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ASYMPTOTIC THEORY FOR THE CORRELATED
GAMMA-FRAILTY MODEL
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The frailty model is a generalization of Cox’s proportional hazard
model, where a shared unobserved quantity in the intensity induces a
positive correlation among the survival times. Murphy showed consistency
and asymptotic normality of the nonparametric maximum likelihood esti-

Ž .mator NPMLE for the shared gamma-frailty model without covariates.
In this paper we extend this result to the correlated gamma-frailty model,
and we allow for covariates. We discuss the definition of the nonparamet-
ric likelihood function in terms of a classical proof of consistency for the
maximum likelihood estimator, which goes back to Wald. Our proof of the
consistency for the NPMLE is essentially the same as the classical proof
for the maximum likelihood estimator. A new central limit theorem for
processes of bounded variation is given. Furthermore, we prove that a
consistent estimator for the asymptotic variance of the NPMLE is given by
the inverse of a discrete observed information matrix.

0. Introduction. One of the standard assumptions in the analysis of
survival data is that the individuals under observation are independent. This
assumption can in many cases be questionable. A simple model for dependent
survival times, which is a generalization of the proportional hazard model, is
via the concept of frailty. This was first proposed by Vaupel, Manton and

Ž .Stallard 1979 . The motivation for the frailty model is that shared unob-
served risk factors not included in the model give a dependence among a
group of related survival times. Typical groups sharing some risk factors
might be a family, a pair of twins, mice born in the same litter or repeated
measurements on one individual.

The frailty is usually modeled as an unobserved random variable acting
multiplicatively on the baseline hazard functions. So if the hazard function

Ž .for an individual with frailty 1 is � u , then the hazard function of an
Ž .individual with frailty value z is z� u . If individuals in a group share the

same value of z, then this is called a shared frailty model. Usually, it is
assumed that the frailty follows a gamma distribution with mean 1 and
unknown variance � . The value � � 0 corresponds to independence and a
high value of � should preferably correspond to a high correlation between
the survival times. The choice of the gamma distribution is made mostly for
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mathematical convenience. Other choices for the distribution of the frailty
� Ž .have been discussed in a series of papers by Hougaard see Hougaard 1987 ,

�and the references therein . Covariates are incorporated in the model by
assuming that the conditional hazards, given the frailty, follow a Cox regres-

Ž . Ž T . Ž . Ž .sion model, that is, � u � exp � x � u , where x is a covariate and � � is0 0
the baseline hazard.

Ž .It was shown in Elbers and Ridder 1982 that, with covariates in the
model, frailty distributions with finite mean can be identified from marginal

�data, as for example the gamma distribution see also Kortram, Van Rooij,
Ž . �Lenstra and Ridder 1995 for a constructive proof of the identification . For

example, for twin data this means that we can estimate the parameter �
knowing only one of the twins. Thus the parameter � in this model describes
something more than just the correlation between the survival times. This

Ž .was one of the reasons which lead Yashin, Vaupel and Iachine 1995 to split
the frailty for an individual, j, say, into two components, z Ž j. � z � z ,0 j
where z is a common component for all individuals and z is an individual0 j
component. The two frailties are independent, gamma-distributed random
variables with the same scale parameters, but different shape parameters.
Therefore also z Ž j. is gamma distributed. Now, the correlation between z Ž j.

and z Ž l ., j � l, cannot be identified from marginal data.
In this paper we use a counting process approach to the frailty model. This

Ž .approach was first introduced by Gill 1985 in a discussion of the paper by
Ž .Clayton and Cuzick 1985 . He suggested estimating both the Euclidean part

and the infinite-dimensional part of the parameter by nonparametric maxi-
mum likelihood estimation and, moreover, that this in application could be
carried out by an EM-algorithm. This approach was further developed in

Ž . Ž .Nielsen, Gill, Andersen and Sørensen 1992 . Murphy 1994, 1995 showed
consistency and asymptotic normality of the NPMLE in the shared frailty
model without covariates, that is, where the parameters are the integrated
hazard function and the variance of the gamma-distributed frailty. In this
paper we extend these results to the correlated frailty model and we allow for
covariates.

The paper is organized as follows: in Section 1 we define the correlated
frailty model and derive the likelihood function. In Section 2 we discuss the
definition of the nonparametric likelihood function in connection with a

Ž .classical proof of consistency, which goes back to Wald 1949 . We show in
Ž .Section 3 that Wald’s 1949 technique to prove consistency of the maximum

likelihood estimator can be extended to prove the consistency of the NPMLE.
In Section 4 we show that the NPMLE is asymptotically normal and prove
that a consistent estimator for the asymptotic variance for the NPMLE is
given by the inverse of a discrete information matrix.

1. The model. We shall use a counting process approach to the corre-
lated frailty model. The model is a generalization of the shared frailty model

Ž .presented by Nielsen, Gill, Andersen and Sørensen 1992 .
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Ž . Ž .Let N � N , . . . , N , � � � , . . . , � be a multivariate counting process1 m 1 m
Žand intensity process associated with a unit e.g., family, pair of twins,

. Ž .group . Let Y � Y , . . . , Y be a vector of left-continuous processes with1 m
Ž . � 4 Žright-hand limits caglad , taking values in 0, 1 and indicating by the value

. Ž .1 if the jth component of the unit is under observation. We consider Y � toj
Ž . � 4 Ž .be decreasing, corresponding to right censoring. So, N � � 0, 1 and N �j j

Ž .only jumps when Y � is equal to 1. Let X be a column vector of d cagladj j
Ž .covariate processes for the jth component and let X � X , . . . , X . We1 m

assume that the intensity is given by

� Ž j. Ž j. T1 � � Z � Z Y � exp � X � � � , j � 1, . . . , m,Ž . Ž . Ž . Ž .Ž . Ž .j j j

Ž j. Ž .where Z � Z � Z and Z � Z , Z , . . . , Z are independent, unobserv-0 j 0 1 m
Ž . Ž � .able, gamma-distributed random variables with parameters � , � , � , � ,

Ž � .. . . , � , � , respectively. Here � is a column vector of d regression parame-
Ž . Ž j.ters and � � is an unknown baseline hazard function. In this case Z is

Ž � .gamma distributed with parameters � � � , � . In order to be able to iden-
Ž .tify both the parameters in the distribution of Z and � � , we restrict the

Ž j. � Ž .mean of Z to 1, which means that � � � � � . We assume that 1 is valid
conditional on the value of the covariates and that the covariates follow some
arbitrary distribution. By doing this, the covariates becomes exogenous.

It turns out to be convenient to use another parametrization. Instead of
� Ž . 2 � Ž .� , � we shall use the parameters � � var Z � ��� and � � var Z �0 j

� 2 � Ž Ž j. Ž l ..� �� . One could also reparametrize with � � � � � and � � corr Z , Z�

Ž .as is Yashin, Vaupel and Iachine 1995 , but this parametrization has the
Ždisadvantage that the parameters are not variation independent if � � 0�

. �then 	 � 1 . For � � 0 the model becomes the shared frailty model. In the
Ž � .following, we let 
 denote the parameters � , � , �, H� du .

Ž .Assuming as in Nielsen, Gill, Andersen and Sørensen 1992 that the
Ž .censoring is independent and noninformative of Z and �, � , the likelihood

Ž .for the full but unobserved data set N, Y, Z is given by

m
Ž .� N u �jŽ j. Ž j. �2 �1 �2 �1�� u z exp �z � p z ; � � , � p z ; �� , � ,Ž . Ž .Ž . Ž .Ł Ł j j j � � 0 � �½ 5

uj�1

Ž . u Ž . Ž . u Ž . Ž T Ž .. Ž . Ž .where � u � H Y s; � � s ds � H Y s exp � X s � s ds, � � � j 0 j 0 j j j j
Ž . Ž . �and p �; � ,� denotes the gamma density with parameters � , � see also
Ž .� � Ž . � 4Parner, 1996a . Using the binomial formula, we get N u � 0, 1 , hence allj

�the binomial coefficients are equal to one

Ž . Ž .N  N m m1 m
Ž .N  N Ž .�k kj j j jz � z � ��� z zŽ .Ł Ý Ý Ł0 j 0 j

j�1 j�1k �0 k �01 m

m
k N Ž .�kj � �� z z ,� 4Ý Ł j 0

j�1Ž .k�K 
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Ž . Ž . � � � Ž .4 4 mwhere k � k , . . . , k , K u � k k � 0, N u , j � 1, . . . , m , k � Ý k1 m j j � j�1 j
Ž . m Ž . m � k j4 N�Ž .�k �and N u � Ý N u . For each term of the form Ł z z , using� j�1 j j�1 j 0

the structure of the gamma density, it is easy to integrate the z’s out in the
Ž .full likelihood function. This gives that the likelihood function for N, Y

observed up to a fixed time  is
m

Ž .� N ujN , Y2 L 
 � Y u; � � u a k,  ,Ž . Ž . Ž . Ž . Ž .� 4Ł Ł Ý j
u�j�1 Ž .k�K 

Ž . Ž .where a k, u � a k, u; 
 is given by

m � �2� � � � k 1Ž .� jŁ � �2� �2 � � �k� j½ 5� � �Ž .j�1 � 1 � � � uŽ .Ž .� j

� ���2 � N u � k � N�Žu.Ž .Ž .� � � �
� �2�2 Ž .�� �N u �k� � �� ��Ž .� 1 � � � uŽ .Ž .� �

Ž . m Ž .and � u � Ý � u .� j�1 j

Ž Ž .The conditional expectations of Z , Z given the �-algebra FF � � X s ,0 j u
Ž . Ž . .N s , Y s : 0 � s � u are

Ý a k, u b k, uŽ . Ž .k � K Žu. 0ˆ ˆ �Z u � Z u; 
 � E Z FF � ,Ž . Ž .0 0 
 0 u Ý a k, uŽ .k � K Žu.

