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ASYMPTOTIC THEORY OF INTEGRATED
CONDITIONAL MOMENT TESTS

By Herman J. Biererisand Werner Ploberger

In this paper we derive the asymptotic distribution of the test statistic of a generalized version
of the integrated conditional momernCM) test of Bierens (1982, 1984), under a classof-

local alternatives, where is the sample size. The generalized version involved includes neural
network tests as a special case, and allows for testing misspecification of dynamic models.

It appears that the ICM test has nontrivial local power. Moreover, we show that under the
assumption of normal errors the ICM test is asymptotically admissible, in the sense that there
does not exist a test that is uniformly more powerful.

The asymptotic size of the test is case-dependent: the critical values of the test depend
on the data-generating process. In this paper we derive case-independent upperbounds of the

critical values.



1. INTRODUCTION
Conditional moment (CM) tests have been proposed by Newey (1985) and Tauchen (1985) in
the context of maximum likelihood models, but as these authors show, most misspecification tests
of functional form are special forms of CM tests. A typical CM test takes the form of a quadratic
form of finitely many weighted means of the residuals, where the weights are functions of the
regressors. These CM tests are in general not consistent. In order to achieve consistency, Bierens’
(1982, 1990) consistent conditional moment tests employ a class of weight functions indexed by
a continuous nuisance parameter, so that actually uncountable many weight functions are
employed. In order to obtain a single test statistic, Bierens (1982) proposes to integrate these
nuisance parameters out. Therefore we shall call the test of Bierens (1982) the Integrated
Conditional Moment (ICM) test. The test statistic of the CM test of Bierens (1990) is obtained
by taking the supremum over the space of nuisance parameters.

In section 2 we review the ICM test and discuss the choice of the weight functions. In
section 3 we derive the asymptotic distribution of the ICM test under a general cldadafal
alternatives, where we allow the data-generating process to be dependénlodal alternative
takes the form of an augmented regression model where the additional terms in the model vanish
in probability at rate I/n, wheren is the sample size. It appears that the ICM test has nontrivial
power against thesén-local alternatives. In section 4 we prove the admissibility of the ICM test,
under the assumption of normal errors, i.e, we show that there does not exist a uniformly more
powerful test.

Next to the conditional moment testing approaches of Bierens (1982, 1984, 1987, 1990),
Bierens and Hartog (1988), De Jong (1995), De Jong and Bierens (1994), White (1989) and
Stinchcombe and White (1991), there is also a competing line of recent literature on conditional
moment tests based on comparison of parametric and (semi-)nonparametric models. See, e.g.,
Wooldridge (1992), Yatchew (1992), Gozalo (1993) and Hardle and Mammen (1993) for
published papers in this area. Although not all of these authors derive local power results, the
ones who do find local alternatives that shrink to the null at a slower rate tianQhly Hardle
and Mammen (1993) manage to achietrelocal power, but only in one direction. In contrast,

we will show in this paper that our ICM test has nontriviai-local power in all directions,



although the power is not the same in every direction.

Under the null hypothesis of model correctness, the test statistic of the ICM test is
asymptotically distributed as an integral over a squared zero mean Gaussian process, where the
covariance function of this Gaussian process depends on the distribution of the data and the
functional form of the model. This makes it impossible to tabulate the exact asymptotic critical
values of the ICM test. In section 5 we show how to derive upperbounds of the asymptotic
critical values of the ICM test that are case-independent and can therefore be tabulated.

The proofs of theorems and lemmas are given in the appendix, except in cases where
these proofs are also helpful in understanding the main argument. Also the assumptions (A and
B) are stated in the appendix. Convergence results and conditions indicated'lilgat involve
random variables refer to convergence in probability, unless otherwise stated. The indicator
function is denoted by(.), and indexed expectations signs, d=g.indicate that the expectation

is taken under a certain hypothesg."

2. THE INTEGRATED CONDITIONAL MOMENT TEST
2.1. Introduction
Consider a random sampley{( x), t = 1,..n} from a k+1-variate distribution, or lety
, X) be ak+l-variate time series process, observabletfer 1,..n, wherey, is the dependent
variable andx, is a k-vector of regressors (possibly containing lagged dependent variables). In
parametric nonlinear regression analysis we usually specify the conditional expectation function
of y, relative to the vectox, of regressors as a known functif(n.) of x, and a parameter vector
0:
(1) H; 06,00 0R" PEWY,x) = f(x.,0)] = 1.
where O is the parameter space. The consistent tests of Bierens (1982, 1990) test the null

hypothesis (1) against the alternative:

(2) H;: supPIE(Y,x)=f(x,0)] < 1.
Note that in the i.i.d. case the alternative (2) is just the complement of the null hypothesis (1),
i.e., the alternative hypothesis involved is that the null hypothesis is false, but that in the time

series case model correctness requires more conditions than only (1), namely the additional



condition thatu, = y, — f(x,, 8,) is @ martingale difference sequence. The latter condition implies
that E[uw,] = O for any functionw, of the pasty, ;,%.1), Vi X-2): Viezs X3),.... Of the time

series under review. The properties of the ICM test under data dependence is treated in different
ways by Bierens (1984) and De Jong (1995), for the case of testing model correctness against
all global alternatives. In this paper we also derive the asymptotic theory of the ICM under data-
dependence, but now we test a parametric model agdmktcal alternatives.

