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Introduction. The derivation of the mechanical behavior of a flat plate as the limit
behavior of a three-dimensional flat solid whose thickness tends to zero is a well-estab-
lished theory since the works of Goldenveizer [G] or Ciarlet and Destuynder [CD1], Due
attention has been paid to the static response of such plates for various linear or nonlinear
mechanical behaviors (Ciarlet-Destuynder [CD1, CD2], Ciarlet [C], Blanchard-Ciarlet
[BC]). Much less attention, however, has been devoted to the dynamic response of flat
plates from a similar standpoint. The linearly elastic case was considered in Raoult [Rl,
R2], but we are not aware of any further work in that direction.

The present study is devoted to the dynamic behavior of a three-dimensional linearly
thermoelastic flat plate. Specifically, a three-dimensional flat plate with small thickness is
submitted to an arbitrary system of initial and loading conditions. The limits of the
displacement, stress, and temperature fields as the thickness approaches zero are investi-
gated.

Thermoelastic behavior is characterized by a coupling between the mechanical equa-
tions of motion and the "energy" equation. The limiting procedure is seriously affected by
the presence of the coupling terms. The initial conditions are seen to play an essential role
in the analysis. In particular, a change of initial condition generally occurs for the
temperature field. A similar phenomenon appears in the homogenization of a thermoelas-
tic composite (Francfort [F]). These concurring results seem to indicate that such shifts in
initial data are closely linked to any kind of asymptotic problem for coupled systems.

The first section is very short and entirely devoted to notation and basic definitions. In
the second section, the problem under investigation is formulated in a mathematical
framework. It is then rescaled in the usual manner (Ciarlet-Destuynder [CD1]) so as to
obtain a family of problems indexed by the thickness of the plate and defined on a fixed
domain.
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The third section is concerned with the definition of the limit behavior. It consists of a
flexural problem for the component of the displacement field normal to the plate together
with a coupled membrane-thermal problem for the components of the displacement fields
in the plane of the plate and the temperature field. The membrane problem is quasi-static,
whereas the thermal equation is a parabolic evolution equation. The initial membrane
displacement field is completely determined by the initial temperature field and by the
initial values of the loadings (Theorem 1).

In the fourth section, the thickness of the plate tends to zero. The solution fields of the
problems defined on the fixed domains are shown to weakly converge to the solution
fields of the limit problems, at least when hypotheses of weak convergence are imposed on
the initial conditions and the loadings (Theorem 2). The initial condition on the limit
temperature field is seen to generally differ from the limit of the initial condition on that
field (Remark 8).

The fifth and last section examines the possibility of strong convergence of the solution
fields as the thickness tends to zero. The loadings and initial conditions are assumed to
converge strongly. It is then proved in Theorem 3 that strong convergence takes place if
and only if a compatibility equation is satisfied by the limits of the initial conditions and
initial loadings. An example of initial conditions and loadings that are compatible is given
in Remark 9. In that example it is noted that the initial condition on the temperature field
remains unchanged in the limiting process. We conjecture that, under mild restrictive
assumptions, strong convergence takes place if and only if that initial condition remains
unchanged.

1. Notation and basic definitions. As is customary in plate theory, Greek indices range
from 1 to 2 and Latin indices from 1 to 3. Any point x of R3 is decomposed into
y = (xx, jc2) and x3.

Einstein's summation convention is used throughout the text. An overdot ' denotes
differentiation with respect to time, and an overbar ~ denotes the integral j\ dxv

Finally, if btJ denotes the ijth component of a second-order tensor b on R3,

Tr b = bn, tr b = baa.

The three-dimensional flat plate is defined as

£2(e) = co X (-e, e),

where w is a smooth bounded domain of R2 and 2e the thickness of the plate. By
definition

T±(e) = co X {+e}, r'(e) = 3w X(-e. e).

The following spaces are defined:

//(e) = { u e Z/1(J2(e)); v = 0 on r'(e)},

H(e) = [H(e)}\

7(e) = {re [L2(G(e))]9; t is symmetric}.
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Vkl(e)= {eeHOO; o3 is independent of x3, lies in //02(w), and there exists v in
[//0'(w)]2 such that va = va - x3 9t;3/9.x:a, a = 1,2}.

We drop the parenthetic (e) whenever e = 1; for example,

£2 = £2(1).
If «(jc) is a displacement field, its-linearized strain tensor is defined as

««(■)(')+ ^;)w-
To each point x = (y, x3) of £2 we associate the point xE = (y, ex3) of £2(t\ To each

vector field w'(x') we associate the field We(x) defined as

w:(x) = <(*«), »?(*) = BWi(x').

To each scalar field ze(xe) we associate the field Ze(x) defined as
Ze(x) = zc(xe).

To each tensor field t£(jc£) we associate the field T'(x) defined as

TJpix) = r^*').

Tali*) = ^TaE3(xE),

T3»(x) = jr3ea(xe),

T3%(x) = \t33(x')-
£

In this manner the spaces //(e), Y(e), L2(£2(e)),... are mapped onto the spaces //, Y,
L2(£2), —

From now on, the x dependence (respectively xe dependence) of all mathematical
expressions will be implicit, unless confusion could arise.