Ý a k, u b k, uŽ . Ž .k � K Žu. jˆ ˆ �Z u � Z u; 
 � E Z FF � ,Ž . Ž .j j 
 j u Ý a k, uŽ .k � K Žu.

where

���1 � � N u � k � ���1 � � kŽ .Ž .� � � � � � j
b k, u � , b k, u � .Ž . Ž .0 j1 � � � u 1 � � � uŽ . Ž .� � � j

Ž .There is another way of deriving the likelihood for N, Y . This is to use the
� Ž .� Ž . Ž .innovation theorem Bremaud 1981 to the observed history FF . The FF -t t

intensity of N is given by replacing Z by its conditional expectation with
Ž .respect to the history FF , that is,t�

FF Ž̂ j. T3 � u � Z u � Y u exp � X u � u ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .j j j

Ž̂ j. ˆ ˆŽ . Ž . Ž .where Z u � Z u � Z u . This implies that the likelihood function for0 j
Ž .N, Y can be written as

m Ž .� N uFF FFj4 � u exp � � u du .Ž . Ž . Ž .Ł Ł Hj jž /0u�j�1

Ž . Ž . Ž .It was shown in Gill 1992 that 2 and 4 are equal if the censoring is
noninformative of Z.
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�Ž .4 Ž .Let N , Y , X , Z be a sequence of i.i.d. replicates of N, Y, X, Z . Thisi i i i i
will induce an additional index i on all the quantities defined in this section.
Let 
 denote the true value of 
 . We impose the following regularity0
conditions on the model.

Ž . � � �CONDITION 1. a � , � lie in a known interval 0, M .0 0
Ž . db � is an interior point in a known compact subset BB 	 RR .0
Ž .c The covariates X are uniformly bounded in variation norm.j

Ž . Ž .  Ž . Ž .d � � � 0, H � u du � � and � � caglad.0 0 0 0

In Section 2 we shall show that it is natural to impose at least some bound
on the variance parameters in order to ensure consistency of the estimators.

Ž .Note that the second requirement in 1 d implies that we can work with the
supermums norm on the space of integrated hazard functions and also that
 � �.

Ž . m Ž .Let P � P and Y u � Ý Y u . To ensure identifiability of the param-0 
 � j�1 j0

eters we assume the next condition.

Ž . Ž Ž . � �.CONDITION 2. e P Y u 
 1 for all u � 0,  � 0.0 �

Ž . Ž Ž . .f P Y 0 
 2 � 0.0 �

Ž . Ž T Ž . Ž . Ž . � � .g If either P c X u Y u � c Y u for all u � 0,  , j � 1, . . . , m � 10 j j 0 j

Ž T Ž . Ž . Ž . .or P c X 0 � Y 0 � c Y 0 for j � 1, . . . , m � 1 then c � 0.0 j j 0 j
Ž . � � Ž . Ž T Ž ..h For � � 0, there exists a j and a u � 0,  such that Y u exp � X u0 j 0 j

attains at least two different values other than zero.

Ž .Condition 2 e ensures that we can observe failures on the entire interval
and therefore be able to estimate A on the entire interval. This is also

Ž .assumed in Andersen and Gill’s 1982 treatment of the standard Cox regres-
Ž � . Ž .sion model for m � 1 and � � � � 0 . Condition 2 f is of course necessary,

since we otherwise cannot identify the correlation ���1 between Z and Z .� 0 j
Ž .Note that we do not require that Y 0 � 1 with probability 1 for all j; that is,j

the number of components in the group could be random. For example, in
litters of mice the size of the different litters are not necessarily the same and
could even be equal to 1. The number m should therefore be seen as the
maximum number of components in the group. It is useful to think of the
model as being constructed given the size of the group, S � s, and then

� 4 Ž .letting S follow some distribution on 1, . . . , m with P S 
 2 � 0.
Ž .Condition 2 g is to avoid colinearity among the covariates. Note that the

Ž .second assumption in 2 g is indeed necessary, otherwise the model is not
Ž .identifiable. For the shared frailty model, the second assumption in 2 g is not

Ž .necessary. If Condition 2 e is replaced by

�� �P Y u � 1 for all u � 0,  Z � z, X � x � 0 for all z and x,Ž .Ž .0 j
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Ž .then using that the covariates are exogeneous, the first probability in 2 g is

T � �P c X u Y u � c u Y u for all u � 0,  , j � 1, . . . , mŽ . Ž . Ž . Ž .Ž .0 j j 0 j

� P cTx � Y � � c � Y �Ž . Ž . Ž . Ž .ŽH 0 j 0

�for j � 1, . . . , m Z � z, X � x dP z, xŽ .. 0Z X

T �� P c x � � c � for j � 1, . . . , m Z � z, X � x dP z, xŽ . Ž . Ž .Ž .H 0 j 0 0Z X

T � �� P c X u � c u for all u � 0,  , j � 1, . . . , m ,Ž . Ž .Ž .0 j 0

which means that the covariates should, as processes, be affine independent.
Ž .The type of condition in 2 g does not immediately appear in Andersen and

Ž . Ž .Gill 1982 . They assume instead that the observed partial information
matrix converges to a strictly positive definite matrix, � say. Since Cox’s
partial likelihood function is a profile likelihood of the nonparametric likeli-
hood function, it is relatively easy to show that if the Fisher information
operator is one-to-one, then � is positive definite. For the Cox regression
model, the Fisher information operator is one-to-one if and only if the

Ž T Ž . Ž . Ž . Ž . � �.equality P c X u Y u � c u Y u for all u � 0,  � 1 implies c � 0. If0 1 1 0 1
the covariates are exogenous and we assume

�� �P Y u � 1 for all u � 0,  X � x � 0 for all xŽ .Ž .0 1 1 1 1

then the probability can be rewritten as above. If the covariates are time
Ž T .independent then the condition becomes: if P c X � c � 1 holds then1 0

c � 0. Surprisingly enough, this fact has not been noticed before.
For � � 0, the components are independent and, as noted by Elbers and0

Ž .Ridder 1982 , the model without covariates is not identifiable. Therefore
Ž .condition 2 h is assumed.

We shall now argue that it is possible to extend the model for strictly
negative � , � �. This allows for formal testing of whether the correlated frailty
is appropriate, that is, if � � 0 or � � � 0. For fixed � , respectively � �, we
have

1 � � N uŽ .�Ž j.ˆlim Z u; 
 � ,Ž . u� 1 � �H Y � dA� �0 Ž .0 �

1 � � �N uŽ .jŽ j.ˆlim Z u; 
 �Ž . � u1 � � H Y � dA��0 Ž .0 j

and further

Ž̂ j.lim Z u; 
 � 1.Ž .
���0, � �0
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� � � Ž̂ j.Ž . Ž .For � negative, we can find an � � � � , A � 0 such that Z u; 
 is
positive for � � 
 �� . Furthermore, we can find an � sufficiently close to zero
such that the likelihood function is sufficiently close to the limit

Ž .� N u�m Ł 1 � � N u �� 4Ž .Ž .� N u u �jY u; � � u ,Ž . Ž .� 4Ł Ł �1j Ž .� �N �uj�1 1 � �� Ž .Ž .�

for example, such that the relative difference is between 0.9 and 1.1. Simi-
Ž � .larly for � negative, gives an � � � � , A � 0. The parameter space � is

then
� ��
 � , A � BB � AA, � � �� � , A , M , � � �� � , A , M ,� 4Ž . Ž . Ž .

where AA is the space of integrated hazard functions.

2. Nonparametric maximum likelihood estimation. In this section
Ž .we discuss how the nonparametric maximum likelihood estimator NPMLE

is defined. For simplicity we consider only the shared frailty model. The
correlated frailty model is treated in exactly the same way. The log-likelihood
function is

n m 
N , Yn log L � , � , A � log Y u; � � u dN uŽ . Ž . Ž . Ž .Ž .Ý Ý Hn i j i j½ 0i�1 j�1



� log 1 � �N u � dN uŽ . Ž .Ž .H i � i �
0


�1� � � N  log 1 � � Y u; � dA u .Ž . Ž . Ž .Ž . Hi � i �ž / 50

Fixing � and �, we see that the log-likelihood function tends to infinity as A
tends to a discrete integrated hazard function with strictly positive jumps

� � Ž . 4only at the observed failure times, J � u � i � n: � N u � 0 . Hence, then i �

maximum likelihood estimator does not exist. This is similar to the ordinary
Cox regression model, that is, the case where � � 0. This suggests that we
should look for estimators where the integrated hazard function is discrete.
One could try to extend the original model to allow for discrete integrated
hazard functions and then use maximum likelihood estimation according to

Ž .Kiefer and Wolfowitz 1956 . However, there are many extensions of the
frailty model that seem reasonable, depending on which aspect of the model
one focuses on. These extensions need not all give maximum likelihood
estimators which have nice asymptotic properties. So this way of defining the
NPMLE will not in general give good estimators. In the ordinary Cox

Ž .regression model, such an extension was constructed by Johansen 1983 . A
discussion of NPMLE in survival analysis is given in Andersen, Borgan, Gill

Ž .and Keiding 1993 . We shall motivate the NPMLE by making the connection
to a classical method for proving consistency of the maximum likelihood

Ž .estimator which goes back to Wald 1949 . A more recent treatment of this
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Ž .method is given in Hoffmann-Jørgensen 1994 , Chapter 13. See also Groene-
Ž . Ž .boom 1991 and Wijers 1995 for applications in the nonparametric setting.

