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ASYMPTOTIC THEORY OF INTEGRATED

CONDITIONAL MOMENT TESTS1

By Herman J. Bierens2 and Werner Ploberger3

In this paper we derive the asymptotic distribution of the test statistic of a generalized version

of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of√n-

local alternatives, wheren is the sample size. The generalized version involved includes neural

network tests as a special case, and allows for testing misspecification of dynamic models.

It appears that the ICM test has nontrivial local power. Moreover, we show that under the

assumption of normal errors the ICM test is asymptotically admissible, in the sense that there

does not exist a test that is uniformly more powerful.

The asymptotic size of the test is case-dependent: the critical values of the test depend

on the data-generating process. In this paper we derive case-independent upperbounds of the

critical values.
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1. INTRODUCTION

Conditional moment (CM) tests have been proposed by Newey (1985) and Tauchen (1985) in

the context of maximum likelihood models, but as these authors show, most misspecification tests

of functional form are special forms of CM tests. A typical CM test takes the form of a quadratic

form of finitely many weighted means of the residuals, where the weights are functions of the

regressors. These CM tests are in general not consistent. In order to achieve consistency, Bierens’

(1982, 1990) consistent conditional moment tests employ a class of weight functions indexed by

a continuous nuisance parameter, so that actually uncountable many weight functions are

employed. In order to obtain a single test statistic, Bierens (1982) proposes to integrate these

nuisance parameters out. Therefore we shall call the test of Bierens (1982) the Integrated

Conditional Moment (ICM) test. The test statistic of the CM test of Bierens (1990) is obtained

by taking the supremum over the space of nuisance parameters.

In section 2 we review the ICM test and discuss the choice of the weight functions. In

section 3 we derive the asymptotic distribution of the ICM test under a general class of√n-local

alternatives, where we allow the data-generating process to be dependent. A√n-local alternative

takes the form of an augmented regression model where the additional terms in the model vanish

in probability at rate 1/√n, wheren is the sample size. It appears that the ICM test has nontrivial

power against these√n-local alternatives. In section 4 we prove the admissibility of the ICM test,

under the assumption of normal errors, i.e, we show that there does not exist a uniformly more

powerful test.

Next to the conditional moment testing approaches of Bierens (1982, 1984, 1987, 1990),

Bierens and Hartog (1988), De Jong (1995), De Jong and Bierens (1994), White (1989) and

Stinchcombe and White (1991), there is also a competing line of recent literature on conditional

moment tests based on comparison of parametric and (semi-)nonparametric models. See, e.g.,

Wooldridge (1992), Yatchew (1992), Gozalo (1993) and Hardle and Mammen (1993) for

published papers in this area. Although not all of these authors derive local power results, the

ones who do find local alternatives that shrink to the null at a slower rate than 1/√n. Only Hardle

and Mammen (1993) manage to achieve√n-local power, but only in one direction. In contrast,

we will show in this paper that our ICM test has nontrivial√n-local power in all directions,
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although the power is not the same in every direction.

Under the null hypothesis of model correctness, the test statistic of the ICM test is

asymptotically distributed as an integral over a squared zero mean Gaussian process, where the

covariance function of this Gaussian process depends on the distribution of the data and the

functional form of the model. This makes it impossible to tabulate the exact asymptotic critical

values of the ICM test. In section 5 we show how to derive upperbounds of the asymptotic

critical values of the ICM test that are case-independent and can therefore be tabulated.

The proofs of theorems and lemmas are given in the appendix, except in cases where

these proofs are also helpful in understanding the main argument. Also the assumptions (A and

B) are stated in the appendix. Convergence results and conditions indicated by "→" that involve

random variables refer to convergence in probability, unless otherwise stated. The indicator

function is denoted byI(.), and indexed expectations signs, e.g.Eg, indicate that the expectation

is taken under a certain hypothesis "g".

2. THE INTEGRATED CONDITIONAL MOMENT TEST

2.1. Introduction

Consider a random sample {(yt , xt), t = 1,..,n} from a k+1-variate distribution, or let (yt

, xt) be ak+1-variate time series process, observable fort = 1,..,n, whereyt is the dependent

variable andxt is a k-vector of regressors (possibly containing lagged dependent variables). In

parametric nonlinear regression analysis we usually specify the conditional expectation function

of yt relative to the vectorxt of regressors as a known functionf(.,.) of xt and a parameter vector

θ:

(1) H0: ∃ θ0 ∈ Θ ⊂ m: P[E(yt xt) f(xt ,θ0)] 1 .

where Θ is the parameter space. The consistent tests of Bierens (1982, 1990) test the null

hypothesis (1) against the alternative:

(2) H1: supθ∈ΘP[E(yt xt) f(xt ,θ)] < 1.

Note that in the i.i.d. case the alternative (2) is just the complement of the null hypothesis (1),

i.e., the alternative hypothesis involved is that the null hypothesis is false, but that in the time

series case model correctness requires more conditions than only (1), namely the additional
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condition thatut = yt − f(xt , θ0) is a martingale difference sequence. The latter condition implies

that E[utwt] = 0 for any functionwt of the past (yt−1 , xt−1), (yt−2 , xt−2), (yt−3 , xt−3),.... of the time

series under review. The properties of the ICM test under data dependence is treated in different

ways by Bierens (1984) and De Jong (1995), for the case of testing model correctness against

all global alternatives. In this paper we also derive the asymptotic theory of the ICM under data-

dependence, but now we test a parametric model against√n-local alternatives.

The idea behind the conditional moment test as introduced by Newey (1985) and Tauchen

(1985) is to base a test statistic on a finite number of weighted mean of the estimated residuals,

where the weights are functions of exogenous and lagged dependent variables (or instrumental

variables). However, given a finite set of instruments, it is always possible to construct a data-

generating process for which the null hypothesis is false but the power of the test is trivial. In

order to have power against all deviations from the null hypothesis we need an infinite set of

instruments, saywt(ξ), whereξ is contained in an index setΞ. Now consider the random function

ẑ(ξ) = (1/√n) [yt − f(xt ,θ̂)]wt(ξ), ξ ∈ Ξ. As is shown in Bierens (1990) for the i.i.d. case,Σ n
t 1

under the null hypothesis this random function converges weakly to a continuous Gaussian

random functionz(ξ), while under the alternative,z^(ξ)/√n converges to a nonstochastic nonzero

limit function, for weight functionswt(ξ) = exp(ξTΦ(xt)), with Φ a bounded one-to-one mapping.

