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Abstract-Laminar diffusion flames in counterflow configurations such as stagnation-point boundary layers 
are analyzed by methods of matched asymptotic expansions with large parameters being the temperature 
sensitivities of the rates of chemical heat generation and radiant heat loss. Formulas are derived defining 
critical conditions for flame extinction, including influences of radiant loss. 

INTRODUCTION 

An appreciable amount of research has been per-
formed on describing extinction conditions for 
diffusion flames by use of methods of matched 
asymptotic expansions, with the ratio of the overall 
energy of activation for heat release to the thermal 
energy of the reacting gases taken as a large par-
ameter of expansion. Motivation for this work and 
literature concerning earlier studies have been dis-
cussed by Krishnamurthy, Williams and Seshadri 
(1976). Newer investigations employing these 
asymptotic methods have been reviewed recently 
(Williams, 1981). Objectives include improvement 
of methods for describing flame extinction in fires 
and deveJopment of procedures for extracting 
overall rate information, useable in complex fire 
environments, from laboratory measurements of 
diffusion-flame extinction in well-controlled en-
vironments. 

In the work performed by asymptotic methods 
little attention has been paid to influences of 
radiant energy loss from the gas on diffusion-flame 
extinction. One reason for this has been the 
emphasis on application to small-scale laboratory 
experiments; estimates and measurements have in-
dicated that radiant losses from the gas are rela-
tively insignificant in such experiments (Seshadri 
and Williams, 1978). At larger scales, emission of 
radiation from luminous flame zones, typically as 
a consequence of the presence of large numbers of 
particles of hot soot, may exert measurable influ-
ences on critical conditions for extinction. Kanury 
(1975) has suggested that there may be situations 
in which radiation is the dominant mechanism of 

energy loss from the reacting gas and that in such 
cases extinction conditions may best be described 
on the basis of parameters that differ from those 
obtained from the existing asymptotic analyses. 
The present study is intended to provide a step 
toward the identification of parameters appropriate 
for describing extinction under conditions such 
that radiant loss is not negligible. 

The problem addressed is that of describing the 
structure and extinction of the counterflow dif-
fusion flame in the presence of radiant heat loss. 
It thereby constitutes an extension of the pre-
viously published asymptotic analysis of the 
counterflow diffusion flame for large activation 
energies (Liiian, 1974). However, to facilitate appli-
cation to problems having the fuel present in a 
condensed phase, the analysis is developed within 
the context of stagnation-point boundary-layer 
flow. The formulation thus parallels that pub-
lished previously for this condensed-fuel problem. 
The result will be a modification of the procedure 
of Krishnamurthy et al. (1976) for extracting over-
all rate parameters from measurements of dif-
fusion-flame extinction, now accounting for radiant 
Joss from the gas. Influences of radiant loss from 
the condensed phase will be considered elsewhere 
(Sohrab and Williams, 1981). 

2 FORMULATION 

For convenience, the notation is the same as that 
employed by Krishnamurthy et al. (1976) and 
therefore is not redefined fully here. The Lewis 
numbers for fuel F and for oxidizer 0 will be taken 



to be unity, and the Prandtl number P will be 
assumed to be constant, as will the product of the 
density p with the coefficient of viscosity ¡i. Sub-
scripts e and w identify conditions in the oxidizing 
stream and in the gas at the surface of the con-
densed fuel, respectively. Primes denote derivatives 
with respect to the transformed variable r¡ that 
measures distance normal to the planar surface of 
the condensed fuel and that is zero at the fuel 
surface. The conservation equations then become 
the same as those given by Krishnamurthy et al. 
(1976), except for the occurrence of a radiant loss 
term in the equation for energy conservation. Only 
the equations for species and energy conservation 
will be written here. These are 

Y/'+fYt' = D,Y0YFexp(-Ta/T), i = 0,F (1) 

and 

T" +fT' =-DiYo YF exp( - TalT) + Fi{T). (2) 

Here/denotes the nondimensional stream func-
tion, YF the mass fraction of fuel and Y o that of 
the oxidizer divided by the stoichiometric mass 
ratio of oxidizer to fuel. The temperature is 
TQjep, where Q is the heat released in the gas-
phase reaction per unit mass of gaseous fuel con-
sumed, and cv is the specific heat at constant 
pressure for the gas, assumed constant herein. The 
overall activation energy is R°TaQ/cp, where R° 
denotes the universal gas constant, and Di rep-
resents Damkohler's first similarity group, the 
ratio of a flow time (reciprocal of external velocity 
gradient k duejdr) to a chemical time, defined 
exactly as in the previous publication (Krishna-
murthy et al., 1976). The function Ft(T) is the 
radiant energy loss per unit volume per second, 
divided by p Qkdue/dr. 

The boundary conditions for Eqs. (1) and (2) 
are identical to those employed previously, viz., 
T=Te, Yo=Yoe = a and 1>=0 at ?) = ao, and 
T=TU, Yo' = -fYo, YF =/(l - YF) and T = -qf 
at y =0, where q=L/Q, L being the heat required to 
gasify a unit mass of fuel (including heat con-
ducted into the interior of the condensed phase and 
radiant energy loss from the surface of the con-
densed phase, if they occur). Therefore the only 
difference from the previous formulation resides 
in the loss term F¡(T). 