2. Setting of the problem. In this section the evolution problem for the thermoelastic flat
plate is formulated on £2(e). It is then rescaled using the transformations defined in Sec. 1.

The plate £2(e) is made of an inhomogeneous linearly thermoelastic isotropic material.
The Young's modulus E\xe), Poisson's ratio v'(x'), thermal dilation coefficient al(xc),
heat conductivity coefficient ke(xe), specific heat coefficient ft'(xF), and mass density
p£(xe) are defined as

Ee(xe) = £(*), with E(x) > 0,

pe(.xe) = v(x), with -1 < v(x) < 5,

ae(x£) = a(jc),

ke{xe) = k(x), withfc(x)>0,
f}e(xe) = P(x), with P(x) > 0,

pe(xe) = e2p(x), with p(x) > 0,

where E, v, a, k, ft. p are #°° functions on £2 and even functions of x3.



648 D BLANCHARD AND G. A FRANCFORT

Remark 1. The e2 dependence of pe on e allows for an upward shift in the purely elastic
vibration frequencies of the plate as the scaling parameter goes to zero, which in turn
renders the limit model sensitive to inertia effects (Raoult [Rl]). Similar scalings are found
in other problems such as the flow of a viscous fluid in a porous medium (Sanchez-Palencia
[S], Ch. 8).

The constitutive equations for the plate relate the stress tensor a,£y to the linearized
strain tensor e,7(ME) and to the temperature increment field 9F with respect to a uniform
reference temperature T0. Specifically,

eu(u') - a'0f8jj = ~ Tra%. (1)

The hypotheses made on £ and v suffice to ensure the invertibility of the stress-strain
relation (1).

The plate fi(e) is laterally clamped and maintained at the ground temperature T0. The
transient response of S2(e) under an arbitrary set of initial conditions in displacement,
velocity, and temperature (ue0, ve0, 6q), body loadings (//), and upper (lower) surface
loadings (gfE) is investigated. The following system of equations governs the evolution of
the displacement field ue(x£) and temperature increment field 6e(xe):

(2)

<3>

a/3=+g,±£ on r±(e),

|^ = 0 on T ±(e),
9^3 (4)

uc = 0 on r'(e),
8C = 0 on r'(e),

Mf(0) = Uq ,

«£(0) = v'0, (5)

6'( 0) = 0£.

In Eqs. (2)—(4), a,E is the stress tensor associated with ue and 6e through Eq. (1).
Under the following set of hypotheses:

/Ee H^2(0,:T;[L2(fi(e))]3),

^2'2(o, T; [L2( w)]3),

u'0e [//2(!2(£))]3nH(t), (6)
vc0 G H(e),

//2(S2(e))n//(e),
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the solution («f, 6f) of the system (l)-(5) can be shown to satisfy

e «-°([0 ,T]- [//2(G(e))]3 n H(e))n^1([0,r];H(£))n^2([0,r]; [L2(S2(e))]3),

(7)
r e «">([o,r]; //2(S2(e)) n /r(c)) n r([o,r]; l2(q(c))).

Remark 2. The existence and uniqueness of the solution of (l)-(5) is discussed in
Francfort [F] or Hughes-Marsden [HM] in the framework of semigroup theory. The
regularity (7) is a direct application of that theory (see, for example, Brezis [B], Ch. 7).

A rescaling of the system (l)-(5) is now performed with the help of the transformations
defined in Sec. 1. The images of all the fields entering the system (1)—(5) are denoted by
the corresponding capital letters. We obtain

1 + V
>:e _ —

E
1 + v

E

e<xp(Ut) a®^a/3 ~ p ^a/8 p (tr ^33 ) '

a3(U<) = e^^a3, (8)

e33(U<) - e2«0' - - e2-|(tr2£ + e22§3),

e2pi): = ^2', + F:, pUf = + \f3', (9)
J J

= + (10)
T0 \ dxa \ dxa J e2 dx3 \ dx3 ) ] \ — 2v\ f2 dx

±7^' on r

2j3 =+-jG3±e on T1,
e

f- = 0 onr±, (11)

Uc = 0 on r',
0£ = 0 on r',

U'( 0) = U0C, U*{ 0) = V0C, 0e(O) = 0q. (12)

Introducing the tensor fields

e(t/£) =
eae(U<)

7 ̂ (t/£) \e33(U')

2E =

ye
aft

£^30

EZja3

f2Set Z-33
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and the bilinear forms s/, S8 on Y defined by

s/(A, B) = jf |~£~A,jB,J ~ |(Tr^)(Tr£)) dx,

[rh^A, + d^o-^^XTrfi)) -fa.
we obtain the following variational formulation for the system (8)—(12):

j^(2E(/),*) = f en(Uc(t))*ndx - [ «0f(O(Tr^) dx, (13a)
Ja Ju

or alternatively,

a(e(U'{t)),*) = j^jit^jdx + ja I4^;0£(O(Tr*)dx, (13b)

for any ^ in Y,

£2L p^"^Wadx + Ja P^3e(')w3dx + jQ 21j(t)eij(W)dx (14)

= / F:(t)Wadx + \f F3'(t)W3dx + jf G±'(t)Wady + \f G3^(t)W3dy
Ja e" Ja e Jr± e3 ^r±

for any W in H,

f oa£/ wj 1 /-,90E/^9Z 1 f, 3©£/\9zJI »6 {<)zdx + %{" tai") sr.+ 7T„L k^{,)wdx (15)

+ i i^T™(U<(t))Zdx = 0

for any Z in H,

t/E( 0) = U0\ Uc( 0) = f0e, 0E(O) = 0q. (16)

The hypotheses (6) become

FE e [L2(fi)]3),

G±Ee W2'2(0,T-[L2(u)Y),

t/0Ee [tf2(G)]3nH, (17)

Vo e H,

g H2(tt) n H.

