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1. Introduction.

Parametric as well as nonparametric testing procedures for poassible shifts
in the location of a distribution function (df) occurring at unknown time points
between consecutively taken observations have been proposed and studied by Page
(1955), Chernoff and Zacks (1964), Kander and Zacks (1966), Mustafi (1968),
Bhattacharyya and Johnson (1968), Sen and Srivastava (1975) and Sen (1977), among
others. The object of the present investigation is to consider a related problem
of regression where a change in the regression coefficient may occur at a unknown
time point and to develop suitable testing procedures.

Given the observations on independent random variables (rv) Yi = Y(ti)’
i=1,...,n, taken at time points tl"“’tn (where tls ’”'Stn with at least

one strict inequality sign), consider the following regression model:
(1.1) Y(t) = a+ I(t<T)B(t-T) + I(t2T)Y(t-T) + e(t) ,

where o, B, Y and T are unknown parameters (tls'ts1%g, I(A) stands for
the indicator function of the set A and e(t) is a white notse i.e., for every

real e, the df

(1.2) F(e) = P{e(t) <e} does not depend on t (1:1 Ststn) .
Note that if T = t1 or tn’ then (1.1) reduces to a simple regression model,
while for t1'<'r< tn and B=#Yy, it relates to a segmented regression model with

a common intercept (o) at time point T and two different slopes B and Yy
for t<T and t=2T, respectively; T 1is termed a transition point. We assume
that

(1.3) t, <T <t while B and Yy may or may not be equal .

1

Then, under (1.3), (1.1) relates to a simple regression model only when 8 = Y.
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Such a segmented regression model is not very uncommon in practical problems.

If we let the ti stand for the doses of a drug and the Yi for the responses,
such a segmented dose-response regression also arises in some problems, where, at
a higher dose, the regression pattern may differ from the one at a lower dose.

We desire to test for

(1.4) f5=B=Y VS. lﬁ:6>y or Hf B=vy ,

treating o, B and T as nuisance parameters. If T were specified, one
could have considered the two samples {Yi: ti<'t} and {Yi: t, 21t} (which

are independent) and, bearing in mind the two simple regression models pertain-
ing to these samples, one might have tested for the identity of the two slopes

B and y. Since T is not specified, our problem is somewhat more complicated.
Moreover, we do not assume that F in (1.2) is of a specified form (e.g., nor-
mal), and, for this reason, we take recourse to tests based on rank statistics
and the classical least squares estimators.

In Section 2, along with the preliminary notions, the proposed test sta-
tistics are formulated. Some invariance principles for least squares estimators
(LSE) are considered in Section 3 and also these are incorporated there in the
study of the asumptotic properties of the tests based on the LSE. Similar
invariance principles are developed for (aligned) linear rank statistics (LRS)
in Section 4 and these are utilized then in the study of the asymptotic proper-
ties of the proposed rank tests. Section 5 deals with the asymptotic comparison

of the procedures based on LSE and LRS.



2. Preliminary notions and the proposed tests.

Let us define

(2.1) UEDY SR R SO W CHE A LS S

Note that T2 is 7L in k(21). Under H, in (1.4), based on Y Y.
k - ¢ 0 ¢ > 1""’ k’

the LSE of B is

(2.2) = T Z (-t )Y, for k =2,...,n; B, =0

If we assume that F in (1.2) admits of a finite variance 02, then under

H0 in (1.4), §2""’§n are all unbiased estimators of B with variances

02/T2,...,02/Tn, respectively. On the other hand, if H, does not hold and

0

< . < <N~
tm_T<%H1:&rsmw m: 1<m<n-1, then

B, k<m

(2.3) E@ 18 Y) = _
k Y+ (B-Y)Tl'(zi'Ll(ti-T)(ti-tk), m+l<k<n ,

where the right hand side (rhs) of (2.3), for k>m, differs from B8 (or Y).
Thus, the estimators cease to fiuctuate around a common f when HO does not

hold. We consider the residuals
(2.4) Y. =Y. -8¢t., i=1,...,n
and based on the partial set {?1""’?k}" we compute

5 _ m-2vk -0 - %
(2.5) B = Ty Ly, (6-E)Y; = B -8B, 2sksn; B =0 .

Under HO, §1""’§n al unbaisedly estimate 0, while under H1 or HZ’

are not so. Our proposed test based on the LSE rests on the statistics

they

(2.6) Mt = MaX g and M_= "X |g

n O<ksn n,k n 0<k<n n,k|



where Sn’0 = Sn,l =0 and
12y =12 4 4
(2.7) Sn,k = Tn TkBk = Tn Tk(Bk Bn), 2<k<n ,
so that Sn a0 The test procedure will be formulated in Section 3.

