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ABSTRACT: Outlier detection algorithms are intimately connected with robust
statistics that down-weight some observations to zero. We define a number of
outlier detection algorithms related to the Huber-skip and the Least Trimmed
Squares estimators, including the 1-step Huber skip estimator and the Forward
Search. Next, we review a recently developed asymptotic theory of these. Fi-
nally, we analyze the gauge, the fraction of wrongly detected outliers, for a
number of outlier detection algorithms and establish an asymptotic normal and
a Poisson theory for the gauge.
Keywords: Forward Search, gauge, Huber-skip, Impulse Indicator Saturation, iteration of 1-
step estimators, iterated martingale inequality, gauge, 1-step Huber-skip, Robustified Least
Squares, weighted and marked empirical processes

1 Introduction

We consider some outlier detection methods for linear regression models with regressors that
are stationary or deterministically or stochastically trending. Outlier detection methods
rely on cutoff values when classifying observations as outliers or not. We review some recent
asymptotic results for such methods and apply the results to calibrate the cutoff values.
There is a close link between outlier detection methods and robust estimation methods

that down-weight some of the observations to zero. Examples of such estimators are the
Huber-skip by Huber (1964) and the Least Trimmed Squares by Rousseeuw (1984). Once
the estimator has been calculated, the observations with weight zero are classified as outliers,
and, conversely, if we start with an outlier detection method, then an estimator based on the
remaining ‘good’observations will be robust. When building a statistical model, the user can
apply outlier detection methods in combination with considerations about the substantive
context to decide which observations are ‘good’and how to treat the ‘outliers’.
In the regression model

yi = β′xi + εi, (1)

where εi/σ are independent with common reference density f, outliers are pairs of observa-
tions (yi, xi) that do not conform with the model. In other words, a pair of observations
(yi, xi) is an outlier if the scaled residual ri = (yi − β′xi)/σ does not conform with the
reference density f. This has slightly different consequences for cross-sectional data and for
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time series data. For cross-sectional data, the pairs of observations (y1, x1), . . . , (yn, xn) are
unrelated. Thus, if the residual ri is classified as an outlier, then the pair (yi, xi) is dropped.
We can interpret this as a residual not conforming with the model, or that yi or xi or both
are not correct. This is different for time-series data, where the regressors include lagged
dependent variables. Consider for instance a first order autoregression where xi = yi−1.
We then distinguish between innovative and additive outliers. Classifying the residual as
an innovative outlier has the consequence that we discard the evaluation of the dynamics
from yi−1 to yi but not the observations yi−1 and yi as such. Indeed, yi−1 appears as the
dependent variable at time i−1 and the yi as the regressor at time i+ 1, respectively. Thus,
finding a single outlier in a time series context, implies that the observations are considered
correct, but possibly not generated by the model. An additive outlier arises if an observation
yi is wrongly measured. For a first order autoregression, this is captured by two consecutive
residuals ri and ri+1. Discarding these, the observation yi will not appear.
It is open to discussion which outlier detection method to use, see for instance Section

1.4 in Hampel et al. (1986). A simple outlier detection method consists of testing if yi
has the mean given by the model. This applies a preliminary estimator (β̃, σ̃2) and residuals
r̃i = (yi− β̃′xi)/σ̃. An observation is classified as outlier if |r̃i| ≥ c, where c is a suitable cutoff
value and we re-estimate the parameter β by regression based on the remaining observations.
The new estimator is a 1-step Huber-skip estimator or a reweighted least squares estimator
with binary weights, see Welsh & Ronchetti (2002). This can of course be iterated to give,
for instance, the Forward Search suggested by Hadi & Simonoff (1993), see also Atkinson &
Riani (2000). These are analyzed in detail in this paper.
In order to use the algorithms with confidence, we need to understand their properties

when all observations are ‘good’. When classifying the observations we denote by vi = 1 the
observations classified as ‘good’and vi = 0 for the outliers. We define the (empirical) gauge
as the fraction of outliers found

γ̂ = n−1
n∑
i=1

(1− vi), (2)

and the population gauge, γ, is the limit of its expected value Eγ̂ when there are no outliers.
This is similar to the size of a test, yet a slightly different attempt to control errors of the
first kind. Similarly we need the asymptotic variance of the estimator based on the good
observations, where the effi ciency loss is the price paid for using a robust estimator.
The origins of the notion of gauge are as follows. Hoover & Perez (1999) studied the

properties of a general-to-specific algorithm for variable selection through a simulation study.
They considered various measures for the performance of the algorithm, that are related to
what is now called the gauge. One of these, they referred to as the size, and this was the
number of falsely significant variables divided by the difference between the total number of
variables and the number of variables with non-zero coeffi cients. The Hoover-Perez idea for
regressor selection was the basis of the PcGets and Autometrics algorithms, see for instance
Hendry & Krolzig (2005), Doornik (2009) and Hendry & Doornik (2014). Through extensive
simulation studies, the critical values of these algorithms have been calibrated in terms of
the false detection rates for irrelevant regressors or irrelevant outliers. The term gauge was
introduced in Hendry & Santos (2010) and Castle et al. (2011).
The paper has two parts. The first part starts with a motivating empirical example,

where least squares is applied to find outliers. Next, we give an overview of recent asymptotic
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results for outlier detection methods including 1-step Huber-skip estimators and iterations
thereof, Impulse Indicator Saturation as well as the Forward Search. This builds in part on
some of our own papers, Johansen and Nielsen (2009, 2010, 2013, 2015a). The results for the
estimators are given as stochastic expansions. For instance, the simple 1-step Huber-skip
estimators satisfy

N−1(β̂ − β) =
1

ψ
Σ−1n N ′

n∑
i=1

xiεi1(|εi|≤σc) +
2cf(c)

ψ
N−1(β̃ − β) + oP(1), (3)

where ψ = P (|ε1| ≤ σc) and N is a normalization, such that Σn = N ′
∑n

i=1xix
′
iN = OP(1).

This shows how the 1-step Huber-skip estimator, β̂, depends on the initial estimator β̃. The
advantage of this formulation in terms of an expansion, is that it unifies the theory for cases
with stationary and non-stationary regressors. Limit distributions of β̂ can be derived from
this expansion for particular choices of the regressors. The expansion (3) also forms the basis
for the analysis of iterated estimators.
In the second part we provide an asymptotic theory for setting the cutoff value c for

the gauge. As a simple example, consider the 1-step Huber-skip estimator where the
initial estimators β̃, σ̃ are the least squares estimators. Then the empirical gauge, γ̂ =
n−1
∑n

i=11(|yi−β̃′xi|≥σ̃c), converges in probability to P(|ε1| ≥ σc) = 1 − ψ, the size of the
underlying test. Moreover it has the stochastic expansion

n1/2{γ̂ − (1− ψ)} = n−1/2
n∑
i=1

{1(|εi|>σc) − (1− ψ)} − cf(c)

σ2
n1/2(σ̃2 − σ2) + oP(1), (4)

where f is the density of the innovation εi/σ. Thus, for 1-step Huber-skip estimators, the
asymptotic population gauge, γ, is the size of the underlying test, but the asymptotic dis-
tribution of the empirical gauge depends on the initial estimator. For the Forward Search
the results for the gauge are completely different, see Theorem 9. The paper ends with a
conclusion, and the main proofs are left for Appendix.

Part I

Review of recent asymptotic results
2 A motivating example

What is an outlier? How do we detect them? How should we deal with them? There is no
simple, universally valid answer to these questions —it all depends on the context. We will
therefore motivate our analysis with an example from time series econometrics.
Demand and supply is key to discussing markets in economics. To study this Graddy

(1995, 2006) collected data on prices and quantities from the Fulton fish market in New
York. For our purpose the following will suffi ce. The data consists of daily quantities of
whiting sold by one wholesaler over the period 2 December 1991 to 8 May 1992. Figure 1(a)
shows the daily aggregated quantity Qt measured in pounds. The logarithm of the quantity,
qt = logQt is shown in panel (b). The supply of fish depends on the weather at sea, where
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the fish is caught. Panel (c) shows a binary variable St taking value 1 if the weather is
stormy. The present analysis is taken from Section 13.5 of Hendry & Nielsen (2007).

< Fig1 here>

A simple autoregressive model for log quantities qt gives

q̂t
(standard error)
[t-statistic]

= 7.0
(0.8)

[8.8]

+ 0.19
(0.09)

[2.03]

qt−1 − 0.36
(0.15)

[−2.39]

St, (5)

σ̂ = 0.72, ˆ̀= −117.82, R2 = 0.090, t = 2, . . . , 111,

χ2norm[2] = 6.9 [p= 0.03], χ2skew[1] = 6.8 [p= 0.01], χ2kurt[1] = 0.04 [p= 0.84],

Far(1−2)[2, 106] = 0.9 [p= 0.40], Farch(1)[1, 106] = 1.4 [p= 0.24],

Fhet[3, 103] = 2.0 [p= 0.12], Freset[1, 106] = 1.8 [p= 0.18].

Here σ̂2 is the residual variance, ˆ̀ is the log likelihood, T is the sample size. The residual
specification tests include cumulant based tests for skewness, χ2skew, kurtosis, χ

2
kurtosis and

both, χ2norm = χ2skew +χ2kurtosis, a test Far for autoregressive temporal dependence, see Godfrey
(1978), a test Farch for autoregressive conditional heteroscedasticity, see Engle (1982), a
test Fhet for autoregressive conditional heteroscedasticity, see White (1980), and a test Freset
for functional form, see Ramsey (1969). We note that the above references only consider
stationary processes, but the specification tests also apply for non-stationary autoregressions,
see Kilian & Demiroglu (2000) and Engler & Nielsen (2009) for χ2skew, χ

2
kurtosis and Nielsen

(2006) for Far. The computations were done using OxMetrics, see Doornik & Hendry (2013).
Figure 1(b, d) shows the fitted values and the standardized residuals.
The specification tests indicate that the residuals are skew. Indeed the time series plot

of the residuals in Figure 1(d) shows a number of large negative residuals. The three largest
residuals have an interesting institutional interpretation. The observations 18 and 34 are
Boxing Day and Martin Luther King Day, which are public holidays, while observation 95 is
Wednesday before Easter. Thus, from a substantive viewpoint it seems preferable to include
dummy variables for each of these days, which gives

q̂t = 7.9
(0.7)

[10.8]

+ 0.09
(0.08)

[1.04]

qt−1 − 0.36
(0.14)

[−2.68]

St − 1.94
(0.66)

[−3.00]

D18
t − 1.82

(0.66)

[−2.75]

D34
t − 2.38

(0.66)

[−3.64]

D95
t , (6)

σ̂ = 0.64, ˆ̀= −104.42, R2 = 0.287, t = 2, . . . , 111.