For an optically thin gas, the radiant energy loss 
per unit volume per second is 4a(TQ/cp)

i/lp, 
where a denotes the Stefan-Boltzmann constant 

and lp is the Planck-mean absorption length 
(Penner and Olfe, 1968). Therefore the formula 

Fi(T) = 4aTi(Q/cvy/(lPpQkdue/dr) (3) 

may be employed for the loss term. This formula 
does not take into account radiation absorbed by 
the gas from the surroundings. Consequently 
Fi(T) does not vanish as T) approaches infinity, 
unless lp is made to approach infinity artificially as 
7] goes to infinity. The continuing heat loss that 
occurs if lp remains finite causes the problem to be 
ill-posed, in a manner analogous to that of the 
problem of the premixed laminar flame with 
Arrhenius kinetics. Physically, an additional 
term, negative in sign, belongs on the right-hand 
side of Eq. (3) to represent absorption of radiation 
from the surroundings and to cause Fi(Te) to 
vanish. This term is not written because it is insig-
nificant within the context of the asymptotic 
analysis to be performed herein. 

Equation (3) shows that if lp is independent of T 
then at constant pressure Fi(T) is proportional to 
T5. Typically lp decreases with increasing T in the 
temperature range of interest here (as a conse-
quence of increases in both equilibrium radiation 
emitted and nonequilibrium concentrations of 
emitters), and therefore Fi(T) increases with T 
more rapidly than T

5
. If soot radiation is the 

dominant contributor to F¡(T), then the loss may 
be negligible on the oxidizer side of the reaction 
region, since relatively little soot is found there. A 
highly simplified model of soot radiation, treating 
soot particles as independent spherical emitters of 
radius i> with emissivities of unity and surface 
temperatures Ts Qjcp, results in lp = {TITsY¡{nrs

%ns), 
where ns is the local number density of soot par-
ticles; the decrease of lp with increasing T on the 
fuel side of the reaction region then may arise 
largely from the increase in nsrs

2, which depends 
on the chemical kinetics of soot production and 
particle growth. 

The transformation to a new independent 
variable x, that serves to put the equations in the 
form studied originally by Liñán (1974) is the same 
as that given by Krishnamurthy et al. (1976), viz., 

x=-fw(l+B)-i expi-Ayr,, (4) 

n 

where B is a transfer number and 



= /k 
In the transformed variables, Eqs. (1) and (2) 
become 

dx2 
\ Jw I 

d2Yt _/l+B\2 

and 

d2T 

xexpi-Ta/T), i = 0,F (5) 

•[-——)exp(2h)[DIYoYP 

\ fw I dx
2
 \ fw 

Xcxp(-Ta!T)-Fi(T)]. (6) 

In the energetics, it is necessary to account for the 
radiant heat loss from the gas. This can be done 
in terms of the function 

Gi )Fi(T)dr¡dx, (7) 

o o 

defined to have boundary values G¡e=0 and 
Giw'=0. The modified definition of the transfer 
number, taking into account the radiant loss, is 

B = (a + Te - Tw - Giw - Y0w)¡{q + Y on), (8) 

which is assumed to be positive. Here a, defined 
in the paragraph preceding that containing Eq. (3), 
is the ratio of the oxidizer fraction in the approach 
stream to the stoichiometric oxidizer-fuel ratio. 
From Eqs. (5), (6) and (7) it is readily shown that 

T+ Yt + Gi= ai+bix, i = F, O, (9) 

where at and bt are constants. 
Boundary conditions may be used to evaluate at 

and bi in a manner paralleling that given by 
Krishnamurthy et al. (1976). It is found that, with 

P=q+Te~TU; (10) 

the results 

Yo = a + Te-T-Gi-(a + P-Giu)x (11) 

and 

YF = Te-T-Gi+(l-P + Glw)x (12) 

are obtained and that as before, 

xw = B¡{\ +B). (13) 

Thus, x varies from zero in the oxidizer stream to a 
value between zero and unity at the surface of the 
condensed fuel. 

This formulation achieves a correspondence with 
the problem of the counterflow diffusion flame for 
purely gaseous reactants (Liñán, 1974), analogous 
to the correspondence discussed earlier (Krishna-
murthy et al., 1976). The corresponding gaseous 
problem has gaseous fuel at the boundary x = 1. If 
the domain of definition is extended into the range 
xw<x<l by introduction of the requirements that 
dT/dx and Gi remain constant in this range, then 
7o = 0, YF = \ and T=Tw-q = Te~P are obtained 
as the conditions to be applied at the hypothetical 
boundary x = l, as found previously. Thus, the 
problem of accounting for radiant heat loss from 
the gas may equally well be studied within the con-
text of a purely gaseous problem, defined by Eqs. 
(5) and (6) with the boundary conditions that 
y 0 = a, y^=0 and r = J e at JC=0, and that Yo=0, 
YF = l and T=Te-^atx = \. 

3 ANALYSIS OF RADIANT HEAT LOSS 

Of the various combustion regimes that may occur, 
attention will be focused on Liñán's (1974) dif-
fusion-flame regime, which is the most important 
in studies of extinction. From Eqs. (11) and (12) 
it is seen that 

YF-Yo=d ra)x- (14) 

whence setting YF =YO=0 shows that the location 
of the flame sheet in the Burke-Schumann limit of 
infinite D¡ is 

Xf = a/(l~a). (15) 

In this limit, from Eq. (14) it is seen that y 0 = a -
(l-a)jc for x<Xf and YF = (l^a)x-a for x>Xf, 
so that ths jump in the gradient dYF¡dx or dYo\dx 
as x increases through the value x} is (1 a). This 
shows that the right-hand side of Eq. (5) becomes 
(\~a)b(x-Xf) in this limit, thereby allowing Eq. 
(6) to be written as 

exp(2/i)Fi(r) 

a)b(x-Xf) (16 



for D]->cc. The first step in the analysis is to con-
sider methods for solving Eq. (16) subject to the 
boundary conditions that T=Te at x=0 and 
r = r e - j 8 a t x = l . 