The idea behind the conditional moment test as introduced by Newey (1985) and Tauchen
(1985) is to base a test statistic on a finite number of weighted mean of the estimated residuals,
where the weights are functions of exogenous and lagged dependent variables (or instrumental
variables). However, given a finite set of instruments, it is always possible to construct a data-
generating process for which the null hypothesis is false but the power of the test is trivial. In
order to have power against all deviations from the null hypothesis we need an infinite set of

instruments, saw,(¢), where¢ is contained in an index s&t Now consider the random function
28) = ANNZ LIy, - f(x,0)]wi(€), € O =. As is shown in Bierens (1990) for the i.i.d. case,

under the null hypothesis this random function converges weakly to a continuous Gaussian
random functiorg(€), while under the alternativg(€)/Vn converges to a nonstochastic nonzero
limit function, for weight functionsv,(€) = exp€'®(x,)), with ® a bounded one-to-one mapping.
De Jong (1995) proves a similar result for time series models for the case whgn@ws in
dimension to infinity with the sample size. Again, in this paper we focus on the asymptotic
theory of ICM tests under local alternatives, where the dimension of the compactsetains
fixed.

The test statistic of the ICM test takes the form

3) T - jZ(anu(a)

where uf) is a probability measure o&. This is (in essence) the form of the integrated
consistent conditional moment test proposed by Bierens (1982).

The critical values of the ICM test are case-dependent. However, the asymptadicies
can be consistently estimated, using the conditional Monte Carlo approach of Hansen (1990) and

De Jong (1995). Denoting the estimatedalue involved byp, the ICM test is then applied in



the form of an asymptotia-level test

4) T, =1 <a),

whereaq is the significance level. Thus we reject the null hypothesis abitisggnificance level
if T, = 1. Note that under the null hypothesii,) — o, Only for the ICM test in this form we

can show asymptotic admissibility, i.e., we shown that there does not exist an uniformly more

powerful test.

2.2. The weight functions

The consistency of the ICM test (3) depends on the choice of the weight fuvgion
In Bierens (1990) it has been shown that the ICM test based on the weight fumgtén=
exp€'P(x)), with @ a bounded one-to-one mapping, is consistent. Earlier, Bierens (1982) showed
the consistency of the ICM test for the complex-valued weight functig€) = exp(&'d(x,)),
and u the Lebesgue measure. Stinchcombe and White (1991) show that these consistency results
carry over to a much wider class of weight functions than only exp(.). For example, we may
replace expf) by the logistic function 1/(1+exp(#), which then gives rise to White’s (1989)
neural networkversion of the randomized CM tests of Bierens (1987, 1988, 1994b, Ch.5). See
also Lee, White and Granger (1993). For the purpose of the ICM test, however, the following

straightforward extension of Theorem 1 of Bierens (1982) is sufficiently general:

THEOREM 1:Let u be a random variable satisfying B, and let x be a bounded
k-variate random vector such thaf®ulx) = 0] < 1. If w(u) is a complex or real valued function
that is infinitely many times continuously differentiable ir @ and satisfies the condition
(5) {sON (dduw(u)|,, = 0} is finite,
thenOe >00¢& OR: E[uwE™x)] #0and [&| < e.

The result in Theorem 1 implies that if we choose the measure p such that a small open
neighborhood of the origin @t is in its support, anat andw are as in Theorem 1, thé?[E(uX)
= 0] < 1 if and only if [[E[u.w&™X)]?du(E) > 0. Note that if the vectox is not bounded, we can

without loss of generality replacein Theorem 1 byd(x), with @ a bounded one-to-one mapping,



for conditioning onx is equivalent to conditioning o®(x). Moreover, note that the exponential

and logistic functions, as well as (e.g.) the weight functwju) = cos() + sin(u), all satisfy
condition (5). In the sequel of this paper, however, we shall leave the type of the weight function
open, apart from being real valued, as consistency of the ICM test is not the main issue of the

present research.

3. THE LIMITING DISTRIBUTION OF THE ICM TEST
UNDER LOCAL ALTERNATIVES AND DATA-DEPENDENCE
3.1. The null model, the local alternative, and maintained hypotheses
In the sequel we shall suppress the veeiaf regressors in the regression functigx)
and the weight functiomy,, in order to allow for models with infinitely many lagged dependent
variablesy,; and laggedexogenousexplanatory variableg,; (j = 1,2,3,..) but finitely many
parameters such as ARMA and ARMAX models, and to allow for a possible distinction between
regressors and instrumental variables. Thus under the null hypothesis we reformulate the model

as

(6) H: vy, =f@®) +u, 6,06,

0

and under the local alternative as

(7) Hy0 Y, = £(8) + g/in + u,

where the erron, are martingale differences. The detailed maintained hypotheses regarding the
f., g and the weight functionsv(§) are given in the appendix, as Assumption A. These
assumptions allow thg,’s to depend on lagged dependent variables as well. However, in the
presence of lagged dependent variabled,(®) and/or g, there are two, possibly different,
interpretations of the local alternative (7). The first interpretation is that the lagged dependent
variables inf(6) and g, are generated by the null model. Thus, the local alternative (7) is then
actually of the formy,, = y, + g,/Vn, where they,s are generated by the null model (6). The
second interpretation is that the lagged dependent variablesun g, are now the lagged, ,
generated by (7). The latter interpretation makes the random varigflgsand g, triangular
arrays. Although all our assumptions and proofs are stated in terms of single arrays, our results

straightforwardly carry over to triangular arrays. The same applies to the weight funet{@hs
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Under the local alternative (7) the proce%g) now becomes

