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Abstract

In this paper, we provide an asymptotic performance analysis of channel-aware packet scheduling

based on extreme value theory. We first address the average throughput of systems with a homogeneous

average signal-to-noise ratio (SNR) and obtain its asymptotic expression. Compared to the exact through-

put expression, the asymptotic one, which is applicable to a broader range of fading channels, is more

concise and easier to get insights. Furthermore, we confirm the accuracy of the asymptotic results by

theoretical analysis and numerical simulation. For a system with heterogeneous SNRs, normalized-SNR-

based scheduling need to be used for fairness. We also investigate the asymptotic average throughput

of the normalized-SNR-based scheduling and prove that the average throughput in this case is less than

that in the homogeneous case with a power constraint.
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I. INTRODUCTION

Time-varying fading is an important characteristic of wireless channels. For a point-to-point

link, using adaptive modulation and coding [1], [2], the transmitter can send more data at a

higher transmission data rate when the channel quality is good. However, bandwidth efficiency

with adaptive modulation and coding is still low during deep-fading periods. In [3], the authors

have studied the sum capacity of uplink fading channels when the channel state information is

known for the transmitters and the receiver. They have obtained two important results. First,

the optimal strategy is to schedule only one user with the best channel condition. Second,

the sum capacity increases with the number of users, which results from independent channel

variations across users. Therefore, the above phenomenon is called multiuser diversity. The

similar results in downlink fading channels are shown in [4]. The delay of channel-condition

feedback is considered [5].

To obtain the multiuser diversity gain, adaptive modulation and channel-aware scheduling

must be used. However, the channel variance and the opportunistic nature of channel-aware

scheduling make throughput analysis very difficult. There are two major approaches to analyze

the capacity of systems with multiuser diversity. One is exact analysis based on special functions.

Capacity analyses for Rayleigh and Nakagami fading channels are addressed in [6] and [7],

respectively. More specific cases that include constrained bandwidth, discrete transmission rates,

and multiple cells are also considered in [8]. However, the results of these capacity analyses are

too complicated to get insights and hardly extended to a general fading environment. Another

major approach is asymptotic analysis based on extreme value theory or extreme order statistics

[9], [10]. An asymptotic analysis for signal-to-noise ratio (SNR) for multiuser diversity is

presented in [11], in which the log scaling law with the number of users of multiuser diversity

is obtained for Rayleigh fading channels, and the scaling law for Rician fading channels is also

given. In [12], asymptotic analysis of throughput with proportional fair scheduling is studied with

an assumption that throughput is a linear function of SNR. To the best knowledge, however,

these asymptotic analyses only propose scaling laws for asymptotic SNR rather than give rigorous
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convergence results. In addition, there are no asymptotically analytical results under such a more

realistic assumption that throughput is a log function of SNR.

The rest of this paper is organized as follows. In Section II, we briefly describe the system

model and the main results of extreme value theory used in this paper. In Section III, we

introduce the exact throughput analysis for multiuser diversity. In Section IV, we investigate the

asymptotic throughput for channels with a general fading distribution and confirm the accuracy

of the asymptotic analysis by means of analytical and numerical results. In Section V, we analyze

the average throughput of the normalized-SNR-based scheduling. Finally, conclusion remarks are

presented in Section VI.

II. PROBLEM FORMULATION

In this section, we first describe the system model in our analysis and then briefly introduce

the main results of extreme value theory useful to our asymptotic analysis.

A. System Model

Consider a shared downlink channel of a single-carrier system with a bandwidth B and M

users. The downlink channel is time-slotted, and each time slot can adaptively be assigned to

a user. It is assumed that the base station knows the channel state information of each user,

and that continuous rate adaptation is applied in the downlink channel. Therefore, the current

transmission data rate, R, depends on the instantaneous SNR, Γ. A tight bit-error rate (BER)

approximation of M-ary quadrature amplitude modulation (MQAM) over the additive white

Gaussian noise (AWGN) channel is present in [1]. This approximation leads to the relationship

between throughput and SNR by

R = B log2(1 + βΓ), (1)

where β is a constant related to the targeted BER, that is, β = −1.5/ ln(5 · BER). Although (1)

is originally derived from MQAM, it can model continuous rate adaptation as well [1], [13]. If

β = 1, (1) is just the Shannon capacity for the AWGN channel.
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First, we assume that the all users experience statistically independent identical fading processes.