De Jong (1995) proves a similar result for time series models for the case whereΞ grows in

dimension to infinity with the sample size. Again, in this paper we focus on the asymptotic

theory of ICM tests under local alternatives, where the dimension of the compact setΞ remains

fixed.

The test statistic of the ICM test takes the form

(3) T̂ ⌡
⌠ ẑ(ξ) 2dµ(ξ)

where µ(ξ) is a probability measure onΞ. This is (in essence) the form of the integrated

consistent conditional moment test proposed by Bierens (1982).

The critical values of the ICM test are case-dependent. However, the asymptoticp-values

can be consistently estimated, using the conditional Monte Carlo approach of Hansen (1990) and

De Jong (1995). Denoting the estimatedp-value involved byp~, the ICM test is then applied in
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the form of an asymptoticα-level test

(4) τ n I(p̃ < α) ,

whereα is the significance level. Thus we reject the null hypothesis at theα significance level

if τn = 1. Note that under the null hypothesis,E(τn) → α, Only for the ICM test in this form we

can show asymptotic admissibility, i.e., we shown that there does not exist an uniformly more

powerful test.

2.2. The weight functions

The consistency of the ICM test (3) depends on the choice of the weight functionwt(ξ).

In Bierens (1990) it has been shown that the ICM test based on the weight functionwt(ξ) =

exp(ξTΦ(xt)), with Φ a bounded one-to-one mapping, is consistent. Earlier, Bierens (1982) showed

the consistency of the ICM test for the complex-valued weight functionwt(ξ) = exp(iξTΦ(xt)),

and µ the Lebesgue measure. Stinchcombe and White (1991) show that these consistency results

carry over to a much wider class of weight functions than only exp(.). For example, we may

replace exp(u) by the logistic function 1/(1+exp(−u)), which then gives rise to White’s (1989)

neural network4 version of the randomized CM tests of Bierens (1987, 1988, 1994b, Ch.5). See

also Lee, White and Granger (1993). For the purpose of the ICM test, however, the following

straightforward extension of Theorem 1 of Bierens (1982) is sufficiently general:

THEOREM 1: Let u be a random variable satisfying Eu< ∞, and let x be a bounded

k-variate random vector such that P[E(ux) = 0] < 1. If w(u) is a complex or real valued function

that is infinitely many times continuously differentiable in u= 0 and satisfies the condition

(5) { s ∈ : (d/du)sw(u) u 0 0} is finite,

then ∀ > 0 ∃ ξ ∈ k: E[u w(ξTx)] ≠ 0 and ξ < .

The result in Theorem 1 implies that if we choose the measure µ such that a small open

neighborhood of the origin ofΞ is in its support, andx andw are as in Theorem 1, thenP[E(ux)

= 0] < 1 if and only if ∫[E[u.w(ξTx)]2dµ(ξ) > 0. Note that if the vectorx is not bounded, we can

without loss of generality replacex in Theorem 1 byΦ(x), with Φ a bounded one-to-one mapping,
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for conditioning onx is equivalent to conditioning onΦ(x). Moreover, note that the exponential

and logistic functions, as well as (e.g.) the weight functionw(u) = cos(u) + sin(u), all satisfy

condition (5). In the sequel of this paper, however, we shall leave the type of the weight function

open, apart from being real valued, as consistency of the ICM test is not the main issue of the

present research.

3. THE LIMITING DISTRIBUTION OF THE ICM TEST

UNDER LOCAL ALTERNATIVES AND DATA-DEPENDENCE

3.1. The null model, the local alternative, and maintained hypotheses

In the sequel we shall suppress the vectorxt of regressors in the regression functionf(x,θ)

and the weight functionwt , in order to allow for models with infinitely many lagged dependent

variablesyt−j and laggedexogenousexplanatory variablesxt−j (j = 1,2,3,..) but finitely many

parameters such as ARMA and ARMAX models, and to allow for a possible distinction between

regressors and instrumental variables. Thus under the null hypothesis we reformulate the model

as

(6) H0: yt ft(θ0) ut , θ0 ∈ Θ,

and under the local alternative as

(7) H L
1 : yt,n ft(θ0) gt / n ut ,

where the errorut are martingale differences. The detailed maintained hypotheses regarding the

ft , gt and the weight functionswt(ξ) are given in the appendix, as Assumption A. These

assumptions allow thegt’s to depend on lagged dependent variables as well. However, in the

presence of lagged dependent variables inft(θ) and/or gt there are two, possibly different,

interpretations of the local alternative (7). The first interpretation is that the lagged dependent

variables inft(θ) andgt are generated by the null model. Thus, the local alternative (7) is then

actually of the formyt,n = yt + gt /√n, where theyt’s are generated by the null model (6). The

second interpretation is that the lagged dependent variables inft andgt are now the laggedyt,n

generated by (7). The latter interpretation makes the random variablesft(θ0) and gt triangular

arrays. Although all our assumptions and proofs are stated in terms of single arrays, our results

straightforwardly carry over to triangular arrays. The same applies to the weight functionswt(ξ).
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Under the local alternative (7) the processz^(ξ) now becomes

(8) ẑ(ξ) 1

n

n

t 1

[ut gt / n ft(θ0) ft(θ̂)]wt(ξ) .

where θ̂ is the nonlinear least squares estimator ofθ0 . Then it follows from (8) that under

Assumption A, similarly to Bierens (1990),

(9) ẑ(ξ) 1

n

n

t 1

utφ t(ξ) 1
n

n

t 1

gtφ t(ξ) op(1) ,

uniformly overξ in Ξ, where

(10) φ t(ξ) wt(ξ) b(θ0,ξ)TA(θ0)
1(∂/∂θT)ft(θ0) ,

with

A(θ) plimn→∞(1 /n)Σ n
t 1{( ∂/∂θT)ft(θ)}{( ∂/∂θ)ft(θ)} ,

b(θ ,ξ) plimn→∞(1 /n)Σ n
t 1(∂/∂θT)ft(θ)wt(ξ)

Denoting

(11) zn(ξ) (1 / n )
n

t 1

utφ t(ξ) (1 /n)
n

t 1

gtφ t(ξ) ,

we thus have that under Assumption A,

(12) plimn→∞sup
ξ∈Ξ

ẑ(ξ) zn(ξ) 0 .