Specification tests, which are not reported, indicate a marked improvement in the specifi-
cation. Comparing the regressions (5) and (6) it is seen that the lagged quantities were
marginally significant in the first, misspecified regression, but not significant in the second,
better specified, regression. It is of course no surprise that outliers matter for statistical
inference - and that institutions matter for markets.
The above modelling strategy blends usage of specification tests, graphical tools and

substantive arguments. It points at robustifying a regression by removing outliers and then
refitting the regression. We note that outliers are defined as observations that do not conform
with the statistical model. In the following we consider some outlier detection algorithms
that are inspired by this example. The algorithms are solely based on statistical information
and we discuss their mathematical properties. In practice, outcomes should of course be
assessed within the substantive context. We return to this example in Section 10.
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3 The linear time series regression model

Throughout, we consider data (yi, xi), i = 1, . . . , n, where yi is univariate and xi has dimen-
sion dimx. The regressors are possibly trending in a deterministic or stochastic fashion. We
assume that (yi, xi) satisfy the linear multiple regression equation

yi = β′xi + εi, i = 1, . . . , n.

The innovations, εi, are independent of the filtration Fi−1, which is the sigma-field generated
by x1, . . . , xi and ε1, . . . , εi−1. We analyze properties of outlier detection methods when the
innovations have no outliers. The methods we consider, combine least squares and classifica-
tion using absolute residuals. Hence we assume that εi/σ have a known, symmetric density
f and distribution function F(c) = P(εi ≤ σc), see Assumption 1 for details. The results
are formulated so that they generalize to other symmetric densities including t-distributions
with suffi ciently many moments. Non-symmetric densities will be relevant in future work
discussing the situation where outliers are present.
We consider algorithms using absolute residuals, which implicitly assume a symmetric

density of the non-outlying innovations. In case of symmetry, the absolute value errors |εi|/σ
have density g(c) = 2f(c) and distribution function G(c) = P(|ε1| ≤ σc) = 1 − 2F(c). We
define ψ = G(c) so that c = cψ is the ψ quantile of G

c = G−1(ψ) = F−1{(1 + ψ)/2}, ψ ∈ [0, 1[. (7)

In general we define the truncated moments

τ =

∫ c

−c
u2f(u)du, κ =

∫ c

−c
u4f(u)du, (8)

and the conditional variance of ε1/σ given |ε1| ≤ σc is

ς2 = τ/ψ, (9)

which will serve as a consistency correction for the variance estimators based on the truncated
sample. Note that the parameters τ,κ, ς depend on c or ψ. We usually leave out this
dependence for readability. For the normal density we find

τ = ψ − 2cf(c), κ = 3ψ − 2c(c2 + 3)f(c). (10)

4 The outlier detection algorithms

Outlier detection is closely linked to robust estimation. First, we discuss the Huber-skip
and the Least Trimmed Squares (LTS) and show how they give rise to 1-step estimators and
outlier detection algorithms. We then define two iterated versions: the m-step Huber-skip,
and the Forward Search. We consider as outcome of an outlier detection algorithm, not only
the set of outliers, but also the estimator based on the good observations.
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4.1 Outlier detection based on two robust estimators

The Huber-skip is the minimizer of the objective function

Rn(β) = n−1
n∑
i=1

(yi − x′iβ)21(|yi−x′iβ|≤σc) + c21(|yi−x′iβ|>σc), (11)

introduced by Huber (1964). The resulting estimator can be described as least squares
among the observations with estimated residuals bounded by σc for known σ. If β̂ denotes
the minimizer, one can define outliers by vi = 1(|yi−x′iβ̂|≤σc)

= 0.
The calculation of the Huber-skip is quite complicated. Figure 2 illustrates the non-

convex objective function Rn for the fish data, using R 3.1.1, see R Development Core Team
(2014). The specification is as in equation (5). All parameters apart from that on qt−1 are
held fixed at the values in (5). Panel (a) shows that for a large cutoff c, Rn is quadratic in
the central part. Panel (b) shows that for a smaller cutoff c, Rn is non-differentiable in a
finite number of points.

< Fig2 here>

The asymptotic theory of the Huber-skip (and other M-estimators) has been studied in
some detail for the situation without outliers. Huber (1964) gave a theory for M-estimation
of location for convex objective functions. Chen & Wu (1988) showed strong consistency
of M-estimators for general criterion functions and i.i.d. or deterministic regressors, while
Johansen and Nielsen (2015b) analyze time series regression. See also pages 197 and 215 in
Jurečková & Sen (1996) for alternative proofs for the location case.

The Least Trimmed Squares (LTS) estimator was introduced by Rousseeuw (1984).
For a given β, we order the absolute residuals ξi = |yi − x′iβ|, and let the k′th largest be
ξ(k) = |y − x′β|(k). The LTS is defined as the minimizer of

Rn(β) =
k∑
i=1

|y − x′β|2(i) =
n∑
i=1

(yi − x′iβ)21(|yi−x′iβ|≤ξ(k)). (12)

Compared to the Huber skip, the main difference is that weights are now based on order
statistics, which are scale equivariant. If β̂ denotes the estimator, we define the set of outliers
as those observations for which ξ̂i = |yi − x′iβ̂| > ξ̂(k), or vi = 1(|yi−x′iβ̂|≤ξ̂(k))

= 0. Thus, again
a robust estimator gives rise to an outlier detection algorithm.
The Least Trimmed Squares is known to have breakdown point of 1 − ψ = 1 − k/n for

ψ < 1/2, see Section 3.4 of Rousseeuw & Leroy (1987). An asymptotic theory is provided by
Víšek (2006a,b,c). The estimator is computed through a binomial search algorithm which
is infeasible in most practical situations, see Section 5.7 of Maronna, et al. (2006) for a
discussion. A number of iterative approximations have been suggested such as the Fast
LTS algorithm by Rousseeuw & van Driessen (1998). This leaves additional questions with
respect to the properties of the approximating algorithms.
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4.2 Outlier detection based on 1-step estimators

The main ingredient in our analysis is the notion of a 1-step estimator. When observations
have already been classified as outliers or not, we can estimate the model using least squares
on the non-outlying observations, that is calculate the 1-step estimator, and then reevaluate
the outlier classification. As long as we have a good starting point, this addresses the
computational diffi culties in the Huber-skip and the Least Trimmed Squares. In the next
section we study various algorithms based on 1-step estimators.
Consider an objective function with binary stochastic weights vi for each observation,

such that the ‘good’observations satisfy vi = 1, while the set of outliers is

Ô = (i : vi = 0). (13)

These weights define the method, and examples are given below. We then apply the least
squares method on the set of ‘good’observations to get

β̂ = (
n∑
i=1

vixix
′
i)
−1(

n∑
i=1

vixiyi), (14)

as well as the scale estimator

σ̂2 = ς−2(
n∑
i=1

vi)
−1{

n∑
i=1

vi(yi − x′iβ̂)2}, (15)

where ς2 = τ/ψ is the consistency correction factor defined in (9). We now use this setup to
define two 1-step estimators: the 1-step Huber-skip and the 1-step LTS.

Definition 1 Let β̃, σ̃2 denote initial estimators. Then the 1-step Huber-skip estimators
β̂, σ̂2 are given by (14), (15) with a cutoff value c and weights

vi = 1(|yi−x′iβ̃|≤σ̃c)
. (16)

Definition 2 Let β̃ denote an initial estimator, while ξ̃(k) is the k-th smallest order statistic
of the absolute residuals ξ̃i = |yi − x′iβ̃|. Then the 1-step LTS estimators β̂, σ̂2 are given by
(14), (15) with a cutoff k ≤ n and weights

vi = 1(|yi−x′iβ̃|≤ξ̃(k))
. (17)

The weights satisfy
∑n

i=1vi = k.

The cutoff values in the two definitions can be linked through k/n = ψ = G−1(c). Thus,
the methods can be calibrated through either of ψ, c, k.
The 1-step estimators relate to the 1-step M-estimators analyzed by Bickel (1975), al-

though he was primarily concerned with more smooth weights vi than those considered
here. He also suggested iteration, but gave no results. The present 1-step estimators were
considered by Ruppert & Carroll (1980) and Welsh & Ronchetti (2002). They are also
reweighted least squares estimators with binary weights. He & Portnoy (1992) gave a theory
for reweighted least squares estimators with smooth weights.
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4.3 Some iterative outlier detection algorithms

We discuss some outlier detection algorithms defined by iteration of 1-step estimators.

The m-step Huber-skip algorithm is defined as follows.

Algorithm 1 m-step Huber-skip.
Choose initial estimators β̃ = β̂(0), σ̃ = σ̂(0), and a cutoff c > 0. Let k = 0. Apply the 1-step
Huber-skip with initial estimators β̃ = β̂(k), σ̃ = σ̂(k) to get outliers Ô(k+1) and estimators
β̂(k+1), σ̂(k+1) from (13), (14) and (15). If k < m repeat with k = k + 1.

m-step Robustified least squares is a special case of the m-step Huber-skip, where the
initial estimators are chosen as the full sample least squares estimators. The 1-step robus-
tified least squares was applied in the analysis of the Fulton fish market data in Section 2.
This approach is very common. This is fragile when there is a single high leverage outlier or
when there are more than a few outliers, see Welsh & Ronchetti (2002) for a discussion.