The max-sum-capacity (MSC) scheduling [11], [14] is used in the system. The MSC scheduling

is a channel-aware scheduling scheme that maximizes the total throughput in the system and

works well in the homogeneous system. It assigns the channel to the user with the best channel

condition on each time slot, which is described as

m = arg max
i∈M

{Γi}, (2)

where M = {1, 2, · · · , M} is the set of user indices, and Γi is the instantaneous SNR of user i.

We also consider a heterogeneous case in which different users have different average SNR

values due to different path losses. For the purpose of fairness, the normalized-SNR-based

scheduling [5], [6] is used. This scheduling makes decisions based on the normalized SNR

rather than the absolute SNR values, which is expressed as

m = arg max
i∈M

{
Γi

γi

}, (3)

where γi is the average SNR of user i; that is, E{Γi} = γi
1. It is obvious that the normalized-

SNR-based scheduling is the same as the MSC scheduling for the homogeneous system.

B. Extreme Value Theory

Extreme value theory deals with asymptotic distributions of extreme values, such as maxima

or minima. It can be used to analyze the performance of the above scheduling approaches. In

this section, we will briefly introduce two major results of extreme value theory [9], [10] that

are used in the analysis.

Let ξ1, ξ2, · · · , ξM be independently identically distributed (i.i.d.) random variables with dis-

tribution function F (x), and ZM = max
i∈M

ξi. If there exist constants aM ∈ R, bM > 0, and some

non-degenerate distribution function H such that the distribution of
ZM − aM

bM

converges to H ,

then H belongs to one of the three standard extreme value distributions: Frechet, Webull, and

Gumbel distributions.

1γi is the average over fast fading. However, it may still change due to path loss and shadowing, but its change rate is much

slower than that of fast fading.
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It is very interesting that there are only three possible non-degenerate limiting distributions for

maxima. The distribution function of ξi, F (x), determines the exact limiting distribution. Thus, if

a distribution function F (x) results in one limiting distribution for extremes, it is called that F (x)

belongs to the domain of attraction of this limiting distribution. The following lemma indicates

a sufficient condition for a distribution function F (x) belonging to the domain of attraction of

the Gumbel distribution.

Lemma 1: Let ξ1, ξ2, · · · , ξM be i.i.d. random variables with distribution function F (x). Define

ω(F ) = sup{x : F (x) < 1}. Assume that there is a real number x1 such that, for all x1 ≤ x <

ω(F ), f(x) = F ′(x) and F ′′(x) exist and f(x) 6= 0. If

lim
x→ω(F )

d

dx

[
1 − F (x)

f(x)

]

= 0, (4)

then there exist constants aM and bM > 0 such that
ZM − aM

bM

uniformly converges in distribution

to a normalized Gumbel random variable as M → ∞. The normalizing constants aM and bM

are determined by

aM = F−1

(

1 −
1

M

)

,

bM = F−1

(

1 −
1

Me

)

− F−1

(

1 −
1

M

)

,

where F−1(x) = inf{y : F (y) ≥ x}.

For a random variable Z with the normalized Gumbel distribution, whose distribution function

is exp[− exp(−x)], −∞ < x < ∞, it follows that

E{Z} = E0,

Var{Z} =
π2

6
,

where E0 = 0.5772 · · · is the Euler constant [10].