3.2. The limiting distribution of the ICM test under local alternatives

Assumption A guarantees the tightness of the processzn() defined by (11) and the

asymptotic normality of the finite distributions ofzn(). See the appendix. Consequently, we have:

THEOREM 2:Let Assumption A hold. If H1
L is true then z^ ⇒ z, where z is a Gaussian
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process onΞ with mean function and covariance functionη(ξ) plimn→∞(1 /n)Σ n
t 1gtφ t(ξ)

. Then by the continuous mapping theorem,Γ(ξ1,ξ2) plimn→∞(1 /n)Σ n
t 1u

2
t φ t(ξ1)φ t(ξ2)

(13) T̂ →T ⌡
⌠z2(ξ)dµ(ξ) in distr.

In order to analyze the nature of the limiting distributionT in (13), we need the following

version of Mercer’s theorem and its corollary:

LEMMA 1: (Mercer’s Theorem) Let Γ(ξ1,ξ2) be a real valued positive semi-definite

continuous function onΞ × Ξ, whereΞ is a compact space, and letµ be a probability measure

on Ξ. The solutions λi and ψi(.), i = 1,2,3,.. of the Eigenvalue problem

are real valued and the functionΓ has the series representation⌡
⌠Γ(ξ1,ξ2)ψi(ξ2)dµ(ξ2) λiψi(ξ1)

where the series involved converges uniformly onΞ × Ξ.Γ(ξ1,ξ2) Σ ∞
i 1λiψi(ξ1)ψi(ξ2) ,

LEMMA 2: Let the conditions of Lemma 1 be satisfied. The Eigenvaluesλi are

nonnegative and satisfy Moreover, the Eigenfunctionsψi(.) are continuous and canΣ ∞
i 1λi < ∞

be chosen orthonormal and complete in the space C(Ξ) of continuous real functions onΞ as well

as on the space L2(µ) of squared integrable functions w.r.t.µ, i.e.:⌡
⌠ψi(ξ)ψj(ξ)dµ(ξ) I(i j ) ,

and every functionφ in C(Ξ) or L2(µ) can be written as

(14) φ (ξ)
∞

i 1

giψi(ξ) a.s. L2(µ) ,

with Fourier coefficients

(15) gi ⌡
⌠φ (ξ)ψi(ξ)dµ(ξ)

satisfyingΣ ∞
i 1g

2
i < ∞.
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Now let the functionΓ in Lemma 1 be equal to the limit function in Theorem 2. Note that

the continuity ofz() and the compactness ofΞ imply that z() is square-integrable:z ∈ L2(µ) a.s.

Since the set {ψi(ξ), i = 1,2,3,..} of Eigenfunctions is complete we can therefore apply Parseval’s

equality and conclude from (14) and (15), withφ replace byz, thatT =Σ ∞
i 1[⌡

⌠z(ξ)ψi(ξ)dµ(ξ)]2.

Moreover, the Gaussianity ofz() implies that the Fourier coefficients

(16)
⌡
⌠z(ξ)ψi(ξ)dµ(ξ) , i 1,2,3, ...

are Gaussian too. Therefore, for the characterization of their joint distribution we only need to

compute covariances and means. The covariances are:

E{ ⌡
⌠[z(ξ) η(ξ)]ψi(ξ)dµ(ξ)⌡

⌠[z(ξ) η(ξ)]ψj(ξ)dµ(ξ) }

⌡
⌠

⌡
⌠Γ(ξ1,ξ2)ψi(ξ1)ψj(ξ2)dµ(ξ1)dµ(ξ2) λiI(i j) ,

so that the sequence (16) is independent. Moreover, it is easy to see that the mean of thei-th

element of the sequence (16) is just thei-th Fourier coefficient ofη():

(17) η i ⌡
⌠η(ξ)ψi(ξ)dµ(ξ) .

Therefore, the asymptotic distribution of the ICM test under the local alternative (7) can be

described as follows:

THEOREM 3: Under the local alternative (7) and Assumption A, T =

where the i are i.i.d. N(0,1),and theηi are defined by(17).⌡
⌠z(ξ)2dµ(ξ) ∼ Σ ∞

i 1(η i i λi )2,

Note that the Eigenvaluesλi depend on the covariance functionΓ, which in its turn

depends on the data-generating process under the null. Cf. Bierens (1990). Therefore, the

asymptotic null distribution

(18) T0

∞

i 1

2
i λi ,

where i is i.i.d. N(0,1), is case-dependent. Moreover, note that the result of Theorem 3 implies

9



that in general the ICM test has nontrivial√n-local power:

COROLLARY 1: If the mean functionη(ξ) is such that

(19)
⌡
⌠η(ξ)2dµ(ξ) > 0.

then for every K> 0, P(T > K) > P(T0 > K).

Condition (19) can be achieved by a suitable choice of the weight functionswt(ξ) and the

measure µ(ξ). Cf. Section 2.

4. ADMISSIBILITY OF THE ICM TEST

4.1. Introduction

We show now, by adapting the approach of Andrews and Ploberger (1993, 1994), that the

ICM test is asymptotically admissible, i.e., that there does not exist a test which uniformly

dominates the asymptotic local power of the ICM test, provided the errorsut are conditionally

normally distributed and some regularity conditions hold. See Assumption B in the appendix.

Consider probability measuresP0,n, the probability measures which generate the data under

the null hypothesis, and a family of probability measuresPg,n, g ∈ G, representing alternatives.

One may interpret the indexg as the functional form of the random variablesgt in model (7), i.e.

gt = g(yt−1 , yt−2 ,...., xt , xt−1 , xt−2 ,....). In particular, we confine the index setG of alternatives to

local alternatives (7) for which Assumption B holds. Note that for such an alternativeg we can

define Pg,n indirectly by the likelihood ratiodPg,n/dP0,n, which under Assumption B is well-

defined, so that bothP0,n andPg,n are defined on the same probability space.