The system (13)—(16) has a unique solution (t/E, 0E) with

C/eg V°([0,T]; [#2(fi)]3 n H) n «*([<), T];H) n ^2([0, T ]; [L2(S2)]3), (18)

@E e <#°([0,T]\ i/2(S2) n H) n ^([O.T]; L2(Q)).

Thus the system (13)—(16) holds true for any t in [0, T],
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Our goal in the following sections is to examine the behavior of the fields t/\ 0e, 2e,
2E, e(U') as e tends to zero. The convergences obtained will imply convergence properties
for the original fields, i.e., ue, 9C, a'.

3. The limit behavior. In this section we define a priori a limit problem and briefly study
its properties. The justification of the model as a valid limit behavior is done in
subsequent sections.

We introduce two evolution systems on u. The first evolution problem reads

P"? +
Ex\ \ 32w? / Evx\ | n i n1 — + 7i = F3°, (19)

1 + v ) dxadxp \ (1 - j>)(l + v)

with

u3 = = 0 on 3cj (20)

as boundary conditions and

«S(0) - <„ "?(0) = (21)

as initial conditions. In (19) F3° is an element of W1,2(0, T; L2(u)) and in (21) u'(\3 and v°3
are elements of //^(to) and L2(Q), respectively. In view of the positivity properties of the
coefficients, the system (19)-(21) is classically seen to admit a unique generalized solution
u°3 in tf°([0, 7-]; H02(«)) n V\[0, T]\ L2(«)).

The second evolution problem couples a quasi-static equation with a parabolic equa-
tion. Defining

n | Ea2( 1 + v)P + (1 -0(1" 2") I '

the problem reads

4°°'+F° ■ »• (23)
30" 3 [T 3«°\ I Ecc \ .'¥-jt t - r;r,w (24)

with

u° = 0 on9w, 0° = 0 on8w, (25)

as boundary conditions and

10°(O) =
K

0.°" (1^7) M»°(o)) (26)
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as initial condition. The following theorem establishes the existence and uniqueness of the
solution of the system (22)—(26):

Theorem 1. If 0° is an element of L2(u) and F° an element of H/1,2(0, 7"; [L2(a>)]2), the
system (22)-(26) has a unique solution (u°,0°) in ^°([0, T]\ [//q(co)]2 X L2(w)). The
initial value u°(0) is then the unique solution in [//,}(u)]2 of

_9_
3-Xfi

Ea
k \ 1 — v tre(u°(0))5a/}

9 l( Ea 0O° -F°(0)
dxa \ k \ 1 — v

Proof of Theorem 1. The positivity properties of the coefficients imply that the mapping
S° from [//q(«)]2 into [7/_1(<o)]2 defined for any v in [//o(w)]2 as

(5V)- - 4( (ttv) e-»(v) + (d - 'tre(v)5'
is an isomorphism. It is easily checked that the mapping L0 from i2(CJ) into itself defined
for any f in L2(w) as

is a bounded positive self-adjoint linear mapping on L2(cj). Furthermore, the function

'<>(0= (i^)tre(s0"'(F0(0))

is an element of fV1,2(0, T; L2(w)). The system (22)-(26) can then be rewritten as

uo = 50",|-F0 + grad((r^;)^)), (27)

, r r ,9(9° a /_ 9(9° \ , ,+ + (28)

9° = 0 on 9w, (k/ + L0)6°(0) = 0O° + r0(0),

where / is the identity mapping for L2(oj).
The existence of a solution to the system (28) is obtained through application of the

following simple lemma.

Lemma 1. Let H be a Hilbert space and let A be the infinitesimal generator of a strongly
continuous contraction semigroup on H. If L is a self-adjoint isomorphism on H and if
there exists a strictly positive constant a such that for any u in H,

(Lu,u)h > a||w||^,

L~lA generates a strongly continuous semigroup S(t) on H.
Outline of the proof of Lemma 1. The properties of L imply that L defines an inner

product on H whose associated norm is equivalent to the norm || ||;/. The operator L~lA is
easily seen to satisfy the hypotheses of the Lumer-Phillips theorem (Yosida [Y], p. 250)
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for this new inner product. The result of Lemma 1 follows from a direct application of
that theorem.