For the rank tests (to follow), we do not need the existence of the second
moment of F. However, to avoid ties among the observations (Yi)’ we assume

that F is continuous everywhere. Consider the usual LRS
(2.8) L, =3¢ t.-t)a, (R,.), k=1,...,n
’ k i=1*"1 k7Tk ki’ rerrel

where, for every k(21), Rki = rank of Yi among Yl,...,Yk for 1=<1icxk,

the scores ak(i) are defined by
(2.9) ak(i) = E¢(Uki), i=1,...,k,

U, <...<U are the ordered rv's of a sample of size k from the rectangu-

k1 kk
lar (0,1) df and the score generating function ¢ = {d(u), 0 < u< 1} is
assumed to be square integrable inside (0,1). Actually, bearing in mind, the

elimination of the nuisance parameters through estimation, we assume that

(2.10) ¢(u) is A~ in u: 0<u<l .
For every real b: - ® < b <o, let
- vk ~
(2.11) L ®) = I (t;-Tla (R, (), k=1,

where Rki(b) = rank of Yi-bti among Yl-btl,...,Yk—btk for 1<ic<k. Then

[cf. Theorem 6.1 of Sen (1969)], under (2.10), for every k(z1),
(2.12) L () is NV in b: -w<b<,

Let then

(2.13) = sup{b: L (b) >0}, e]‘: , = inf{b: L, (b) <0} ;

*.
By, 1



*__l * * _
(2'14) Bk at 2 (Bk,1+8k’2)’ k = 1,...,“ .

Under H0 in (2.14), B; is a translation-invariant, robust and consistent
estimator of B [viz., Adichie (1967)], for k=1. As in (2.4), we consider
the residuals

* < _
(2.15) Y. = Y, - Bnti for i=1,...,n

and based on the partial set '{YI,...,Y;}, we define

(2.16) Lo x = L BR/T,

_ -1k . * ]
= Tn zi=1(ti-tk)ak(Rki), k=1,...,n,

where R rank of Y; among Y*,.. Y: for 1<i<k; k21. Conventionally,

ki A '
we let L; 0~ 0. Then, parallel to (2.6), our proposed test statistics are

+ -1 max _« | _ -1 max | =
(2.17) Ph =2y {OskSn Ln,k} and D, = A, {OSkSnILn,kI}
where for n >2,
2 _ -len sy — 12 — _ 1 .
(2.18) A = (n-1) §i=1[an(1)-an] and a_ =< §i=1an(1) .

n

The test procedure will be formulated in Section 4.

3. Asymptotic properties of the tests based on M; and Mn'

For the study of the asymptotic distribution theory of M; and Mn
(under the null as well as local alternative hypothesis), we need to study
first some invariance principles relating to the LSE. For this asymptotic
study, we consider a triangular array {tni’ 1<is<n; n21} of time-variables
and {Yi = Y(tni), 1<i<n; n21} are defined accordingly as in (1.1). We

assume that for every 6: 0<06<1,
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(3.1) ]1112 —t—n[ne] _ 11m o [MO]7 Xing] t i = () exists,
(3.2) rl‘_l,z (T n[ne]/ n) = 11m { Z[ne] i'zn[ne])z} = gz(e) exists

and both u(8) and &(8) are continuous inside [0,1]. Note that (3.1) and

(3.2) insure that

(3.3) max{T llt | : lsisk5n}+0 as n >,
‘ nn! ni” nk

Let then Uno = Unl =0 and for k=22

(3.4) U, =35 (t.-T. )Y
: nk i=l1"ni nk’’i

and define a stochastic process WIEI) = {Wr(ll)(u), 0<u<1} be letting

(3.5) wlgl)(u) = Uy WROEM), K (0) = maxik: TszUT }, 0Osu<i .
n

Note that kn(u) is a nondecreasing, right-continuous and integer-valued function
of ue[0,1] and wrgl) belongs to the D[0,1] space (having only jump discon-

tinuities) endowed with the Skorokhos J.-topology. Let W = {W@), 0z<us<l} be

1

a standard Wiener process on [0,1]. Then, we have the following,

Theorem 3.1. If Ee(t) =0, Eez(t) = 02 <o agnd (3.1)-(3.2) hold, then under

H’(;:a=s=y=o,

(3.6) Wrcll) T W, 1in the Jl-topoZogy on D[0,1]