Let P denote the distribution of a single observation and let P denote the
 n
empirical distribution of the data. If a maximum likelihood estimator, accord-

ˆŽ .ing to the definition of Kiefer and Wolfowitz 1956 , exists, 
 , say, thenn

dP dP
̂ 
n 05 log dP 
 log dP ,Ž . H Hn nd� d�

where � denotes a measure dominating P and P . Assume that for any
̂ 
n 0

ˆ� 4 � 4subsequence of n we can find a further subsequence, n , such that 
 � 
k nk

for some 
 . From the uniform law of large numbers it then follows that the
Ž .inequality 5 in the limit is

dPdP 

 06 log dP 
 log dP .Ž . H H
 
0 0d� d�

On the other hand, from the positivity of the Kullback�Leibler information
we have

dPdP 

 07 log dP � log dPŽ . H H
 
0 0d� d�

� Ž .with equality if and only if P � P see, e.g., Hoffmann-Jørgensen 1994 ,
 
 0� Ž .Section 8.28 . So if the model is identifiable, then 6 implies 
 � 
 . Since0
ˆthe limit is independent of the subsequence, we get that 
 � 
 .n 0

One should note that the argument above only depends on the log-likeli-
Ž . Ž .hood difference log dP �d� � log dP �d� . In the shared frailty model
 
1 2

Ž .
 � � , �, A , where A is an absolutely continuous integrated hazard func-
tion. To define the NPMLE we simply extend this difference to allow for a
discrete integrated hazard function in as ‘‘smooth’’ a way as possible and then

Ž .define the NPMLE as the value which maximizes the first extended term of
the difference. Since the true integrated hazard function is absolutely contin-
uous, we can no longer compare the NPMLE with the true value. Instead we
compare the NPMLE with a sequence converging to the true value, 
 �n
Ž .� , � , A , where A is discrete and A � A . If for any subsequence we0 0 n n n 0

ˆ� 4 Ž .can find a further subsequence, n , such that 
 � 
 � � , �, A with Ak nk

absolutely continuous, and if the extension is ‘‘smooth’ enough, then the
extended log-likelihood difference still converges to minus the Kullback�
Leibler information

dPdP 

 08 log dP � log dP .Ž . H H
 
0 0d� d�

This means that the extension we make should become smaller and smaller
as n tends to infinity. Assuming that the parameters are identifiable we get,

ˆin the same way as above, that 
 � 
 .n 0



CORRELATED FRAILTY MODEL 191

This way of motivating the NPMLE is new. A similar way of motivating
Ž .the NPMLE was given in Gill 1989 . He motivates the NPMLE by extending

score functions for a class of one-dimensional submodels in as smooth a way
as possible. In this way he gives an explanation why the NPMLE is asymptot-
ically normal in cases where it is known in advance that the NPMLE is
consistent. In practice, the smooth extension of the log-likelihood difference
and the smooth extension of the score functions are the same. This way of

Ž .proving the consistency was in principle also applied in Murphy 1994 , but
without explicitly making the connection to the classical proof of consistency
of the maximum likelihood estimator. By making this connection, we have
been able to further simply the proof of consistency of the NPMLE in the
frailty model.

For the shared frailty model, assuming A is absolutely A -continuous, the1 2
log-likelihood difference is

n m  1
log Y u; � dN u � log Y u; � dN uŽ . Ž . Ž . Ž .Ž . Ž .Ý Ý H Hi j 1 i j i j 2 i j½n 0 0i�1 j�1

m 

� log dA u �dA u dN uŽ . Ž . Ž .Ž .Ý H 1 2 i j
0j�1

 

� log 1 � � N u � dN u � log 1 � � N u � dN uŽ . Ž . Ž . Ž .Ž . Ž .H H1 i � i � 2 i � i �
0 0


�1� � � N  log 1 � � Y u; � dA uŽ . Ž . Ž .Ž . H1 i � 1 i � 1 1ž /0


�1� � � N  log 1 � � Y u; � dA u ,Ž . Ž . Ž .Ž . H2 i � 2 i � 2 2ž / 50

Ž . Ž . Ž . Ž .since dA u �dA u � � u �� u . The expression is also well defined1 2 1 2
for A , A discrete with mass only in J , because then A is absolutely A -1 2 n 1 2

Ž . Ž .continuous with derivative � A u �� A u . In this way we extend the1 2
log-likelihood difference to allow for discrete integrated hazard functions. The
nonparametric log-likelihood function for a discrete integrated hazard func-
tion is then given by

n m 1
L 
 � log Y u; � � A u dN uŽ . Ž . Ž . Ž .Ž .Ý Ý Hn i j i j½n 0i�1 j�1



� log 1 � � N u � dN uŽ . Ž .Ž .H i � i �
0


�1� � � N  log 1 � � Y u; � dA u .Ž . Ž . Ž .Ž . Hi � i �ž / 50

Using this expression, it is easily seen that the NPMLE for the integrated
hazard function is discrete with jumps only at time points where we observe
failures.
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�This type of extension works well for transformation models the correlated
frailty model is also a transformation model. For a definition of transforma-

Ž .�tion models see Bickel, Klaassen, Ritov and Wellner 1993 . By ‘‘smooth’’
extension, we really only mean that the extended log-likelihood difference
should converge to minus the Kullback�Leibler information for n tending to
infinity. For the shared frailty model, an extensive simulation study was done

Ž .in Morsing 1994 , showing in general good small sample properties for the
Ž .NPMLE. In Pedersen 1995 a simulation study showed that these good small

sample properties carries over to the correlated frailty model.
Let us consider the nonparametric log-likelihood function for the correlated

frailty model

n m 1
9 log � A dN � log a k,  .Ž . Ž . Ž .Ý Ý ÝH i j iž /½ 5n 0i�1 j�1 Ž .k�K i

We shall in the following give an argument for why there should at least be
some bound on the variance parameter � , � �. For � A tending to zero as n
tends to infinity, the nonparametric log-likelihood function tends to minus

Ž . Ž .infinity. If instead of � A in 9 we considered n � A, then, for n � A �
Ž .� Ž Ž .. Ž .4�1converging to � � E ZY � � � , this normed nonparametric log-likeli-0 � 0

�Ž .hood function evaluated at � , � , �, Hn � A dN is asymptotically equal to the�

Ž � . Žtrue log-likelihood function evaluated at � , � , �, H� dt except for a con-
.stant which only depends on the true parameter . The normed nonparametric

log-likelihood function is bounded below by

n m 1
log n � A dN � log a N  , . . . , N  , Ž . Ž . Ž .Ž .Ž .Ž .Ý Ý H i j i i1 im½ 5n 0i�1 j�1

n m 1
� log n � A dNŽ .Ý Ý H i j½n 0i�1 j�110Ž .

� � ���2 � N  log 1 � � � Ž . Ž .Ž .Ž .� i j � i j

�N  log � ���1 � ���2 log 1 � � �  .Ž . Ž .Ž .Ž .i j � � � i � 5
� � Ž .Consider values � , � such that � �� � p. For n � A � converging to the�

Ž .same function as above, 10 converges to

m  
�1E log � dN � p� � N  log 1 � � Y � duŽ . Ž .Ž .Ý H H0 j � j � jž /½ 0 0j�1

11Ž .


�1�N  log p � 1 � p � log 1 � � Y � du .Ž . Ž . Ž . Hj � � �ž / 50

Ž .Reparametrizing with the observed integrated hazard function � u �
�1 Ž Ž .. Ž . Ž .� log 1 � � A u and the hazard function � u � �� u �� u, then for �� �
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Ž .fixed and � conversing to infinity, 11 converges to�

m  

E log � dN � p Y d� � N  log pŽ . Ž . Ž .Ý H H0 j j j½ 0 0j�1
12Ž .



� 4� 1 � p 1 Y� 0 d� .Ž .H � 50

Ž .Thus, there is an asymptotic lower bound on the normed nonparametric
log-likelihood function even for � converging to infinity. Furthermore, for p�

Ž .close to 1, 12 is close to
m  

E log � dN � Y d� ,Ž .Ý H H0 j jž /0 0j�1

the asymptotic log-likelihood function in the case where the components are
independent. This means that in the limit we cannot necessarily rule out
parameter values on the boundary of the unrestricted parameter space. It is,
therefore, natural to impose a bound on the variance parameters.

3. Consistency. The plan for proving the consistency is as follows. In
Proposition 1 we state that the NPMLE exists as a maximizer of the
nonparametric likelihood function. In Proposition 2 we show that under
Condition 2 the Kullback�Leibler information is strictly positive for 
 � 
 .0

ˆ� 4The next step is, for any subsequence of 
 , to find a further convergentn
ˆ� 4subsequence. First, we show that the sequence 
 stays bounded. Using thisn

we can immediately find a convergent subsequence of the finite-dimensional
part of the parameter. To find a convergent subsequence of the integrated

�ˆ ˆŽ . Ž .Ž . Ž . Ž .hazard functions we write it as A � � H dA �dN s dN s , where N sn 0 n �� �� ��
�1 n m ˆŽ . � 4� n Ý Ý N s . Since 
 stays bounded, it follows that alsoi�1 j�1 i j n

ˆŽ .Ž . Ž .dA �dN � stays bounded. Using that N � converges by the law of largen �� ��

� Ž .�numbers, an application of the Helly’s selection theorem Hildebrandt 1963
ˆ Ž .gives us a convergent subsequence of A � . This is done in the first part ofn

Theorem 1.
Ž .Now we are finished if we can show that in the limit the inequality 5 is

Ž .equal to the inequality 6 . To derive the strong consistency we need to make
sure that all the convergences take place on the same set of probability 1. If
� were compact, a standard application of the uniform law of large numbers
would give the result. In our case, however, � is not compact. Instead we use
a version of the uniform law of large numbers which takes into account that

Ž .the set of possible limit points is separable Proposition 3 in Appendix A .
The proof of the following proposition is similar to the proof of NPMLE

stays bounded, which is done in the proof of Theorem 1, and is therefore
� Ž .�omitted for details see Parner 1996a .