In this paper, we intend to calculate the average throughput; thus, mean convergence is used

extensively. However, convergence in distribution is not equivalent to moment convergence

in general. The following lemma from [15] establishes the relation between convergence in

distribution and moment convergence.
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Lemma 2: If
ZM − aM

bM

converges in distribution to a random variable Z that has a non-

degenerate distribution function, and if E{[(ZM)−]p} < ∞ for any positive real number p,

where (x)− =







−x, x < 0,

0, otherwise

, then

lim
M→∞

E

(
ZM − aM

bM

)p

= E{Zp},

provided E|Z|p < ∞.

Obviously, convergence in distribution for the maximum of nonnegative random variables results

in moment convergence. With extreme value theory, we can study the asymptotic performance

of channel-aware scheduling.

III. EXACT ANALYSIS FOR THROUGHPUT WITH MULTIUSER DIVERSITY

In this section, we will briefly review the traditional exact analysis method for throughput

and the challenges involved with it. Assume that all users’ SNRs, {Γ1, Γ2, · · · , ΓM}, are i.i.d.

nonnegative random variables with distribution function FΓ(γ).

According to the MSC scheduling, the base station schedules the user with the strongest

channel condition. Therefore, the effective SNR at the transmitter, Γeff, is given by

Γeff = max
i∈M

Γi, (5)

and its distribution is

FΓeff
(γ) = F M

Γ (γ).

The total throughput of the MSC scheduling is expressed as

Rtotal = max
i∈M

B log2(1 + βΓi)

= B log2(1 + βΓeff).

We are more interested in the average values of the effective SNR and the total throughput.

Therefore, we can calculate the average SNR when the MSC scheduling is used as

E{Γeff} =

∫
∞

0

γ dFΓeff
(γ) (6)
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and the average total throughput as

E{Rtotal} = B

∫
∞

0

log2(1 + βγ) dFΓeff
(γ). (7)

Multiuser diversity actually has the same mathematical model with selection diversity. Thus,

the results related to selection diversity can be used for multiuser diversity analysis as long as

the number of antennas is replaced with the number of users. In the case of Rayleigh fading,

for instance, the distribution function of SNR for Rayleigh fading with average SNR γ0 can be

expressed as

FΓ(γ) = 1 − exp(−
γ

γ0

). (8)

According to the results in [16], we have

E{Γeff} = γ0

M∑

i=1

1

i
, (9)

and

E{Rtotal} =
M

ln 2

M−1∑

i=0

(−1)i+1




M−1

i




e

1+i
γ0

i+1
Ei(−

1+i

γ0

) (10)

with

Ei(−x) = E0 + ln(x) +
∞∑

i=1

(−1)ixi

i! i
.

As seen from the above, the exact analysis of throughput analysis for Rayleigh fading channels

is very complicated, and the exact result lacks insights as well. Moreover, it is really hard to

obtain solutions for other fading distributions. Therefore, in the rest of the paper, we will provide

simple results through asymptotic analysis.

IV. ASYMPTOTIC THROUGHPUT ANALYSIS FOR GENERAL CHANNEL DISTRIBUTIONS

With extreme value theory, finding the limiting distribution of the maximum throughput

is crucial to obtain the asymptotic throughput. In this section, we consider a general case.

Mathematically, we study the limiting distribution of the throughput

R = T (Γ) = B log2(1 + βΓ),
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given a SNR distribution, FΓ(γ). However, the complicated form of throughput distribution

makes it very difficult to check condition (4) directly . Thus, we provide a simpler approach,

which is stated in the following theorem for limiting throughput distribution (LTD).