This lemma is applied with H = L2(u), L = kI + L0, a = min1,es(ic(>')) and it
implies the existence and uniqueness of 9° in '^o([0, T]; L2(u)) and, with the help of (27),
of u° in ^°([0, T]\ [H^u)]2). The equation satisfied by u°(0) is easily derived from (22)
and (23) written at time t = 0 and (26).

Remark 3. In view of the regularity properties of the fields u° and m°, the displacement
field w° defined as u° = («°, w°) with

0 0 9u3
U = 11W   V  

"a Ua X3dx

is an element of T]\ VKL).

4. Weak convergence of the fields. In this section we establish a priori estimates on the
fields U\t), 0e(r), e(t/c(/))> and 2e(?) with the help of Eqs. (13)—(16). These estimates
enable us to pass to the weak limit in (13)—(16).

Specifically, we obtain the following.

Lemma 2. Let us assume that hypotheses (17) hold true and that

Uq —> Uq weakly in H,

eV0a "oa weakly in L2(Q),

Kq3 -> v'l3 weakly in L2(i2),

e( Uq ) —> ejl weakly in Y,

©o -» 0q weakly in L2{&), (29)

Fa fa weakly in W1-2(0, T\ L2()),

\f3* -> f3° weakly in Wl'2(Q,T-, L2(12)),
£

jGa±E -» ga±0 weakly in Wia(0\T-, L2(w)),

-\G3±e -> g3±0 weakly in Wia(0, T\ L2(u)),
e

as e tends to zero. Then,

Ue is bounded in L00(0, T; H),
eU* is bounded in Lx(0, T\ L2(i2)),
U3' is bounded in Lco(0, T\ L2(£2)),

e(t/e) is bounded in 1,^(0, 7; 7), (30)
0e is bounded in L00(0, T\ L2(Q,)) n L2(0, T; H),

1 90
e

is bounded in L2(0, T; L2(12)),
3

is bounded in £^(0, T; 7),
independently of £.
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Proof of Lemma 2. The regularity properties (18) enable us to use e(U'), U', and 0E as
trial functions in (13b), (14), and (15), respectively. Observing that, in view of (13b),

jf dx = jf 2?y(0el7(t/*(0) dx

= @(e(Ue(t)),e(Ue(t))) - j T4^0£(O(Tre({/E(O)) dx,
Ja

and adding together the expressions resulting from (14) and (15) yields

e2( pU:(t)U:(t)dx+ f pU{(t)U3{t) dx
Ja Ja

+ a(e(U'(t)),e(U'(t))) + f fi0'(t)d'(t)dx

1 r , 80% , 30% , , 1 / ,90', J0'Mj
+rja k^^dx+t%L (31)

= / F:(t)Uj(t)dx + ±f F3(t)03'(t)dx

+ 7 / G±'(t)U:(t) dy + \ J G3 e(t)U3(t) dy.
E Jr± yr±

Integrating (31) over the time interval [0, /] for 0 < t < T leads to

Jf p{\eu:(t) I2 + 1^/(0 I2} dx + <%(e(U*(t)),e(U*(t)))

+/ pmt)\2dx + ~ r f k[ £JQ 10 J0 JS2 { „ = i

= fQ p{l^o« I2 + \VoS I2} dx + ®(e(U0*),e(U0*))

+ J >8| ©q | dx + 2

00V \ 1 90%
"a—e ax3

dx ds

F:(s)u:(s) + F3(s)U3(s) I dx (32)
e2

+ fT± fof'WUjW + ̂ Gf'isMs^dy q

-2jT' jf dx ds

~2/0' /r± + 7G3±e(^^(^)^^-
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The positivity properties of the coefficients on 12, the equality (32), and the hypotheses
(29) imply the existence of a generic strictly positive constant C, independent of e such
that

2 " £ 2 " e 2Yj lle^a II 1^(0, 7"; L2(Q» + II ̂IL^O, T; L2(Q»

+ lle(^E) IUoo(0,r;y) + ||0£||z.os(O,T;L2(Q))

a = 1

2 90'
9*„+ E

a = 1

< C( 1 + ||t/f||£.00(0,r;[t2(0)]3)).

2

+
L2(0, T\ L2(£2))

1 90
e dx

2

L2(0,T; Z.2(S2))

Poincare's inequality and Korn's inequality imply that

IIUe 11^(0,r;[z.2(J2)]3) < C||e({/E) ||L«,(o,r;r),

for any e less than 1. Inequality (33) then yields the desired estimates on U', eU*,
e(Ue), 0£, (1/e)90£/9x3.

Because of the positivity properties of the coefficients, the bilinear form j/ defines a
norm on Y that is equivalent to the natural L2(fi)-norm. The estimate on 2e is then an
immediate consequence of equality (13a) with 2E as trial function.

Remark 4. The hypotheses on U0C and e(£/0e) imply that belongs to VKL, i.e.,

Wn„ = Un„ - Xj-jf1, with u°0a in H*(u)9"c
9xa

and Uq3 in Hq(u).

Similarly, the estimate on (l/e)90e/9x3 implies that the weak-* limits of weakly conver-
gent subsequences of 0£ in L0O(0, T\ L2(Q,)) are independent of x3, and the estimate on
UJ implies that the sequence eUJ converges weak-* to 0 in Lx(0, T; L2(S2)).