Proof. First, we establish the convergence of the finite-dimensional distribu-

tions (f.d.d.) of {Wr(ll)} to those of W. For every (fixed) m(21) and

0<u, <...<u <1, let kj

1 - -kn(u.), 1<j<m and for an arbitrary d=0, let

- (1)
n zJ lden (u)

~

(V)

~3

~

™~
|

k,
~1vm i
(og (1)) LS d515] I nkJ)Y

>

(o) L £

n11



where

(3.8) £ = Z?zldj[(tnin—i:_nkj)l(i kI, 1<isn .
It follows by some routine steps that 21 150 = 0 and

(3.9) [ el nl]/(no £°(1)) » ZJ 121-1d3d£(“ A up)
(3.10) n%hmxﬂﬂﬁlzlsiSnH=+0 as n+ o,

Note that the rhs of (3.9) equals the variance of Z?=ldjW(uj). Further, under
H;, the Yi are independent and identically distributed (i.i.d.) rv's with 0

. méan and variance 02. Hence, using (3.10) and a special version of the central
limit theorem in Hijek and $idak (1967, p. 153), it follows that Zn is asymp-
totically normally distributed. This establishes the convergence of the f.d.d.'s

of {Wél)} to those of W, It remains to show that {Wél)} is tight. Since by

definition, Wﬁl)(O) 0, with probability 1, it suffices to show that for

every € >0 and n > 0, there exista &§: 0 < 8§ <1 and an n,, such that for

nzn, and every k: 0 < k < n-[nf], q = k+ [né],

(3.11) {"‘a" lu-u | > eagcl)/‘} <ns ;

k<m<q' m

see Theorem 8.3 of Billingsley (1968, p. 56). For this note that for every k,q:

0<k<q=n,

max % Jﬁ max |ym
k<ms<q n L kI I nkI {k<msqlzi=k+1Yi|}
¥ max |- 4] max |cm
o {k<m5q|tnk nm||21 1 1 }-+n {k<m5q|zi=k+1(tnk nq)Y I}
(1) (2) (3)
(3.12) qu + qu C kq say .
By the nondecreasing nature of t_. (in 1),

ni



max

(3.13) k<m5q|t -t | = Itnq'tnkl ,

where by (3.1) and the continuity of wu(6), 6¢ [0,1],

lim —

(3.14) n—ml n[ns]_tn[nsma]I >0

as 6+ 0, Vse[0,1) .

Further, the Yi are i.i.d.rv's with 0 mean and variance 02, so that by the
Donsker Theorem [cf. Billingsley (1968)], for every €' >0 and n' > 0, there

exist a 8§: 0 <8 <1 and an n such that for n2n, and every k: 0<k<n-[né],

0’ 0
q = k+ [né],
(3.15) p{n“lﬁk'f;’s‘qlkaﬂvi[ >e } <n's ,
(3.16) p{n‘lfl“s‘;’s‘nlzl;lvil > Kn,(s} <nts
where Kn'G is a positive number (< «), depending on n'S. Thus, it follows

from (3.12) through (3.16) that for every € >0 and n > 0, there exist

€' >0, n'" >0 and &6: 0 < 8§ <1, such that for q-k = [én], n2n

0’
COPRC VU I GV S
(3.17) P{qu +qu >2 e < 5 né; n' = y n, €' = g/4
. limj— —
where &§(> 0) is so small that n—woltnq'tnklxn'G < €/4. Hence, to prove (3.11),

it suffices to show that for every €' >0 and n' > 0, there exist a 6: 0<6<1

and an n such that for nzng and every k: 0<k<n-[n8], q = k+[né],

O,

(3.18) P{Clsi) >e'} <n's .

If we let V., = (t_.
ni n

-t_)Y., k<i<q, then the V_. are independent, EV_. =0,
i"ng’ i ni ni

q 2 _ 2vq = 2 _ 2.2 ¢k T 32y o202 12 = = 2

zi=k+’1Evni =0 zi=k+1 (tni_tnq) o {an -Zi=1(tni tnq) }=0 {an Tnk k(tnk tnq) }
2.2 .2 2|2 2/k i . . . .

<o (T -Tnk) ~ no [&j (%) - £ (H)_—J’{ ;=k+1vns’ 12k+1} is a martingale and, finally,

n
('/Eo)—lclekﬂvns] is asymptotically normally distributed with 0 mean and variance
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2
[€ (93 - £ (—J - (k/n)[: - U ~{] ] (S[Ez(q/n) - Ez(k/n)]). Hence, (3.18)
follows by using Lemma 4 of Brown (1961) and proceeding as in the proof of
Theorem 3. Q.E.D.