It has been indicated in the previous section that 
Fi(T) is a strongly increasing function of 7. There-
fore the dominant contribution of the loss term in 
Eq. (16) comes from the vicinity of the point of 
maximum temperature, which physically should be 
located near x=Xf. It will be assumed that if 
Fl{T)=d then the parameters are such that the 
maximum temperature occurs at x=x/ instead of 
at one of the boundaries. Then it follows that for 
F;(7)#0, the maximum temperature still occurs 
at x=Xf in the limit Z>/->co. Let 7/ denote the 
value of 7 at x = x¡. When Fi(T)^0 this value will 
lie below the adiabatic value 7/„, obtained when 
Fi(T) = 0. Instead of seeking the value of 7> that 
corresponds to a given magnitude of the radiant 
loss, it is simpler to specify 7/ and to calculate the 
value of a loss parameter that produces the specified 
flame temperature. 

The sensitivity of Fi(T) to T may be described 
by y = d \nFi(T)/d In 7". If y is constant, then Fi(T) 
is proportional to 7X Allowance will be made for 
the possibility of having different functions, yp and 
yo, in the fuel and oxidizer regions, x>x/ and 
x<x/, respectively. It has been indicated that 
typically y¡ (i = 0, F) is large compared with unity. 
However, within each region yt will be assumed to 
vary slowly with 7, i.e., gi = d\nyild\r\T will be 
taken to be of order unity. If y,y denotes the value 
of y( at 7 = 7 / (i.e., at x =xf), then 

¿= y i / (7 / -7) /7 / (17) 

is a useful dependent variable. An expansion of 
F¡(T) in y¡f~l for <f> of order unity may be written 
in an exponential form that facilitates analysis as 

F,(T) =Flfcxp(-4>)[\-\ Ugif-lWyir1^ ...].(18) 

where F¡f and gif are the values of Fi(T) and of gt 

at T=Tf. Use of Eq. (18) in Eq. (16) can provide 
an asymptotic expansion of the solution T for 
large values of y¡/. 

If y if is large, then for (7 / -7 ) /7 / of order 
unity 7^(7) is exponentially small and therefore 
negligible in Eq. (16). Solutions in these outer 
zones that satisfy the boundary conditions and an 
anticipated matching condition that 7 = 7 / at 
x=x/are 

'Te+(Tf-Te)xjxf for x<x/, 

T = \ Te-PHTf-Te + m-xW-Xf) (19) 

for x>xy. 

The jump in the slope dT/dx as x increases through 
Xf, obtained from Eq. (19), is attributable to the 
sum of the contributions from the delta function 
in Eq. (16) and from the loss term. A measure of 
the total energy lost by radiation from the gas 
therefore is (1 +a) plus the jump in the slope. This 
loss is easily found through use of Eqs. (15) and 
(19) to be 

ei = (l+aXl-/SXl-/*o), (20) 

i*0=(r , -r<Xl+a)/[a( l- /S)] 

= {Tf-Te)l{Tfa-Te). (21) 

where 

The flame-temperature parameter /¿o lies between 
zero and unity, attaining the latter value when there 
is no heat loss from the gas. Since G¡w' =0, it may 
be seen by virtue of Eq. (7) that Qi is the value of 
dGijdx at x =0. In the first approximation, dGijdx 
is Qi for x<Xf and 0 for x>x/, whence integration 
gives, by use of G/e=0 and of Eq. (15), the formula 
Giw=Qia/(l +a). For use only in the outer zones, 
Eq. (16) may be written as 

</27/</JC2 = [Qi - (1 +a)]B(x-Xf). (22) 

While Eq. (20) determines the total radiant loss 
in terms of 7>, it does not provide either of these 
parameters in terms of the magnitude Fit of the 
rate of emission of radiation from the vicinity of 
the flame. Analyses of the thin zones of radiation 
emission on each side of the flame sheet are needed 
for this purpose. In these zones, the stretched 
variable \=yiJ(x-Xf)¡Tf is of order unity. Intro-
duction of f and <j> into Eq. (16) as new variables 
result, through use of Eqs. (17) and (18), in 

¿Pila? = (1 + a)8(f) -h exp(-f) (23) 

at the lowest order in yj/"1, where 

h = [{\+B)fw? 

x[exp(2///)](r//yi/)F;/, i = 0,F. (24) 

Here /¡ is the ratio of a Bouguer number to a 
Boltzmann number (Penner and Olfe, 1968) and 
measures the ratio of the rate of radiant energy 



emission to the rate of convection of enthalpy, 

i.e., it may be viewed as the ratio of a characteristic 

flow time to a characteristic time for emission of 

radiation. Matching conditions for Eq. (23), ob-

tained from Eq. (19), are that d<f>/d£->(Tf-Te+P) 
(1 +a) as ^ o o and that d<f,¡d^-(Tf-Te)(l +a)¡a 
as £->- — oo. 