Impulse indicator saturation improves the robustified least squares in a simple way. This
is based on a suggestion by Hendry (1999), see also Chapter 15 of Hendry & Doornik (2014).
The idea is to split the sample in two halves. Run regression on the first half and use this
to find outliers in the second half. Then run regression on the second half and use this to
find outliers in the first half. Then remove the two sets of outliers and run regression on the
remaining observations. Now, suppose there is a leverage point in the second sample half.
Then the first half estimator is consistent and will detect the leverage point. With several
leverage points it can be necessary to split the sample in different ways. The Autometrics
algorithm does this, see Doornik (2009).

Infinite iteration of 1-step estimators. Instead of iterating 1-step estimators a fixed
number of times, we could iterate until we achieve a fixed point. An asymptotic theory is
given in Johansen and Nielsen (2013). The Forward Search is an example of such iteration.

The Forward Search algorithm was suggested for the multivariate location model by
Hadi (1992), for multiple regression by Hadi & Simonoff (1993) and developed further by
Atkinson & Riani (2000), see also Atkinson, et al. (2010) and Johansen and Nielsen (2010).
The algorithm starts with a robust estimator of the regression parameters. This is used to
construct the set of observations with the smallest m0 absolute residuals. We then estimate
β, σ based on those m0 observations and compute absolute residuals of all n observations.
The observations with the m0 + 1 smallest residuals are selected, and new estimates are
found from these m0 + 1 observations. This 1-step LTS estimation step is then iterated, so
that the number of selected observations is gradually increased.

Algorithm 2 Forward Search.
Choose an integer m0 < n and an initial estimator β̃ = β̂(m0). Let k = m0. Apply the 1-step
LTS with initial estimators β̃ = β̂(k) and cutoff k + 1 to get the order statistic ẑ(k) = ξ

(k)
(k+1)

for the (k + 1) smallest absolute residual, outliers Ô(k+1) and estimators β̂(k+1), σ̂(k+1) using
(13), (14) and (15). If k < n repeat with k = k + 1. If the Forward Search is stopped at a
stopping time m̂ so m0 ≤ m̂ ≤ n we get outliers Ô(m̂) and estimators β̂(m̂), σ̂(m̂).
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Applying the algorithm for k = m0, . . . , n− 1 results in sequences of order statistics ẑ(k),
least squares estimators β̂(k), σ̂(k), and sets of outliers Ô(k) with n − k elements. We note
that β̂(n), σ̂(n) are the full sample estimators, while Ô(n) is empty.
The idea of the Forward Search is to monitor the plot of scaled forward residuals ẑ(k)/σ̂(k)

and stop when this is large. To do this we find the asymptotic distribution of ẑ(k)/σ̂(k) and
add a curve of pointwise q-quantiles, cq(k), for ẑ(k)/σ̂(k) as a function of k for some q. We
choose the stopping time m̂ as the first exceedance time

m̂ = min{k : ẑ(k)/σ̂(k) > cq(k)}, (18)

with the convention that m̂ = n if there is no exceedance. Asymptotic theory for the
forward residuals, ẑ(k)/σ̂(k), is reviewed in Section 7.2. A theory for the estimator m̂ and
hence guidance for choosing q is given in Section 9.
A variant of the Forward Search advocated by Atkinson & Riani (2000) is to use the

minimum deletion residuals
d̂(k) = min

i∈Ô(k−1)
ξ̂
(k)
i (19)

instead of the forward residuals ẑ(k), where Ô(k−1) is based on the estimators β̂(k−1), σ̂(k−1).

5 An empirical process theory

The 1-step estimators are least squares estimators for observations that are selected by a
previous estimator. We can analyze these using empirical process techniques. The central
argument in the asymptotic analysis is to linearize the estimators with respect to the previous
estimator. In the following, we describe the relevant empirical processes, outline the intuition
behind their analysis, including a new iterated martingale inequality, and finish by stating
the assumptions needed throughout the remainder of the paper. We refer to Johansen and
Nielsen (2015a) for a detailed exposition.

5.1 Weighted and marked empirical processes

Definition. The 1-step estimators for β and σ2, see (14) and (15) have estimation errors
that can be expressed in terms of product moments of the form

n∑
i=1

vi,
n∑
i=1

vixiεi,
n∑
i=1

vixix
′
i,

n∑
i=1

viε
2
i , (20)

where vi are indicator functions for small residuals, like (16) and (17). Such sums of indicator
functions are weighted and marked empirical processes. The Fi−1-predictable factors xi and
xix
′
i are called weights in line with Koul (2002). The unbounded, Fi-adapted factors εi and

ε2i are the marks.
Expansions of the product moments (20) can be found in Johansen and Nielsen (2015a)

and form the basis for the results reviewed in Sections 6, 7. For the new developments in
Part II we only need to consider a special case which we review below. The Assumptions
needed throughout are listed in Section 5.2.
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Expansion. We discuss the simplest case with weights and marks of unity for the 1-
step Huber-skip, which is the one we need in the gauge considerations in Part II. For the
moment we assume stationary regressors, which implies N = n−1/2. When n1/2(β̃ − β) and
n1/2(σ̃2 − σ2) are both OP(1), and c is fixed, we get the expansion

n∑
i=1

vi =
n∑
i=1

1(|yi−x′iβ̃|≤σ̃c)
=

n∑
i=1

1(|εi|≤σc) +
cf(c)

σ2
n1/2(σ̃2 − σ2) + oP(n1/2). (21)

We note two features. First, the expansion does not depend on the estimation error for the
regression coeffi cient β, due to the absolute cutoff of residuals and the symmetric density.
Second, under the Assumption 1 below, the expansion is valid for a wide range of regressors.
This particular expansion of the empirical distribution function for residuals is well-

known; see Johansen and Nielsen (2009) with one-sided versions in Koul & Ossiander (1994),
Koul (2002), see also Engler & Nielsen (2009) for autoregressive models. Theorems 4.1-4.4,
Lemma D.5 of Johansen and Nielsen (2015a) give similar results for the product moments
(20) with marks and weights, both for 1-step Huber-skip weights and LTS weights, for slowly
converging initial estimators, and for a 1 or 2-sided cutoff c that may vary with n.

Sketch of the proof. First, the errors n1/2(σ̃2 − σ2) and n1/2(β̃ − β) are bounded in
probability, such that n1/2(σ̃2 − σ2) = 2σn1/2(σ̃ − σ) + oP(1). Thus, we replace n1/2(σ̃ − σ),
n1/2(β̃ − β) and vi with deterministic terms a, b, and vabci = 1{|εi−n−1/2x′ib|≤σ(1+n−1/2a)c}, such
that v00ci = 1{|εi|≤σc}. The desired result follows if we show that

n−1/2
n∑
i=1

vabci − n−1/2
n∑
i=1

v00ci = 2cf(c)a+ oP(1), (22)

uniformly for |a|, |b| < B for some large B.
Second, we introduce the empirical process

Gn(a, b, c) = n−1/2
n∑
i=1

(vabci − Ei−1vabci ) (23)

and decompose the left hand side of (22) as follows

n−1/2
n∑
i=1

(vabci − v00ci ) = Gn(a, b, c)−Gn(0, 0, c) + n−1/2
n∑
i=1

(Ei−1v
abc
i − Ei−1v00ci ).

Third, we prove (22), and in turn (21), by showing that, uniformly in |a|, |b| < B,

n−1/2
n∑
i=1

{Ei−1vi(a, b, c)− Ei−1vi(0, 0, c)} = 2cf(c)a+ oP(1), (24)

Gn(a, b, c)−Gn(0, 0, c) = oP(1). (25)

The expansion (24) is an application of the mean value theorem with an additional argument
about uniformity in a, b. For this we exploit that, in contrast to the indicators, the expectation
is a smooth function of a, b.
Finally, the expansion (25) is a statement of stochastic equicontinuity. We apply a

chaining argument using the iterated martingale inequality given below. The idea is to cover
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the compact interval |a|, |b| < B with grid points. We can then study the variation across
grid points and the variation within the small rectangles defined by the (a, b)-grid point
using the iterated exponential martingale inequality outlined below.
In order to apply (21) to derive limit results, we have to prove that the process Gn(0, 0, c)

is tight and converges to a Gaussian process.

An iterated martingale inequality. We are interested in the tail behaviour of the mar-
tingale Gn(a, b, c) in (23). This is an unbounded martingale. In the case discussed above we
need to analyze the tail behaviour of the maximal value of Gn(a, b, c) over the grid points in
a, b. This is done using the following iterated exponential martingale inequality.

Theorem 1 (Johansen and Nielsen, 2015a, Theorem 5.2.) For ` = 1, . . . , L let z`,i be Fi-
adapted so Ez2

r

`,i < ∞ for some r ∈ N. Let Dr = max1≤`≤L
∑n

i=1E(z2
r

`,i|Fi−1) for 1 ≤ r ≤ r.
Then, for all κ0, κ1, . . . , κr > 0,

P[ max
1≤`≤L

|
n∑
i=1

{z`,i − E(z`,i|Fi−1)}| > κ0] ≤ L
EDr

κr
+

r∑
r=1

EDr

κr
+ 2L

r−1∑
r=0

exp(− κ2r
14κr+1

).

The bound in Theorem 1 involves the expectation of a variableDr, which is the maximum
of the quadratic variations. It can be used with advantage when Dr has a simple bound.
The inequality is proved by iterating the exponential martingale inequality in Theorem 2.1
of Bercu & Touati (2008). It does not require the martingale difference sequences to be
bounded, and so it can be used for analyzing the unbounded product moments (20). We
have some flexibility in choosing the parameters κ0, κ1, . . . , κr. This is exploiting in different
ways when showing that Gn(a, b, c)−Gn(0, 0, c) vanishes and that Gn(0, 0, c) is tight.