Next, consider weighted alternativesP1,n = ∫Pg,ndQn(g), where theQn are probability

measures onG. The α-level likelihood ratio test for testingP0,n againstP1,n takes the form

where Kα,n is the correspondingα-fractile of the likelihood ratioρn I (dP1,n / dP0,n > Kα,n) ,

involved. We shall show that under the null our ICM testτn in the form (4) is asymptotically

equivalent to the LR test for a particular measureQn, i.e., Now consider anP0,n(τ n ρn) →1.

arbitrary sequenceγn of asymptoticα-level tests competing withτn. We distinguish three cases.
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The first case is whereγn andτn are asymptotically equivalent under the null, i.e.,

(20) P0,n(τ n γ n) →1.

Then we can show that in the case of the ICM test these two tests are also equivalent under all

alternativesPg,n , g ∈ G, i.e.,

(21) Pg,n(τ n γ n) →1, for each g∈ G.

The second case is whereγn andτn are essentially different under the null, in the sense that

(22) liminf
n→∞

P0,n(τ n ≠ γ n) > 0.

Then we can show that

(23) liminf
n→∞ ⌡

⌠(Egτ n)dQn(g) ⌡
⌠(Egγ n)dQn(g) > 0.

Thus, in this case the testsτn have the highest "average" (w.r.t.Qn) asymptotic power. The third

case is where neither (20) nor (22) are true. Then there exists a subsequencenj along which the

two tests are asymptotically equivalent underP0,n, and thus also under all alternativesPg,n.

In the first case the result (21) implies that the asymptotic power functions of the two

tests are the same, henceγn cannot be asymptotically uniformly more powerful thanτn. The same

applies in the third case, because we can approach the asymptotic power function along any

subsequence. In the second case the result (23) implies that

liminf
n→∞

Qn { g ∈ G: Egτ n > Egγ n} > 0,

which excludes the possibility that asymptotically the testγn is uniformly more powerful than

τn.

For proving the result (21), we need:

LEMMA 3: Let Assumption B hold. If the testsγn and τn are asymptotically equivalent

under P0,n then so are they under Pg,n .

Moreover, for proving (23) we need:
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LEMMA 4: Let Ln = dP1,n/dP0,n be the likelihood ratio. Assume that under the null P0,n

, Ln converges in distribution to a continuously distributed random variable L with E(L) = 1. If

under P0,n the asymptoticα-level testτn is asymptotically equivalent to theα-level LR testρn ,

andγn is a competing asymptoticα-level test that is essentially different fromτn , i.e., (22) holds,

then the asymptotic power of the testτn is higher than the asymptotic power of the testγn (i.e.,

(23) holds).

The lemmas 3 and 4 are concerned with tests of simple hypotheses, whereas in the case

of the ICM test we have composite hypotheses, because the null distribution as well as the

alternative distribution depend on the parameterθ0. Thus, loosely speaking, the actual index set

of alternatives is of the formG×Θ. However, this is no problem. If for all fixedθ in the interior

of Θ there does not exist a test that is, uniformly onG, asymptotically more powerful than the

ICM test, then there also cannot exist a test that is uniformly onG×Θ asymptotically more

powerful than the ICM test, regardless of possible restrictions imposed onG. Therefore, we can

now merge and extend the lemmas 3 and 4 to:

LEMMA 5: Let Assumption B hold, and letτn be the ICM test in the form(4). Let L0,n(θ)

be the likelihood of the data under the null hypothesis for a particular parameter vectorθ in Θ.

Similarly, let L1,n(θ,g) be the likelihood of the data under a particular alternative g∈ G and a

parameter vectorθ ∈ Θ. Suppose that for anyθ in Θ it is possible to construct probability

measures Qθ,n which, with L1,n (θ) = ∫L1,n(θ,g)dQθ,n(g), have the properties that under the null

hypothesis,

(24) ln










L1,n(θ)

L0,n(θ)
T̂
c

→d(θ)

and

(25)
L1,n(θ)

L0,n(θ)
→Vθ in distr. , where E(Vθ) 1 ,

where c is a constant and d(θ) a nonrandom function. Then the ICM testτn is admissible.
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Note that condition (24) ensures that the ICM test is asymptotically equivalent to a LR test, and

that, sinceT̂ is asymptotically continuously distributed under the null, so is the likelihood ratio

involved. Moreover, the conditions (24) and (25) ensure that the conclusion of Lemma 3 also

holds forP1,n ,

4.2. Asymptotic admissibility

For proving the asymptotic admissibility of the ICM test it suffices now to construct

probability measuresPg andQθ,n that satisfy the conditions of Lemma 5, as follows. Denote

(26) gt,i ⌡
⌠φ t(ξ)ψi(ξ)dµ(ξ) if t ≥ 1, gt,i,n 0 if t < 1,

cf. (10) and (15). Then it follows from (12) that under the null hypothesis (6), withθ (= θ0) any

point in the parameter spaceΘ satisfying Assumption A, that

T̂ ⌡
⌠zn(ξ)2dµ(ξ) op(1)

∞

i 1
⌡
⌠zn(ξ)ψi(ξ)dµ(ξ)

2

op(1)

∞

i 1











(1/ n )
n

t 1

(yt ft(θ))⌡
⌠φ t(ξ)ψi(ξ)dµ(ξ)

2

op(1) ,

hence under Assumption A and the null hypothesis,

(27)
T̂

∞

i 1











(1/ n )
n

t 1

(yt ft(θ))gt,i

2

op(1) .

However, the random variablesgt,i in (26) also form the basis for the following class of

alternative hypotheses:

(28) H L
1 : yt,n ft(θ) (σ / n )

Nn

i 1

vi gt,i ut ,

where thevi’s are random coefficients andNn converges to infinity withn at a sufficiently slow

rate. We can associate these alternatives to a subsetGn of the setG of alternatives considered in

Lemmas 3, 4 and 5. Thus, each alternativeg in Gn corresponds to a sequencevi of coefficients,

with vi = 0 for i > Nn, and the null hypothesis corresponds to the casevi = 0 for i = 1,2,....
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Given ag in Gn , we can now write the log likelihood ratio under the alternativeg as:

ln










L1,n(θ ,g)

L0,n(θ)
1

σ n

Nn

i 1

vi

n

t 1

gt,i(yt ft(θ)) 1

2
(1 /n)

n

t 1











Nn

i 1

vi gt,i

2

.