(8) A8) = L3 [u, g/ - 16 - LOIWE).

n t1

where 8 is the nonlinear least squares estimatorfgf Then it follows from (8) that under

Assumption A, similarly to Bierens (1990),

© 2) = —3 ug® -+ =Y 4o + o,1).

n t1 N’

uniformly overg in =, where

(10) @(&) = w(&) - b(B,,&)"A(B,) *(0/087)f(8,),
with
A(®) = plim__(1/n)Z {_,{(8/08")f(B)( 0/06)f (6)},
b(6,&) = plim__(1/n)Z {_,(0/067)f (B)w,(E)

Denoting

(11) z(€) = (1/n )Z u® &) + (1/n)§_j 9.0,&),

we thus have that under Assumption A,

(12) D”mM?éJED\?(E) - z(8)[ = 0.

3.2. The limiting distribution of the ICM test under local alternatives
Assumption A guarantees the tightness of the pro@&Qsdefined by (11) and the

asymptotic normality of the finite distributions gf(). See the appendix. Consequently, we have:

THEOREM 2:Let Assumption A hold. If Hs true then"z0 z, where z is a Gaussian



process on= with mean functionn(§) = plim__(1/n)z _,g9(§) and covariance function
re,.¢,) = plim _(1/n)z [Llutz(pt(él)(pt(éz). Then by the continuous mapping theorem

(13) ToT-= JZZ(E)du(E) in distr.

In order to analyze the nature of the limiting distributidim (13), we need the following

version of Mercer’s theorem and its corollary:

LEMMA 1: (Mercer’'s Theorem Let I'(§,,¢,) be a real valued positive semi-definite
continuous function o x =, where= is a compact space, and lgtbe a probability measure

on =. The solutions A, and (), i = 1,23,. of the Eigenvalue problem

JF(El,EZ)qu(EZ)du(EZ) = AUW.(&,) arereal valued and the functidnhas the series representation

ME,.&,) = Z2AWE )P (E,) where the series involved converges uniformly=or =.

LEMMA 2: Let the conditions of Lemma 1 be satisfied. The Eigenvaleare
nonnegative and satisf ;;A, <  Moreover, the Eigenfunctigyf9 are continuous and can

be chosen orthonormal and complete in the spa€) ©f continuous real functions aa as well
as on the space,[j1) of squared integrable functions w.rj, i.e.. [qu(E)qu(E)dp(E) =10 =),

and every functiorp in C(Z) or L,(i) can be written as

(14) i) = Z g|l-|J|(E.) as. Lz(p-),

with Fourier coefficients
(15) g - jcp(é)wi(é)du(i)

satisfyingZ ;7,g° < .



Now let the functior” in Lemma 1 be equal to the limit function in Theorem 2. Note that
the continuity ofz() and the compactness afimply thatz() is square-integrablez [J L,(1) a.s.

Since the sety,(§), i = 1,2,3,..} of Eigenfunctions is complete we can therefore apply Parseval’s
equality and conclude from (14) and (15), wiptreplace byz, thatT =Z f‘il[Jz(E)qu(E)du(E)]z.
Moreover, the Gaussianity &) implies that the Fourier coefficients

(16) [OwEdME), i -1.2.3,..

are Gaussian too. Therefore, for the characterization of their joint distribution we only need to

compute covariances and means. The covariances are:

E{j[z(z)—n (E)]llJi(E)du(E)J[Z(E)—n(E)]tlJ,-(E)du(E)}
- Jjr(al,zz)wi(zl)w,.(zz)du(al)du@z) = A=),

so that the sequence (16) is independent. Moreover, it is easy to see that the meaitbf the

element of the sequence (16) is just thé Fourier coefficient of():

(17) n, = j NE)W,E)duE).

Therefore, the asymptotic distribution of the ICM test under the local alternative (7) can be

described as follows:

THEOREM 3: Under the local alternative (7) and Assumption AT =

jz(a)de(z) 0570, + e\, )2, where thes, are i.i.d. NO,1),and then, are defined by17).

Note that the Eigenvalues, depend on the covariance functién which in its turn
depends on the data-generating process under the null. Cf. Bierens (1990). Therefore, the

asymptotic null distribution

(18) T, = Y e\,
=

wheree; is i.i.d. N(0,1), is case-dependent. Moreover, note that the result of Theorem 3 implies

9



that in general the ICM test has nontriviah-local power:

COROLLARY 1:If the mean functiom(§) is such that

(19) jn(&)Zdu(a) > 0.

then for every K> 0, P(T > K) > P(T, > K).

Condition (19) can be achieved by a suitable choice of the weight functg@$ and the

measure [&). Cf. Section 2.

4. ADMISSIBILITY OF THE ICM TEST
4.1. Introduction

We show now, by adapting the approach of Andrews and Ploberger (1993, 1994), that the
ICM test is asymptotically admissible, i.e., that there does not exist a test which uniformly
dominates the asymptotic local power of the ICM test, provided the ewase conditionally
normally distributed and some regularity conditions hold. See Assumption B in the appendix.