In view of Lemma 2, we conclude that there exist weakly converging subsequences of all
bounded fields appearing in (30). Since we eventually show the uniqueness of the weak
limits of these fields, we identify the sequence with its converging subsequences, and
denote by «°, e°, 9°, a°, q° the weak limits of Ue, e(f/e), ©E, 2e, and (l/e)90e/9;*3.

With the help of Lemma 2 and of Sec. 3 we are in a position to prove the following
theorem of weak convergence of the fields:

Theorem 2. Let us assume that hypotheses (17) and (29) hold true and that

^-/a°e Wl,2(0,7"; L2(fi)), ^g±° e H^2(0, T; L2(u)). (34)
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Then, as e tends to zero,

Ut —> w° weak-*
eUJ -* 0 weak-*
U3 -» weak-*
©£ -> 6° weak-*

Kp "» weak-*
e2£3 -» 0 weak-*

e2233 -» 0 weak-*

n LJ0, T: H),
n Lx(0,T-L2(U)),
n Lx(0, T- L2(fi)), (35)
n Lx(0, T; L2(fi)) and weakly in L-,{0, T\ H),
nLJ0,T-L2m,
n LJO.rtL^G)),
n Lx(0,T-,L2(SI)),

^-ea3(C/") -» 0 weak-* in Lx(0, T\ L2(S2)),

—re33({/£) -» a^° --^r tra° = —tre(«°)
e2 E \ — v \ — v

weak-* in Lx(0, T\ L2(£2)),

— -» 0 weakly in L2(0, T; L2(G)),
c 0.x 2

where

n n du-j
"a = u«-^97. (36)

def
and where u°, 0°, = d°p are the unique solution of (19)-(26) with

^30 =/30 +(^0 + ^3-°)+ (-3^/«°) + £(*.+ °-*.-°).

Fa0=/a0+(^+0 + g;°), (37)

©0° = (KI + + e0°33)) .

Remark 5. The hypotheses and conclusions of Theorem 2 are easily expressed in terms
of the original fields. We assume that (6) and (34) hold true and that the fields

e e E 1 ^W03 1 3" Oa . ^U03 n, re 1 fe 1 +E 1 +e7 to7- TU7 + 137' "»• 7/!- T8*" ' ?«"
taken at the point (y, ex3) (or (y,ex3,t) for the loadings) converge (in the appropriate
weak topologies) to

,,° ,,0 „0 0 9„0 a 0 f 0 f 0 ±0 ±0"oa' "03 > V0' e033' 0a3 ' "0 ' Ja > S3 > 6a > S3

taken at the point (_y, x3) (or (>>, x3, /) for the loadings). We obtain the convergence (in
the appropriate weak topologies) of the fields

1 3 uca due3 1 du3 1 d6e
K, «„ <*., >*•„ «„V•/„ 7 3^ + 7 ̂ , 7 ̂

taken at the point (y, ejc3, /) to the fields u®, w®, 0, u3, 0°, a0, 0, 0, a0° — (p/£)tro°,
0 taken at the point (y, x3, t).
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Proof of Theorem 2. Let W(x) be an arbitrary element of H and let <p(t) be an arbitrary
element of &™(0, T). Inserting

W°(x,t) = <p(t)(eWa(x), e2W3(x))

as test function in (14), integrating the resulting expression over the time interval (0, 7"),
and letting £ tend to zero, we are left with

C L (°"° ^7+- °-
We are at liberty to choose Wa and W3 of the form xa(>'' xi) ^x3 and fo'X^y, xi) dx3,
where x is an arbitrary element of [^(fi)]3. Thus

o°3 = 0, o3°3 = 0. (38)

A test function of the form (p(t)W(x), with W(x) an arbitrary element of VKL (see Sec.
1), is now used in (14). Since

ea3(W) = 0, e33(W) = 0,
a similar procedure yields, for almost any t in (0, T),

f^pu$(t)W3dx + fQa^(t)eafi(W)dx

= / fa°(')Wadx+ / f3°(t)W3dx + / ga±0(t)Wady+ f g*°(t)W3dy.JQ, JT± JT±

(39)
If W3 is chosen to be equal to zero, (39) yields, for almost any t in (0, T),

/ = / fa(t)Wadx + f g±°{t)W-dy. (40)
12 B 12 r

But Wa is independent of x3, thus (40) reads as

dx +/a°(0 +(g«°(0 + ga°( 0) = 0. (41)

for almost any t in (0, T).
Similarly if WQ is chosen to be equal to zero, (39) yields, for almost any t in (0, T),

f f) r r f) r

= - / x3f°(t)-r—dx+ f f3(t)W3dx + f g^°(t)-~ dy + J g3±0W3dy.
d*a JQ JT± a JV±

(42)
Since W3 is independent of x3, (42) reads as

(P« 3°) (T)~ dx 3^ x3°ap(<)=f3°(t) +{g3°( t) +g3°(0)