Let us now consider the process W£2) = {Wﬁz)(u), 0<us<l} where

(2) ) =
(3.19) W () = sn’kn(u)/o,

O<u=x<l ,
kn(u) is defined by (3.5) and the Sn K by (2.7). Note that in (2.7) and, else-

where, we replace the ti by tni and Ti by Tzk, l1<k<n. Also, let W0 =

{Wo(t) = W(t) -tW(1), 0<t<1} be a standard Brownian bridge on [ql]. Note
that by definition in (2.5), the Ek are invariant under shift and regression i.e.,

if we work with Yi-a-bti, 1<i<n, then the resulting § will be the same as

(2)

the ones in (2.5) for every real (a,b). Hence, the distribution of w under

H0 in (1.4) will be the same as under HO. Further, by definition,

(2) 4y - -1
(3.20) W ") = (T o) [Unk (u)"TnnTnk (u) "n,n

= v gy/T D @ -T2 W1 0sus1
Also, note that T2 = T2 = 0, while for k=1,
n0 nl

(3.21) (To,; - TH/Te = [Gel)/KIe o -E 1317 >0, by (3.3) ,
while by (3.2), /ﬁE(l)/Tn +1 as n -+ o, Hence,
(3.22) W B w = vaeay/r pwDw -wD ) s r @,

where sup{IRn(u)I: 0O<u<l} > 0. From Theorem 3.1 and (3.22), we arrive at

the following.
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Theorem 3.2. If Ee(t) = 0, Eez(t) = 02 < and (3.1)-(3.2) hold, then under

H0 n (1.4),

(3.23) Wéz) Z WO, in the Jl-topology on D[0,1] .

For the standard Brownian brigde WO, it is well known [viz., Billingsley

(1968, p.85)] that for every t=20

(3.24) P{OZEIS)I W () s-t} = l-exp(-2t%) ,
(3.25) p{oszpllwocun st} = 1-2]7_ (-D¥exp(-2k%t%)

where the rhs of (3.25) is bounded from below by 1-2 exp(-th) and is practi-
cally equal to this lower bound when t is not very small. On equating the rhs
of (3.24) and (3.25) to 1-eg, where € is the desired level of significance
(0<e<1), we denote the solutions by A; and A8 respectively. Then, by

Theorem 3.2, we have on noting that

+,._ sup (2) . sup .(2) )
(3.26) M /0= cus1 Wy (W) and M /o = OSuSllwn (w |
+ +
(3.27) P{Mn>oA€|HO} > e and P{M >0A€|H0} > €,

and hence, the asymptotic critical values of M; and Mn (at the desired level
of significance €: 0<e<1) are OA; and OAE’ respectively. Thus, if o
is specified, we have the following test procedure:

Compute the S k sn, defined by (2.7). If, for at least one k:

n,k’

+ .
(3.28) ISkSn--l,Sn,k (or |Sn,k|) exceeds OA(-: (or OAE)’ reject

H in (1.4). 1If, no such k exists, accept H

0 0’
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' In practice, mostly, 0O is not specified. We consider the estimator
~2 _ _-1en T 2 T 34 2 v _ 1
(3.29) o, =n Zi=1(Yi Yn~6n(ti—tn)) where Yn =3 2i=lyi} .

Under H0 in (1.4), we have a simple regression model, and hence [viz,, Sen and

Puri (1970)], 8n R 0. As such, we may proceed as in (3.28) where we replace o
by an; the asymptotic level of significance remains equal to €.

Let us now consider the behavior of these tests when H in (1.4) does not

0
hold. Suppose that (1.1) holds with

(3.30) T = tm for some m: 1<m<n-1 and g-y = & (= 0) ,

0 . .
Let Yi = Yi + G(ti~tm)1(t 2tm), i=1l,...,n and in (2.2), (2.4), (2.5) and

(2.7), we replace the Yi by Yg and denote the resulting quantities by

@g, ?(].), §£ and Sg K? respectively. Then, we have by some direct computations

‘ that

- B, K <m
(3.31) B](z= Ak 2.2 2 -
Bk+6Tk {Tk-Tm-m(tm-tm) (tk—tm) , m<k<n,
— _ -1tk . X
where tk—k Ei=1ti is 2 in k(1<k<n), and
( 2 2,2 P
Sn’k—G(Tk/Tn){l—Tm/Tn-m(tm—tm) (t'n—tm)/'I‘n}, k<m,
0
(3.32) S .= f -
ok 2 T:l Tri ~ 1%t tk—tnrl |
LSn,k—S(Tk/Tn) _ T_Z_-.;Z_ —m(tm-tm) T2 - Tz , m<k<n .
k n n k