Let gN be an alternative for whichvi = 0 for i > N, whereN may possibly depend onn. Denoting

(29)
aN

1
σ











(1/ n )
n

t 1

gt,1(yt ft(θ)),....... , (1/ n )
n

t 1

gt,N(yt ft(θ))

T

BN











(1 /n)
n

t 1

gt,i1
gt,i2

, i1, i2 1,2,..,N,

andVN = (v1 ,...,vN )T, we can now write the log likelihood ratio as

ln










L1,n(θ ,gN)

L0,n(θ)
a T

N VN
1

2
V T

N BNVN.

A suitable measureQn on G can now be constructed implicitly by letting

independently of the data, whereΛN = diag(λ1 ,...,λN ) andVN ∼ N(0 , (cIN ΛN/σ2) 1) ,

with N depending onn. Thenc > max{λi /σ2, i 1,2,3,...} ,

(30)

⌡
⌠L1,n(θ ,g)dQn(g)

L0,n(θ)

det(cIN ΛN/σ2) exp 1

2
a T

N (BN (cIN ΛN/σ2)) 1aN

det(BN (cIN ΛN/σ2))

L1,n(θ) /L0,n(θ) , say.

We show now that condition (24) of Lemma 5 holds. Observe from (10) and (15) that

14



(1/n)
n

t 1

gt,i1
gt,i2

(1/n)
n

t 1
⌡
⌠

⌡
⌠(φ t(ξ1)φ t(ξ2)ψi1

(ξ1)ψi2
(ξ2)dµ(ξ1)dµ(ξ2)

1

σ2⌡
⌠

⌡
⌠Γ̃(ξ1,ξ2)ψi1

(ξ1)ψi1
(ξ2)dµ(ξ1)dµ(ξ2)

→ 1

σ2⌡
⌠

⌡
⌠Γ(ξ1,ξ2)ψi1

(ξ1)ψi1
(ξ2)dµ(ξ1)dµ(ξ2)

λi1
I(i1 i2)

σ2

where and the convergenceΓ̃(ξ1,ξ2) (1 /n)Σ n
t 1E(u 2

t t 1)φ t(ξ1)φ t(ξ2) σ2(1 /n)Σ n
t 1φ t(ξ1)φ t(ξ2)

result involved follows from Assumptions A and B. Thus for fixedN, BN → (1/σ2)ΛN .

Consequently, it follows that under the null hypothesis and Assumptions A and B,

(n → ∞, N fixed). Moreover, it follows from (27) and (29)a T
N (BN cIN ΛN/σ2) 1aN c 1a T

N aN →0

that

T̂ σ2a T
N aN

∞

i N 1
⌡
⌠zn(ξ)ψi(ξ)dµ(ξ)

2

op(1) .

Since for fixedN,

limn→∞E










∞

i N 1
⌡
⌠zn(ξ)ψi(ξ)dµ(ξ)

2 ∞

i N 1

λi ,

It follows now from Lemma 6 below that there exists a sequenceNn converging slowly to infinity

with n such that:

(31) a T
Nn

(BNn

cINn

ΛNn

/σ2) 1aNn

c 1T̂/σ2 →0.

LEMMA 6: If An,N and BN are random variables such that An,N → BN for fixed N and n→

∞, and BN → 0 for N → ∞, then there exists a subsequence Nn
* converging to infinity with n such

that for all subsequences Nn satisfying Nn ≤ Nn
* and Nn → ∞.An,Nn

→0

Moreover, we have

15



(32) ln













det(cIN ΛN/σ2)

det(BN cIN ΛN/σ2)
→ln det(IN c 1ΛN/σ2 a.s

(n→∞, N fixed)
and

(33) ln det(IN c 1ΛN/σ2) 1

2

N

i 1

ln










1
λi

cσ2
→ 1

2

∞

i 1

ln










1
λi

cσ2

asN → ∞. Again applying Lemma 6, we can replaceN in (32) and (33) by the same sequence

Nn as before. Combining (31), (32) and (33) then yields:

(34) ln










L1,n(θ)

L0,n(θ)











T̂

2cσ2

1

2

∞

i 1

ln










1
λi

cσ2
→0

under the null hypothesis, where the likelihood ratio involved is defined by (30) withN replaced

by Nn. This proves part (24) of Lemma 5, with Part (25) ofd(θ) (1/2)Σ ∞
i 1ln[(1 (λi/cσ2)] .

Lemma 5 follows from Theorem 3 and (34), i.e., under the null hypothesis

T̂

2cσ2

1

2

∞

i 1

ln










1
λi

cσ2
→ 1

2

∞

i 1

2
i

λi

cσ2

1

2

∞

i 1

ln










1
λi

cσ2
ln(Vθ) ,

say, in distr., where thei’s are i.i.d.N(0,1). Clearly, This completes the proof ofE(Vθ ) 1 .

the following theorem:

THEOREM 4:Under Assumptions A and B, the ICM test in the form(4) is admissible

5. THE SIZE OF THE ICM TEST

As mentioned before, the practical applicability of the ICM test is hampered by the fact

that the limiting distribution of the test statistic under the null hypothesis is case-dependent and

can therefore not be tabulated. A possible way to get around this problem is the conditional

Monte Carlo approach of Hansen (1990) and De Jong (1995). However, this approach is

computational intensive and therefore does not give quick answers. Therefore, we shall derive

16



case-independent upperbounds of the asymptotic critical values of the ICM test, on the basis of

the following lemma

LEMMA 7: Let c1,..,cn be positive constants such that the equality

implies k= m, and let x1,..,xn be variables. Then the solution of the LP(1/k)Σ k
i 1ci (1/m)Σ m

j 1cj

problem s.t. x1 ≥ x2 ≥ ... ≥ xn , is of the formmax Σ n
j 1cjxj Σ n

j 1xj 1,

xj 1/m for j 1,..,m; xj 0 for j m 1,..,n.

It follows now from Theorems 2, 3 and Lemma 7:

THEOREM 5:Let j be NID(0,1) and let

(35) W supn≥1(1/n)
n

j 1

2
j .

For η > 0, where T0 is the random variable defined in(18).P[ T0 > η E(T0) ] ≤ P[ W > η ] ,

Consequently, under Assumption A and the null hypothesis(6),

limn→∞P[ T̂ > η ⌡
⌠Γ̂(ξ ,ξ)dµ(ξ) ] ≤ P[ W > η ] .