+ (*33*0-^°) ^ +( dxa8«°^ 9*aga°^)'
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for almost any t in (0, T). In view of (43), (pu3)(t) is an element of Lx(0, T\ H 2(u)),

thus (pu3) (t) has a trace at / = 0. The computation of the trace requires the use of a test
function of the form j](t)W(x) in (14), with W(x) an arbitrary element of VKL and r\(t)
an arbitrary element of &™([0, s)), 0 < 5 < T. An integration by parts of the term

( ( pU3(t)W3r](t) dxdt
Jo Ja

is performed; it yields

-f ( pU'{t)Wj](t)dxdt - rj(0) f PV^W3dx.
Jo Ja Ja

Passing to the limit as before, and integrating by parts appropriately, we obtain, with the
help of (39),

/
(pu°3) (0), w}j \ ~ ja Pvmw-3<frj = 0r)(0)

\ \ / /\ \ I I
where (( , )) stands for the duality product between H~2(u) and Hq(u). Thus

(p«?) (0) = (pv03) - (44)

Of course, since U3 converges weak-* in W1,0°(0, T\ L2(il)) to u3, U{(()') converges weakly
in L2{{2) to "3(0), i.e.,

"3(0) = «g3- (45)

We now consider test functions of the form <p(/)^,(x) in (13a), with ¥ an arbitrary
element of Y, and repeat a similar procedure. We obtain that, for almost every t in (0, T),

jWo°(0,*)= ( e?,(t)%,dx - f a0°(t)(Tr ) dx. (46)
Ja

In view of (38) and of the expression of stf, (46) yields

eO3 = 0, e3j = ad° — tro°, (47)

and

a/3 *~a(l\u ) uu ua/3 T £ vafi j?

or equivalently

«°« - ".«(»") - - t 'v! - -F tro°8a»,

+ 0 - >)(", + ,> ~ r^#lV <48>

Equalities (47) imply a fortiori that

e„3("°) = 0. e33(u°) = 0,
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i.e., that
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u°gLJ0,T-Vkl), (49)

^LjO,T;//2»), < = (50)

where u° is an element of [//q(w)]2.
We finally consider test functions of the form ecp(t)Z(x) in (15), with Z an arbitrary

element of H, and repeat the familiar procedure. We obtain that, for almost every t in
(0, T),

1 r o/ a dZ
T0lq(t)dx3 dx = 0.

An argument similar to that used for a3°3 leads to33

q°(0 = o. (51)
A test function of the form <p(t)Z(x) with Z an arbitrary element of is now

used in (15) (such a test function is allowed since //(}(co) c H). We obtain that, for almost
any t in (0, T),

f /36°(t)Zdx + jrJ k^r((^dx+ / T^-(^e°(t))Zdx = 0, (52)
0 Ja a a Ja 1 ~~ lv

i.e., since 9° is independent of x3 by virtue of Remark 4,

1 9 /t30°\ (53)

But (47) and (48) imply that

Tre° = tre(w°) + e3°3 = tre{u°) + 8°. (54)

With the help of (54), (53) reads as

<55»
f0 a

where k has been defined in Sec. 3. In view of (55),

k9°+ (—tre(u°)
\ 1 — V

is an element of W1,2(0, 7; H~1(u)). The computation of its trace at time t = 0 requires
the use of a test function of the form rj(/)Z(x) in (15), with Z(x) an arbitrary element of
Ho( w) and i)(t) an arbitrary element of ^"([0,5)), 0 < .? < T. An integration by parts of
the term

jT/Q(i86l(0+ I^;Tre((/e(0))zr)(0^^
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is performed; it yields
Ea| pv'(t) + —

Jo Ja
I fo(P®e(t)+ Y^;Tre(UV)))Zv(t)dxdt

-7,(0)/ (/?0q + Y~^~2v Tre(f/0e)jzdx.

Passing to the limit as before, and integrating by parts appropriately, we obtain, with the
help of (52),

t|(O)||(k0°+ (r^tre(M°)j J(0),Z| - jT (K+ TreSjZdxJ = 0
where ( , ) stands for the duality product between H~l(u) and Hq(co). Thus

(k0° + [y^~v tre(M°)) )(0) = ~[K) + (r^b Treo°) ' (56)
To complete the proof of Theorem 2, we merely have to replace by u° — jc3 du°/dxa

in (48) and (54).  
The expressions obtained for a^ and tre(w°) are then used to compute aa/S, - x3o°p

and ((£<*/( 1 - v)) tre(u0)). In view of the even character of all coefficients and since
and 6° are independent of x3,

2,,0Ex3 \ 3 m3 Evx
{-xpoafi) - | 1 _ „ J dX(£Xp + _ „\{1 ) Au°Ap, (57)(1 - „)(1 + v)

r=^M"0)) = (Mu°).
Recalling Eqs. (41), (43), (44), (45), (55), (56), and (57), we conclude that u°, 0°, a^
satisfy (19)-(26), which, together with Eqs. (38), (47), and (51) and relation (49),
completes the proof of Theorem 2.

Remark 6. The regularity hypotheses (34) together with the //„(co)-regularity of u\'l3 (cf.
Remark 4) are implicitly used to assess the existence and uniqueness of the solution of
(19)—(22).