5.2 Assumptions on density and regressors

For this presentation we assume a normal reference distribution, which, of course, is most
used in practice, but formulate the results for more general symmetric densities. With
normality we avoid a somewhat tedious discussion of existence of moments. The regressors
can be temporally dependent and possibly deterministically or stochastically trending.
The minimal density assumption for the results presented is a symmetric density with

derivative satisfying boundedness and tail conditions. This includes t-distributions, see Jo-
hansen and Nielsen (2015a) for a general discussion, and Johansen and Nielsen (2009, 2013,
2015a,b) for 1-step Huber-skip, the iterated 1-step Huber-skip, and for the Forward Search
and for general M-estimators, respectively. Symmetry is natural when concerned with data
generating processes without outliers. Non-symmetric densities are also discussed in Jo-
hansen and Nielsen (2015a,b). These arise when discussing data generating processes with
outliers, but we leave this for future work.

Assumption 1 Let Fi be the filtration generated by x1, . . . , xi+1 and ε1, . . . , εi. Assume
(i) innovations εi/σ are independent of Fi−1 and standard normal;
(ii) regressors xi satisfy, for some non-stochastic normalisation matrix N → 0 and random
matrices V,Σ, µ, the following joint convergence results

(a) Vn = N ′
∑n

i=1xiεi
D→ V ;
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(b) Σn = N ′
∑n

i=1xix
′
iN

D→ Σ
a.s.
> 0;

(c) n−1/2N ′
∑n

i=1xi
D→ µ;

(d) maxi≤n |n1/2N ′xi| = oP(nφ) for all φ > 0;
(e) n−1E

∑n
i=1|n1/2N ′xi|q = O(1) for some q > 9.

Assumption 1(ii) for the regressors is satisfied in a range of situations, see Johansen and
Nielsen (2009). For instance, xi could be vector autoregressive with stationary roots or roots
at one. It could also include deterministically trending regressors. The normalisation is
N = n−1/2Idimx for stationary regressors and N = n−1Idimx for random walk regressors.

6 Asymptotic results for Huber-skip estimators

This section contains the asymptotic properties of the Huber-skip, and the 1-step andm-step
Huber-skip defined in Algorithm 1, with applications to the robustified least squares. The
result is formulated as a stochastic expansion of the updated estimation error in terms of a
kernel and the original estimation error, and the proof is as outlined in Section 5.1.

The Huber-skip estimator is the minimizer of the criterion (11), where the scale σ is
known. Since this minimization problem is non-convex, we need an additional assumption
that bounds the frequency of small regressors.

Assumption 2 Define zni = n1/2N ′xi and

Fn(a) = sup
|δ|=1

Fnδ(a) = sup
|δ|=1

n−1
n∑
i=1

1(|z′niδ|≤a). (26)

(a) Assume n−1E
∑n

i=1|n1/2N ′xi|2
r+1

= O(1) where 2r+1 > 2(dimx+ 2).
(b) Assume, for (a, n)→ (0,∞), that

sup
|δ|=1
{Fnδ(a)− Fnδ(0)} P→ 0, (27)

and there exists 0 ≤ ξ < 1 and n0 > 0, such that for all ε > 0 and all n ≥ n0

P{Fn(0) ≤ ξ} ≥ 1− ε. (28)

Theorem 2 (Johansen and Nielsen, 2015b, Theorems 1,2,3) Consider the Huber-skip de-
fined as the minimizer of (11). Suppose Assumptions 1, 2 are satisfied and that f is bounded
and ḟ exists. Then any minimizer of the objective function (11) has a measurable version
and satisfies

N−1(β̂ − β) =
1

ψ − 2cf(c)
Σ−1n N ′

n∑
i=1

xiεi1(|εi|≤σc) + oP(1). (29)
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A condition similar to Assumption 2 was introduced by Davies (1990) in the analysis of
S-estimators with deterministic regressors. He defined

λn(ξ) = min
|S|=int(nξ)

min
|δ|=1

max
i∈S
|z′niδ|, (30)

where S are subsets of the indices i = 1, . . . , n. The function λn(ξ) is related to Fn(a) by

{Fn(a) > int(nξ)/n} ⊂ {λn(ξ) ≤ a} ⊂ {Fn(a) ≥ int(nξ)/n},

and is thus an approximative inverse of Fn(a). Chen and Wu (1988) show, when µρ = 0,

that for deterministic regressors β̂ a.s.→ β0 if Fn(a)→ 0 as (a, n)→ (0,∞).
The conditions (27) and (28) are satisfied for some stationary and non-stationary re-

gressors. The condition is used to prove that the objective function is uniformly bounded
below for large values of the parameter, a property that implies existence and tightness of
the estimator. For full descriptions of the bound to the regressors and extensions to a wider
class of M-estimators, see Johansen and Nielsen (2015b).
Theorem 2 was conjectured by Huber (1964) for pure location problems. The regularity

conditions on the regressors are much weaker than those normally considered in for instance
Chen &Wu (1988), Liese & Vajda (1994), Maronna et al. (2006), Huber & Ronchetti (2009),
and Jurečková & Sen (1996). Theorem 2 extends to non-normal, but symmetric densities and
even to non-symmetric densities and objective functions, by introducing a bias correction
for the constant term in the regression.

<Fig3 here>

From Theorem 2 we can derive the asymptotic distribution of the estimator for specific
types of regressors. For stationary regressors we can apply the Central Limit Theorem to
the expansion (29), see Lemma 2, to get

n1/2(β̂ − β)
D→ N[0,Σ−1

τσ2

{ψ − 2cf(c)}2 ]. (31)

With a normal reference distribution, τ = ψ − 2cf(c) by (8), so that

n1/2(β̂ − β)
D→ N{0,Σ−1 σ2

ψ − 2cf(c)
}. (32)

The effi ciency 1/ηβ = ψ−2cf(c) relative to the least squares estimator is shown in Figure 3. In
the situation with deterministically trending regressors, for instance xi = i, the normalisation
N does not reduce to n1/2, but the same limiting distribution applies. If, instead, the
regressor xi is a random walk the limiting distribution is non-normal. Suppose xi converges
jointly with the partial sum of the truncated innovation to a Brownian motion

n−1/2
{

x[nu]∑[nu]
i=1 εi1(|εi|≤σc)

}
D→
{
Wx(u)
Wε(u)

}
, Var

{
Wx

Wε

}
=

(
Σx δ
δ′ σ2τ

)
,
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on the space D[0, 1]1+dimx of right continuous functions with limits from the left. Here
δ = τCov(εi, xi − xi−1) when the innovations are normal. Following Johansen and Nielsen
(2009) we then get

n(β̂ − β)
D→ 1

ψ − 2cf(c)
(
1∫
0

WxW
′
xdu)−1

1∫
0

Wx(dWε). (33)

The 1-step Huber-skip estimator. The estimation error for this estimator can be ex-
panded in terms of the estimation error of the original estimator. This was done in Welsh
& Ronchetti (2002), without proof, and in Johansen and Nielsen (2009).

Theorem 3 Consider the 1-step Huber-skip, β̂, σ̂, see Definition 1. Suppose Assumption
1 holds and that the initial estimators N−1(β̃ − β) and n1/2(σ̃ − σ) are OP(1). Recall the
coeffi cients ψ, τ from (7),(8) and define

ρβ = 2cf(c)/ψ, ρσ = (c2 − τ/ψ)cf(c)/τ. (34)

Then the β̂, σ̂ satisfy

N−1(β̂ − β) = ρβN
−1(β̃ − β) +

1

ψ
Σ−1n N ′

n∑
i=1

xiεi1(|εi|≤σc) + oP(1), (35)

n1/2{σ̂2 − σ2} = ρσn
1/2(σ̃2 − σ2) +

1

τ
σ2n−1/2

n∑
i=1

(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc) + oP(1). (36)

Theorem 3 shows that the updated regression estimator, β̂, only depends on the initial
regression estimator β̃ and not on the initial scale estimator σ̃. This is a consequence of the
symmetry imposed on the problem. Johansen and Nielsen (2009) also analyze situations,
where the reference distribution, f, is non-symmetric and the cutoff is made in a matching
non-symmetric way. In that situation, both expansions involve the initial estimation uncer-
tainty for β̃ and σ̃2. The assumption that the normalised initial estimators are bounded in
probability can be relaxed using the techniques of Johansen and Nielsen (2015a).

The m-step Huber-skip estimator is a finite iteration of the 1-step estimator. The
expansions in Theorem 3 can be iterated a finite number of times without diffi culty since
the combination of a finite number of remainder terms of order oP(1) remains oP(1).

m-step robustified least squares. A situation of special interest is when the initial esti-
mators are the full sample least squares estimators. These have the expansion

N−1(β̃ − β) = Σ−1n N ′
n∑
i=1

xiεi, n1/2(σ̃2 − σ2) = n−1/2
n∑
i=1

(ε2i − σ2) + oP(1),

see also Johansen and Nielsen (2009, Theorems 1.3, 1.7). We then have the following result.
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Corollary 1 Consider m-step robustified least squares, see Algorithm 1, with full sample
least squares as initial estimators. Introduce η(0)β = η

(0)
σ = 1 and, for m = 1, 2, . . . ,

η
(m)
β = [{

1− ρmβ
(1− ρβ)ψ

}2 + 2{
1− ρmβ

(1− ρβ)ψ
}ρmβ ]τ + ρ2mβ , (37)

η(m)σ = [{ 1− ρmσ
(1− ρσ)τ

}2 + 2{ 1− ρmσ
(1− ρσ)τ

}ρmσ ]
κ − τ 2/ψ
κ− 1

+ ρ2mσ , (38)

using the coeffi cients τ,κ from (8), ρβ, ρσ from (34), and κ = E(ε1/σ)4. Then, under the
assumption of Theorem 3, we find for stationary regressors

n1/2
(

β̂ − β
σ̂2 − σ2

)
D→ N

{
0,

(
σ2η

(m)
β Σ−1 0

0 σ4η
(m)
σ (κ− 1)

)}
. (39)

Note, however, that the asymptotic distribution of n1/2(σ̂2−σ2) is valid for general regressors.