Ž .PROPOSITION 1. If N  
 1, then the supremum of L exists and is�� n
achieved.
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It follows from Proposition 1 that the maximum of the nonparametric
likelihood function must be attained at a point where the partial derivatives

Ž .for � A u are equal to zero, where u denotes a time of a failure. Let �l l
denote the finite-dimensional part of the parameter. Taking the derivative of

Ž .L with respect to � A u and setting it equal to zero, yields, for fixed �, then l
ˆ ˆŽ . Ž .following equation for A � � A �; � :n n

�1n mu 1
Ž j.ˆ ˆ ˆ13 A u � Z  ; � , A Y s ; � dN s .Ž . Ž . Ž . Ž .Ž .Ý ÝHn i n i j ��ž /n0 i�1 j�1

PROPOSITION 2. Under Condition 2, the Kullback�Leibler information is
strictly positive for 
 � 
 .0

PROOF. The Kullback�Leibler information is nonnegative and if it is
equal to zero then P and P are equal on the �-algebra FF . This means that
 
 0

if the model for the observed data is identifiable then the Kullback�Leibler
information is strictly positive for 
 � 
 .0

Ž . � T Ž .4 Ž . Ž . u Ž . �Let � u � exp � X u � u and A u � H � s ds. Further let L ,j j j 0 j Z

L , L and L � , L , L denote the Laplace transforms of Z� �Z Z 0Z 0Z 0Z0 j 0 j

Ž Ž1. Žm.. Ž . ŽZ , . . . , Z , Z , Z under P and P . Dabrowska 1988 shows for fixed0 j 
 
 0

.group size that the observed survival function can be identified under
independent right censoring. However, we only know the observed survival
function is of the form

m

�14 L A s , . . . , A s � L A s � ��� �A s L A s� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .� 4ÝZ 1 1 m m Z 1 1 m m Z j j0 j
j�1

for � , � � nonnegative. In the following, we let L � , L , L denote theZ Z Z0 j

Laplace transforms extended to allow for negative values of � , � �. Since P


and P are equal on the �-algebra FF then the stochastic intensities with
 0
Ž .respect to FF are equal. For a vector of nonnegative integers a, we lett

� a1 � am
a

� �L s , . . . , s � ��� L s , . . . , sŽ . Ž .Z 1 m Z 1 ma a1 m� s � s1 m

� Ž .�the derivative of L s , . . . , s , a times with respect to s , a times withZ 1 m 1 1 2
�respect to s and so forth . The stochastic intensity can be written in the form2

La
� � u , . . . , � u� 4Ž . Ž .Z 1 mFF15 � u; 
 � � Y u � u ,Ž . Ž . Ž . Ž .j j jb
�L � u , . . . , � u� 4Ž . Ž .Z 1 m

where

a � N u , . . . , N u , N u � 1, N u , . . . , N u ,Ž . Ž . Ž . Ž . Ž .Ž .1 j�1 j j�1 m

b � N u , . . . , N u .Ž . Ž .Ž .1 m

This formula for the stochastic intensity holds also for � , � � negative. We
shall show that from equality of the intensities we have equality of the
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Ž .extended expression of the survival functions in 14 . The proof of this step
does not depend on the correlated gamma-frailty model in any way and holds
for general frailty models. The final step is to identify the parameters from
the observed survival function.

In the following we consider the conditional distribution given the censor-
ing times, c , . . . , c say, and the covariates. Suppose that all the failure1 m
times are larger than  . Summation over all the intensities gives

� �
� �log L � u , . . . , � u � log L � u , . . . , � u� 4 � 4Ž . Ž . Ž . Ž .Z 1 m 0Z 01 0 m� u � u

and therefore

L � A u � c , . . . , A u � c � L � A u � c , . . . , A u � c� 4 � 4Ž . Ž . Ž . Ž .Z 1 1 m m 0Z 01 1 0 m m

� � Ž � �for u � 0,  . The formula is first seen to hold for all u � 0,  except at the
� � . Ž .censoring times and by continuity for all u � 0,  . From 15 it therefore

follows that

Ld
� A u � c , . . . , A u � c � u� 4Ž . Ž . Ž .Z 1 1 m m j

� Ld
� A u � c , . . . , A u � c � u� 4Ž . Ž . Ž .0Z 01 1 0 m m 0 j

16Ž .

for u � c , where d � 0 for k � j and d � 1.j k j
Suppose that the first component has a failure at time v � c and the other1

failure times are larger than  . For u � v, using a similar argument as above,
we derive

Ld
� A v , A u � c , . . . , A u � c� 4Ž . Ž . Ž .Z 1 2 2 m m

� C v Ld
� A v , A u � c , . . . , A u � c� 4Ž . Ž . Ž . Ž .0Z 01 02 2 0 m m

Ž .for a constant C v . This holds for all v � c and all v � u �  . choosing1
Ž . Ž . Ž . Ž .u � v, we see from 16 that C v � � v �� v and therefore0

L � A v � c , A u � c , . . . , A u � c� 4Ž . Ž . Ž .Z 1 1 2 2 m m

� L � A v � c , A u � c , . . . , A u � c� 4Ž . Ž . Ž .0Z 01 1 02 2 0 m m

for all v � u �  . By a simple proof of induction we get that

L � A s � c , . . . , A s � c� 4Ž . Ž .Z 1 1 1 m m m
17Ž .

� L � A s � c , . . . , A s � c� 4Ž . Ž .0Z 01 1 1 0 m m m

Ž .for 0 � s � s � ��� � s �  and, by symmetry, 17 is valid for all1 2 m
� �s , . . . , s � 0,  .1 m

Let us first consider the case where there are no covariates. Let � , �0 1
denote the extended versions of the cumulant transforms of Z , Z under P .0 1 


Ž .From the joint survival function we can by Condition 2 f clearly identify

2L A u L A u , L 2 A u L A u� 4 � 4 � 4 � 4Ž . Ž . Ž . Ž .Z Z Z Z0 1 0 1
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� �for u � 0, � , for some � � 0, and therefore also

18 � 2 A u � 2� A u .� 4 � 4Ž . Ž . Ž .0 0

We can also without loss of generality assume that A, A are twice differen-0
tiable. Let � Ž l ., � Ž l . denote the lth derivative of � , � . The second and third0 1 0 1

Ž .derivatives of 18 are
2Ž2.19 2� 0 � 0 ,Ž . Ž . Ž .0

3Ž3. Ž2. Ž1.20 6� 0 � 0 � 6� 0 � 0 � 0 .Ž . Ž . Ž . Ž . Ž . Ž .0 0

Similarly, from the first derivative of the marginal survival function we find
Ž .� 0 and the second derivative is

2Ž2. Ž2. Ž1. Ž1. Ž1.21 � 0 � � 0 � 0 � � 0 � � 0 � 0 .Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4 � 40 1 0 1

Ž . Ž2.Ž . Ž .From 19 we find � 0 � �� , whence � � � . From 20 we find0 0

� Ž3. 0Ž .0 2 Ž1.� 0 � � 0Ž . Ž .Ž2.� 0Ž .0

Ž .and using 21 , we can identify

� Ž3. 0Ž .0 Ž2. Ž2.22 � � 0 � � 0 � � ,Ž . Ž . Ž .0 1 �Ž2.� 0Ž .0

whence � � � � �.0
The marginal survival functions are

u u
Ž j. Ž j.L Y � ds � L Y � ds .H HZ j Z j 0ž / ž /0 0

Inverting the Laplace transforms gives H uY � ds � H uY � ds, which by con-0 � 0 � 0
Ž . Ž . Ž .dition 2 e means that A � , A � are equal with positive probability, and0

Ž . Ž .therefore that � � � � � .0
Now we turn to the case where there are covariates in the model. The

derivative of the logarithm of the marginal survival functions are
1

Y � ; u � uŽ . Ž .ju
1 � � Y � dAŽ .H� j

0

1
� Y � ; u � u .Ž . Ž .j 0 0u

1 � � Y � dAŽ .H0 � j 0 0
0

23Ž .

For u tending to zero we get

exp �T X 0 � � 0 � Y 0 � exp �T X 0 � � 0 � Y 0 .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .j j 0 j 0 j

Ž . Ž . Ž . Ž .By Condition 2 g this implies that � � � . Let � u � � u �� u . We can0 0
Ž .without loss of generality assume that � � is differentiable. If � � 0 then0 �

Ž .from 23 we get

� Ž1. u Y u � � exp �T X u � u Y uŽ . Ž . Ž . Ž . Ž .Ž .j � 0 j j
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Ž .and from Condition 2 g it follows that � � 0 and vice versa. Now consider�

Ž .the case where both � , � are not equal to zero. It follows from 23 that� 0 �

1 � � H uY � dAŽ .� 0 0
24 � u Y u � Y u .Ž . Ž . Ž . Ž .j ju1 � � H Y � dAŽ .0 � 0 0 0

Ž .Integrating 23 gives
u u

�1 �1� log 1 � � Y � dA � � log 1 � � Y � dA .Ž . Ž .H H� � j 0 0 � 0 � j 0 0ž / ž /0 0

Ž . Ž .If � � � , this equation implies that � � � � � . So suppose that � � � .� 0 � 0 � 0 �

Ž .Using 24 we have
u

�1 �1� � log � u Y u � 1 � � � log 1 � � Y � dA Y u ,� 4Ž . Ž . Ž . Ž .Ž . H0 � � j 0 � � 0 � j 0 0 jž /0

which implies that
� Ž .� � � �� T0 � � 0 �� u Y u � � exp � X u � u Y u .Ž . Ž . Ž . Ž . Ž .� 4 Ž .j 0 � 0 j 0 j� u

Ž .By Condition 2 g this gives a contradiction. Therefore � � � and hence� 0 �

Ž . Ž . �� � � � � . The parameters � and � can be identified from the simultane-0
ous intensities in the same way as above. This shows that the parameters are
identifiable. �

� � � � � Ž . �Using the norm 
 � � � sup A u we have:u��0,  �

ˆTHEOREM 1. Under Conditions 1 and 2, 
 � 
 , P -a.s.n 0 0

PROOF. The proof will be for � fixed in a set of probability 1. The set is
defined as a intersection of sets, each of probability 1, where the strong law of
large numbers holds for some average. Hence in the proof we shall make sure
that we only use the law of large numbers at most countably many times.

ˆ ˆ� 4 Ž .The first step is to show that 
 stays bounded, that is, lim sup A  � �.n n n
ˆ� 4If this is not the case, we can find a subsequence, n , such that �k nk� ˆŽ . Ž .converges to some � � � , � , � and A  tends to infinity. We shall shownk

that if this is the case, then the nonparametric log-likelihood difference
asymptotically becomes negative. Let us for simplicity call this subsequence
� 4n .

First consider the case where � � 0. Assume we have chosen K large�
�1 Ž T Ž ..enough such that K � exp � X � � K for all � � BB and j � 1, . . . , m.j

For n large we have
�1n1

ˆ ˆ ˆ � �A  � 1 � � KA  K 1 Y u 
 1 for all u � 0,  N  .� 4Ž . Ž . Ž . Ž .½ 5 Ýn n � n i � ��ž /n i�1

ˆHowever, � converges to zero by assumption and the right-hand side isn �

asymptotically smaller than the left-hand side, which gives us a contradic-
tion.
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m ŽNow consider the case where � � 0. Using the inequality Ł 1 �� j�1
.�1 Ž .�1 Ž .� � � 1 � � � we dominate a k,  by� i j � i � i

m N Ž . �1i �1 � � � � N Ž .Ž .� � i �
.Ł �1Ž . �1N  �½ 5i j � � �Ž .j�1 1 � � �1 � � � �Ž .Ž . � i �� i j

From the inequality


�11 � � K Y dAH� i �

0�1K � � 1,


1 � � Y dAH� i �
0

ˆ �Ž . Ž . Žwe can bound the log-likelihood difference L 
 � L 
 , for 
 � � , � ,n n n n n 0 0
Ž ..� , N � , above by0 ��

m n 1 ˆO 1 � log n � A dNŽ . Ž .Ý Ý H n i jn 0j�1 i�125Ž .