Consider probability measur®g,, the probability measures which generate the data under
the null hypothesis, and a family of probability measufgg g U G, representing alternatives.
One may interpret the indexas the functional form of the random variabfgsn model (7), i.e.
0= OVers Yicoseeer Xo» X1 s X2 y--..). IN particular, we confine the index g8tof alternatives to
local alternatives (7) for which Assumption B holds. Note that for such an alterngtive can
define Py, indirectly by the likelihood ratiodP, /dP,,, which under Assumption B is well-
defined, so that botR,, andP, , are defined on the same probability space.

Next, consider weighted alternativés, = [P, dQ.(g), where theQ, are probability

measures orG. The a-level likelihood ratio test for testing,, againstP,, takes the form
p, = 1(dP,,/dR, > K, ), whereK,, is the correspondingi-fractile of the likelihood ratio
involved. We shall show that under the null our ICM testin the form (4) is asymptotically
equivalent to the LR test for a particular meas@gi.e., P, (t, = p,) —1. Now consider an

arbitrary sequence, of asymptotica-level tests competing with,. We distinguish three cases.
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The first case is wherg, andt, are asymptotically equivalent under the null, i.e.,

(20) Pon(Th = V) -1

Then we can show that in the case of the ICM test these two tests are also equivalent under all
alternativesP, ,, g 0 G, i.e.,

(21) P,(t, =V, -1, for each g0 G.

The second case is wheygandt, are essentially different under the null, in the sense that

(22) liminf P, (t, #y,) > 0.

n-eo

Then we can show that
(23) Iiminf( J (E;T)dQ,(9) - J (Egyn)dQn(g)) > 0.

Thus, in this case the testshave the highest "average" (w.1Q,) asymptotic power. The third
case is where neither (20) nor (22) are true. Then there exists a subsequalocg which the
two tests are asymptotically equivalent unéigy, and thus also under all alternativeg,.

In the first case the result (21) implies that the asymptotic power functions of the two
tests are the same, hengeannot be asymptotically uniformly more powerful thegnThe same
applies in the third case, because we can approach the asymptotic power function along any

subsequence. In the second case the result (23) implies that

liminf Qn<{g OG: Et, > Egyn}) >0,

which excludes the possibility that asymptotically the tgsis uniformly more powerful than

T

n-

For proving the result (21), we need:

LEMMA 3: Let Assumption B hold. If the tesgsand 1, are asymptotically equivalent

under R, then so are they underP.

Moreover, for proving (23) we need:

11



LEMMA 4: Let L, = dP,,/dPR,, be the likelihood ratio. Assume that under the nyj|, P
, L, converges in distribution to a continuously distributed random variable L with) E 1. If
under R, the asymptotici-level testt, is asymptotically equivalent to the-level LR tesip,,,
andy, is a competing asymptotic-level test that is essentially different fram, i.e., (22) holds,
then the asymptotic power of the testis higher than the asymptotic power of the tgsfi.e.,
(23) holds.

The lemmas 3 and 4 are concerned with tests of simple hypotheses, whereas in the case
of the ICM test we have composite hypotheses, because the null distribution as well as the
alternative distribution depend on the param&gfThus, loosely speaking, the actual index set
of alternatives is of the fornex®. However, this is no problem. If for all fixefl in the interior
of @ there does not exist a test that is, uniformly @nasymptotically more powerful than the
ICM test, then there also cannot exist a test that is uniformlyGe® asymptotically more
powerful than the ICM test, regardless of possible restrictions imposéal dherefore, we can

now merge and extend the lemmas 3 and 4 to:

LEMMA 5: Let Assumption B hold, and let be the ICM test in the forr(d). Let L, ()
be the likelihood of the data under the null hypothesis for a particular parameter vegto®.
Similarly, let L (6,0) be the likelihood of the data under a particular alternativelgG and a
parameter vecto® [1 ©. Suppose that for ang in © it is possible to construct probability

measures @, which, with L, (6) = JL,(6,0)dQ,(g), have the properties that under the null

hypothesis,
0 -

(24) |nE'l,n(e)D_ T _)d(e)

- T

O’n( )D
and
L, (6

(25) 1n(9) -V, in distr., where BV,) = 1,

L,.(6)
where c is a constant and@ a nonrandom function. Then the ICM tastis admissible.

12



Note that condition (24) ensures that the ICM test is asymptotically equivalent to a LR test, and
that, sinceT is asymptotically continuously distributed under the null, so is the likelihood ratio
involved. Moreover, the conditions (24) and (25) ensure that the conclusion of Lemma 3 also
holds forP,,,

4.2. Asymptotic admissibility
For proving the asymptotic admissibility of the ICM test it suffices now to construct

probability measure®, and Q , that satisfy the conditions of Lemma 5, as follows. Denote
(26) 9, = [@@EUEME) it =1, g, =0if t <1,
cf. (10) and (15). Then it follows from (12) that under the null hypothesis (6), &ifh 6,) any

point in the parameter spa€ satisfying Assumption A, that

T = [2€rdue) - o) - Iz(jzn(a)wi(z)du(a - o 1)

i1

-« O 0
-y @wn DY (yt—ft(e»}cpt(z)wi(z)du(a)g - 0/1),
hence under Assumption A and the null hypothesis,
27 . =0 - g
(27) f-¥ @1% )Y ((a,g - o).