The effi ciencies 1/η
(1)
β , 1/η

(2)
β are plotted as the top curves in Figure 3. Johansen and

Nielsen (2009, Figure 1.1) plot the effi ciency for the variance, 1/η
(1)
σ .

Impulse indicator saturation. This estimator has the same distribution as the 1-step
robustified least squares estimator in the situation without outliers and stationary regressors,
see Theorems 1.5, 1.7 in Johansen and Nielsen (2009).

Infinite iteration of 1-step Huber-skip estimators. A necessary condition for conver-
gence of infinite iteration of mappings (35), (36) is that these are contractions. Johansen and
Nielsen (2013) prove this for a range of unimodal distributions. Moreover, the combination
of the infinitely many remainder terms of order oP(1) remains oP(1). The fixed point for the
regression estimator has the same expansion as the Huber-skip estimator in Theorem 2.

7 Asymptotic results for LTS type estimators

The LTS-type estimators have a cutoff determined from the order statistics of the absolute
residuals as opposed to the fixed cutoff for the Huber-skip estimators. The asymptotic results
appear to be the same, but the argument to get there is a bit more convoluted because of the
quantiles involved. We give an overview of the result for the 1-step LTS, and its consequences
for LTS and for the Forward Search.

7.1 LTS type estimators

The LTS estimator has the same asymptotic expansion (29) as the Huber-skip.

Theorem 4 (Víšek, 2006c, Theorem 1) Consider the LTS estimator β̂LTS defined as min-
imizer of (12). Suppose Assumption 1 holds, that the regressors are fixed, and that their
empirical distribution can be suitably approximated by a continuous distribution function,
see Víšek (2006c) for details. Then

N−1(β̂LTS − β) =
1

ψ − 2cf(c)
Σ−1n N ′

n∑
i=1

xiεi1(|εi|≤σc) + oP(1). (40)
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The 1-step LTS estimator satisfies an expansion that is similar to the 1-step Huber-skip,
albeit with a slight difference in the expansion for the variance estimator. The reason is that
the LTS is based on quantiles rather than an initial scale estimator. The proof is given in the
Appendix. We refer to Johansen and Nielsen (2015a) for minimal conditions and statement
of uniformity in ψ. Ruppert & Carroll (1980) state a similar result for a related estimator,
but omit the details of the proof.

Theorem 5 Consider 1-step LTS with a cutoff k = [ψn], see Definition 2. Suppose As-
sumption 1 holds, and that the initial estimator N−1(β̃ − β) is OP(1). Recall the coeffi cients
ψ, τ from (7),(8) and ρβ, ρσ from (34). Then

N−1(β̂ − β) = ρβN
−1(β̃ − β) +

1

ψ
Σ−1n N

n∑
i=1

xiεi1(|εi|≤σc) + oP(1), (41)

n1/2(σ̂2 − σ2) = ρσ
2σ2

c
n1/2(

ẑψ
σ
− c) +

1

τ
σ2n−1/2

n∑
i=1

(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc) + oP(1), (42)

where the quantile ẑψ satisfies

2f(c)n1/2(
ẑψ
σ
− c) = −n−1/2

n∑
i=1

{1(|εi|≤σc) − ψ}+ oP(1). (43)

Asymptotic variances are reported in Lemma 2.

The expansion (43) for the quantile is similar to the Bahadur (1966) representation, see
also Section 6 of Csörgő (1983), which links the empirical distribution function with empirical
quantiles. In other words, the quantile ξ̂(k), that is computed in a complicated way, has the
same asymptotic behaviour as the kth order statistic of the absolute errors |εi|.

The LTS scale estimator is the consistency corrected minimum of the LTS criterion
function (12), see Croux & Rousseeuw (1992). This estimator is a 1-step LTS estimator with
the LTS estimator as initial estimator. Theorem 5 has the following Corollary.

Corollary 2 Let β̃ be the LTS estimator with a cutoff k > 0, corresponding to a break-
down point 1 − k/n. Apply the 1-step LTS to get the LTS scale estimator σ̂. Suppose the
Assumptions of Theorems 4, 5 hold. Then σ̂2 has expansion (42).

7.2 Forward Search

The Forward Search is an iterated 1-step LTS, where the cutoff changes slightly in each step.
We highlight asymptotic expansions for the forward regression estimators β̂(m) and for the
scaled forward residuals ẑ(m)/σ̂(m). The results are formulated in terms of embeddings of the
time series β̂(m), σ̂(m), ẑ(m) for m = m0 + 1, . . . , n into the space D[0, 1] of right continuous
functions with limits from the left. As an example consider β̂(m) :

β̂ψ =

{
β̂(m) for m = integer(nψ) and ψ0 = m0/n ≤ ψ ≤ 1,
0 otherwise.
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Theorem 6 (Johansen and Nielsen, 2015a, Theorems 3.1, 3.2, 3.4, 3.5) Consider the For-
ward Search in Algorithm 2. Suppose Assumption 1 holds and that N−1(β̂(m0)−β) is OP(1).
Let ψ1 > ψ0 > 0. Then, as processes in ψ = G(cψ),

(i) β̂ψ has the same expansion as the LTS (40), uniformly in ψ1 ≤ ψ ≤ 1;

(ii) σ̂ψ, ẑψ have the same expansions as the 1-step LTS estimators σ̂, ξ̂k in (42), (43), uni-
formly in ψ0 ≤ ψ ≤ n/(n+ 1);
(iii) d̂ψ has the same expansion as ξ̂k in (43), uniformly in ψ1 ≤ ψ ≤ n/(n+ 1).

The idea of the Forward Search is to monitor the plot of the sequence of scaled forward
residuals. The expansions for σ̂ψ and ẑψ in Theorem 6 combine as follows.

Corollary 3 (Johansen and Nielsen 2015a, Theorem 3.3). Consider the Forward Search-
estimator in Algorithm 2. Suppose Assumption 1 holds and that N−1(β̂(m0) − β) is OP(1).
Then

Zn(ψ) = 2f(cψ)n1/2(
ẑψ
σ̂ψ
− cψ) = 2f(cψ)n1/2(

ẑψ
σ
− cψ)− cψf(cψ)

σ2
n1/2(σ̂2ψ − σ2) + oP(1), (44)

uniformly in ψ0 ≤ ψ ≤ n/(n+ 1). Here, Zn(ψ) converges on D[ψ0, 1] to a Gaussian process
Z(ψ) with variance given in Lemma 2.

Part II

Gauge as a measure of false detection
We now explore the gauge as a means of controlling the cutoff in outlier detection algorithms,
when in fact there are no outliers. The gauge therefore controls errors of the first type. When
there are undetected outliers, we get errors of the second kind. We leave this discussion of
the influence of outliers to future work. Proofs follow in the appendix.
The empirical gauge was defined, see (2), as the fraction of detected outliers. We show

that the population gauge for 1-step Huber-skip outlier detection relates in a simple way to
the size of an underlying statistical test. In general, the population gauge will, however, be
of a more complicated nature. An example is the Forward Search, see Section 9.

<Table 1 here>

The gauge concept is related to, but also distinct from the false discovery rate for multiple
tests of Benjamini & Hochberg (1995). To illustrate this, Table 1 shows the number of errors
when testingm hypotheses. The false discovery rate is concerned with those tests that reject
the hypothesis. Suppose there are R of those, of which V are false rejections. Then the false
discovery rate is defined as E(V/R). The gauge is concerned with those observations that are
not outliers. In our setting there are no outliers som = m0 = n. Out of these, V observations
are falsely declared outliers. Then the gauge is E(V/m0).
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8 The gauge of Huber-skip estimators

We derive an asymptotic theory for the gauge of outlier detection methods based on estima-
tors of the Huber-skip type. We consider initial estimators (β̃, σ̃) so that observations are
classified as outliers if the absolute residuals |yi − x′iβ̃|/σ̃ are large. The empirical gauge is

γ̂ =
1

n

n∑
i=1

1(|yi−x′iβ̃|>σ̃c)
. (45)

We prove below that Eγ̂ → P(|ε1| > σc) = 1−ψ. This probability equals P(|y1−x′1β| > σc),
which is the size of a test for the hypothesis that the first observation is an outlier when
the parameters β, σ are known. Further, we show that for a given ψ, the empirical gauge
is asymptotically normal around γ = 1 − ψ. If, instead, we fix the expected number of
incorrectly determined outliers, nγ = n(1− ψ) = λ, then nγ̂ is asymptotically Poisson.

8.1 Normal approximations to gauge

The first result is an asymptotic expansion of the sample gauge γ̂, using (21).

Theorem 7 Consider the sample gauge γ̂ of the form (45). Suppose Assumption 1 is satisfied
and that N−1(β̃ − β), n1/2(σ̃2 − σ2) are OP(1). Then, for fixed ψ = P(|ε1| ≤ σc),

n1/2{γ̂ − (1− ψ)} = n−1/2
n∑
i=1

{1(|εi|>σc) − (1− ψ)} − cf(c)

σ2
n1/2(σ̃2 − σ2) + oP(1). (46)

It follows that γ̂ → 1− ψ in mean, such that the population gauge is γ = 1− ψ.

The result in Theorem 7 does not depend on the type of regressors. We can apply it to
the range of Huber-skip estimators and derive an asymptotically normal distribution theory.
The asymptotic variance is analyzed case by case since the expansion in Theorem 7 depends
on the variance of the initial estimator σ̃2.

The Huber-skip. Theorem 2 shows that N−1(β̂ − β) is tight. In this case the variance is
assumed known, σ̂2 = σ2 and therefore only the first binomial term in Theorem 7 matters.

Corollary 4 Let β̃ be the Huber-skip estimator β̂ while σ̃ = σ is known. Suppose Assump-
tions 1, 2 are satisfied and ψ = P(|ε1| ≤ σc), then

n1/2{γ̂ − (1− ψ)} D→ N{0, ψ(1− ψ)}.

m-step robustified least squares has a similar expression. But now the estimation of the
variance contributes to the asymptotic distribution.