Using 10,000 replications, we have derived the 10%, 5% and 1% quantiles of the random

variable (35) by Monte Carlo simulation, i.e.,

(36) P(W > 3.23) 0.10; P(W > 4.26) 0.05; P(W > 6.81) 0.01.

Thus, conducting the ICM test at say the 5% significance level, we reject the null hypothesis of

model correctness if

(37) T̂n > 4.26⌡
⌠Γ̂(ξ ,ξ)dµ(ξ) ,

Note that Bierens (1982) proposed to derive critical values of the ICM test on the basis of

Chebishev’s inequality for first moments; e.g, underH0,

(38) limn→∞P[ T̂n > 20⌡
⌠Γ̂(ξ ,ξ)dµ(ξ) ] ≤ 0.05

17



Comparing (37) and (38) we see that the new upperbounds of the critical values in (36) are much

sharper than the ones based on Chebishev’s inequality.

Southern Methodist University, Texas, USA & Tilburg University, the Netherlands,

and

Technische Universität Wien, Austria

First draft: March 1994. Present revision: June 1995

18



APPENDIX

ASSUMPTIONS

ASSUMPTION A.1: The parameter spaceΘ is a compact subset of . The truem

parameter vectorθ0 is contained in the interior ofΘ. The response function ft(θ) is twice

continuously differentiable onΘ, and ut and ft+1(θ) are measurable w.r.t. is thet , where t

sequence ofσ-algebras generated by(yt−j ,xt−j ), j = 0,1,2,.... Moreover,E(ut t 1) 0 a.s.

Furthermore, gt is measurable w.r.t. gt = 0 for t < 1.t 1;

ASSUMPTION A.2:wt(ξ) is a sequence of real valued random functions onΞ, whereΞ

is a compact subset of a Euclidean space, such that wt(ξ) is measurable w.r.t. t 1.

ASSUMPTION A.3:Let Then An(θ) → A(θ)An(θ) (1 /n)Σ n
t 1{( ∂/∂θT)ft(θ)}{( ∂/∂θ)ft(θ)} .

uniformly onΘ, where A(θ) is a nonstochastic matrix function such that A(θ0) is positive definite.

Moreover, the least squares estimatorθ̂ satisfies

n (θ̂ θ0) A(θ0)
1











1

n

n

t 1

ut

∂
∂θT

ft(θ0)
1
n

n

t 1

gt

∂
∂θT

ft(θ0) op(1) ,

ASSUMPTION A.4: Let Then bˆ(θ,ξ) → b(θ,ξ)b̂(θ ,ξ) (1 /n)Σ n
t 1(∂/∂θT)ft(θ)wt(ξ) .

uniformly onΘ×Ξ, where b(θ,ξ) is a nonstochastic function satisfyingsupθ∈Θ, ξ∈Ξ b(θ ,ξ) < ∞.

ASSUMPTION A.5: The weight functions wt(ξ) are differentiable on Ξ, and

→ uniformly onlimsupn→∞(1 /n)Σ n
t 1E[u 2

t supξ∈Ξ (∂/∂ξT)wt(ξ) 2] < ∞; (∂/∂ξT)b̂(θ ,ξ) (∂/∂ξT)b(θ ,ξ)

Θ × Ξ, → A2, wheresupθ∈Θ, ξ∈Ξ (∂/∂ξT)b(θ ,ξ) < ∞; (1 /n)Σ n
t 1E{ u 2

t [(∂/∂θT)ft(θ0)] × [(∂/∂θ)ft(θ0)]}

A2 is finite. There exists a continuous functionΓ(ξ1 , ξ2) on Ξ×Ξ such that

while pointwise on Ξ×Ξ,(1 /n)Σ n
t 1E(u 2

t t 1)φ t(ξ1)φ t(ξ2) →Γ(ξ1,ξ2) uniformly on Ξ×Ξ ,
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Moreover, for some(1 /n)Σ n
t 1u

2
t φ t(ξ1)φ t(ξ2) →Γ(ξ1,ξ2) , (1 /n)Σ n

t 1E[ u 2
t φ t(ξ1)φ t(ξ2)] →Γ(ξ1,ξ2) .

δ > 0, There exists a continuous functionη(ξ) onlimsupn→∞supξ∈Ξ(1 /n)Σ n
t 1E utφ t(ξ) 2 δ < ∞.

Ξ such that uniformly onΞ.(1 /n)Σ n
t 1gtφ t(ξ) →η(ξ)

ASSUMPTION B: The errors ut’s in the models(6) and (7) are normally distributed:

Moreover, the exogenous variables xt’s (c.f. Assumption A.1) are weaklyut t 1 ∼ N(0 ,σ2) .

exogenous in the sense of Engle, Hendry and Richard(1983). Furthermore, under the null

hypothesis, exists, is constant and finite.plimn→∞(1/n)Σ n
t 1g

2
t

PROOFS

PROOF OF THEOREM 1: The proof is similar to the related results in Bierens (1982, 1990).

PROOF OF THEOREM 2: We need to show that the finite distributions of the processzn

converge to normal distributions, and thatzn is tight. Cf. Billingsley (1968). In order to prove that

the finite distributions ofzn are asymptotically normal, we apply the Liapounov-type version in

Bierens (1994b, Th.6.1.7) of McLeish’s (1974) martingale difference central limit theorem. Since

pointwise in ξ, utφt(ξ) is a martingale difference sequence, Assumption A.5 implies that for

arbitrary pointsξ1 ,ξ2 ,...,ξM in Ξ,

1

n

n

t 1

ut



















φ t(ξ1)

.

.

φ t(ξM)

→NM































0

.

0

,















Γ(ξ1,ξ1) .. Γ(ξ1,ξM

.. .. ..

Γ(ξM ,ξ1) .. Γ(ξM ,ξM)

in distr. Together with Assumption A.5, this result implies that the finite distributions ofzn

converge to normal distributions.

Next, consider the following general tightness result:

LEMMA A.1: Let ut be a martingale difference sequence, i.e., ut is measurable w.r.t.
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is an increasing sequence ofσ-algebras and Moreover, letφt(ξ)t , where t E(ut t 1) 0 a.s.

be a sequence of random function on a compact subsetΞ of a Euclidean space such that

≤ for eachξ1, ξ2 in Ξ, whereφt(ξ) and Kt are measurable w.r.t.φ t(ξ1) φ t(ξ2) Kt ξ1 ξ2 t 1

and Finally, let for one arbitrary ξ0 in Ξ,limsupn→∞(1 /n)Σ n
t 1E[u 2

t K 2
t ] < ∞.