However, the random variableg; in (26) also form the basis for the following class of

alternative hypotheses:
—_— Nn
(28) H y, = 18 « (o/ym)Y v, - u,
i=1

where thev’s are random coefficients ard, converges to infinity witm at a sufficiently slow
rate. We can associate these alternatives to a s@s#tthe setG of alternatives considered in
Lemmas 3, 4 and 5. Thus, each alternative@ G, corresponds to a sequengef coefficients,

with v, = 0 for i > N,, and the null hypothesis corresponds to the case0 fori = 1,2,....

13



Given ag in G,,, we can now write the log likelihood ratio under the alternatjvas:

.0 g)D 1o 5
n S g,00-H0) - AWy 52 v gt.

DLOn(e) 0'\/n|l t=1 t=1 [iF1

Let gy be an alternative for whicly = 0 fori > N, whereN may possibly depend am Denoting

|

N n n
@9 SR U SERUR ORI SENOR/ONE

O n 0
0. .
B, = glm)z gt,ilgt,i% 1, = 1,2,.N,

t=1
andV, = (v, ,...vy)", we can now write the log likelihood ratio as

H G g)D
1n N V lV BV
TLe g™ VA

A suitable measureQ, on G can now be constructed implicitly by letting

V, O N, (I ,-AJo?) "), independently of the data, wherd, = diag@, ,...Ay) and

c > max{A/o% i = 1,2,3,.}, with N depending om. Then

L,(6.9dQ,(@) /detel-A/6?) ex{2ay (B, +(Cly A\ /0?) "3
Lor(6) \/det®,+(cl,-A/0?)

= L,,(6)/L,,(6), say.
(30)

We show now that condition (24) of Lemma 5 holds. Observe from (10) and (15) that

14



MY 6,9, = WY [[@EIOEIW E)Y,EIMEIME,)

- L [[FEntaw €u E o o)
0)
A(@,=iy)
'*iéjPTEyﬁﬁwdﬁﬁwdﬁgdu&degg = -
© (o)

wherel"(§,,&)) = (1/N)Z LEUSF)eE)0(E,) = 02(1/n)Z L.eE&,)9E,) and the convergence

result involved follows from Assumptions A and B. Thus for fixéd B, — (1/09)A, .

Consequently, it follows that under the null hypothesis and Assumptions A and B,
ay (B,~cl -AJod) *a, - c*aja, -0 (n - o, Nfixed). Moreover, it follows from (27) and (29)

that

- oaja, - Y (jzn(é)wi(é)du(ﬁ))z - 0,(1).

i=N+1
Since for fixedN,

[«

S U
im, £ { [2@wE)hHE)] 5= ¥ A,
[[AN+1 0

i=N+1

It follows now from Lemma 6 below that there exists a sequéWigsonverging slowly to infinity
with n such that:

(31) ay (B, +cl, -\, /09 a, - ¢ *Tlo? -0,

LEMMA 6: If A, and B, are random variables such that A - B, for fixed N and n-
o, and B, - 0 for N - o, then there exists a subsequencecbhverging to infinity with n such
that A, -0 for all subsequences,Natisfying N < N; and N, - .

Moreover, we have

15



U U
det(l,-A,/0?
(32) InE\/ elAo) Ealn(\/detaN—cll\N/oZ)as
L/det@,+cl Ay /0?) E
(n-s, N fixed
and
N U U w U A O
(33) In(\/det(IN—cl/\Nlcz)) -2y Ina—_‘gaiz Ina—_‘g
2iq 0 COZD 2 g ¢C ZD

asN - . Again applying Lemma 6, we can replaein (32) and (33) by the same sequence
N, as before. Combining (31), (32) and (33) then yields:

-0

(34) H-ln()g 0T +l°°|n% A
0 co’

ELO ©F too? 25

under the null hypothesis, where the likelihood ratio involved is defined by (30)Nvigtplaced

HEEH

by N,. This proves part (24) of Lemma 5, wittl(8) = (1/2)> ,In[(1 - (A/co?)].  Part (25) of
Lemma 5 follows from Theorem 3 and (34), i.e., under the null hypothesis

’\ (o)

D zm:s-z A + iz Iné
E < 'co? 2 0

i=1

A
o

S

" = In(Vy),
2ca? 2.:1 O co °

EII:H:I

say, in distr., where the’s are i.i.d.N(0,1). Clearly,E(V,) = 1. This completes the proof of

the following theorem:

THEOREM 4:Under Assumptions A and B, the ICM test in the fqdnis admissible

5. THE SIZE OF THE ICM TEST
As mentioned before, the practical applicability of the ICM test is hampered by the fact
that the limiting distribution of the test statistic under the null hypothesis is case-dependent and
can therefore not be tabulated. A possible way to get around this problem is the conditional
Monte Carlo approach of Hansen (1990) and De Jong (1995). However, this approach is

computational intensive and therefore does not give quick answers. Therefore, we shall derive

16



case-independent upperbounds of the asymptotic critical values of the ICM test, on the basis of

the following lemma

LEMMA 7: Let ¢,.G be positive constants such that the equality
1k :(=1Ci = (1/m)Zj"llcj implies k=m, and let x,.. x, be variables. Then the solution of the LP

problem maxZlcx st x 2 x 2 .. 2 ¥, Zlx=1, is of the form

X = 1/m for j = 1,..m; X = 0 for j = m+1,..n.