As such, if m/n is bounded away from 0 and 1, then under (3.1), (3.2) and

' 0
. (3.30), m.anc{S“’k-Sn’k
1<k<n} + as n—+o when 8§20, On the other hand, for the Y(i), the simple

; regression model holds, so that Theorem 3.2 applies to the Sg K’ and hence,

:ISkSn}”m as n > o when >0 and max{ISn,k-Sn’kl:
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n,k’

: 1<k<n}+ e, in

max{S0 : 1<k <n} or max{lso |; 1<k<n} is 0 (1), Thus, max{S
n,k n,k P
l1<k<n} + », in probability, if 6 > 0 and max{lsn k]
’
probability, if &#0. Hence, the tests based on (3.28) are consistent,
In view of the consistency of the tests, for the study of the asymptotic
power properties, we confine ourselves to a suitable sequence {Hn} of alter-

hypotheses for which the asymptotic power is different from 1. Keeping (3.1)-

(3.2) in mind, we assume that
(3.33) T=tm where m/n + v: 0<v<l, T;/TIZl > p: 0<p<1 .

Actually, if we let

(3.34) h(u) = inflt: E2(t)/E2(1) 2u}, O<us<1 ,

then p = Ez(\))/gz(l) and u(v) = u(h(p)). We consider then
(3.35) H: 8= Y+T;16 for some real §, where (3,3) holds .

Let us then define ag = {as(t), 0<t <1} by letting

St[1-p-v(T-u(v)) (1) -u())/E2 (1)1 /o, Ostsp ,
{3.36) aG(t) =

%6[p(1-t)-v(r-u(v)){(l—t)u(v)-u(h(t))+tp(1)}/£2(1)], p<t=<l .

In (3.32), replacing § by 6/Tn and then using Theorem 3.2 (for the {Sg k})

along with (3.5) and (3.33)-(3.36), we arrive at the following.
Theorem 3.3. If Ee(t) =0, Ee(t) =a° < » and (3.1), (3.2) and (3.33) holds,
then under {Hn} in (3.35),
) 0 .
(3.37) wn -[w +ag, in the Jl-topology on D[O0,1] .

By virtue of Theorem 3.3, the asymptotic power of the test based on M;,

under {Hn} in (3.35), is given by
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(3.38) P{Wo(t)'*'a(s(t) 24!, for some te(0,1)} ,
and for the test based on Mn’ the corresponding expression is
(3.39) P{W0 (1) +ag(t)| 24, for some. te(0,1)} .

Since as is not a linear (in t) boundary (in general), closed expression for

(3.38) and (3.39) are not generally available.

4. Asymptotic properties of the tests based on D; and Dn'

We need to develop some invariance principles for aligned LRS for the study
of the distribution theory of D; and Dn' Consider first the case of {Lk}’

defined by (2.8), and define wrgs) - {wrfs) (W), 0sus1} by letting

' (3) - p-1,-1 .
(4.1) Wool) = T A Lk;(u), O<ucs<l ;

2.2 2.2
* = .
(4.2) kn(u) max{k: TkA.k SuTnAn}, O<usl ,

where Tﬁ and Aﬁ are defihed by (2.1) and (2.18), respectively. Here also,

Wés) belongs to the D[0,1] space. Then, we have the following.

Theorem 4.1. For scores defined by (2.9) with nondecreasing and square inte-

grable ¢, wunder (3.3) and HS: B=vy=0 (refer to (1.1)),

(4.3) Wﬁs) Z W, 1in the Jl-topology on D[0,1] .

*
0)
(4.3) directly follows from Theorem 2.2 of Sen (1975),

Proof: Since under H the Yi are i.i,d.rv with a continuous df F(x-a),

We proceed on to the case where H* may not hold, Here, we assume, that

0
(i) the df F admits of an absolutely continuous probability density function
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(pdf) f with a finite Fisher information

o b 4

(4.4) I(f) = I'[f'(x)/f(XJ]ZdF(x) (< =)
Also, let
(4.5) v = £ F Ly /eE ), 0<u<l
, 1 2 ] o,
(4.6) A =I 6% (u)du - U cb(u)du] and A(¢,¥) = U ¢(u)w(u)du}/A12(f)
0 0 » 0
We assume that
4.7 A = TEHEAG,Y) > 0 .