Then the sequence of random functionslimsupn→∞(1 /n)Σ n
t 1E[u 2

t φ t(ξ0)
2] < ∞.

is tight onΞ.zn(ξ) (1 / n )Σ n
t 1utφ t(ξ)

PROOF: Choose an arbitrary > 0. We prove the lemma by showing the existence of a

sequence of tight random functionsvn(ξ) on Ξ such that P[zn=vn] ≥ 1 − . Denote

Now choose anM > 0 and define the stopping timeτ(M)At(ξ) Σ t
j 1u

2
j φ j(ξ)2, Bt Σ t

j 1u
2
j K 2

j .

by for an arbitraryξ0 in Ξ. SinceAt(ξ0) andBt areτ (M) sup{t ≤ n At(ξ0) ≤ nM, Bt ≤ nM} .

monotonic non-decreasing, and by thelimsupn→∞(1/n)E[An(ξ0)] < ∞, limsupn→∞(1/n)E[Bn] < ∞

conditions of the lemma under review, it follows from Chebishev’s inequality applied toAn(ζ0)

andBn that there exists anM such that Next, defineP[τ (M ) n] ≥ 1 . vn(ξ) zτ (M )(ξ) .

Then ≥ ≥ We show thatvn is tight by applying the Kolmogorov-P[zn vn] P[τ (M ) n] 1 .

Cencov criterion (c.f. Kunita 1990, Theorem 1.4.7, p.38), i.e., if for someγ, δ > 0 there exists

a constantC such that for everyξ0, ξ1, ξ2 in Ξ, andE vn(ξ0)
γ ≤C, E vn(ξ1) vn(ξ2)

γ ≤

wherek is the dimension ofΞ, thenvn is tight. Now utilize Burkholder’s inequalityC ξ1 ξ2
k δ ,

(c.f. Chow and Teicher 1988, p. 396), i.e., iffn is a martingale andSn = then forΣ n
i 1(fi fi 1)

2,

m, n ≥ 1, whereCm < ∞ is a constant which does not depend onn.E[f m
n ] ≤ CmE[Sm/2

n ] ,

Moreover,n can be an arbitrary adapted and bounded stopping time. Applying this inequality to

vn yields

21



E vn(ξ0)
2k 2 ≤ C2k 2(1/n k 1)E











τ (M)

t 1

u 2
t φ t(ξ0)

2

k 1

≤ C2k 2M
k 1,

where the second inequality follows from the definition of the stopping timeτ(M). This proves

the first part of the Kolmogorov-Cencov criterion, forγ = 2k + 2.

Finally, again using Burkholder’s inequality, the Lipschitz condition onφt and the

definition of τ(M), it follows that

E vn(ξ1) vn(ξ2)
2k 2 (1 /n k 1)E











τ (M)

i 1

ui(φ i(ξ1) φ i(ξ2)
2k 2

≤ Ck(1 /n k 1)E










τ (M)

i 1

u 2
i (φ i(ξ1) φ i(ξ2))

2

k 1

≤ Ck(1 /n k 1E










τ (M)

i i

u 2
i K 2

i

k 1

ξ1 ξ2
2k 2 ≤ Ck ξ1 ξ2

2k 2M k 1.

This result proves the second part of the Kolmogorov-Cencov criterion and hence the tightness

of vn. Q.E.D.

In our case it follows from Assumption A.5 that we can chooseKt =

Then all the conditions of Lemma A.1 follow easily from Assumption A.supξ∈Ξ (∂ /∂ξT)φ t(ξ) .

This completes the proof of Theorem 3.

PROOF OF COROLLARY 1: Denoting the corollary follows fromTi Σ j≠i(η j j λj )2,

repeated application of the easy inequality
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P(T ≤ K) E













⌡
⌠

(K Ti)
1/2

(K Ti)
1/2

exp[ 1

2
(u η i)

2/λi]

2πλi

du I(Ti < K)

< E













⌡
⌠

(K Ti)
1/2

(K Ti)
1/2

exp[ 1

2
u 2/λi]

2πλi

du I(Ti < K)

P(λi

2
i Ti ≤ K) if η i ≠ 0.

Thus if at least oneηi ≠ 0, then the conclusion of the corollary holds. It is easy to verify that

condition (19) guarantees this.

PROOF OF LEMMA 1: The series representation forΓ is the actual contents of Mercer’s

theorem. Cf. Dunford and Schwartz (1963, p.1088). The claim that the Eigenvalues and

Eigenfunctions are real valued follows easily from the condition that the functionΓ is real valued

and positive semi-definite, similarly to the proof that the Eigenvalues and Eigenvectors of a

positive semi-definite matrix are real valued.

PROOF OF LEMMA 2: The proof that the Eigenfunctions can be chosen orthonormal is

analogous to the matrix case. The nonnegativity and summability of the Eigenvalues and the

continuity of the Eigenfunctions follow directly from Mercer’s theorem and the continuity ofΓ.

The completeness of the Eigenfunctions (part (14) of Lemma 2) follows from the fact that we

can always make the orthonormal basis {ψi} complete by adding additional orthonormal functions

with corresponding zero Eigenvalues.

PROOF OF LEMMA 3: Observe that

Pg,n(τ n ≠ γ n) ≤ Pg,n { Ln > m} { Ln ≤ m τ n ≠ γ n}

≤ Pg,n { Ln > m} Pg,n { Ln ≤ m τ n ≠ γ n}

≤ ⌡
⌠

{ Ln > m}

LndP0,n ⌡
⌠

{ Ln ≤ m τ n ≠ γ n}

LndPg,n ≤ ⌡
⌠

{ Ln >m}

LndPn m P0,n(τ n ≠ γ n) .
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Thus for arbitrarym we have

(A1) limsup
n→∞

Pg,n(τ n ≠ γ n) ≤ limsup
n→∞ ⌡

⌠
{ Ln >m }

LndPg,n .

