8, and from Section 2 we see that vidyy
is distributed as

(C2) %Z_lxaxfxvl = 2_:1 (viza)’,

where 71z, is distributed accoring to N(0, 8,). Hence, vidy: = ny1Sv: is dis-
tributed as 81x5 (x* with n degrees of freedom). Hence

(C3) Prid, < déy} < Pr{viSv < do&y} = Pr{xs = nd}.

The expectations of the left and right hand sides of (C1) satisfy
(C4) 8dy = 8.
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Since the inequality (C1) depends only on d; being the largest characteristic
root of a symmetric random matrix S, the inequality (C4) holds if §, is the largest
characteristic root of &S. The inequality (C4) hag been proved by van der
Vaart [18].

Suppose one takes a second sample; let its covariance matrix be S* with
largest characteristic root di. Consider the variance in the second sample of
the first principal component ¢iz as determined by the first sample. This vari-
ance is ¢18%¢; . Then

(C5) eiS%e < max,e ¢'Ste = di.

Given ¢, the conditional expectation of this variance satisfies
(C6) &(c1S%cr | ¢1) = 12 = 6y .

Thus

(C7) &c1S%e < 8.

We see that the variance in the second sample of the first principal component
determined by the first sample is always no greater than the variance in the
second sample of the first principal component determined by that sample and
on the average underestimates the population variance of the first principal
component determined by the population. One might say the variance of the
first principal component “shrinks.” This eorresponds to the well known shrink-
age of the multiple correlation coefficient.
The corresponding inequalities for the smallest roots are

(C8) dyp = 75575,

(C9) Pr{d, < ds,} = Pr{xi < ndj,
(C10) &dp < 8y,

(C11) »S*s, = d,

(C12) Sc;S*cp = 6p-

ArrENDIX D. Proof of the Theorem on Limiting Distributions. The theorem of
Section 7, which was used to justify the derivation of agymptotic distributions,
has not been proved in publication even though it has been used and quoted for
more than 10 years (for example, in [1]). A relatively simple proof is given here.
The theorem was stated in more general form by Rubin in an unpublished paper
[17] (and was used in a paper published by Rubin and the present author in 1950).
The proof given by Rubin is correspondingly more sophisticated.”

3 Another special case of Rubin’s theorem is contained in Herman Chernoff’s lectures,
On Order Relations and Convergence in Distribution (dittoed), reported by John W. Pratt.
These notes and discussions with Chernoff and Pratt have been helpful. The criterion of
convergence used in these notes and in this paper is also given in P. Billingsley (1956).
Invariance principle for dependent random variables. Trans. Amer. Math. Soc. 83 252-268.
It is to be hoped that Rubin will publish his more general theorem.
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The convergence of F,(u) to F(u) is equivalent to
(D1) lim sup,-. Pr{U, ¢ S} = Pr{U ¢ S}

for every closed (Borel) set S in the Euclidean space of matrices . We wish
to show the convergence of @,(v) to G(v) which is equivalent to

(D2) Hm sUpPnse Pr{V, e T} = Pr{V e T}

for every closed (Borel) set T in the Euclidean space of matrices v, where V,, =
f,(U,) and V = f(U). Let

(D3) S, = {u|fu(u) e T},

(D4) S = {u|f(u) e T},

(D5) Ry = SyU Syl -,

(D6) RF=RNRN- - = limg, R,

where B, is the closure of B, and By D By O -+ since Ry D Ry O -+ . Then

lim supn.. Pr{V, ¢ T} = lim sup,.. Pr{U, & 8.}
(b7 = lim supu.« Pr{U. ¢ R}, m=1,2, -,
since S, C R, for n = m. Next (D7) implies
(D8) lm supnae Pr{V, ¢ T} = lim supn.. Pr{ {]n e R}
= Pr{U ¢ R4}, m=1,2,:--,

because of the convergence of the distributions of U, . Since the left hand side
of (D8) does not depend on m

(D9)  lim sUPnsew Pr{V, e T} < liMm.., Pr{U ¢ B} = Pr{U ¢ R},
the limit existing because R, is a monotone sequence. The assumption
(D10) Pr{U e D} =0,

where D is the set of discontinuities of f(u), implies

(D11) PriUe SUD} =Pr{Uc S} + Pr{U e D} = Pr{U ¢ S}.

The theorem follows from (D9), (D11) and the following lemma:
Lemma D1,

(D12) R* < SU D.

Proor. If u e R*, thenu ¢ R, (n = 1,2, --+); that is, in R, thereis a sequence

{us™} such that lims.., " = u. We can pick an element from each sequence,
(n)

SAY Uktay = Un , SO Un — u. (For instance, let uifs, be the ui” with smallest

index k so |us® — u] < 27") Since wu; & Ry, w & Sm for some m = 1. Let
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m(1) be the smallest m for which this is true, and let w = upq . Then
Un@y+1 € Sm

for some m = m(1) 4+ 1. Let m(2) be the smallest such m, and define ungy =

Ume) , ete. Then wumgy — u. Since
(D13) Hmn-»oo fm(n)(u:l:b(n» = f(u)

for w & D, fuwm) (tmmy) € T and T is closed, f(u) ¢ T and the lemma is proved.
It might be noted that the proof is valid for metric spaces and thus justifies a
more general theorem than the one given in Section 7 and used in this paper.
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