A first integral of Eq. (23), away from £=0, is 
(d<f>ld$)2 = 2liexp(-<l>) + constant. The constant 

may be evaluated from the matching conditions 

for i ->±oo , giving after evaluation of the result at 

f = 0 , 

dj> 

~di 

= [2/, + ( r / - 7 ' < + /S)2(l+a)2]l/i, 

i-o-

= - [21 o + (Tf - Tey( 1 + a)2/a2]i/2. 

J 

(25) 

Use of these results in the jump condition at £ = 0 

implied by the delta function in Eq. (23) yields 

l + a ^ p / o + M o ^ l - j S ) 2 ] 1 ' 2 

+ [ 2 / , + ^ 2 ( a + j8)2]i/z, (26) 

Mf = ( r / - r „ + i8)(H-a)/(a + /S) 

= (.Tf-Te + MTfa-Te-rP). (27) 

where 

The parameter ¡XF is an alternative to ¡x0 for 

measuring the departure of 7> from 7>a; it too lies 

between zero and unity. 

Equation (26) is the result needed for relating 7> 

to the rate of radiant loss. It may be solved 

explicitly for k if lo=0, lF = 0 or lo = h- If I o and 

IF are sufficiently small and are known, then 7> 

may be obtained explicitly from Eq. (26) by 

expansion; in the first approximation it is found 

that 

a I lo IF \ 

In practice, often l0 is negligible, and it may then 

be shown from Eq. (26) that 

Tf = T} fa-
°(° + /3) 

" ( 1 - a 2 ) 

2/f (1 - a ) 
+ ( l+a ) ( a + /3)2 

(29) 

which is preferable to Eq. (28) for large values of 

IF. Strictly speaking, according to Eq. (24), in 

Eq. (29) lP depends on 7>. Since Eqs. (17) and (18) 

imply that, approximately, 

Fita = FliTfa) = Fit ™P[YFfa(l-T,ITfa)], 

in Eq. (29) the relationship 

IF = ha e x p [ - W o ( l -Tf/Tfa)] 

may be employed, where IFa is given by Eq. (24) 

with Tf replaced by T/a, -/F¡ replaced by jFta and 

Fit replaced by F¡/a; here /pa, the loss parameter 

that would apply if conditions were adiabatic, is 

known prior to determination of Tf, and Eq. (29) 

becomes a transcendental equation to be solved 

for Tf. If this equation is to be solved iteratively, 

then it is equally convenient to employ Eq. (24) 

directly in Eq. (29) instead of introducing these 

further expansions. 

It is possible to generate higher-order terms in 

the expansion of the solution to Eq. (16) in the 

small parameter y¡/~ ' , but the analysis will not be 

pursued here, since the dominant contribution of 

the radiant loss is that which has been obtained. It 

may be noted from Eqs. (19) and (25) that within 

the zone of radiant loss, temperature gradients 

steepen as the reaction zone is approached. This 

steepening enhances the tendency for extinction of 

the reaction to occur. The character of the tem-

perature profiles is illustrated schematically in 

Figure 1. 

FIGURE 1 Illustration of the character of the results 
when the reaction zone has a negligible thickness. 



4 ANALYSIS OF EXTINCTION tained from matching, are 

Calculation of extinction necessitates investigation 
of the structure of the reaction zone. It is known 
(Liñán, 1974) that the thickness of this zone, in 
the x coordinate, is of order Tf2¡Ta. Therefore, in 
view of the definition of £, if Tf2\Ta<Tf]yif, then 
the reaction zone is much narrower than the zone 
of radiant loss and is embedded within it. If Tf2jTa 

and Tf/ytf are of the same order of magnitude, then 
the zones of finite-rate chemistry and of radiant 
loss coincide and have the same thickness. The 
remaining possibility, T¡lyif4.Tf2ITa, seldom oc-
curs and is not considered here. The extinction 
problem will be formulated for Tf2/Ta of the same 
order as Tf/ytf and later will be specialized to 
Tf2/Ta<£Tf/yif, which probably defines the regime 
of greatest practical interest. 

An asymptotic expansion of the solution to Eqs. 
(5) and (6) is sought for small values of T¡2¡Ta, 
with a=yifTf/Ta of order unity. Here a is the ratio 
of the temperature sensitivity of the radiant-loss 
rate to that of the heat-release rate. There are 
outer zones in which reaction and radiation are 
negligible and in which the solution for the tem-
perature is given by Eq. (19). These are separated 
by the inner zone of reaction and radiation, for 
the analysis of which convenient variables are 

v = (x-x/)(l4-a)T„ITf2, e = (Tf-T)TalTf
2
 and </.= 

(Yo + T-Tf)TaITf
2. With these variables, 7 0 = 

(<P + 6)Tf2/Ta and YF=(y -I-<f> + e)Tf
2/Ta, the latter 

identity being obtained from Eq. (14) by use of 
Eq. (15). Substitution of these results and of 
Eqs. (17) and (18) into Eqs. (5) and (6) produces, 
to the lowest order in Tf2/Ta, the pair of differential 
equations 

cf^/dy2
 = Aexp(-a0) (30) 

and 

d26/dy2
 = 8( v-;-,/, + W - 0 ) 

Xexp(-0)-Aexp(-a0), (31) 

where 

A = [(1 +fi)//i,F[exp(2/,/)] 

x(Tf
2/Ta)F,f!(] ~ aY (32) 

and 

S = [(l-rB)!fu}
2[exp(2ilf)](Tf

2!Ta)z 

X D,[exp( - r a /7»] / ( l -f a)*. (33) 

Boundary conditions for Eqs. (30) and (31), ob-

dOldy->-d>f>ldy^Tf-Te + P 

as y->co, 
r (34) 

-d6/dy->l +d<l>/dy^(Tf-Te)la 

as y-^ — co.. 