�1 ˆ ˆ� T � N  log 1 � � Y dA ,Ž .Ž . Hi j n � i j nž /0

� � Ž . 4where T � Mm. Define S � inf u Y u � 0 with infimum over the emptyi j i j

set being defined as infinity. For a sequence 0 � x � x � ��� � x �0 1 N�1
Ž .x �  , split the jth term in 25 up in the following way:N

n 1 ˆ � �O 1 � log n � A dN 1 S � x , �Ž . � 4Ž .Ý H n i j i j N�1½n 0i�1


�1 ˆ ˆ � �� T � N  log 1 � � Y dA 1 S �  , �Ž . � 4Ž . Hi j n � i j n i j 5ž /0

N�1 n 1 ˆ � �� log n � A dN 1 S � x , x� 4Ž .Ý Ý H n i j i j k�1 k½n 0k�1 i�1


�1 ˆ ˆ � �� T � N  log 1 � � Y dA 1 S � x , x .Ž . � 4Ž . Hi j n � i j n i j k k�1 5ž /0

kŽ . Ž . � � �4For N u � N u 1 S � x , x we get from Jensen’s inequality thati j i j i j k�1 k

n 1 ˆ � �log n � A dN 1 S � x , x� 4Ž .Ý H n i j i j k�1 kn 0i�1

xk�1k k kˆ� N  log N  n � A dNŽ . Ž . H�� �� n ��ž /0

n1 ˆ � �� O 1 � N  log A x 1 S � x , x .Ž . Ž . Ž . � 4Ž .Ý i j n k i j k�1 kn i�1
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Ž .Hence the jth term in 25 is dominated by

n1ˆ � �O 1 � log A  N  1 S � x , �Ž . Ž . Ž . � 4Ž . ½Ýn i j i j N�1n i�1

�1 � �� T � N  1 S �  , �Ž . � 4 5Ž .i j i j

N�1 n1ˆ � �� log A x N  1 S � x , xŽ . Ž . � 4Ž . ½Ý Ýn k i j i j k�1 knk�1 i�1

�1 � �� T � N  1 S � x , x .Ž . � 4 5Ž .i j i j k k�1

� 4We choose the sequence x such thatk

� � �1E N  1 S � x ,  � 1�2T E 1 S 
  ,� 4Ž . � 4 Ž .Ž .0 j j N�1 0 j

� � �1 � �E N  1 S � x , x � E N  � T 1 S � x , x .Ž . Ž .� 4 � 4Ž .Ž . ž /0 j j k�1 k 0 j j k k�1

Ž Ž . � � �4.This can be done by choosing E N  1 S � x , x � � for some � � 0.0 j j k k�1
� Ž Ž . � � �4.Since u � E N  1 S � 0, u need not be continuous, we may have to0 j j

�split these point masses into different groups. Therefore the likelihood
difference converges to minus infinity, which gives us a contradiction. Hence
the NPMLE stays bounded.

� 4Let n be an arbitrary subsequence. Using that the NPMLE stays˜k
bounded it is straightforward to see that

�1nˆdA uŽ .n �1� const. n Y u .Ž .Ý i �½ 5dN uŽ .�� i�1

�1 n Ž . � Ž .� � Ž .�Since n Ý Y � converges to E Y � , P -a.s., see, e.g., Rao 1963 ini�1 i � 0 � 0
supremum norm we get that

ˆlim sup sup dA u �dN u � �.Ž . Ž .n ��
n u

� Ž .�From the Helly selection theorem Hildebrandt 1963 we can find a subse-
ˆ� 4 � 4quence n  n and an increasing function, A say, such that A � A˜k k nk

Ž .pointwise. Since N � converges to a continuous function, it follows that A is��
ˆ� 4continuous and, using that A are all nondecreasing, we find that then n

convergence is also uniform. Furthermore, we can assume that along this
ˆsubsequence, � converges to some �.nk

Define

�1n m�
�1 Ž j.ˆA � � n Z u � ; 
 Y u; � dN u .Ž . Ž . Ž . Ž .Ý ÝHn i 0 i j 0 ��ž /0 i�1 j�1
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Ž . Ž .An application of the Helly�Bray lemma gives that A � converges to A �n 0
� Ž .�in the supremum norm see, e.g., Gill 1989 and using Proposition 3 we get

m Ž̂ j.ˆ E Ý Z ��; 
 Y �; �dA Ž . Ž .ž /0 j�1 0 j 0nk26 � � � � � ,Ž . Ž . Ž .
m Ž j.dA ˆE Ý Z  ; 
 Y �; �Ž . Ž .n ž /k 0 j�1 j

in the supremum norm, P -a.s. Further, another application of Proposition 30
gives that

ˆ0 � L 
 � L 
Ž .ž /n n n nk k k k

n m ˆ ˆY u; � � A uŽ .1 ž /i j n nk k� log dN uŽ .Ý Ý H i j½n Y u; � � A už /Ž . Ž .0 i j 0 ni�1 j�1 k

ˆ�log a k,  ; 
 � log a k,  ; 
Ž .Ý Ýž /i n i nk kž /ž / 5Ž . Ž .k�K  k�K i i
27Ž .

m  Y u; �Ž .j� E log � u dN uŽ . Ž .Ý H0 j½ ž /Y u; �Ž .0 j 0j�1

�log a k,  ; 
 � log a k,  ; 
 , P -a.s.,Ž . Ž .Ý Ý 0 0ž / ž / 5
Ž . Ž .k�K  k�K 

which is minus the Kullback�Leibler information.
To see an application of Proposition 3, we show that

nk  1 ˆlog Y u; � dN u � E log Y u; � dN u P -a.s.Ž . Ž . Ž .Ž .Ý H Hž /ž /i j n i j 0 j j 0½ 5kn 0 0k i�1

First note that, since the class of continuous function is separable in the
uniform metric, the set of possible limit points is separable. Using that X isj

uniformly bounded, we have for all � � 0 that there exists a � � 0 such that

 

log Y u; � dN u � log Y u; � dN u � �Ž . Ž . Ž . Ž .Ž . Ž .H Hj 1 j j 2 j
0 0

� � Ž .for � � � � � . Therefore condition 46 in Proposition 3 is satisfied.1 2
Ž .The Kullback�Leibler information is strictly positive Proposition 2 and

therefore we have that 
 � 
 . To summarize: for any given subsequence0
ˆ� 4 � 4n , we have found a further subsequence n such that 
 � 
 , whence˜k k n 0k


̂ � 
 . �n 0

4. Asymptotic normality. To calculate the score operator, we consider
Ž � . Ž .submodels of the form t � 
 	 
 � t h , H h dA , where h is a d � 2 -t � 0 A �

dimensional vector and h is a function of bounded variation. The scoreA
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operator is given by

�
�S 
 h � L 
 ,Ž . Ž . Ž . t�0n n t� t

�and can be found in Appendix B. We shall consider h in the space H � h �p
Ž . � � � � � � � 4 � �h , h h � h � h � p , where � denotes the variation norm.H v v� A � A

ŽFurther, we shall restrict us to h which are either caglad or cadlag cadlagA
means that at all time points it is continuous from the right and the limit

.from the left exists . This assumption is not necessary but it simplifies the
Ž � .arguments, because in this case the direction h , H h dA � 0 if and only if� 0 A

h � 0. We can consider the parameter 
 as a functional on H given byp
Ž . T  �Ž .
 h � h � � H h dA and the parameter space � as a subset of l H , the� 0 A p

space of bounded functionals on H , equipped with the supremum normp

� � � Ž . � Ž .Ž .
 � sup 
 h . In the following, we let S 
 h denote the expecta-p h� Hp

Ž .Ž .tion of S 
 h .1
In general we should choose enough submodels such that the information

operator becomes invertible. The submodels t � 
 makes it very easy tot
Žshow that the NPMLE is efficient with respect to the tangent space gener-

. Ž .ated by the submodels t � 
 . Theorem 1 in van der Vaart 1995 gives thatt
the NPMLE is a regular estimator sequence and it is proved in Theorem 2
that it is an asymptotically linear estimator sequence with influence function
contained in the closed linear span of the tangent space. From Proposition 1

Ž .in van der Vaart 1995 it follows that the NPMLE is efficient.
Ž .The Frechet derivative of S 
 at 
 is calculated by differentiating the´ 0

score operator in the submodels t � 
 � t
 . It can be written in the0
following form:

˙�S 
 h � i s, u h s � ds � u � duŽ . Ž . Ž . Ž . Ž . Ž . Ž .HH
 � � �0 0 0

� i s, u h s ds � u � duŽ . Ž . Ž . Ž .HH A � A0 0

� i s, u h s � du dA uŽ . Ž . Ž . Ž .HH � A �0 0

� i s, u h s ds dA uŽ . Ž . Ž .HH A A A0 0

� � h u � � h u � u � duŽ . Ž . Ž . Ž . Ž . Ž .� 4H � � A �0 0 0 0

� � h u � � h u dA uŽ . Ž . Ž . Ž . Ž .� 4H � A A A0 0 0 0

� � h u � u � du � � h u dA u ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H� A0 0

Ž . Ž .where � du is the counting measure on the integers 1, . . . , d � 2, i k, l� �0 0

Ž . Ž . Ž� E L , � k � � for k, l � 1, . . . , d � 2 and so forth d � 2 is the0 � � k l k0 0
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.dimension of the finite part of the parameter space , and L is the� �0 0

second derivative of the log-likelihood function with respect to �. The opera-
˙Ž .tor � � � , � is called the Fisher information operator. The operator S� A 
0 0 0

uniquely determines the Fisher information operator � . As a shorthand
notation, we write the right-hand side as

� u � duŽ . Ž .� dsŽ .i s, u h s .Ž . Ž .HH ž / ž /dA uŽ .ds

We shall prove the asymptotic normality of the NPMLE by verifying the
Ž .conditions in Theorem 3.3.1 of van der Vaart and Wellner 1996 , here stated

as Theorem 4 in Appendix A. The asymptotic normality of the score operator
Žfollows from a new central limit for processes of bounded variation Lemma 2

.in Appendix A . We expect this result to be useful in transformation models.
To show that the Fisher information operator is continuously invertible, we
shall show that it is one-to-one and that it can be written as a sum of a
continuously invertible operator and a compact operator. This gives that it is

� Ž .�continuously invertible Rudin 1973 . The continuously invertible operator
� Ž .�is found by using the missing information principle Woodbury 1971 . This

principle stats that we have the following relationship between the expected
information matrices:

i � i � E iN , Y N , Y , Z 0 Z � N , Y

when evaluating at the true parameter.