Remark 7. In view of Remark 3, u° lies in #°([0, T]\ VKL). The initial value of u°a is
then determined as

„««,)-<(0)-*,^. (58)

Remark 8. As announced in the introduction, there is in general a change in the initial
condition in temperature; let us assume for example that

8q is independent of x3 and #0° + 0 almost everywhere,

«o = 0,_ eo°33 = 0, /„° = 0, ga±0 = 0,
and also that for every x in 12, a(x) > 0. Then (26) and (37) become

©o = 00°,
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and

0°(O) = - (^) tre(u°(0))|, (59)

where, according to Theorem 1, u°(0) is the solution of

3 (<r^fdxp

The positivity properties of the coefficients imply that

k > /?.

If 0°(O) = 90°, (59) implies that

(60)

9o= 1 _ I Ea
K-0 1 - V

tre(u°(0)),

and thus (60) becomes

3 IE
dxR |\l + i' ^(«°(0)) +

\

Ev

,"2\
1 / Ea

(k - 13) I (1 - v)

(1 - v)(l + v)

tre(u°(0))SQJ = 0.

(61)

/
Then, because of (61),

u°(0) = 0,
which contradicts (59).

This change of the initial datum in the temperature field appears in another asymptotic
problem involving thermoelastic behavior, namely a problem of homogenization (Franc-
fort [F]). It is shown in that context to be a by-product of rapid oscillations in time of the
temperature field. Whether the same phenomenon occurs in the present plate problem is
an open question.

5. Strong convergence of the fields. In this section it is shown that strong convergence
can occur if stronger hypotheses are satisfied by the loadings and the initial conditions. In
particular, the initial conditions must satisfy a compatibility condition that will be
specified later.

The method used to prove strong convergence follows that of Raoult [Rl], It is based on
the convergence of the norms in the Hilbert space L2(0, T\ L2(tt)).

Specifically, we prove the following.

Theorem 3. Let us assume that hypotheses (17) and (34) hold true, and that all the
convergences in (29) become strong convergences.
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Then, as e tends to zero,

U£ -» w° strongly in L2(0, 7"; H),
e{/aE -> 0 strongly in L2(0, T\ L2(Q,)),
U3e -* it3 strongly in L2(0, 7"; L2(£2)),
0E -» 0° strongly in L2(0, T; L2( 12)),

2^ -> a°fi strongly in L2(0,7; L2(B)),
e2E3 -» 0 strongly in L2(0,7"; L2(S2)), (62)

e2Sj3 -> 0 strongly in L2(0,7; L2(S2)),
1
e

ea3(.U*) 0 strongly in L2(0, T; L2(Q)),

e33(t/e) -» a6° — -^r tra° strongly in L2(0, 7; L2(S2)),
e ^

00e   900
v/7" - / -> v/y - f strongly in L2(0,T; L2(fi)),

y/7 - t 80e
e

0 strongly in L2(0, T; L2(Q))

if and only if the following compatibility condition is satisfied by the initial conditions
and the initial loadings:

-2
I I _ _.u \

/
_ (p|„o,2) | +(k(0O(o))2 _ j _ 2Fa°(0)(u°(0) - <)

+ ^o(e(M°(0)),e(M°(0))) -^(e0°,e0°) = 0,

(63)
where Fa° is given in (37), Stf was defined in Sec. 2, and 38§ is defined as the following
bilinear form on Y:

^A'B)' I* (TTTjnTT) <tr'4)(trB))dx■ {M)
Remark 9. If

(65)Oa

f'yj and 6q are independent of x3,

the compatibility condition (63) reduces to

/ [(k(0°(O))2 - n°2) - 2Fa°(0)(u° (0) - <)] dy

+ #o(e(«°(0)),e(«°(0))) - ^(e0°,e0°) = 0. (66)

If further

Uq, 6q satisfy (22) and (23) with FQ°(0) as loading,

e0°a3 = 0, e0°33 = a 0O° - tr e (u°0), (67)
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then
u°(0) = u°0, 0°(O) = 0O°,

and (66) is satisfied.
Under the hypotheses (65), (67) there is no change in the initial temperature increment

field. We are led to state the following conjecture:
u°(0) = Uq and 0°(O) = 0O° are necessary conditions for .
strong convergence when (65) holds true.

All our attempts to find a counterexample to (C) have failed, and at the present time we
do not have any clue about the validity of (C). Of course, it is much more interesting in
our opinion to disprove (C) than to prove it.

Remark 10. The analog of Remark 5 holds true after replacing weak by strong
convergences everywhere in that remark.

Proof of Theorem 3. First, let us define the space J?2 as

if, = {S?= (^,5^3,^)1^ e L2(o, T; [L2(fi)]3),

S?2ey, ?3a2(0,r,L2([l)), jT-t9Ae L2(o,T; [L2(S2)]3)}.

Proving the convergences (62) reduces to proving the strong convergence of the field of
i?2 defined as

= (eUa\ Uf),
~ e(Ue),

^ = 0£,
30e 1 00f

»4 = I

to the field &° of defined as

= ,
4 \ dxa ' e dx3

<$■0 _ p0 _2 e ~~

3° = 0°,' 90°

*(1 + v)6° — rtr e(u°)
T^~v l

?4° = a '°dx„
Indeed, with the help of (8) and of Poincare's and Korn's inequalities, all fields entering
(62) are then found to converge.