The parameters A = ka¡{\+ a)2 and S represent a 
radiant loss-rate parameter and a reduced Dam-
kohler number, respectively. It may be anticipated 
that, with a fixed, Eqs. (30) and (31) will possess 
solutions, subject to given boundary gradients in 
Eq. (34), only if A and 8 lie along a particular 
curve in the (8, A) plane. These curves will extend 
from a minimum value of S, say SE, which cor-
responds to extinction, to S = oo. For Tf=T/a, it 
is found that the curve is defined by A=0, with 8E 
given by the analysis of extinction published by 
Liñán (1974). As 7> decreases from 7>a with a, 
a, p, and Te fixed, it is expected that along the 
curve A will be found to be positive and that &E 
may exceed its value for Tf = Tfa. The boundary 
8E(A) of the region in the (S, A) plane, generated 
in this manner, represents an extinction boundary 
that defines extinction conditions as functions of 
the rate of radiant heat loss. 

In general, solution of the problem defined by 
Eqs. (30), (31) and (34) requires numerical inte-
gration. If A is small, of order Tf

2¡Ta, and a is of 
order unity, then a perturbation approach may be 
developed, beginning with the previous solutions 
(Liñán, 1974) for A=0, with Tf = Tia in the first 
approximation. A limit of greater practical im-
portance appears to be that for small a. In this 
case, the zone of radiant loss is much thicker than 
the reaction zone, and the analysis of the preceding 
section applies to the former. Since it is seen from 
Eq. (26) that h cannot be large if 7> is to exceed 
the boundary temperatures, it follows that A must 
be small when a is small. Therefore, in the reaction 
zone A is to be omitted from Eqs. (30) and (31) in 
the first approximation. 

When the reaction zone is narrow compared 
with the heat-loss zones, Eq. (25) gives the external 
boundary gradients that through matching provide 
boundary conditions on 6 for solving Eq. (31) in 
the reaction zone. If 

mF = [21F!( 1 + a)2 + (Tf -Te + iS)2]1''2, (35) 

then from Eqs. (25) and (26) it is found that these 
boundary conditions are 



d6/dy-+mp as y->ao, 
dd¡dy~+mF-l as y->-oo. (36) 

With A=0 in the first approximation, the integral 
of Eq. (30), needed in solving Eq. (31), is i¡> = 
i'í+by, where ifif and b are constants. Here the 
constant b may be evaluated from matching con-
ditions for y-^±co. In the diffusion-flame regime, 
these are obtained from dYp/dx-^il+a)-1

 as 
x-+Xf+, dYpjdx-^0 as x^xf~, dYo¡dx->0 as x->x/+ 
and dY0/dx^~(l+ay

l as x-^xf~, all of which 
consistently yield dip¡dy-^-mp as y->±oo when 
use is made of Eq. (36) and of the definitions of >¡> 
and y. Hence b=-mF. Since Eqs. (11), (15) and 
(21) and the definition of ¡j> show that 

h = (Ta/TfnGlwal(l+a)-Glf + Tfa-Tf), 

a modification in 1/7 of order unity corresponds to 
a modification in 7> of order Tf

2/Ta. Since the 
relationships of the preceding section are valid to 
order unity, not to order Tf

2/Ta, at the present 
order of approximation there exists freedom in 
selecting 7/ to assure that the convenient value 
<P/=0 is obtained. With this selection, il>=—ntFy, 
and Eq. (31) becomes 

<P8/dy* = 8(8-mFy)[0+(l -mP)y]exp(-0). (37) 

Introduction of the new variables r = (45)1 3
>

r
/2 

and Z=(48)i/3[0 + (l -2mp)y/2] converts Eqs. (36) 
and (37) to 

d^Zfdz2
 = (Z+z)(Z-z) exp{-(48)-

1
/
3
" 

XIZH*»-my. (38) 

dZ/dz^l as z^oo, 

dZ/dz^-l as z-y-cc. J 

The problem defined by Eq. (38) has been en-
countered and solved previously (Liñán, 1974); it 
was found that at extinction 

SE = (ec/2)(l - 2c +1.04c
2
+0.44c

3
) (39) 

in an excellent approximation, where 

11 —triF if rrtF > 1/2. 

Equation (39) provides the extinction formula for 
the case of greatest practical interest. 

It is of interest to compare Eq. (39) with the 
results obtained by Krishnamurthy et al. (1976) for 
the diffusion-flame regime, as given by Eqs. (20) 
and (21) of this previous publication. In view of 
Eq. (33), it is seen that the results are identical, 
provided only that the definition of c is modified 
in accordance with Eqs. (35) and (40). Therefore 
the earlier results have a direct bearing on the 
problem of extinction with radiant loss from the 
gas. 