ˆ' Ž .THEOREM 2. Under Conditions 1 and 2, we have n 
 � 
 � GG, wheren 0
�Ž .GG is a tight Gaussian process on l H with zero mean and covariancep

process


T �1 �1Cov GG h , GG g � h � g � h � g dA ,Ž . Ž . Ž . Ž .Ž . H� � A A 00 0
0

Ž .and � � � , � is a continuously invertible linear operator from H onto H� A � �0 0
�1 Ž �1 �1.with inverse � � � , � . The form of � is given above.� A0 0

PROOF. We remind the reader that the algebraic form of the scores is
given in Appendix B.

Ž .We start by verifying condition d in Theorem 4. In Proposition 2 it
was shown that the Kullback�Leibler information is strictly positive for

Ž . Ž � .
 � 
 , that is, for 
 � 
 h � 
 � t h , H h dA the function t �0 0 t 0 t 0 � 0 A 0
� N , Y Ž .4E log L 
 has a maximum at zero. Using that 
 is an interior point0  0 t 0

and that we can interchange expectation and differentiation, we derive
ˆŽ .S 
 � 0. Since 
 asymptotically is an interior point, we similarly get0 n

ˆ ˆŽ .Ž . Ž .S 
 h � 0 asymptotically . In Theorem 1, 
 was shown to be consistent.n n n 'Ž . � Ž . Ž .4Now consider condition b . From above it follows that n S 
 � S 
n 0 0' Ž .� n S 
 . This we can rewrite asn 0


Th V � h dV � h dV ,H H� � n A An n

0



CORRELATED FRAILTY MODEL 203

' Ž .where V � n L 
 and� n � n 0
n m u

�1�2 Ž j.ˆV u � n N u � Z  ; 
 Y s ; � dA s .Ž . Ž . Ž . Ž . Ž .Ý Ý HAn i j i 0 i j 0 0
0i�1 j�1

Here V is a sum of i.i.d. processes of uniformly bounded variation and itAn
follows from Lemma 2 that V converges in distribution to a tight process.An

Ž .Therefore, V � V , V converges to a tight process, V, say. Now considern � n An
d�2 �Ž .the function �: RR � BV � l H given byp


T� v , v h � h v � h dv ,Ž . Ž . H� A � � A A

0

where BV denotes the space of functions with finite variation and � is
�continuous. From the continuous mapping theorem see, e.g., van der Vaart

'Ž .� Ž .and Wellner 1996 we get that n S 
 converges in distribution to a tightn 0
Gaussian process, which we denote by GG.

The submodel t � 
 is a regular parametric submodel, and we can0 t
calculate the asymptotic variance as

� 2
N , Y �Var GG h � E � log L 
Ž . Ž .Ž . t�00  0 t2ž /� t

28Ž .
�

˙� �S h , h dA h ,Ž .H
 � A 00 ž /0

˙ Ž .where S is the Frechet derivative of S at 
 see below . Similarly, the´
 00

asymptotic covariance can be calculated by considering two-dimensional sub-
Ž . Ž Ž . � � .models s, t � � � sh � tg , A � � sH h dA � tH g dA and differ-0 � � 0 0 A 0 0 A 0

Ž . Ž .entiating at s, t � 0, 0 , which gives
�

˙Cov GG h , GG g � �S g , g dA h .Ž . Ž . Ž .Ž . H
 � A 00 ž /0

We shall now show that S is Frechet differentiable. First note that S is´
Ž .Gateaux differentiable and, since N, Y, X is uniformly bounded, it followsˆ

that the derivative is continuous. It is relatively easy to see that
�

� � � �sup S 
 � t
 : 
 � 1, t � � � �Ž . p0½ 5� t p

�Ž .for an � � 0. It follows from Bickel, Klaassen, Ritov and Wellner 1993 ,
�Proposition 1, page 455 , that S is Frechet differentiable and that the de-´

rivative is given by


˙29 S � , A h � � � h � � � h dA .Ž . Ž . Ž . Ž . Ž .H
 � A½ 50 0 0
0

Ž . Ž .  Ž .Thus, the variance in 28 is given by � h h � H � h h dA .� � 0 A A 00 0

˙Continuous invertibility of S for some p is equivalent to the fact that for
0

some � � 0,
˙� �S 
Ž . p
 030 inf � �Ž .

� �

�lin � p



E. PARNER204

� Ž .see, e.g., Bickel, Klaassen, Ritov and Wellner 1993 , Proposition 7, page
� Ž .418 . To prove 30 we shall show that � , viewed as an operator from H to�

H , is onto and continuously invertible. This means that for all p � 0 there�
�1Ž .exists a q � 0 such that � H is contained in H . In this case the term onq p

Ž .the left-hand side of 30 is bounded below by


� ��1sup � h � � � h dAŽ . Ž .Hh� � ŽH . � Aq 0 0

0inf
� �

�lin � p


T� �sup h � � h dAHh� H � Aq

0� inf ,
� �

�lin � p

which is larger than q�3p. To verify that � is continuously invertible, we
show that � is one-to-one and write � as sum of a continuously invertible
operator, �, and a compact operator, C. This implies that � is continuously

� Ž .�invertible see, e.g., Rudin 1973 .
� � � Ž .�That � is one-to-one means that if h � 0, then � h � 0. Suppose this

Ž .is not the case, that is, � h � 0 for some h. Then we trivially have

2
 �

N , Y �0 � � h h � � h h dA � E log L 
 ,Ž . Ž . Ž .H t�0� � A A 0 0  0 t0 0 ž /� t0

therefore

�
N , Y �31 0 � log L 
 ,Ž . Ž . t�0 0 t� t

P -a.s. or, equivalently,0

�
N , Y �32 0 � L 
 ,Ž . Ž . t�0 0 t� t

P -a.s. Let � denote the probability space on which all the random functions0
Ž . � �Ž .Ž . Ž .4are defined. Integrating 32 over the set � � � � � N , Y � � n , yj j j j j

yields

�
N , Y �0 � L 
 � dP �Ž . Ž . Ž .H t�0 0 t 0� t� j

�
N , Y �� L 
 � dP �Ž . Ž . Ž .H t�0 0 t 0� t � j

�
N , Yj j �� L 
 ,Ž . t�0 0 t� t
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P -a.s., that is, also the marginal score functions are identically equal to zero.0
� �Ž Ž . Ž ..Ž . Ž Ž . Ž ..Similarly, integrating over the set � � � N s , Y s � � n s , y s ,j j j j

� �4s � u,  we derive

�
N , Yj j �33 0 � L 
 ,Ž . Ž . t�0u 0 t� t

P -a.s. Let us first consider the case where there are covariates in the model.0
Ž .From 33 we have the following set of marginal score equations with h �� �

h � h � :� �

u
�20 � h � log 1 � � Y dAH� 0 � 0 � j j� ž /½ 0

u1 � � N uŽ .0 � j �1� � Y dAH0 � j ju 51 � � H Y dA 00 � 0 j j
34Ž .

u u1 � � N uŽ .0 � jT T� h � h X dN � h � h X Y dA ,Ž . Ž .H HA � j j A � j j ju1 � � H Y dA0 00 � 0 j j

� � Ž . 4P -a.s. For simplicity we shall assume that � � 0. Let T � inf u N u � 0 .0 0 � j j
Ž . Ž � .Then 34 is valid P �X � x -a.s. for P -a.a. x . Since we can choose u0 j j 0 j

Ž � .arbitrary close to zero and since P T � u X � x � 0 for all u � 0, we get0 j j j

Ž . T Ž .h 0 � h x 0 � � 0 with positive probability, and hence with probabilityA � j
Ž � . Ž .1, with respect to P �X � x for P -a.a. x . This implies that h 0 �0 j j 0 j A

T Ž . Ž .h X 0 � � 0, P -a.s. By Condition 2 g we get that h � 0.� j 0 �

Let us consider u � T and again the conditional distribution given X � x .j j j
Ž .From 34 we derive

u
Th u � h log 1 � � exp � x dAŽ . Ž .HA � 0 � 0 j 0� ž /0

for all u with positive probability, and therefore with probability 1. Hence

u
Th u � h log 1 � � exp � X dAŽ . Ž .HA � 0 � 0 j 0� ž /0

for all u, P -a.s. This equation implies that h � 0 and h � 0. To conclude0 A � �

that h � h � � 0, we get in a similar way as before that the score function� �

� Ž . Ž . 4 � � Ž . 4for N s , Y s : 0 � s � u is identically equal to zero. For u � inf s N s � 0�

we therefore have

m
�2 �20 � h �� log 1 � � � u � � log 1 � � � u .Ž . Ž .Ž .Ž .Ý� 0 0 � j 0 � 0 � ��ž /

j�1

The quantity inside the brackets, however, is strictly negative and therefore
h � h � � 0. So in the case where there are covariates, the information� �

operator is one-to-one.
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We turn to the case where there are no covariates. Consider again the
Ž . Ž .marginal score 34 for u � T . Taking the derivative of 34 , we getj

uA u �Ž .0 0 �
35 0 � h � h dA � h u .Ž . Ž .H� A 0 A� 1 � � A u 1 � � A uŽ . Ž . 00 � 0 0 � 0

Ž .From this we see that h � is differentiable. Letting u tend to zero we getA
Ž . Ž .h 0 � 0. Taking the derivative of 35 we haveA

�� A 10 � 0
0 � h �� 2� ½ 51 � � A1 � � AŽ . 0 � 00 � 0

2
�� � h0 � 0 � A 1� h dA � � hH A 0 A2 1 � � A01 � � AŽ . 0 � 00 � 0

36Ž .