For any ^ of ,SP2, we define
r ,2

= f f P\$i(t)\2 dx + @(&2(t),&2(t)) + f /3\&3(t)\2
Jn Jo. Jo.

dx

+ f f |^4(j)| dxds
Jo Ja

dt,
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where 98 was defined in Sec. 2. In view of the positivity properties of the coefficients, ||| |||
defines a norm on SP2 that is equivalent to the natural L2-norm on i?2.

Because L2(0, £; L2(Q)) is uniformly convex, and since a direct application of Theorem
2 shows that, as e tends to zero, weakly converges in to the strong
convergence of holds true if and only if |||^E||| converges to |||^°||| when e tends to
zero.

Taking e(U\t)), Ue(t), and Qe(t) as test functions in (13b), (14), and (15), adding
together the resulting expressions, and integrating the result over the time interval (0, t),
then over the time interval (0, T), yields the following expression for |||^E|||:

II2 = T fa P E I2 +1^03 |2J dx + <2?(e(t/0e),e(t/0£))

+ / p\®l\2dx - 2J If:(0)Uo^ + dx
Si2 \ £ '

-2JT± (jGo±'(0)%+

+ 2jfjjf (faE(t)UJ;(t) + ^F3e(t)U3e(t)J dx (68)

+ /r± (7G„±'(0t/«'(0 + ^G3±'(/)£/3'(/))</>'}a

~2f f\f (faV)Ua'(s)+ \ f{(s)U3'(s))dxJo Jo L-'n V e /

+ /r+ (76^)^) + ds dt.

The computation of |||^°||| necessitates a detailed evaluation of the term ^(^2°(r), ^2°(?)).
Specifically, in view of the even character of all coefficients and of (36),

£

(1 + *)
a^(u°(0)ea/}(u°(/))

><£
(1 - f)(l + v)J v 77 (1 - r)(l - 2c)

£x3 \ 02m° 32w3
+ > I 1 + p) dxjx.^hxjix-t') + <1 - ^ I

vEx{

(1 ~ ")(1 + ")
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+ („ _ /)„ + ,j) tr^(»o(o)2+«i»°(or

[•y 90° , , d0° , . I , ,+lk^s)^s)ds)dydt-

Multiplication of (19), (23), and (24) by u3(t), u°(;), and 0°(t), respectively, appropriate
integration by parts, addition of the resulting expressions, and integration over the time
interval (0, t), then over the time interval (0,7), lead to the following expression for
iiisnii:

ll|3?°ll|2 = T

+

J dy + @0(e(u°(0)),e(u°(0)))

f k{6°(0))2dy - 2/ (F„°(0)ua(0) + F30(OK3) dy
J0)

+ 2 f f (Fa°(/)u°a(0 + F3°(t)ug(t)) dydtrt
■'O Ju

rT rt

(69)

~2f II (*ro°(J)u«(s) + ^3°(s)u°(s))dydsdt,
J0 J0 Ju

where F° and F® are given in (37) and 3S0 is defined by (64).
The study of the convergence of |||^E||| to |||^°||| reduces to the study of the convergence

of the right-hand side of equality (68) to the right-hand side of equality (69).
Because all convergences in (29) are assumed to be strong convergences, and Ue

converges weakly in L2(0, T; H) to w°, with u° in T]\ VKL),

lim lll^lll2 = T
f-0

+

j (pl^ol2) dy + ^(eo>eo)
J ,.x

fj{K2) -2((/„°(0)O +go±0(0)u00a(^3= ±1)

+73°(°)"03 +(g3±O(0) + ft °(°))"03)} dy

+ 1f0T I ^aUK(t) + F3°(t)u°3(t))dydt

~2r f I + F°(s)u°(s))dydsdt.
J(\ J(\ J,.>

(70)
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In view of (69) and (70),

lim |||^E|i|2 = p°r
E —* 0

if and only if
-2

L (p|^|2) J +(k(0O(o))2_

-2(f°(0)u°(0)-((/„>)<) +ga±0(0)uoOa(x3= ±1)))

/
-2

(71)

dy

+ ^0(e(M°(0),e(U°(0)))) - ^(e0°,e0°) = 0.

Since Uq lies in VKl (cf. Remark 4), equality (71) is precisely (63).

Concluding remarks. The results obtained in the present study raise two main questions.
Can strong convergence take place in the presence of a change of initial data? Does the
change of initial condition in the temperature field result from an improper choice of the
field variable?

The first question has been commented on in Remark 9. It remains open at the present
time. A partial answer to the second question may be given by choosing the entropy field

p" (X

Se = j80E +   — tre(t/£)
1 — 2v

as a natural variable in Eq. (10) in place of the temperature field 0E (see Francfort [F] for
similiar considerations in the context of homogenization). The field Se is easily shown not
to undergo any change in initial condition during the asymptotic process. Unfortunately,
complete removal of the temperature field in Eqs. (8)—(12) leads to an evolution system
with third-order space derivatives whose analysis seems difficult through the classical
methods used in the present study.
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