5 EXTINCTION RESULTS 

The results obtained here may be cast in a form 
that enables the parametric results previously pub-
lished by Krishnamurthy et al. (1976) to be em-
ployed for calculating overall rate parameters from 
systematic measurements of extinction, in the pres-
ence of radiant loss from the gas. It is necessary 
first to consider how to obtain flow-field par-
ameters, such a s / w and hf, from the known par-
ameters of the problem, a, 7V, Tw and q, in the 
flame-sheet limit. This can be done for large ytf by 
making use of the fact that the thickness of the 
radiant-loss zone then also is narrow. It is seen 
from Eq. (22) that the effect of the radiant loss then 
is to reduce the total heat release by the factor 
1 —QilO +<*)• Therefore the flow field is described 
by the flame-sheet problem with the heat release 
per unit mass of gaseous fuel consumed given by 
Q[l — Qi/(1-i a)]. Hence a suitable redefinition of 
parameters renders the published results applicable. 

Since Giw = Qia/(l+a), which was indicated 
after Eq. (21), the transfer number defined in Eq. 
(8) becomes, in the first approximation, 

5=[a-a0, / í l - fo)- ¡ - r , -7 'w ) / í . (41) 

With this modified expression for B, the for-
mulas for !he remaining parameters, A, C and D, 
are the same as given by Krishnamurthy et al. 
(1976), viz., A={a + Te-T„)l{2Tt), C = (B-a)l 
[0-i-a^] and D = Twft2Te). Since A, C and D 
involve ratios of quantities that have been non-
dimensionalized by Q, the effectively modified heat 
release does not alter their formulas. Therefore 
the only revision needed in the flame-sheet calcu-
lation is that given by Eq. (41). Alternative pro-
cedures, involving redefinitions of Tr, T,r and q, 
would be more complex. 

If A, B, C and D are known, then a factor F 
may be obtained from graphs shown by Krishna-



murthy et al. (1976). This factor contains the flow-
field parameters relevant to extinction. In terms of 
F, it may be shown from the definition of Dj and 
from Eqs. (33) and (39) that the critical extinction 
condition may be written dimensionally as 

MpkFCiTc? idut\ I Ta\ /A^ 

•^HTI-HT) ,42) 

where MF represents the molecular weight of the 
fuel, B0f denotes the preexponential rate factor for 
molar oxidizer consumption in a second-order 
reaction, evaluated at the flame temperature, and 
k(dueJdr) is the external normal velocity gradient 
in the oxidizer stream. Equation (42) is identical to 
the extinction formula obtained by Krishnamurthy 
et al. (1976) for the diffusion-flame regime, except 
for the radiant-loss correction factor, Ci, which is 
given by 

c(l - 2c + 1.04c2+0.44c3) 
Ci = — —, (43) 

c a( l-2c a + 1.04c„
2
+0.44ca

3
) 

where according to Eqs. (40) and (35) 

,[2lFl(\+a)z + (Tf-Te + mi!2
 or 

c = (44) 

ll -[2/W(l +a)* + (Tf-Te + W]112 

whichever is smaller, and where 
r2A(\-C)l[2(A + D)-\] 

if 2C>l-(2£>- l ) /2A 
Ca = { (45) 

U2(AC+D)-\]/[2(A + D)-l] 

if 2C<l-(2D-l)/2A. 

The loss parameter 1F in Eq. (44) is given by 

h = [eca(l+ay-Fif]j[2FTfZyif], ¡ = 0,F, (46) 

w here use has been made of Eq. (24) and of the 
definition of F. It is possible, as in the paper of 
Krishnamurthy et al. (1976), to develop an iterative 
procedure for improving the accuracy of Eq. (42) 
if extinction occurs in the premixed-flame regime. 

An explicit prescription for calculating rate par-
ameters for extinction, given a, Te, Tw, q, F¡/ and 
yif, may be stated on the basis of these results. 
First guess a value of the flame temperature in the 
presence of radiant loss. Then use Eqs. (20) and 
(21) to find Qi and Eq. (41) to find B. Next calcu-
late A, C and D from the formulas given after 
Eq. (41). Having thus obtained values for the 

parameters A, B, C and D, employ the published 
graphs (Krishnamurthy et al., 1976) to obtain the 
factor F. Then calculate lf, and /*• from Eq. (46), 
and ascertain whether Eq. (26) is satisfied, using 
Eqs. (21) and (27) for fi0 and /t/.-. Iteratively adjust 
Tf until this sequence of computations results in 
Eq. (26) being satisfied. Then calculate C¡ by use 
of Eqs. (43), (44) and (45). Finally, use the pro-
cedure described previously by Krishnamurthy et 
al. (1976) to plot an Arrhenius graph from Eq. (42), 
replacing F by FCi in that procedure. If radiant 
losses from the gas are small, then 7/ = 7/ffl is a 
good approximation, and iteration can be avoided. 
This situation prevails in labroatory experiments 
(Sohrab and Williams, 1981) and it is found more-
over that in these tests the corrections to calcu-
lated rate parameters, produced by inclusion of Ci, 
are negligible. 

6 SAMPLE APPLICATION 

As an illustrative example, the theory is applied to 
the diffusion flames above the planar surface of 
burning poly (methyl methacrylate) (PMMA). The 
extinction data, involving measurement of U and 
Y02 at extinction, were reported elsewhere (Sohrab 
and Williams, 1981). The effects of fuel surface 
radiation on the parameters q and Tfa have been 
taken into account by procedures described by 
Sohrab and Williams (1981). Here we wish to 
examine the influence of gaseous radiation on the 
predicted kinetic parameters by considering two 
representative extinction data points. In Table I 
values of the known flow, fuel and flame par-
ameters U, a, fe, tw, q and 7>0 are given for the 
data that are considered. In this table the hats 
identify dimensional temperatures with units °K; 
the units of U are cm/s. 