1 Ž . Ž . Ž .evaluated at u, where h u is the derivative of h u divided by � u . For uA A 0
1 Ž . Ž . 1 Ž .tending to zero this implies that h � h 0 � 0. From 36 we see that h u� A A�

Ž .is differentiable, and taking the derivative of 36 we find that

� 2 A �0 � 0 0 �
0 � h 2 � 2� 3 2� ½ 51 � � A 1 � � AŽ . Ž .0 � 0 0 � 0

3
��0 �� 2 h dAH A 03

01 � � AŽ .0 � 0

37Ž .

� 2 �0 � 0 � 1 2� 2 h � h � hA A A2 1 � � A1 � � AŽ . 0 � 00 � 0

2 Ž . 1 Ž . Ž .evaluated at u, where h u is the derivative of h u divided by � u . For uA A 0
tending to zero we derive

38 � 2h � 2 � � h1 0 � h2 0 � �h � 2 � h2 0 � 0.Ž . Ž . Ž . Ž .� 0 � 0 � A A � 0 � A� �

Ž . Ž .Let N � and N � denote the counting processes for the two components1 2
Ž .which from Condition 2 g is present at time zero with positive probability.

With some tedious, but straightforward, calculation it can be shown that
� Ž . Ž .taking the second derivative of the score function of N s , Y s : 0 � s � u,j j

4j � 1, 2 , with respect to u, and thereafter letting u tend to zero, one obtains

39 2h � h � � h1 0 � 0,Ž . Ž .� � A

which implies h � 0. Similarly, the third derivative of the score function of�

� Ž . Ž . 4the data N s , Y s : 0 � s � u, j � 1, 2 , evaluated at zero, givesj j

40 � 10� � 4� � h � � 3 2� � � � h1 0 � h2 0 � 0,Ž . Ž . Ž . Ž . Ž .0 0 � 0 0 A A

Ž . �which together with equations 38 implies that h � 0. From the marginal�

score function it is straightforward to see that h � 0. Hence the FisherA
information operator is one-to-one.
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Ž . Ž . Ž .For the correlated frailty model � is of the form � h � � h � � h ,� � A A0 0

and therefore continuously invertible if and only if both � and � are� A0 0
Ž . Tcontinuously invertible. We choose � h � h E L . Since � is one-to-� � � 0 � � �0 0 0 0

one and a finite-dimensional operator, it is also continuously invertible. To
� Ž .�define � we use the missing information principle Woodbury 1971 forA0

Ž .the one-dimensional submodels t � 
 0, h . This gives0 t A

� N , Y h � � N , Y , Z h � E � Z � N , Y h ,Ž . Ž . Ž .A , A A A , A A 0 A , A A0 0 0 0 0 0

N , Y , ZŽ .where � h is the expected information operator in the Cox regressionA , A A0 0

� Ž .�model. It is well known see, e.g., Bickel, Klaassen, Ritov and Wellner 1993 ,
and also very easy to verify, that this operator is continuously invertible.

Ž . N , Y , ZŽ . Ž . Ž .Then we define � h � � h . To show that � h � � h is compact,A A A , A A0 0 0
� 4we show that for an arbitrary sequence, h , there exists a convergentn n
1

� Ž . Ž .4subsequence of � h � � h . It follows from Helly’s selection theoremn n
� 4that there exists a subsequence, n , and a function, h , such that hk k 
1 A Ank

converges pointwise to h . We can choose the subsequence such that hA � nk

converges to h for some vector h . Using the dominated convergence theo-� �

Ž . Ž .rem, it is easy to see that along this subsequence � h � � h convergesn nk k
Ž . Ž .to � h � � h .

Ž .To prove the approximation condition in a we use Lemma 1 in Appendix
Ž .A. To verify 47 , we show that the difference of score functions is built up by

functions which are P -Donsker and then use that, under regularity condi-0
tions, sums, products and functions of P -Donsker classes again form P -0 0

� Ž .Donsker classes see van der Vaart and Wellner 1996 , Examples 2.10.8 and
�2.10.9 and Theorem 2.10.6 . To demonstrate how it works, we shall show that

Ž .the term for � � 0�


�241 �� log 1 � � y � dA ,Ž . Ž .H� � �ž /0

Ž . m Ž . m Ž . Ž T Ž ..where y u; � � Ý y u; � � Ý y u exp � x u is a P -Donsker class� j�1 j j�1 j j 0

� �for 
 � 
 � � , h � H and � � 0 chosen small enough. First, using Lemma0 p
Ž . � � � 42, have that x � is P -Donsker and the class �: 
 � 
 � � is triviallyj 0 0

� T Ž .P -Donsker, so by multiplying two P-Donsker classes we get that � x � :0 j
� � 4
 � 
 � � is P -Donsker. The exponential function is Lipschitz on com-0 0

Ž .pact sets of the real line. This follows from a first-order Taylor expansion.
Since x is uniformly bounded, we get from van der Vaart and Wellnerj

Ž . � Ž T Ž .. � � 41996 , Theorem 2.10.6, that the class exp � x � : 
 � 
 � � is P -j 0 0
Ž .Donsker. Lemma 2 gives that y � is P -Donsker, so by taking product overj 0

� Ž . � � 4two Donsker classes, we find that the class y �; � : 
 � 
 � � and hencej 0
� Ž . � � 4 
 � � � 4y �; � : 
 � 
 � � is P -Donsker. Let BB denote the set �: � � � � �� 0 0 0
and let BV denote the set of uniformly bounded function with variationp

�Ž� � 
. �Ž 
norm smaller than p. Define the function � from l 0,  � BB to l BB �
. Ž .Ž .  Ž . Ž .BV by � y �, f � H y u, � df u . The function � is continuous and fromp 0

�  Ž . 
 4the continuous mapping theorem it follows that H y � df : � � BB , f � BV0 � p
�  Ž . � � 4is P -Donsker for all p and hence H y � dA: 
 � 
 � � is P -Donsker.0 0 � 0 0



E. PARNER208

� �2 � � 4 Ž � � 4Using that the sets �� : 
 � 
 � � and � : 
 � 
 � � are P -Donsker� 0 � 0 0
Ž .and the function x � log 1 � x satisfies

� � � �log 1 � x � log 1 � y � x � y ,Ž . Ž .
Ž .it follows from Theorem 2.10.6 in van der Vaart and Wellner 1996 that

� �2 Ž  Ž . . � � 4�� log 1 � � H y � dA : 
 � 
 � � is P -Donsker. In a similar way,� � 0 � 0 0
Ž .the other terms are shown to be P -Donsker classes and condition 47 is0

satisfied.
Ž .Considering the condition in 48 , for 
 converging to 
 , we have that0

 
�2 �2�� log 1 � � Y � dA � � � log 1 � � Y � dAŽ . Ž .H H� � � 0 0 � 0 � � 0 0ž / ž /0 0

converges to zero pointwise, and by the dominated convergence theorem this
convergence is also valid in L2. In a similar way, the other terms are shown

2 Ž .to converge in L . Hence, condition a in Theorem 4 is satisfied.
ˆ' Ž .Ž .According to Theorem 4, the asymptotic distribution of n 
 � 
 h isn 0

�̇1 �1�S GG h � �GG � h ,Ž . Ž .Ž . Ž .
0

and the result follows. �

Let us consider the problem of calculating the variance of GG. According to
Tˆ ˆ' 'Ž .Ž . � Ž .Theorem 2, the asymptotic variance of n 
 � 
 g � n g � � � �n 0 � n 0

 ˆ T �1  �1Ž .4 Ž . Ž .H g d A � A is g � g � H g � g dA . A natural estimate for this0 A n 0 � � 0 A A 00 0
Ž .is obtained by estimating � � � 
 by the observed information operator0

ˆŽ .� � � 
 and then inverting � . Below we show that this is a consistentˆ ˆn n n n
� 4estimator for � . Let u denote the points where N jumps. Define thel l
1 ��

ˆŽ .observed discrete information matrix, j 
 , as minus the matrix of second-n n
ˆ ˆorder derivatives with respect to � and the jumps of A , that is,n n

�
�� L 
 ,Ž . ˆ
�
n nT

� � , � A � � , � AŽ . Ž .
Ž .T Ž T � Ž .4 .where �, �A � � , � A u .l l

�1Ž . Ž .THEOREM 3. The solution h � � g to the equation g � � h exists withˆ ˆn n
a probability going to 1, as n tends to infinity. Furthermore,

 
T �1 �1 T �1 �1ˆ42 g � g � g � g dA � g � g � g � g dAŽ . Ž . Ž . Ž . Ž .ˆ ˆH H� � n A A n n � � A A 00 0 0 0

0 0

ˆŽ .in probability. If � is invertible, then j 
 is also invertible and then̂ n n
T Ž T � Ž .4 .left-hand side is with g � g , g u equal tod � l l

�1T ˆ43 g j 
 g .Ž . Ž .d n n d

Ž . Ž .This result has been stated in Gill 1989 and Murphy 1995 without
proof. It is worth noting that in the proof of Theorem 3 we are not using any
specific structure of the correlated frailty model. Therefore, the result should
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also hold for general transformation models where similar regularity condi-
tions are fulfilled.

PROOF. Using Proposition 3 in Appendix A, it is straightforward to show
�Ž .that � � � in probability in l H for all p. Therefore, with a probabilityn̂ p

going to 1, we can write � as a sum of a continuously invertible operator andn̂
a compact operator. Further, � must be one-to-one with a probability goingn̂
to 1: otherwise, using the linearity of � we can find a bounded sequence
� 4 Ž . Ž .h converging to some h � 0 such that � h � 0 converges to � hn k 0 n n 0k k k

� 0. By the argument in the proof of Theorem 2, this gives us a contradiction.
Hence � is continuously invertible with a probability going to 1.n̂

�1Ž . �1Let h � � g . Since � is continuous, there exists a constant K suchˆn n
that

� �1 �1 � � �1 �1 �� g � � g � � � h � � � hŽ . Ž . Ž . Ž .Ž . Ž .ˆ ˆn n n n

� �� K � h � � h .Ž . Ž .ˆn n n

� 4If h is bounded then the right-hand side converges to zero as n tends ton
� 4infinity. Suppose that h is not bounded. Then we can find a subsequencen

� 4 � 4 � 4n and real numbers c satisfying c � 0, c h tends to h � 0 andk k n n n n 0k k k k

Ž . Ž .� c h tends to � h � 0. On the other hand, using the linearity of �ˆ ˆn n n 0 nk k k

we have

lim � c h � lim c g � 0,ˆ Ž .n n n nk k k kk k

�1Ž . �1Ž .which gives us a contradiction. Therefore � g converges to � g inn̂
Ž .probability and formula 42 follows.