It follows now from Theorems 2, 3 and Lemma 7:

THEOREM 5:Let ¢; be NIX0,1) and let

(35) W = supel(lln)zn: el.
-1

Forn >0, P[T, > nETy)] < P[W > n], where T, is the random variable defined ifl8).

Consequently, under Assumption A and the null hypotl{éis

lim_ P[T > n Jf(z,adu(z)] < P[W > n].

Using 10,000 replications, we have derived the 10%, 5% and 1% quantiles of the random

variable (35) by Monte Carlo simulation, i.e.,

(36) P(W > 3.23) = 0.10; P(W > 4.26) = 0.05; P(W > 6.81) = 0.01.
Thus, conducting the ICM test at say the 5% significance level, we reject the null hypothesis of

model correctness if
(37) T > 4.26J F(&,&)duE),

Note that Bierens (1982) proposed to derive critical values of the ICM test on the basis of

Chebishev’s inequality for first moments; e.g, unéy

(38) lim_P[T > 20{?(& ,&)du@)] < 0.05
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Comparing (37) and (38) we see that the new upperbounds of the critical values in (36) are much

sharper than the ones based on Chebishev’s inequality.
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APPENDIX
ASSUMPTIONS

ASSUMPTION A.1l: The parameter spac® is a compact subset oR". The true
parameter vectorf, is contained in the interior of®. The response function(d) is twice
continuously differentiable o®, and y and {,,(8) are measurable w.r.t#, where  is the
sequence ob-algebras generated byy,; % ), j = 0,1,2,....MoreoverE(u,|.5,) = 0 as.

Furthermore, gis measurable w.rt#,; g Ofort<1.

ASSUMPTION A.2:w,(§) is a sequence of real valued random functions=pmvhere=

is a compact subset of a Euclidean space, such th{@) v& measurable w.r.t.# .

ASSUMPTION A.3:Let A (8) = (1/n)Z ".{(0/087)f (B)H( 0/36)f(8)}. Then AB) — A(6)

uniformly on®, where AB) is a nonstochastic matrix function such thgb4) is positive definite.

Moreover, the least squares estimafbsatisfies

6-0 elD1 f0) - = _feD+
/n(@-6,) = A®B) Wntz;“aeﬂ(") ntzljgtaeﬂ(o)D 0,(1),

ASSUMPTION A.4: Let b(8,E) = (1/n)z ,(0/007)f (B)w,E). Then 8,E) — b(6.E)

uniformly on®x=, where K{6,§) is a nonstochastic function satisfyireyip, , , -1b(6,&)l < .

ASSUMPTION A.5: The weight functions X&) are differentiable on=, and

limsup, . (1/n)X {LlE[ufsuQEH(d/@?)wt(ﬁ)n?] < oo; (/0ET)D(0,E) - (8/0ET)b(B,E) uniformly on

O X =, SURg ¢ [(0/0€T)D(6,&)I < oo; (1/n)Z L E{u, [(a/aeT)f(eo)] [(0/08)f(6,)]} — A, where
A, is finite. There exists a continuous functiom (¢, , {,) on =x= such that

(A/n)z L EWU’].5 F)0E)0E,) -T(&,,&,) uniformly on=x=, while pointwise on =xZ=,
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(L/MZ Lu'QENOE) ~T(E,.8,), (LN LEUQE)RE)] ~T(E,,E,). Moreover, for some

0 >0, limsup, ,sup-(1/nZ LEU@(§)[??® < . There exists a continuous functioyf€) on

= such that (1/n)Z ,00,&) -n(&) uniformly orE.

ASSUMPTION B: The errors ys in the modelq6) and (7) are normally distributed
u,|#, 0 N(0,0%).Moreover, the exogenous variablegsx(c.f. Assumption A)lare weakly
exogenous in the sense of Engle, Hendry and Ricl{a883). Furthermore, under the null

hypothesisplim__ (1/n)Z n.g° exists, is constant and finite

PROOFS
PROOF OF THEOREM 1: The proof is similar to the related results in Bierens (1982, 1990).

PROOF OF THEOREM 2: We need to show that the finite distributions of the pratess
converge to normal distributions, and thzats tight. Cf. Billingsley (1968). In order to prove that

the finite distributions ofz, are asymptotically normal, we apply the Liapounov-type version in
Bierens (1994b, Th.6.1.7) of McLeish’s (1974) martingale difference central limit theorem. Since
pointwise in¢§, u@(§) is a martingale difference sequence, Assumption A.5 implies that for

arbitrary points¢, &, ,...&y In =,

(E)E 0 n

n @p E DH_(EI'El) " r(El’EM%
FLug . genems - - - d
n @t(am)g D%(EM’ED B r(EWEM)%

in distr. Together with Assumption A.5, this result implies that the finite distributiong, of
converge to normal distributions.