Further, we assume that (3.1), (3.2) and (3.33) hold and consider a sequence

{K; b} of alternative hypotheses where

,N

1 ~1

(4.8) K (1.1) holds with B=T "b), Y=T 'by; b=(b;,b))

* . -
n,b’ 2?

and bl’b2 are real numbers. Then, we have the following,

Theorem 4.2. Under {K; } and the asswmptions made above,

3

(4.9) Wés) Z W+w, 1in the Jl-topoZogy on D[0,1] ,

where w = {w(u), 0su<l1} <s given by

)\*blu, 0<sucs<p
(4.10) w(u) =
A*{byu+ (b, -b,) [p+v (T-u (W) ) (h () -k (v))/E* (1]}, psusl,

where v, p, £(1) and h(u) are defined as in (3.1), (3.2), (3.33) and (3.34).

Proof. Let us denote the joint distribution of (Yl,...,Yn) under K; b by
'

P , So that Pn 0 stands for the null hypothesis (HS) case, Then, by an
200 .
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" A
appeal to the basic results in Hijek and Siddk (1967, Ch, VI), we conclude that

under the hypothesis of this theoremn, {Pn b} is contiguous to '{Pn 0}. Also,
’~

(4.3) insures the tightness of WﬁS) under '{Pn 0}. Hence, proceeding as in

L)

the proof of Theorem 2 of Sen (1976), we conclude that Wis) remains tight

'R

under {K; b} as well, Hence, to prove (4.9), it suffices to prove the con-
Ly

vergence of f.d.d.'s of {Wis)} to those of W+w, when {K; b} holds.

70

Towards this, we define

~1vk —
* = -
(4.11) sn’k = Tnnl (it JOF(Y,-0)), 1<ks<n .
Then, for every (fixed) m(2 1) and O Su1 < e <l%l$1’ defining kj = k;(uj)
by (4.2), 1<js<m, it follows by an appeal to H4jek (1961) that under HB:
-1

B=v=0, T Lk = W(S)(u ) is equivalent in quadratic mean to S K.’ YV 1<j<m.

] (3) p
. Caw
By contiguity of {Pn b} to {Pn NE IWn (uj) 8* | >0, V1<js<m under

2 ’ ? 3
~ J
{K; b} as well. Finally, under {K; b}’ the asymptotic joint normality of
,~ ,~

*
(Sn kl,..., n, k )

Hajek and Sldék (1967). In viewof the similarity of this proof with that of

can be derived by an appeal to a theorem on page 216 of

Theorem 3.1 of Sen (1977), the details are omitted.

For every real d; let us define
(4.12) Ln,k(d) = Lk(d/Tn)’ 0<k<n,

where the L, (b) are defined by (2.11). Also, in (4.1), replacing the Lk*(u)
by Lk (u)(d)’ we define the corresponding stochastic process by w(33

{w(3)(u) 0<us<1}. Thus, £3) —£33

Theorem 4.3, Under {K; b} in (4.8) and the hypothesis of Theorem 4,2, for
every (fized) d; - © < d < o,

(4.13) W) o (W(t)y(t)-dA*t, O0<t <1}
n,d L

where w(t) <8 defined by (4.10).



Proof, Let I  be the distribution of Weo) under {K* }, defined for Borel
?

b
'N
subsets D of D[0,1], Note that by denoting by R;k(d) = rank of Yi—dti/Tn

b

S

- - ‘ is= * = * * t
among Y, dtl/Tn""’Tn dtn/Tn, for i=1,,,.,n, gn(d) (Rnl(d]""’Rnn(d)) s
it follows that

L
* * = * *
(4.14) [R*(d), under Kn’R] [RF(0), under Kn,g_dll s

~

and hence, for every DeD,

3) e D|K*
,d n,

d _ pful
(4.15) Hn,}g(D) = P{wn 4

,‘3}

#7(3) *
PIW ") € D|Kn’h_d1}

~

0
Ty pea1 @

4

{W{S), under K* _} L {W(S), under K*
n,d n,b n

(4.13) follows from Theorem 4,2. Q.E.D.

n,g—dl}’ and hence,

~

which insures that

Theorem 4.,4. Under {K; b} in (4,8) and the hypothesis of Theorem 4.2, for every

fized b and K(< *),

(4.16) sup{ [W3) (1) -wr(lS) (t) +A*dt|: 0st<1, |d| <k} 50 .