Assume now that � is invertible. We write the Frechet derivative on theˆ ´n
form

� ds � u � duŽ . Ž . Ž .
Ṡ g � � j s, u g s ,Ž . Ž . Ž .HH
0 ž /ž /dA s dA uŽ . Ž .0

Ž . Ž . Ž .where j s, t � i s, t �� s . This we approximate with the operator0

� dsŽ . � u � duŽ . Ž .ˆ44 � j 
 s, u g s � � g d
 ,Ž . Ž . Ž . Ž .ˆŽ .HH Hn n nž /ˆž / dA uŽ .dA sŽ .

ˆ ˆŽ .Ž .where j 
 �, � is the empirical version of j evaluated at 
 . Using then n n
ˆŽ .chain rule, it is easy to verify that the corresponding matrix j 
 is minusn n

ˆthe matrix of second-order derivatives with respect to � and the jumps ofn
Â . We shall invert this operator on the subspace of � where the integratedn

ˆ Ž .hazards are discrete and only jump when A jumps. We can write 44 asn

TT ˆ ˆ�g Diag 1, � A j 
 � , � A ,Ž .Ž . Ž .d n n n



E. PARNER210

ˆŽ .where Diag 1, � A is the diagonal matrix consisting of d � 2 times 1 and the
ˆ� Ž .4elements � A u . This is a finite-dimensional operator with inversel l

TT �1 �1ˆ ˆ�g j 
 Diag 1, � A � , � A .Ž .Ž . Ž .d n n n

� ˆŽ . Ž .Evaluating at 
 � g , H g dA , we get formula 43 . �� 0 A n

For smaller data sets, inverting the discrete observed information matrix
is in practice feasible. For larger data sets, this may not be possible, since

Ž 3.inverting a general N � N matrix takes O N operations. The number N is
here the number of Euclidean parameters plus the number of observed
survival times. For larger data sets, this can be a very big number!

We shall now propose an estimate for the asymptotic variance of the
NPMLE which is less time-consuming to calculate. The frailty model is a

Ž .transformation model, which means that we observe Y, X , where Y �
�1Ž .A T , A: RR � RR is a unknown transformation, X is a covariate and the

distribution of T is assumed to lie in a parametric model. For the frailty
model, A is the integrated hazard function. If A is absolutely continuous
with derivative � 
 0, then the density p of Y given X � x is

45 p y ; x, � , A � p A y ; x, � � y .Ž . Ž . Ž . Ž .Ž .0

For the gamma-frailty model with only one component in each group,
Ž . Ž T .Ž Ž T . .�1���1 Ž .p u; x, � � exp � x 1 � � exp � x u . It was shown in Bickel 19850

� Ž .�see also Bickel, Klaassen, Ricov and Wellner 1993 that the least favorable
direction for A is the unique solution of a second-order Sturm�Liouville
problem. Theorem 3 tells us that it is consistent to make discrete information
calculations when estimating the asymptotic variance of the NPMLE. Now,
solving a discrete version of a second-order Sturm�Liouville equation can be

Ž .done by inverting a tridiagonal matrix. This only involves O N operations!
Once the least favorable direction is computed, the information calculation is
essentially parametric with the dimension equal to the dimension of �. We
are currently investigating how to extend this algorithm to the frailty model
with more than one component in each group.

APPENDIX A

PROPOSITION 3. Let � , � , � , . . . be i.i.d. random elements defined on a1 2
Ž .probability space �, FF, P , taking values in some set �. Consider a metric

Ž .space L, d with a separable subset M. Let f : L � � � RR be a measurable
function satisfying the following at all points x � M: for all � � 0, there is a
� � 0 such that

� �46 f x , � � f x , � � � for x : d x , x � � and all � .Ž . Ž . Ž . Ž .˜ ˜ ˜
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Then the following holds with a probability equal to one: for any sequence
� 4 Ž .a 	 L such that d a , a � 0, for a � M, we have thatn n

n1
f a , � � E f a, � � 0.� 4Ž . Ž .Ý n in i�1

The result is also valid if f take value in the space of caglad function equipped
with the supremum norm.

Ž .The proof of Proposition 3 and the conditions appearing in the proposition
is similar to the ordinary uniform law of large numbers in Hoffmann-

Ž .Jørgensen 1994 , Theorem 9.15, and is therefore omitted.

� Ž . �THEOREM 4 van der Vaart and Wellner 1996 , Theorem 3.3.1 . Let Sn
and S be random maps and a fixed map, respectively, from � into a Banach
space such that:

�ˆ ˆ' ' ' � �a n S � S 
 � n S � S 
 � o 1 � n 
 � 
 .Ž . Ž . Ž . Ž .Ž . Ž .n n n 0 P n 0

'Ž . Ž .Ž .b The sequence n S � S 
 converges in distribution to a tight ran-n 0
dom element Z.

Ž . Ž .c The function 
 � S 
 is Frechet differentiable at 
 with a continu-´ 0
˙ Ž .ously invertible derivative S on its range .
0ˆ ˆ � �1�2Ž . Ž . Ž . Ž .d S 
 � 0 and 
 satisfies S 
 � o n and converges in outer0 n n n P

probability to 
 .0

�1ˆ ˙' Ž .Then n 
 � 
 � �S Z.n 0 
 0

� Ž . �LEMMA 1 van der Vaart and Wellner 1996 , Lemma 3.3.5 . Suppose
Ž .Ž . Ž .S 
 h in Theorem 4 is of the form P � 
 , h , where P is the empiricaln n n

measure. Assume that the class of functions

� �47 � 
 , h � � 
 , h : 
 � 
 � � , h � H� 4Ž . Ž . Ž .0 0

is P -Donsker for some � � 0 and that0

248 sup E � 
 , h � � 
 , h � 0, 
 � 
 .� 4Ž . Ž . Ž .0 0 0
h�H

ˆ Ž .If 
 converges in outer probability to 
 , then condition a is satisfied.n 0

� �LEMMA 2. Let W be a caglad process on 0,  which is uniformly bounded
in variation. Let W be i.i.d. replicates of W. Then the functional central limiti

�1�2 n � Ž . Ž .4 � Ž� �.theorem is valid for n Ý W � � EW � in l 0,  .i�1 i

PROOF. Let P denote the distribution of W and let FF denote the class of
Ž . � �projections x � x u , for u � 0,  . Then Lemma 2 states that FF is P-

Donsker. We shall prove the lemma in two steps. First assume that W is
Ž .nondecreasing, then the result is given in van der Vaart and Wellner 1996 ,

Ž .Example 2.10.27; see also Parner 1996b , for another proof.
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Consider the general case where W takes value in the space of a caglad
function which is uniformly bounded in variation norm. Given a function in
this space, x, we can write it as a difference of two monotone decreasing

Ž . 1Ž . 2Ž .functions, x u � x u � x u , which are both uniformly bounded. We can
1Ž . Ž . Ž . 2Ž . Ž .choose x u � x 0 � p u and x u � n u , where p and n is the Jordan

� Ž . � iŽ .decomposition of x see, e.g., Hildebrandt 1963 , page 38 . Now put f x �u
iŽ .x u for i � 1, 2. If we equip the space of caglad functions with the projection

�-algebra, then f i are measurable functions. From above it follows thatu
� i � � �4FF � f u � 0,  i � 1, 2 are both P-Donsker classes. Then also FF � FF isi u 1 2

� Ž .�a P-Donsker class Example 2.10.7 in van der Vaart and Wellner 1996 , and
� 1 2 � � �4since FF � f � f u � 0,   FF � FF it follows that FF is also a P-Donskeru u 1 2

class. �

APPENDIX B

Define

n m  1
Ž j.ˆL 
 � X dN � Z  Y u; � X u dA,Ž . Ž . Ž . Ž .Ý Ý H H� n i j i j i i j i jn 0 0i�1 j�1

n m  1
Ž j.ˆL 
 h � h dN � Z  Y � h dA.Ž . Ž . Ž . Ž .Ý Ý H HAn A A i j i i j An 0 0i�1 j�1

Further, let

n �Ý a k,  a k, 1 Ž . Ž .k � K Ž . i iiL 
 � ,Ž . Ý� n n Ý a k, Ž .k � K Ž . ii�1 i

where

�
�a k,  � log a k, Ž . Ž .Ž .i i��

kjm �2
� �3� � 2� � log 1 � � � Ž .Ž .Ý Ý � � i j½ ��j�1 h�1

� Ž .i j� �2� � � � kŽ .� j 51 � � � Ž .� i j

Ž .N  �ki � � � � 2��� Ý 3�� � � h � 1Ž .� �h�1

� N  ��1 � ��2 � 2���3 log 1 � � � Ž . Ž .Ž .Ž .i � � � � � i �

� Ž .i ��2� �� � N  � k .Ž .Ž .� i � � 1 � � � Ž .� i �
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Similarly, let
n ��

Ý a k,  a k, 1 Ž . Ž .k � K Ž . i ii
�L 
 � ,Ž . Ý� n n Ý a k, Ž .k � K Ž . ii�1 i

where
���a k,  � log a k, Ž . Ž .Ž .i i���

kjm 1 2
��2 �3� � � � � 2� � log 1 � � � Ž .Ž . Ž .Ý Ý � � � i j�½ ž /� ��j�1 h�1

� Ž .i j� �2� � � � kŽ .� j 51 � � � Ž .� i j

Ž .N  �ki � � �2�
�1� � N  �Ž .Ý i � �3�� � � h � 1Ž .� �h�1

� 2���3 log 1 � � � Ž .Ž .� � i �

� Ž .i ��2� �� � N  � k .Ž .Ž .� i � � 1 � � � Ž .� i �

T Ž . Ž T .Ž .�The score operator is, with L 
 � L , L , L 
 , given by� n � n � n � n

S 
 h � hT L 
 � L 
 h .Ž . Ž . Ž . Ž . Ž .n � � n An A
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