Next, consider the following general tightness result:

LEMMA A.1: Let y be a martingale difference sequence, i.g.jsumeasurable w.r.t
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7, where .7 is an increasing sequence @falgebras ande(u,|.7,) = 0 as. Moreover, lej(g)
be a sequence of random function on a compact subsef a Euclidean space such that

0&) - 9&,)] < KJIE -E,| foreachg,, &, in =, where@(§) and K are measurable w.r.&7

and limsup, (1/n)Z E[u’K]] < . Finally, let for one arbitrary & in =,

Iimsupw(lln)z{‘:lE[utcht(EO)Z]<oo. Then the sequence of random functions

z(€) = (1//n)Z LueE) is tight on=.

PROOF: Choose an arbitrary > 0. We prove the lemma by showing the existence of a

sequence of tight random functiong({) on = such thatP[z=v,] = 1 - e. Denote
A) = Z1.u"@€)% B, = £ ,Uu’K;". Now choose aM > 0 and define the stopping tintém)
by T(M) = supft < n|A(§,) < nM, B, < nM}. for an arbitrang, in =. SinceA(§,) andB, are
monotonic non-decreasing, antimsup, _ (1/N)E[A (§,))] < «, limsup, (1/NE[B] < « by the

conditions of the lemma under review, it follows from Chebishev’s inequality applie¥(tQ)

andB, that there exists aNl, such thatP[t(M,) = n] =21 - ¢. Next, defing({) = Z )(E).

ThenP[z, =v] = P[t(M,) = n] = 1-¢. We show thav, is tight by applying the Kolmogorov-
Cencov criterion (c.f. Kunita 1990, Theorem 1.4.7, p.38), i.e., if for sgm&> 0 there exists

a constantC such that for eveng,, &, &, in =, E[v(§)]Y <C, and E|v (§,)-V. (&) <
CHEl—EZHM, wherek is the dimension oE, thenv, is tight. Now utilize Burkholder’s inequality
(c.f. Chow and Teicher 1988, p. 396), i.e.fjfis a martingale an&, = = ,(f-f ,)?, then for

m, n> 1, [E[f"]| < CmE[ng], whereC,, < o is a constant which does not depend mmn

Moreover,n can be an arbitrary adapted and bounded stopping time. Applying this inequality to

v, yields

21



K k %ﬂf 2 gl k
"2 S Cu U IED WRREST < Cu M

[t

SVAC

where the second inequality follows from the definition of the stopping ti{M). This proves
the first part of the Kolmogorov-Cencov criterion, fpr= 2k + 2.

Finally, again using Burkholder's inequality, the Lipschitz condition @nand the
definition of T(M), it follows that

(M) 0

0
E‘Vn(El) _Vn(Ez) &2 = (1/n k+l)E§Z ui((pi(E'l) _(pi(Ez) 2k+2%

b
(M)
< Ck(llnk*l)E%: uA(@,E,) —cpi(ﬁz))zé

(=1

i

(M)
< Ck(lln“EEE UKZE IE,-E, |22 < CJE,-E J&2M ¥,
[=i Ul

This result proves the second part of the Kolmogorov-Cencov criterion and hence the tightness
of v,. Q.E.D.

In our case it follows from Assumption A.5 that we can chookg =
suQEEH(G/GET)(pt(E)H. Then all the conditions of Lemma A.1 follow easily from Assumption A.

This completes the proof of Theorem 3.

PROOF OF COROLLARY 1: Denotingl. = Zj#_i(r]j + ej,/)\j )2, the corollary follows from

repeated application of the easy inequality
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7" expl-2(u-n /] ]
PT<K) = EQ } 2 du (T, < K)g
Heme |\ [2m .

%K’Ti)m exp[-Zu?/A] E

<EQ J 2 dul(T, < K)g

ey \J2m, H

P\ef + T, <K)if n, # 0.
Thus if at least one), # 0, then the conclusion of the corollary holds. It is easy to verify that

condition (19) guarantees this.

PROOF OF LEMMA 1. The series representation foris the actual contents of Mercer’s
theorem. Cf. Dunford and Schwartz (1963, p.1088). The claim that the Eigenvalues and
Eigenfunctions are real valued follows easily from the condition that the funEtismeal valued

and positive semi-definite, similarly to the proof that the Eigenvalues and Eigenvectors of a

positive semi-definite matrix are real valued.

PROOF OF LEMMA 2: The proof that the Eigenfunctions can be chosen orthonormal is
analogous to the matrix case. The nonnegativity and summability of the Eigenvalues and the
continuity of the Eigenfunctions follow directly from Mercer’s theorem and the continuify. of

The completeness of the Eigenfunctions (part (14) of Lemma 2) follows from the fact that we
can always make the orthonormal bas|sH{complete by adding additional orthonormal functions

with corresponding zero Eigenvalues.

PROOF OF LEMMA 3: Observe that
Pg’n(rn Zy) < ngn<{Ln >mp U{L smAT # yn})

<P (L, >m) « P, (L <smAT #vy}

< I LdP,, - J LdP < j LdP, = mP, (T, % V,).
{L, > m} {L,smAT 2y}

{L,>m
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Thus for arbitrarym we have

(A1) limsupP, (1, # v ) < limsup l L.dP,, .
n-eo m}

n-eo {Ln

Now if under B, L, — L in distr., whereL is a continuously distributed random variable
satisfyingE(L) = 1, then it follows from Lemma 6.12 in Strasser (1985, p.36) khas uniformly
(Pyw-integrable and that therefore, by increasmgwe can make the right-hand side of (Al)

arbitrarily small. But due to Assumption B we have unégy,,

0 i O
1 _

InL) = ZHLAVMY ug, + WMY 670 - N(-6/2.6)
o O t=1 t=1 O]

in distr., wherewd = plim__(1/n)> n.9°/0%, henck = exp(-v&¥)expwe) with ¢ 0 N(0,1), and

obviouslyE(L) = 1.