Now if under P0,n, Ln → L in distr., whereL is a continuously distributed random variable

satisfyingE(L) = 1, then it follows from Lemma 6.12 in Strasser (1985, p.36) thatLn is uniformly

(Pg,n)-integrable and that therefore, by increasingm, we can make the right-hand side of (A1)

arbitrarily small. But due to Assumption B we have underP0,n ,

ln(Ln)
1

σ2











(1 / n )
n

t 1

utgt (1 /n)
n

t 1

g 2
t →N( ω2/2 ,ω2)

in distr., where henceL = exp(−½ω2)exp(ω ) with N(0,1), andω2 plimn→∞(1 /n)Σ n
t 1g

2
t /σ2, ∼

obviouslyE(L) = 1.

PROOF OF LEMMA 4: Suppose first that the competing testγn is an exactα-level test, and that

τn is an exactα-level LR test:τn = ρn. Let Kα,n be the correspondingα-fractile of the likelihood

ratio Ln. Then we can write

{ γ n ≠ ρn} { γ n ≠ ρn} { Ln < Kα,n} { γ n ≠ ρn} { Ln ≥ Kα,n}

{ γ n 1 ρn 0} { Ln < Kα,n} { γ n 0 ρn 1} { Ln ≥ Kα,n} ,

hence

γ n ρn I { γ n ≠ ρn} { Ln < Kα,n} I { γ n ≠ ρn} { Ln ≥ Kα,n} .

Since under the null,E(γn) = E(ρn) = α, these two equalities imply that

(A2) P0,n { γ n ≠ ρn} { Ln < Kα,n}
1

2
P0,n γ n ≠ ρn .

Since we have assumed that the testsγn andρn are essentially different, the "liminf" of the right-

hand side probability is bounded away from zero, hence

(A3) liminf
n→∞

P0,n { γ n ≠ ρn} { Ln < Kα,n} > 0.

This result implies that there exists aδ0 > 0 such that
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(A4) liminf
n→∞

P0,n { γ n ≠ ρn} { Ln < Kα,n δ } > 0 if 0 ≤ δ < δ 0 ,

because if not then

(A5)

liminf
n→∞

P0,n { γ n ≠ ρn} { Ln < Kα,n}

≤ liminf
n→∞

P0,n { γ n ≠ ρn} { Ln < Kα,n δ }

liminf
n→∞

P0,n Kα,n δ ≤ Ln < Kα,n

inf
δ>0

liminf
n→∞

P0,n Kα,n δ ≤ Ln < Kα,n 0,

which contradicts (A3).

Next, observe that

(A6)
E1(γ n) ⌡

⌠γ ndP1,n ⌡
⌠γ nLndP0,n E0 γ nLn

E0 Ln Kα,n γ n α Kα,n,

and similarly ThusE1(ρn) E0 Ln Kα,n ρn α Kα,n.

E1(ρn) E1(γ n) E0 Ln Kα,n (ρn γ n)

E0 Ln Kα,n (ρn γ n)I(Ln < Kα,n δ )

E0 Ln Kα,n (ρn γ n)I(Kα,n δ ≤ Ln < Kα,n)

E0 Ln Kα,n (ρn γ n)I(Ln ≥ Kα,n )

(A7)

≥ E0 Ln Kα,n (ρn γ n)I(Ln < Kα,n δ )

E0 Ln Kα,n (ρn γ n)I(Kα,n δ ≤ Ln < Kα,n)

≥ δ E0 γ nI(Ln < Kα,n δ ) δ E0 γ nI(Kα,n δ ≤ Ln ≤ Kα,n

δ P0,n ρn ≠ γ n Ln < Kα,n δ δ P0,n Kα,n δ ≤ Ln < Kα,n .

Since the last probability can be made arbitrarily small by lettingδ approach zero, whereas by

(A4) the first probability in the last equality remains bounded away from zero, it follows that
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This result carries over to the general case whereρn is replacedliminf n→∞ E1(ρn) E1(γ n) > 0.

by the asymptotically equivalent testτn and the exactα-level testγn is replaced by an asymptotic

α-level test. Denotingαn = E0(γn), whereαn → α, equality (A2) then only holds in the limit,α

in (A6) needs to be replaced byαn, and consequently inequality (A7) now holds in "liminf",

which is just fine.

PROOF OF LEMMA 5: The conditions of Lemma 5 imply those of Lemmas 3 and 4.

PROOF OF LEMMA 6: Define and letm(N) inf{ n: P[ An,N BN > 1/N] < 1/N}

Nn
* is monotonic and cannot be bounded as otherwise there wouldNn max{N: m(N) ≤ n} .

exist a constantc such thatNn
* ≤ c for all n, thereforem(c+1) > n for all n. Thus the existence

of a sequenceNn converging to infinity and bounded byNn
* is guaranteed. Then for all > 0,

Clearly, the right-hand side converges toP( An,Nn

> ) ≤ P( An,Nn

BNn

> ) P( BNn

> )

zero.

PROOF OF LEMMA 7: Let Then implies = 1. The L.P.xi Σ n
j i y

2
j . Σ n

j 1xj 1 Σ n
j 1j y

2
j

problem involved can now be put in a Lagrange framework, with Lagrange function

The solution involved follows now easily fromL(y1, .. ,yn,µ) Σ n
j 1cjΣ

n
i jy

2
i µ(1 Σ n

j 1j y
2
j ) .

the first-order conditions, in particular the condition =(∂/∂yk)L(y1, ... ,yn,µ) 2kyk[(1/k)Σ k
j 1cj µ]

= 0
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Footnotes:

1) The thoughtful comments of two anonymous referees, leading to significant improvements

of this paper, are gratefully acknowledged.

2) A previous version of this paper, entitled "Asymptotic Optimality and Size of the

Integrated Consistent Conditional Moment Test of Functional Form" has been presented at the

Econometric Society European Meeting 1993, Uppsala, Sweden. The present version has been

presented at Cornell University, North Carolina State University, and Humboldt-Universität zu

Berlin.

3) The financial support from the "Ausseninstitut der Technische Universität Wien" is

gratefully acknowledged. The present version of this paper has been presented at the Econometric

Society European Meeting 1994, Maastricht, the Netherlands.

4) Corollary 1 of Bierens (1990) with exp(u) replaced by 1/(1+exp(−u)) provides a proof of

why neural network methods work. See Bierens (1994a).
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