LTD Theorem: Assume that all users’ SNRs, {Γ1, Γ2, · · · , ΓM}, are i.i.d. nonnegative random

variables with a distribution FΓ(γ) such that ω(FΓ) = ∞, and fΓ(γ) = F ′
Γ(γ) as well as F ′′

Γ (γ)

exist and fΓ(γ) 6= 0 for all x1 ≤ x < ∞, where x1 is some real number. If

lim
γ→∞

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

= 0, (11)

then the distribution of throughput, FR(r) = FΓ(T−1(r)), belongs to the domain of the attraction

of the Gumbel distribution. Furthermore, the normalizing constants are

aM = B log2

(

1 + βF−1
Γ (1 −

1

M
)

)

, (12)

bM = B log2

(
1 + βF−1

Γ (1 − 1
Me

)

1 + βF−1
Γ (1 − 1

M
)

)

. (13)

The proof is in Appendix A. The LTD theorem tells us that we do not have to check FR(r)

directly, which is usually very complicated to find its limiting distribution. In addition, Lemma

2 leads to

E{Rhom
total} − aM

bM

→ E0,

as M → ∞, where Rhom
total is the total throughput for the homogeneous scenario. For a large M ,

the average total throughput can be evaluated by using the following expression.

E{Rhom
total} ≈ aM + E0bM . (14)

A. Example 1: Rayleigh Fading

The exponential distribution leads to

1 − FΓ(γ)

fΓ(γ)
= γ0.

As a result, it follows that

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

= 0, for γ > 0.
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According to the results of extreme value theory in Section II-B, the exponential distribution is

in the domain of attraction of the Gumbel distribution.

First, we study the asymptotic distribution for the effective SNR, Γeff, in (5). From Lemma

1, we have the normalizing constants for effective SNR shown as follows,

aM = γ0 ln M,

bM = γ0.

As M → ∞,

E{Γeff} − γ0 ln M

γ0
→ E0.

For a large M ,

E{Γeff} ≈ γ0(ln M + E0). (15)

It is shown in [17] that

1

2(M + 1)
<

M∑

i=1

1

i
− (ln M + E0) <

1

2M
,

which implies that the difference between the exact value (9) and the asymptotic value (15) is

very small even for a small M .

For throughput analysis, the normalizing constants for throughput are obtained from the LTD

theorem as

aM = B log2(1 + βγ0 ln M),

bM = B log2

(

1 +
βγ0

1 + βγ0 ln M

)

.

Consequently, the average throughput is given by

E{Rtotal} ≈ aM + E0bM

= B log2(1 + βγ0 ln M) + E0 · B log2

(

1 +
βγ0

1 + βγ0 ln M

)

, (16)

where ln M is usually called the multiuser diversity gain for Rayleigh channels [11]. In contrast

to (10), (16) provides a very simple approximation for the average throughput. The numerical

results in Section IV-E will show that this approximation is very accurate even when M is small.
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Note that as M → ∞, aM → ∞, and bM → 0. Therefore, with a large M ,

E{Rtotal} ≈ B log2(1 + βγ0 ln M)

is a rougher but simpler estimation for the average throughput.

B. Example 2: Nakagami Fading

The Nakagami distribution is frequently used to characterize the fading statistics of wireless

channels in certain environments. Then, the cdf of the received SNR is given by

FΓ(γ) = Γ(m, m
γ0

)(γ) =

∫ γ

0

(
m

γ0

)m
tm−1

Γ(m)
e
−

m
γ0

t
dt, (17)

where m is called the fading figure, which is defined as the ratio of the total power to the power

of fading components, and Γ(m) is the gamma function. In this subsection, we use the results

of the LTD theorem to study the impact of Nakagami fading on throughput in the system with

the MSC scheduling. Applying the results of extreme value theory in Section II-B and letting

u = m
γ0

, we have

lim
γ→∞

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

= lim
γ→∞

−
[1 − FΓ(γ)]

f 2
Γ(γ)/f ′

Γ(γ)
− 1

= lim
γ→∞

1 −

∫ γ

0

tm−1e−utdt

γme−uγ

uγ − m + 1

− 1

= 0 (by L’Hospital’s rule).