In laboratory diffusion flames, radiation occurs 
primarily from the emission by hot soot particles 
with a continuous spectrum in the visible and infra-
red regions. Therefore only the fuel side of the 
flame needs to be considered; the radiation par-
ameter on the oxidizer side, /0, is neglected. Typical 
values of Flf calculated for laboratory flames are 
exceedingly small, <10~

6
. Unreasonably large losses 

will be introduced here for purposes of illustration. 
Therefore the present calculations do not pertain to 
the real situation. Effects associated with absorp-
tion of radiation by the emitting particles or by the 
fuel surface also are neglected in the present 
example. 



TABLE I 

Flow, fuel and flame parameters 

0.09115 

0.09635 

44 

75 

t. 

300 

t,„ 

665 

<l 

0.0954 

f/a 

1908 

IF 

0.001 

0.01 

0.1 

tf 

1899 

1827 

1405 

Ci 

1.19 

1.33 

1.38 

Fit 

1.65X10-
3 

1.46xl0-
2 

6.54 xlO-
2 

300 695 0.08875 1994 

0.001 

0.01 

0.1 

1984 

1908 

1463 

1.18 

1.29 

1.37 

1.75X10-
3 

1.51xlO-
2 

7.03 x 10-
2 

Since extinction of PMMA flames occurs in the 
diffusion-flame regime defined by Liñan (1974), the 
theory can be directly applied; moreover, the 
iteration described above can be avoided because 
A)=0. Three different values of IF are selected to 
illustrate influences of increasing the radiant loss. 
These values are used in Eq. (29) to calculate 7>. 
Then w is found from Eq. (21) and Qi from Eq. 
(20). The transfer number B is next calculated 
from Eq. (41). The parameters A, C, D, and then 
F are evaluated in the manner described after 
Eq. (41). Computation of c and ca from Eqs. (44) 
and (45) enables Ci to be obtained from Eq. (43). 
The Arrhenius graph based on Eq. (42) may then 
be constructed directly. 

Values of the nondimensional radiant loss flux 
Fif that correspond to the selected values of IF may 
be calculated from Eq. (46). For this purpose, the 
value yFf = S was selected. Values of Fif obtained 
in this manner are listed in Table I. Also listed 
are values calculated for Ci and for the flame tem-
perature. The values of Fif are of the same order 
of magnitude as those of IF and exceed realistically 
estimated values by more than three orders of 
magnitude. Flames larger than those employed in 
the laboratory experiments would have larger values 
off//. The flame temperatures in Table I decrease 
with increasing values of the assumed loss rate as 
anticipated. 

Figure 2 shows the Arrhenius plots that corre-
spond to lF values of 0, 0.001, 0.01 and 0.1. The 
calculated kinetic parameters are also given in 
Figure 2. The activation energies obtained from 
the data tend to decrease as the loss is increased, 
and the magnitude of the reaction rate at a fixed 
flame temperature increases as expected. 

7 CONCLUSIONS 

This study helps to clarify the nondimensional 
parameters that are appropriate for describing 
extinction in the presence of radiant loss from the 
gas. From Eq. (39), it is evident that the extinction 
conditions obtained here are best expressed in 
terms of a Damkohler number of the same type 
that has been used in the absence of radiant loss. 
Although Eqs. (35) and (40) show that the factor c 
depends on the radiant loss, this factor is bounded 
and cannot be viewed as the primary parameter on 
the basis of which extinction is to be described. An 
increase in the loss rate IF is offset by a decrease in 
the flame temperature Tf, so as to maintain the 
balance in Eq. (26). The quantitatively largest 
effect of radiation occurs through the reduction of 
Tf on the right-hand side of Eq. (42). Thus, while 
radiant loss certainly contributes to reduced reac-
tion rates through reduced temperatures, the 
critical condition for extinction remains defined 
by a balance between the rate of heat generation 
in the reaction zone and the rate of conductive 
loss of heat from that thin zone. 

To depart from this fundamental relationship, 
it is necessary to approach conditions under which 
each term on the right-hand side of Eq. (31) is 
large compared with the left-hand side. Under 
these conditions, there would be an approximate 
balance of heat release and radiant loss in the 
reaction zone, and a new parameter, S/A, would 
become relevant. From Eqs. (32) and (33) it is 
seen that the flow time cancels when this ratio is 
formed; S/A represents the ratio of a characteristic 
time for emission of radiation to a characteristic 
time for chemical heat release, a kind of Damkohler 
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FIGURE 2 Arrhenius plots for various flame radiant losses. 

number based on radiant loss. It is known that 
ignition and extinction phenomena in homo-
geneous systems can be described by algebraic 
equations expressing balances similar to the require-
ment that the right-hand side of Eq. (31) vanishes. 
However, it is unclear whether the requisite criti-
cality behavior is consistent with Eqs. (30), (31) 
and (34). Since a 8 dependence of the radiation 
rate weaker than that of the heat-release rate 
favors the presence of criticality, small values of a 
would seem to be wanted, but under this con-
dition the analysis that has been presented applies, 
with conduction overbalancing radiation in the 
reaction zone. 