Corollary 5 Let β̃ = β̂(m), σ̃ = σ̂(m) be the m-step robustified least squares estimators, see
Algorithm 1, with full sample least squares as initial estimators. Suppose Assumption 1 is
satisfied. Then, for fixed ψ = P(|ε1| ≤ σc),

n1/2{γ̂ − (1− ψ)} D→ N{0, ψ(1− ψ) + η(m)γ },

where, with τ, ρσ, η
(m)
σ defined in (8), (34), (38), κ = E(ε1/σ)4,

η(m)γ = {cf(c)}2η(m−1)σ (κ− 1) + 2cf(c)ρm−1σ (τ − ψ). (47)
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Impulse indicator saturation. The gauge for the outliers detected by the original
split half least squares estimators is the same as for the robustified least squares, when the
regressors are stationary. Details are given in Theorem 9.4 of Johansen and Nielsen (2014).

Infinite iteration of 1-step Huber-skip estimators. Theorem 9.5 of Johansen and
Nielsen (2014) show that the gauge of the m-step estimator converges to γ uniformly in m.
Their Theorem 9.6 provides a fixed point result for the gauge of the fully iterated estimator.

<Table 2 here>

Numerical comparison of gauges Table 2 shows the asymptotic standard deviations
of γ̂ for the Huber-skip and the robustified least squares for m = 1 taken from Corollaries 4,
5, respectively. The Table also shows results for the fixed point of the fully iterated Huber-
skip where the variance correction equals limm→∞ η

(m)
γ = (κ − τ 2/ψ){cf(c)}2/{(1 − ρσ)τ}2.

For gauges of 1% or lower, the standard deviations are very similar. If the gauge is chosen as
γ = 0.05 and n = 100, then the sample gauges γ̂ will be asymptotically normal with mean
γ = 0.05 and a standard deviation of about 0.2/n1/2 = 0.02. This suggests that it is not
unusual to find up to 8-9 outliers when in fact there are none. Lowering the gauge to γ = 0.01
or γ = 0.0025, the standard deviation is about 0.1/n1/2 = 0.01 and 0.05/n1/2 = 0.005,
respectively, when n = 100. Thus, it is not unusual to find up to 2-3 and up to 1 outliers,
respectively, when in fact there are none. This suggests that the gauge should be chosen
rather small in line with the discussion in Section 7.6 of Hendry & Doornik (2014).

8.2 Poisson approximation to gauge

If we set the cutoff so as to accept the same fixed number of falsely discovered outliers
regardless of the sample size, then a Poisson exceedance theory arises. The idea is to choose
the cutoff cn so that, for some λ > 0,

P(|εi| > σcn) = λ/n. (48)

The cutoff cn appears both in the definition of the gauge and in the definition of the esti-
mators, so some care is needed. We analyze again the m-step Huber-skip. Let β̃n and σ̃n be
sequences of initial estimators that may depend on cn, hence the subscript n in the notation
for the estimators. We assume that the estimation errors N−1(β̃n − β) and n1/2(σ̃n − σ) are
tight. Thus, the result immediately applies to robustified least squares, where the initial
estimators β̃n and σ̃n are the full sample least squares estimators, which do not depend on
the cutoff cn. But, in general we need to check this tightness condition. We choose to prove
the result assuming a more general density function and replace Assumption 1(i) by the
following assumption, which is satisfied for the normal distribution, see Remark 2.

Assumption 1(i′) The innovations εi/σ are independent of Fi−1, and the density f is
symmetric with decreasing tails and support on R so that cn →∞ and

(a) E|εi|r <∞ for some r > 4;
(b) f(cn)/[cn{1− F(cn)}] = O(1);
(c) f(cn − n−1/4A)/f(cn) = O(1) for all A > 0;
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Theorem 8 Consider m-step Huber-skip, see Algorithm 1, where cn is given by (48). If
the initial estimation errors N−1(β̃ − β), n1/2(σ̃2 − σ2) are OP(1) and Assumption 1(i′, ii)
is satisfied, then the m-step Huber-skip estimators, β̂(m)n , σ̂

(m)
n say, have the same asymptotic

properties as the full sample least squares estimators β̂LS, σ̂2LS:

N−1(β̂(m)n − β̂LS), n1/2(σ̂(m)n − σ̂LS) = oP(1), (49)

and the sample gauge γ̂ in (45) satisfies

nγ̂
D→ Poisson(λ). (50)

<Table 3 here>

Table 3 shows the Poisson approximation to the probability of finding at most x outliers
for different values of λ. For small λ and n this approximation is possibly more accurate
than the normal approximation, although that would have to be investigated in a detailed
simulation study. The Poisson distribution is left skew so the probability of finding at most
x = λ outliers increases from 62% to 90% for λ decreasing from 5 to 0.1. In particular, for
λ = 1, n = 100 so the cutoff is cn = 2.58, the probability of finding at most one outlier is
74% and the probability of finding at most two outliers is 92%. In other words, the chance
of finding 3 or more outliers is small when in fact there are none.

9 The gauge of the Forward Search

We now consider the gauge for the Forward Search. The forward plot consists of the scaled
forward residuals ẑ(m)/σ̂(m) for m = m0, . . . , n − 1. Along with this, we plot point-wise
confidence bands derived from Theorem 3. The idea is to stop the algorithm once the scaled
forward residuals exceed a suitable quantile. We choose the quantile from the gauge.
Consider a stopping time m̂ based on this information, so that n − m̂ is the number of

the outliers. The sample gauge (2) then simplifies as

γ̂ =
n− m̂
n

=
1

n

n−1∑
m=m0

(n−m)1(m̂=m) =
1

n

n−1∑
m=m0

1(m̂≤j), (51)

by substituting n−m =
∑n−1

j=m 1 and changing summation order. If the stopping time is an
exit time, then the event (m̂ ≤ j) is true if ẑ(m)/σ̂(m) has exited at the latest by m = j.
An example of a stopping time is the following. Theorem 3 shows that

Zn(ψ) = 2f(cψ)n1/2(ẑψ/σ̂ψ − cψ)
D→ Z(ψ) on D[ψ0, 1]. (52)

We now choose the stopping time as the first time greater than or equal to m1(≥ m0), where
ẑ(m)/σ̂(m) exceeds q times its pointwise asymptotic standard deviation, that is,

m̂ = arg min
m1≤m<n

[Zn(cm/n) > qsdv{Zn(cm/n)}]. (53)
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We insert this into expression into (51) noting that

(m̂ ≤ j) = [ max
m1≤m≤j

Zn(cm/n)

sdv{Zn(cm/n)} > q].

The convergence (52) then lead to the following result; see Appendix for details.

Theorem 9 Consider the Forward Search stopped at m̂ in (53) for some q ≥ 0 and m0 =
int(ψ0n) and m1 = int(ψ1n) for ψ1 ≥ ψ0 > 0. If Assumption 1 is satisfied then

Eγ̂ = E
n− m̂
n

→ γ =

∫ 1

ψ1

P[ sup
ψ1≤ψ≤u

Z(cψ)

sdv{Z(cψ)} > q]du.

If ψ1 > ψ0, the same limit holds for the Forward Search when replacing ẑ(m) by the deletion
residual d̂(m), see (19), in the definition of m̂ in (53).

<Table 4 here>

The integral in Theorem 9 cannot be computed analytically in an obvious way. Instead
we simulated it using Ox 7, see Doornik (2007). For a given n, we draw normal εi. From
this, we compute the process Zn and then the maximum of Zn(cm/n)/sdv{Z(cm/n)} over
m1 ≤ m ≤ j for all j so that m1 ≤ j ≤ n. Repeating this nrep times we can approximate the
probability appearing as the integrand for given values of q and u . From this the integral γ
is computed. This expresses γ as a function of q and ψ1. Inverting this for fixed ψ1 expresses
q as a function of γ and ψ1. Table 4 reports results for nrep = 105 and n = 1600.

10 Application of the Forward Search to the fish data

We next apply the methods analyzed above to the fish data. We need to choose the initial
estimator, the fractions ψ0, ψ1 and the gauge. As initial estimator we chose the fast LTS
estimator with breakdown point ψ0 by Rousseeuw & van Driessen (1998) as implemented
in the ltsReg function of the R-package robustbase, see Rousseuw et al. (2013). There is
no asymptotic analysis of this estimator. It is meant to be an approximation to the Least
Trimmed Squares estimator, for which we have Theorem 4 based on Víček (2006c). That
result requires fixed regressors. Nonetheless, we apply it to the fish data where the two
regressors are the lagged dependent variable and the binary variable St which is an indicator
for stormy weather. We choose ψ0 = ψ1 as either 0.95 or 0.8.
Figure 4 shows the forward plots of a renormalized version of the scaled forward residuals,

ξ̂
(m)
(m+1)/ςm/nσ̂

(m+1), where the scaling is chosen in line with Atkinson et al. (2010).
Panel (a) has ψ0 = ψ1 = 0.95. Choose the gauge as, for instance, γ = 0.01, in which

case we need to consider the third exit band from the top. This is exceeded for m̂ = 107,
pointing at n− m̂ = 3 outliers. These are the three holiday observations 18, 34, 95 discussed
in Section 2. If the gauge is set to γ = 0.001 we find no outliers. If the gauge is set to
γ = 0.05 we find m̂ = 104, pointing at n− m̂ = 6, which is 5% of the observations.
Panel (b) has ψ0 = ψ1 = 0.80. With a gauge of γ = 0.01, we find m̂ = 96, pointing

at n − m̂ = 14 outliers. These include the three holiday observations along with 11 other
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observations. This leaves some uncertainty about the best choice of the number of outliers.
The present analysis is based on asymptotic analysis of the expected gauge. It does not
consider sampling variation for the sample gauge and it could be distorted in finite samples.