PROOF OF LEMMA 4: Suppose first that the competing {gs$ an exacti-level test, and that
T, is an exacti-level LR test:t, = p,. Let K, , be the corresponding-fractile of the likelihood

ratio L. Then we can write
{vozp} = (v, zp} N{L <K HU{y,zp} N{L, 2K, }} =
v, =1Ap, =0fL, <K HU{y, =0Ap, =1} L =K }

\}

hence

Vo - Py = Iy, # P DAL, < K3 - 1y, # p} N AL, 2 K 3.
Since under the nulE:(y,) = E(p,) = a, these two equalities imply that

(A2) Po{vo # P} N{L, < K, }) = 2P (v, # p,)-

Since we have assumed that the tgs&ndp, are essentially different, the "liminf" of the right-

hand side probability is bounded away from zero, hence

(A3) liminf P, ({y, # p} N{L, <K, })> 0.

n-—eo

This result implies that there existsdg> 0 such that
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(Ad) liminf Py ({y, # p} N{L, <K,, - 8})>0 if 0< 3 < &,

n-eo

because if not then
liminf P, ({y, # p }N{L, < K, })
< liminf PodlYs 2 PI{L, < K, - 8})
o an ~ O S L <K )
= inf liminfP, (K, -8 <L <K ) =0,

5>0 n-eo

(AS) -
+ liminfP, (K

which contradicts (A3).

Next, observe that

Ey,) = Jyndpl,n = jynLndPo,n = Eo<ynLn>
(A6)
= EO{("n - Kor,n) yn} + aK(x,n’

and similarly E,(p,) = EO[<Ln - K pn} + aK, .. Thus

Ep) - EY.) = Byl(L, -~ Ko (B, - V)
= E|lL, - Ko) (0, - YL, < K, - 3)]
S Ey|L, - Ko (0, - YK, - 8 < L, < K,
P Bk, - Ko (0 - VI, 2 Ky,
> Ey|[L, - Ko (0, - YIIL, < Ky, - B)

(A?) * EO{("n - K(x,n) (pn - yn)I(ch,n -0 < I‘n < K(x,n)}

2 3 Ejfy, (L, < K, - ) - 8 Efy,J(K,, -8 <L, <K,

n

n

=0 P, <pn £y AL < Kan ~ 6) -0 PO,n<Ka,n -9 <L, < Ka'n>.

Since the last probability can be made arbitrarily small by letdrappproach zero, whereas by

(A4) the first probability in the last equality remains bounded away from zero, it follows that
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liminf__(E(p,) - E,(y,))) > 0. This result carries over to the general case wipgiie replaced

by the asymptotically equivalent testand the exaati-level testy, is replaced by an asymptotic
a-level test. Denotingx,, = E,(y,), wherea,, - a, equality (A2) then only holds in the limity
in (A6) needs to be replaced lmy,, and consequently inequality (A7) now holds in "liminf",

which is just fine.

PROOF OF LEMMA 5: The conditions of Lemma 5 imply those of Lemmas 3 and 4.

PROOF OF LEMMA 6: Define m(N) =inf{n: P[|A , - B,/ > 1/N] < I/N} and let

N, = max{N: m(N) < n}. N, is monotonic and cannot be bounded as otherwise there would

exist a constant such thatN, < c for all n, thereforem(c+1) > n for all n. Thus the existence

of a sequencé\, converging to infinity and bounded kY. is guaranteed. Then for al > O,

P(IA, | >¢) < P(JA, - Byl >¢) - P(|B| > ¢) Clearly, the right-hand side converges to

Zero.

PROOF OF LEMMA 7: Letx, = £ y’. ThenIx = 1 impliessjy” = 1. The L.P.
problem involved can now be put in a Lagrange framework, with Lagrange function
L(Y, s oYy ) = Z 5462 Ly’ + u(d - ZLjy). The solution involved follows now easily from
the first-order conditions, in particular the conditi¢d/oy,)L(y,,....y,,H) 2ky[(1/K)Z }‘:lcj—u]

=0
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Footnotes
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2) A previous version of this paper, entitled "Asymptotic Optimality and Size of the
Integrated Consistent Conditional Moment Test of Functional Form" has been presented at the
Econometric Society European Meeting 1993, Uppsala, Sweden. The present version has been
presented at Cornell University, North Carolina State University, and Humboldt-Universitat zu

Berlin.
3) The financial support from the "Ausseninstitut der Technische Universitat Wien" is
gratefully acknowledged. The present version of this paper has been presented at the Econometric

Society European Meeting 1994, Maastricht, the Netherlands.

4) Corollary 1 of Bierens (1990) with exy) replaced by 1/(1+exp(#) provides a proof of

why neural network methods work. See Bierens (1994a).
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