Description of extinction on the basis of a 
radiation Damkohler number, S/A, if valid at all 
would seem likely to apply when strong radiant 
interactions cause gas temperatures to be nearly 
uniform everywhere, thereby broadening reaction 
zones to such an extent that Eqs. (30), (31) and 
(34) are inapplicable. Moreover, in the non-
premixed configuration, reaction rates would have 
to be slow enough to allow extensive molecular 
mixing to occur prior to reaction. The theory for 
such a nearly homogeneous system would involve 
a parameter similar to S/A which may achieve a 
critical value at extinction. Applications might be 
found in certain industrial furnaces, but relevance 
to common fire problems seems questionable. 

This work has been restricted to optically thin 
media. Therefore all of the radiant energy emitted 

is lost from the system. In applications to com-
bustion in planar stagnation-point boundary layers 
adjacent to condensed fuels, the radiation emitted 
in the direction of the fuel may be absorbed by the 
fuel surface. It is straightforward to include this 
absorption in the parameter q, with the result that, 
in net, only half of the radiant energy emitted is 
lost from the system. 

In fire configurations of larger scale, absorption 
of radiation within the gas may influence the tem-
perature field appreciably. For the opposite limit 
of optically thick media, transport of radiation is 
diffusive, and Eq. (2) should be replaced by an 
alternative conservation equation in which the 
diffusion approximation for radiation is employed. 
Analysis of extinction on the basis of such a formu-
lation would parallel that of Liñán (1974) in which 
energy loss occurs by conduction, with the molecu-
lar coefficient of thermal conductivity being in-
creased by addition of the coefficient of conduc-
tivity for radiation transport, so that an effective 
Lewis number for the process exceeds unity. The 
result would be a modified definition of a critical 
Damkohler number of the second kind for extinc-
tion, with the radiation conductivity contributing 
to the characteristic diffusion time appearing 
therein. The utility of such a result would be 
open to question since estimates suggest that in 
fires the mean-free-path for radiation seldom 
is short enough to justify the diffusion approxi-
mation near the reaction zone. 



LIST OF SYMBOLS 

A (a+Te-Tw)/(2Te), energetic parameter 

a Yi/Tf/Ta 
aj arbitrary constant 

B transfer number, Eq. (41) 

Ba pre-exponential rate factor for molar oxidizer 

consumption 

bi arbitrary constant 

C (B-a)/[(l +a)B], flame-location parameter 

Cl radiant loss correction factor, Eq. (43) 

c parameter defined in Eq. (44) 

Ca parameter defined in Eq. (45) 

Cp specific heat at constant pressure 

D Tw/(2Te), surface-temperature parameter 

DI Damk6hler number 

F flow factor relating kinetic parameters to ex-

tinction conditions 

Fl radiant energy loss per unit volume per unit 

time divided by pQk(due/dr) 
f nondimensional stream function 

Cl function defined in Eq. (7) 

gi coefficient defining temperature sensitivities 

of Yi, d InYi/d InT 

h lfd1) 
o 

k flow factor (1, two-dimensional; 2, axisym-

metric) 

L effective heat of gasification of fuel 

I separation distance between fuel surface and 

oxidizer duct exit 

Ip Planck-mean absorption length 

I; radiant loss parameter, Eqs. (24) and (46) 

M molecular weight 
nIF temperature-gradient parameter defined in 

Eq. (35) 

11. local soot-particle number density 

P Prandtl number 
Q heat of combustion (fuel-mass based, gaseous 

fuel to gaseous products) 
Ql nondimensional radiant energy loss, Eq. (20) 

q nondimensional effective heat of gasification 

for fuel L/Q 
RO universal gas constant 

r transverse coordinate 

'. soot particle radius 
T nondimensional temperature 

Ts nondimensional soot surface temperature 

Ta nondimensional activation temperature 

ECp/(RO Q) 

U oxidizer stream velocity 

u tangential velocity 

x canonical coordinate, Eq. (4) 

Xf nondimensional flame location, Eq. (15) 

Yj stoichiometrically adjusted mass fraction of 

species i 
Y02 free-stream oxygen mass fraction 

y stretched coordinate (X-Xf)(l +a)Ta/Tf 2 

z (48)1/3 y/2 

Z (48)1 /3[8+(1-2mF)y/2] 

Greek Symbols 

a product of stoichiometric fuel-oxidizer mass 

ratio with free-stream oxygen mass fraction 

f3 effective difference of non dimensional oxidizer 

and fuel temperature, Eq. (10) 

Yi coefficient defining temperature sensitivities of 

FI(T), dlnFddlnT. 
8 reduced Damk6hler number, Eq. (33) 

1) Howarth-Dorodnitsyn variable 

8 (TrT)Ta/Tf 2 

A radiant loss parameter, Eq. (32) 
/L coefficient of dynamic viscosity 

/Lt flame-temperature parameters, Eq. (21), (27) 

t stretched coordinate Ytt(x - Xf )/Tf 

p density 
G Stefan-Boltzmann constant 

if> stretched temperature, Eq. (17) 

if; (Yo+T-Tf)Ta/Tf 2 

if;f arbitrary constant 

Subscripts 

a activation 

E extinction 

e oxidizer stream 

F fuel 
fa equilibrium diffusion-flame 

f adiabatic diffusion-flame 

i For 0 
o oxidizer 

w fuel surface 