<Fig4 here>

11 Conclusion and further work

We have presented the relation between some outlier detection algorithms and robust sta-
tistics, which discard some observations. We have exploited the Huber-skip and the LTS
to construct 1-step versions of these as outlier detection algorithms, with robustified least
squares and Impulse Indicator Saturation as special cases, and we have analyzed the Forward
Search. We have given an overview of the asymptotic theory of these 1-step estimators and
the stochastic expansion that allows to derive asymptotic distributions. The outlier detec-
tion algorithms are discussed in terms of their gauge, and we have shown that for the 1-step
Huber-skip, the population gauge is the size of the underlying test, whereas for the Forward
Search, a different relation was derived which can be used for calibrating the algorithm.
In future research we will look at situations, where there actually are outliers. Various

configurations of outliers will be of interest: single outliers, clusters of outliers, level shifts,
symmetric and non-symmetric outliers, or ε-contamination.
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A Proofs

We start by stating variances of various moments of the innovations.

Lemma 1 Suppose εi has symmetric density f with finite fourth moment. Recall the notation
ψ, τ,κ defined in Section 3 and let κ = E(ε1/σ)4. Then

Var

(
εi

εi1(|εi|≤σcψ)

)
= σ2

(
1 τ
τ τ

)
,

Var

 ε2i /σ
2 − 1

1(|εi|≤σcψ) − ψ
(ε2i /σ

2 − τψ/ψ)1(|εi|≤σcψ)

 =

 κ− 1 τ − ψ κ − τ 2/ψ
τ − ψ ψ(1− ψ) 0

κ − τ 2/ψ 0 κ − τ 2/ψ

 .

The stochastic expansions are given in terms of two empirical processes. The next result
shows asymptotic normality as processes on D[0, 1] and find their variances.

Lemma 2 Suppose Assumption 1 holds and that cψ = G(ψ). Then the processes

An(ψ) = n−1/2
n∑
i=1

{1(|εi|≤σcψ) − ψ}, Bn(ψ) = n−1/2
n∑
i=1

(
ε2i
σ2
− τψ
ψ

)1(|εi|≤σcψ). (54)
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converge to continuous Gaussian limits A,B on D[0, 1] endowed with the uniform metric.
The processes have covariance matrix

V ar

{
An(ψ)
Bn(ψ)

}
=

{
ψ(1− ψ) 0

0 κ − τ 2/ψ

}
.

The asymptotic variances in Theorem 5 are then

asVar

{
2f(cψ)n1/2(

ẑψ
σ
− cψ)

n1/2(
σ̂2ψ
σ2
− 1)

}
=

 ψ(1− ψ) ψ(1− ψ)(
c2ψ
τψ
− 1

ψ
)

(
c2ψ
τψ
− 1

ψ
)ψ(1− ψ) (

c2ψ
τψ
− 1

ψ
)2ψ(1− ψ) + 1

τ2ψ
(κψ −

τ2ψ
ψ

)

 .

The asymptotic variance in Theorem 3 is

asVar{2f(cψ)n1/2(
ẑψ
σ̂ψ
− cψ)} = {1− cψf(cψ)

τψ
(c2ψ −

τψ
ψ

)}2ψ(1− ψ) + {cψf(cψ)

τψ
}2(κψ −

τ 2ψ
ψ

).

With stationary regressors the process Kn(ψ) = N ′
∑n

i=1xiεi1(|εiσ|≤σcψ) converges to a contin-
uous Gaussian process K on D[0, 1], which is independent of A,B and has variance τψσ2Σ.

Proof of Lemma 2. The expansions (42), (43) in Theorem 5 can be expressed as

2f(cψ)n1/2(
ẑψ
σ
− cψ) = −An(ψ) + oP(ψ),

n1/2(
σ̂2ψ
σ2
− 1) = τ−1ψ {Bn(ψ)− (c2ψ −

τψ
ψ

)An(ψ)}+ oP(ψ),

while the expansion (44) in Theorem 3, follows from

2f(cψ)n1/2(
ẑψ
σ̂ψ
− cψ) = 2f(cψ)n1/2(

ẑψ
σ
− cψ)− cψf(cψ)n1/2(

σ̂2ψ
σ2
− 1) + oP(ψ)

= −{1− cψf(cψ)

τψ
(c2ψ −

τψ
ψ

)}An(ψ)− cψf(cψ)

τψ
Bn(ψ) + oP(ψ),

which gives the variances. The convergence of the finite dimensional distributions of the
processes An and Bn follow from the Central Limit Theorem for i.i.d. variables, and the cor-
responding result forKn from the Central Limit Theorem for martingale difference sequences.
Tightness of the processes follow from Theorem 4.4 in Johansen and Nielsen (2015a).

Proof of Theorem 5. The desired results follow from Lemmas D.10 and D.11 in
Johansen and Nielsen (2015a), albeit with different notation. To recognize the results let
b̃ = N−1(β̃ − β) to match the notation in the beginning of section D.2. The present order
statistic ξ̃(k) is written as σĉb̃ψ to match (D.12), noting that ψ = k/n.We can then proceed to
write the objects of interest in terms of the weighted and marked absolute empirical processes
Ĝg,pn defined in (D.3).
1. Expansion (41). For the regression estimator we have

N−1(β̂ − β) = {Ĝxx,0n (b̃, ĉb̃ψ)}−1n1/2Ĝx,1n (b̃, ĉb̃ψ).
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Lemma D.10(c) gives the desired expansion as long as b̃ is tight, or even slowly diverging.
2. Expansion (43). This is the Bahadur expansion in Lemma D.2(b).
3. Expansion (42). Since

∑n
i=1 vi = k = ψn for the 1-step LTS, we have that

n1/2(σ̂2 − σ2) = n1/2(
1

τ
[Ĝ1,2n (b̃, ĉb̃ψ)− {Ĝx,1n (b̃, ĉb̃ψ)}′{Ĝxx,0n (b̃, ĉb̃ψ)}−1Ĝx,1n (b̃, ĉb̃ψ)]− σ2).

Lemma D.11(b) shows that n1/2(Ĝx,1n )′(Ĝxx,0n )−1Ĝx,1n = oP(1). Lemma D.11(a) expands the
remaining components in terms of the processes

G1,0n (cψ) = An(ψ), G1,2n (cψ) = σ2Bn(ψ) + σ2
τ

ψ
An(ψ),

where An,Bn were defined in (54). Thus, we get

n1/2(σ̂2 − σ2) =
σ2

τ
{Bn(ψ)− (c2ψ −

τ

ψ
)An(ψ)}+ oP(1).

Then apply that −An(ψ) = 2cψf(cψ)σ−1(ẑψ/cψ − σ) according to (43) along with the defini-
tion of ρσ in (34).

Proof of Theorem 7. Write the gauge as γ̂ = n−1
∑n

i=1(1−vi) and apply the expansion
(21) for n−1

∑n
i=1vi, see also Lemma D5 of Johansen and Nielsen (2015a). The expansion

implies γ̂ → 1 − ψ in probability. Note that convergence in probability is equivalent to
convergence in mean since the empirical gauge is bounded, see Theorem 5.4 in Billingsley
(1968).

Proof of Corollary 4. Insert σ̂2 = σ2 in the expansion in Theorem 7 and apply the
Central Limit Theorem for i.i.d. variables to the binomial term, see Lemma 2.

Proof of Corollary 5. Iterate the expansion (36) for (σ̂(1))2 in Theorem 3 to get

n1/2{(σ(m−1))2 − σ2} = ρm−1σ n1/2(σ̃2 − σ2) +
1− ρm−1σ

(1− ρσ)τ
σ2n−1/2

n∑
i=1

(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc) + oP(1).

Recall that n1/2(σ̃2 − σ2) = n−1/2
∑n

i=1(ε
2
i − σ2) and n1/2(σ(m−1) − σ) = n1/2{(σ(m−1))2 −

σ2}/(2σ). Insert this into expression (46) for γ(m) in Theorem 7 to get

asVar(γ̂(m)) = Var[−1(|εi|≤σc) − cf(c){ρm−1σ (ε2i /σ
2 − 1) +

1− ρm−1σ

(1− ρσ)τ
(
ε2i
σ2
− τ

ψ
)1(|εi|≤σc)}].

Use Lemma 1 and the definition of η(m−1)σ in Corollary 1.

Remark 1 Assumption 1(i′a) implies that cn = O(n1/r) where 1/r < 1/4. To see this,
combine the definition P(|εi| > σcn) = λ/n with the Markov inequality P(|εi| > σcn) ≤
(σcn)−rE|εi|r so that cn ≤ σ−1(E|εi|r)1/rλ−1/rn1/r = O(n1/r).

Remark 2 Assumption 1(i′) holds if f = ϕ is standard normal. For (b) use the Mill’s
ratio result {(4 + c2)1/2 − c}/2 < {1 − Φ(c)}/ϕ(c); see Sampford (1953). For (c) note that
2 log{f(cn − n−1/4A)/f(cn)} = c2n − (cn − n−1/4A)2 = 2cnn

−1/4A− n−1/2A2, use Remark 1.
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Proof of Theorem 8. 1. A bound on the sample space. Since N−1(β̃n − β) and
n1/2(σ̃2n−σ2) are OP(1), then n1/2(σ̃n−σ) is OP(1) and in light of Assumption 1(ii, d), there
exists for all ε > 0 a constant A0 > 1 such that the set

Bn = {|N−1(β̃n − β)|+ n1/2|σ̃n − σ|+ n1/4 max
1≤i≤n

|N ′xi| ≤ A0} (55)

has probability larger than 1− ε for all n.
2. A bound on the indicators. Introduce the quantity

si = σ̃cn − yi + x′iβ̃n + εi = σcn + n−1/2n1/2(σ̃n − σ)cn + x′iNN
−1(β̃n − β).