Proof. We may virtually repeat the proof of Theorem 3.3 of Sen (1977). We note
that (3.24) and (3.25) of Sen (1977) hold here, by virtue of the basic result of
Juregkové (1969) and our Theorem 4.3 here. Hence, the details are omitted.

We are now in a position to study the invariance principles for our aligned

LRS{L; 0 0 <k <n}. Consider a sequence {Kn b} of alternative hypotheses, where

~

. _ -1 _ -1
(4.17) K“»Q' (1.1) holds with B =6 +Th bl’ Y = 9-+Tn b

2 ]
- i A *
b (bl,bz) (# 0). Further, in (4,1), we replace the Lk;(u) by Ln,k;(u)’

0 £u <1 and denote the resulting process by Wn(4) = {W&4)(u), 0susl}.
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as the same distribution as {Lk(a),

b

Note that {Lk(_6+a), 1<k <n} under K*
2

1<k <n} under Kn b Hence, for the study of the distribution of W£4) under
H

{Kn,b}’ we may, without any loss of generality, set [in (4.17)], ©6=0, i.e.,

under {K; b} in (4.8). By virtue of (2.13), (2.14), Theorem 4.4 and the above

discussion, it follows by some standard steps that under {K; b}’
e

(3,
o
(4.18) AT Br = W o7 (1) +op(.1) ,
so that by Theorem 4.2,
* -
(4.19) |Tnn6n| = Op(l), under {K;,h} .

By Theorem 4.4, (4,18) and (4.19), we obtain that under {K; b} (or equivalently,
2
under {K_.1} as W(4) remains in variant if the Y, are replaced by Y. -0t.,
n,b n i i 1

S

1<i<n, for any real 0),
(4.20) sup{|WIE4) (u) -wr(lz) (u) +uw§3)(1) | ue [0,1]} £o ,

so that, if we define Wés) = {Wﬁs)(u) = Wﬁs)(u) -uwis)(l), 0<u <1}, then under

{Kn’h} ,

(4)

(4.21) Wn and W(S)

h are convergent equivalent .

Finally, by an appeal to Theorem 4.2, we conclude that under {K; b}’
L)
(4.22) wés) I w°-+w°, in the Jl—topology on D{[0,1] ,

where WO is standard Brownian bridge on [0;1] and
(3% (b b)) £ [1-p-v(u(1) -1 () (T-HMV/E D], 05T 50,
4.23) &' (t) = {A"(by~b,y) [p(1-£) V(T (W) {(1-)u(V) -u(R (L))

s MEE M), pst sl
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where 4, Ez, T, p and h(t) are defined by (3,1), (3,2), (3,33) and (3.34).

This leads us to the main theorem of this section,

Theorem 4.5. Under {Kn b} and the hypothesis of Theorem 4.2,

L~

WIE4) > WO +(1)0, in the Jl—topology on D[O:I]

(4.24) 1

where wo = {wo(t), 0st<1} s given by (4.23).

We notice that by definition in (2.17),

| *_ osup (4) = Sup 1, (4)
(4.25) D, = ost<1 Wy (t) and D= 0 W (0)]

Hence, by Theorem 4.5 and (4.26), under H : B=y 1i,e., Kn 0’ D; and Dn
have the asymptotic distributions given by (3.24) and (3,25), respectively.
This leads us to the following test procedure:

Compute the L; X’ defined by (2.16). If, for at least one k: 1<k<n-1,
0

. v
* * .
(4.26) L« (or ILn,kl) exceeds A A (or AA), reject H

in (1.4). If, no such k exists, accept HO .

As in Section 3, we confine ourselves to local alternatives for the study
of the asymptotic power properties of the tests based on (4.26). We agsume that
the same sequence {Hn} of alternative hypotheses in (3.35) holds. Then, by an
appeal to Theorem 4.5, we conclude that under the regularity conditions of

Theorem 4.5,

(4.27) 1111“‘ P{D >A" IH } o= Pt = G(t) >A for some t e (0,11} ,
4.28) MM e >4 u} = p{[W0t) +w a(t)| >A_ for some te[0,1]}

where
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[A*6t [1-p-v(1(1) -u (V) (T () /E2(1)], 0 <t <p

(4.29) wg(t) = AA*S[p(1-t)-v(T-pn () {(1-t)u(v) -u(h(t))

tw()/E3 ()], pst<1 .

\

Note that mg(t) is linear in t for 0<t<p, but, in general, for pst<l,

wg(t) is not linear in t [as wu(h(t)) need not be linear in t].