On the set Bn, using cn = o(n1/4), by Remark 1 the quantity si satisfies, for some A1 > 0,

si ≤ σcn + n−1/2A0cn + n−1/4A20 ≤ σ(cn + n−1/4A1),

si ≥ σcn − n−1/2A0cn − n−1/4A20 ≥ σ(cn − n−1/4A1).

It therefore holds that

1(εi/σ>cn+n−1/4A1) ≤ 1(yi−x′iβ̃n>σ̃ncn)
= 1(εi>si) ≤ 1(εi/σ>cn−n−1/4A1).

With a similar inequality for 1(yi−x′iβ̂<−σ̂cn)
we find

1(|εi/σ|>cn+n−1/4A1) ≤ 1− vi = 1(|yi−x′iβ̃n|>σ̃ncn)
≤ 1(|εi/σ|>cn−n−1/4A1). (56)

3. Expectation of indicator bounds. It will be argued that

nE1(|εi/σ|>cn+n−1/4A1) → λ, nE1(|εi/σ|>cn−n−1/4A1) → λ. (57)

Since nE1(|εi/σ|>cn) = λ it suffi ces to argue that

En = nE{1(|εi/σ|>cn−n−1/4A1) − 1(|εi/σ|>cn+n−1/4A1)} → 0.

The mean value theorem and the identity 2{1− F(cn)} = λ/n give for |c∗ − cn| ≤ n−1/4A1,

En = n

∫ cn+n−1/4A1

cn−n−1/4A1
2f(x)dx = n4n−1/4A1f(c

∗) =
4λn−1/4A1f(c

∗)

2{1− F(cn)} ,

= 2λn−1/4A1{
f(c∗)

f(cn − n−1/4A1)
}{ f(cn − n

−1/4A1)

f(cn)
}[ f(cn)

cn{1− F(cn)} ]cn.

The first ratio is bounded by 1 since f has decreasing tails. The second and third ratios are
bounded by Assumption 1 (i′b, i′c). Then use that n−1/4cn = o(1) by Remark 1.
4. Comparison of β̂(1)n , σ̂

(1)
n and β̂LS, σ̂LS. The estimation errors of the 1-step Huber-skip,

N−1(β̂n − β), n1/2(σ̂2n − σ2), are based on product moments of the form, see (20),
n∑
i=1

vigi =
n∑
i=1

gi −
n∑
i=1

(1− vi)gi,

where vi = 1(|yi−x′iβ̃|≤cnσ̃)
and gi is N ′xix′iN, N

′xiεi, n
−1/2(ε2i − σ2) or n−1. The first terms

give the least squares estimators, and (49) follows for m = 1 if the second terms are oP(1).
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5. Bound on the second terms. On the set Bn given in (55), we use the bound on 1− vi
in (56). When gi is n−1/2(ε2i − σ2) or n−1 we can consider, for s = 0, 2,

E|n−1/2
n∑
i=1

(1− vi)εsi1Bn| ≤ En−1/2
n∑
i=1

εsi1(|εi/σ|>cn−n−1/4A1) ≤ n1/2Eεsi1(|εi/σ|>cn−n−1/4A1) (58)

≤ n1/2E1/21(|ε1/σ|>cn−n−1/4A1)E
1/2ε2s1 1(|ε1/σ|>cn−n−1/4A1) = o(1),

because nE1(|ε1/σ|>cn−n−1/4A1) → λ, (57), Eε2s1 < ∞, s ≤ 2, Assumption 1(i′a), and cn −
n−1/4A1 →∞. When gi is N ′xix′iN or N ′xiεi we can consider, for s = 0, 1,

E = E
n∑
i=1

(1− vi)|gi|1Bn ≤ E
n∑
i=1

|N ′xi|2−s|εi|s1(|εi/σ|>cn−n−1/4A1).

Taking iterated expectations with respect to Fi−1 shows that

E ≤ ns/2{En−1
n∑
i=1

(|n1/2N ′xi|2−s)}E{|εi|s1(|εi/σ|>cn−n−1/4A1)}.

The first expectation is O(1) by Assumption 1(iie). The second expectation is o(n−1/2) by
(58). Overall we get E = o(1).
6. Proof (49): In item 5 we have proved (49) for m = 1. A consequence is that the

estimation errors for β̂(1)n , σ̂
(1)
n , the initial estimators for m = 2, are bounded in probability

and hence the same conclusion holds for β̂(2)n , σ̂
(2)
n , etc.

7. Proof of (50): Using the bounds in item 2, (56), it holds on the set Bn that
1

n

n∑
i=1

1(|εi/σ|>cn+n−1/4A1) ≤ γ̂ =
1

n

n∑
i=1

1(yi−x′iβ̃n>σ̃ncn)
≤ 1

n

n∑
i=1

1(|εi/σ|>cn−n−1/4A1).

Using (57), the Poisson limit theorem shows that the upper and lower bounds have Poisson
limits with mean λ.

Proof of Theorem 9. Corollary 3 shows that Zn converges to a Gaussian process Z on
D[ψ0, 1]. The variance of Z(cψ) vanishes for ψ → 1 so a truncation argument is needed to
deal with the ratio Xn(cψ) = Zn(cψ)/sdv{Z(cψ)}. Approximate the sample gauge by

γ̂v =
n− m̂
n

1(m̂≤vn) =
1

n

int(nv)−1∑
j=m1

1(m̂≤j),

for some v < 1 and using (51). Then the sample gauge is γ̂ = γ̂1, and

0 ≤ γ̂ − γ̂v =
n− m̂
n

1(m̂>vn) <
n− nv
n

= 1− v.

The process Xn(cψ) converges onD[ψ1, v]. The Continuous Mapping Theorem 5.1 of Billings-
ley (1968) then shows that supψ1≤ψ≤uXn(cψ) converges as a process in u on D[ψ1, v]. In
turn, for a given q, the deterministic function P(m̂ ≤ nu) = P{supψ1≤ψ≤uXn(cψ) > q} in
ψ1 ≤ u ≤ v converges to a continuous increasing function p(u) on [ψ1, v], which is bounded
by unity. In particular it holds that

Eγ̂v =
1

n

int(nv)−1∑
j=m1

E1(m̂≤j) =
1

n

int(nv)−1∑
j=m1

P(m̂ ≤ j)→ γv =

∫ v

ψ1

p(u)du ≤ v − ψ1 ≤ 1− ψ1,



30

and

γv =

∫ v

ψ1

p(u)du↗ γ =

∫ 1

ψ1

p(u)du =

∫ 1

ψ1

P[ sup
ψ1≤ψ≤u

Z(cψ)

sdv{Z(cψ)} > c]du

regardless of the behaviour of the process Xn(c) for ψ close to unity.
Now return to the sample gauge γ̂, and rewrite it as

γ̂ − γ = (γv − γ) + (γ̂v − γv) + (γ̂ − γ̂v)

for some fixed v. Then
|γ̂ − γ| ≤ 1− v + |γ̂v − γv|+ 1− v.

Choose an ε > 0 and v such that 1− v ≤ ε, and then n so large that |γ̂v − γv| ≤ ε with large
probability, then |γ̂ − γ| ≤ 3ε with large probability, which completes the proof.
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Figure 1: Data and properties of fitted model for Fulton fish market data
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Figure 2: Huber-skip objective function Rn plotted against the parameter for the lagged
dependent variable for the Fulton fish data for two values of c.
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Figure 3: Effi ciency as a function of c. The two top curves (– ,- -) are 1 and 2-step robustified
least squares, 1/ηβ, Corollary 6.3. The lowest curve (· - ·) is for Huber-skip, τ, Theorem 6.1.
All measured relative to full sample least squares for a normal reference distribution.
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Figure 4: Forward Plots of forward residuals for fish data. Here ψ0 = ψ1 is chosen either as
0.95 or 0.80. The bottom curve shows the pointwise median. The top curves show the exit
bands for gauges chosen as, from top, 0.001, 0.005, 0.01, 0.05, respectively. Panel (b) also
includes an exit band for a gauge of 0.10.



35

Table 1: Number of errors committed when testing m hypotheses in the same model.
declared: non-significant significant total
True Hypothesis U V m0

False Hypothesis T S m−m0

total m−R R m
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Table 2: Asymptotic standard deviations of the empirical gauge for the Huber-skip (Corollary
4) and robustified least squares (Corollary 5) and the fully iterated Huber-skip. All calculated
for a normal reference distribution.

γ 0.05 0.01 0.005 0.0025 0.001
c 1.960 2.576 2.807 3.023 3.291
sdv(γ̂) for Huber-skip 0.218 0.0995 0.0705 0.0499 0.0316
sdv(γ̂) for Robustified Least Squares 0.146 0.0844 0.0634 0.0467 0.0305
sdv(γ̂) for fully iterated Huber-skip 0.314 0.117 0.0783 0.0534 0.0327



37

Table 3: Poisson approximations to the probability of finding at most x outliers for a given
λ. The implied cutoff cn = Φ−1{1− λ/(2n)} is shown for n = 100 and n = 200.

x
λ cn=100 cn=200 0 1 2 3 4 5
5 1.960 2.241 0.01 0.04 0.12 0.27 0.44 0.62
1 2.576 2.807 0.37 0.74 0.92 0.98 1.00
0.5 2.807 3.023 0.61 0.91 0.98 1.00
0.25 3.023 3.227 0.78 0.97 1.00
0.1 3.291 3.481 0.90 1.00

Table 4: Cutoff values q for the Forward Search as a function of gauge γ and lower point ψ1
of range for the stopping time, see Theorem 10.1.

γ vs ψ1 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
0.10 2.50 2.43 2.28 2.14 1.99 1.81 1.60 1.31 0.82 -
0.05 2.77 2.71 2.58 2.46 2.33 2.19 2.02 1.79 1.45 0.69
0.01 3.30 3.24 3.14 3.04 2.94 2.83 2.71 2.55 2.33 1.91
0.005 3.49 3.44 3.35 3.26 3.15 3.04 2.95 2.81 2.62 2.26
0.001 3.90 3.85 3.77 3.69 3.62 3.53 3.43 3.32 3.18 2.92
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