5. Asymptotic comparison of the LSE and LRS procedure.

It may be remarked that both M;/O and D; (or Mn/o and Dn) have the

same limiting null distribution (3,24) [or (3.25)]. If, we let

(£+1) [1-p-v(T-u(V)) (1) -u(M))/E2(1)], 0<t <p/(1-p) ,

(5.1) b(t) =
pP-v(T-u(Vv) {u(v)+tu(l)-(,t+1)u(h(t/(t+1)))}/&;2(1), t2p/(1-p)
and note that {(t+1)w0[E§T]’ 0<t <“} = {X(t), 0<t<w}, where {X(t), t=0} is

a standard Wiener process on R+, we obtain then from (3.35), (3.36) and (3.38)

that the asymptotic power of M; is equal to

(5.2) P{Wo(t)ZA::—aG(t) for some t e [0,1]}

| 01 ¢t + t +
P{(t+1)w [E:T} 2(t+1)AE -(t—l)aG[E:TJ for some teR }

P{X(t) 2 (t+1)8 - gb(t), for some t eR+}
Similarly, for Mn’ we have the asymptotic power is equal to

(5.3) P{IX(t) + g—b(t)l > (t+1)4_ for some teR+} i
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Likewise, from (4,27)-(4.29) and (5.1), we haye the asymptotic power of the
D; test given by

(5.4) P{X(t) 2(t+1)A; -A*Sb(t) for some teR'}

while for the Dn test, it is equal to

(5.5) P{|X(t) +A*6b(t)| = (t+1)A_ for some teR'} .

Note that (5.2) though (5.5) are computed for the common sequence {Hn} of
alternatives [in (3.35)] when all the statistics are based on the same sample

size n. Suppose now that M; and M are based on sample size {n} while

D; or D are based on {N=N(n)}, where

lim _ -1
(5.6) <o N(n)/n = e for some 0<e<w

"For D. and DN statistics with N=N(n) satisfying (5.6), we may proceed

N

as in Section 4 where we replace Wﬁs), w§4) and Wﬁs) by WSS), and

(4)
wN
Wés), respectively, defined for n =N, while we stick to the same alternatives

K

. .
n,b’ Kn:k and Hn' Since, by (3.2) and (5.6),

lim 2,2 _ lim

(5.7) b S e e S TCR SO DU N Y
= O INm/m] = et

in (4.10), (4.23) and (4.29), w(u), wo(u) and wo(u) are to be replaced by
1 _1 L
e"éw(u), e 1w0(u) and e ﬁng(u), respectively. Thus, the asymptotic power of

the test based on {D;} under {Hn} in (3.33), when (5.6) holds, is given by
1

(5.7) PIX(£) 2 (t+1)A] ~e " A*6b(t) for some teR'}

Consequently, if we choose e by letting

(5.8) e h* =0l jle, e =002,
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then (5,2) and (5.7) are equal (for any §). Hence, 6 in the usual Pitman-
sense, the asymptotic relative efficiency (A.R.E,) of the LRS procedure with
respect to the LSE procedure is
. . 1 12
2 2
(5.9 e = 1M [n/N(n)] = 020\*) = 0" I(f) U ¢>(u)IP(u)dUJ| .

e 0

The same efficiency result holds for Dn relative to Mn’

Noew (5.9) agrees with the classical Pitman-efficiency of the two-sample
rank order test (for location) relative to the Student's t-test. Thus, we may
conclude that if ¢(u) = u: 0<u<1, then the corresponding rank procedure has
an A.R.E. with respect to the LSE procedure equal to 3/m when F is normal,
is bounded from below by 0.864 for all continuous F and is usually 2> 1 when
F has havier (than normal) tails. Also, if ¢(u) = Q—l(u), 0<u<l (i.e.,
normal scores), then (5.9) is bounded from below by 1 where the lower bound
is attained only when F is normal, Thus, from the A,R.E. point of view, the
LRS procedures are attractive, they do not require the estimation of 02 (as
is need for the LSE procedure) and they are expected to be robust.

We conclude this section with the remark that b(t) in (5.1) is linear

in t for t<p/(l-p), while for t >p/(1-p), in general, it is not so.

Since p(s) is .7 in se[0,1], we have for t >p/(1-p)

(5.10) P -p(T-u(V))t(U(1)-u(v)) <b(t) <p +V(T-H(V)) (ML)~ (V))

Hence, for (5.2) and (5.4), bounds for the asymptotic power can be obtained
by using the segmented linear boundaries in (5.1) and (5.10) and then using
the results in Anderson (1960, Section 6). In general, these are quire com-

plicated to be expressible in closed form,
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