According to the results of extreme value theory in Section II-B and the LTD theorem, both

FΓ(γ) and FR(r) belong to the domain of the attraction of the Gumbel distribution. Therefore,

the average total throughput for the Nakagami fading can be given by

E{Rhom
total} ≈ B log2

(

1 + βF−1
Γ (1 −

1

M
)

)

+ E0B log2

(
1 + βF−1

Γ (1 − 1
Me

)

1 + βF−1
Γ (1 − 1

M
)

)

= B log2

(

1 + βΓ−1
(m, m

γ0
)(1 −

1

M
)

)

+ E0B log2





1 + βΓ−1
(m, m

γ0
)(1 −

1
Me

)

1 + βΓ−1
(m, m

γ0
)(1 − 1

M
)



 , (18)
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where Γ−1
(m, m

γ0
)(γ) is the inverse incomplete gamma function. Despite no closed form for it, the

inverse incomplete gamma function is usually provided in common softwares, such as Matlab

and Mathematica.

Actually, besides the Rayleigh and Nakagami distributions, the normal, Rician, and log-normal

distributions, which are often used to describe the statistics of wireless channels, belong to the

domain of the attraction of the Gumbel distribution [10].

C. Further Properties of Asymptotic Throughput

Assume that the fading distribution FΓ(γ) satisfies (11) and F−1
Γ (γ) → ∞ as γ → ∞. Thus,

as M → ∞, aM → ∞. In addition, we prove in Appendix B that

lim
M→∞

bM

aM

= 0. (19)

Applying (19) to FΓ(γ) (aM and bM here are related to Γeff in (5)), we have

lim
M→∞

F−1
Γ (1 − 1

Me
) − F−1

Γ (1 − 1
M

)

F−1
Γ (1 − 1

M
)

= 0. (20)

From (20), we have the limit of bM that is corresponding to the throughput shown as follows:

lim
M→∞

bM = lim
M→∞

B log2

(
1 + βF−1

Γ (1 − 1
Me

)

1 + βF−1
Γ (1 − 1

M
)

)

= lim
M→∞

B log2

(
F−1

Γ (1 − 1
Me

)

F−1
Γ (1 − 1

M
)

)

= lim
M→∞

B log2

(
F−1

Γ (1 − 1
Me

) − F−1
Γ (1 − 1

M
)

F−1
Γ (1 − 1

M
)

+ 1

)

= 0. (21)

In fact, we have the same result for the Rayleigh fading case in Section IV-A. Thus, when the

number of users M is very large, we have

E{Rhom
total} ≈ aM = B log2

(

1 + βF−1
Γ (1 −

1

M
)

)

, (22)

which is a rough estimation for the average total throughput with a large M . According to (20),

we have

F−1
Γ (1 −

1

M
) = E{Γeff} + o(E{Γeff}).
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Thus, (22) can also be rewritten as

E{Rhom
total} ≈ B log2 (1 + β [E{Γeff} + o(E{Γeff})]) ,

≈ B log2 (1 + βE{Γeff}) . (23)

The above equation means that the average throughput is approximately a function of the average

effective SNR.

Lemma 2 also shows that for any positive real number p,

lim
M→∞

E

(
Rhom

total − aM

bM

)p

= E{Zp}, (24)

where Z is a normalized Gumbel random variable. We consider p = 2, and have

lim
M→∞

E

(
Rhom

total − aM

bM

)2

= E2
0 +

π2

6
.

Thus, as M → ∞,

Var{Rhom
total} →

π2

6
b2
M .

Because of (21), Var{Rhom
total} → 0, which indicates that this asymptotic analysis of average

throughput is quite accurate. In addition, it follows that

lim
M→∞

E
(
Rhom

total − aM

)p
= lim

M→∞
bME{Zp},

= 0. (25)

According to [15], (25) guarantees that Rhom
total − aM converges in probability2 to 0.

D. Channel Access Probability and Average Throughput per User

The channel access probability Pi is the probability that user i obtains the channel to transmit

data. In the homogeneous fading case, due to the the symmetry, each user has the same channel

access probability; that is,

Pi =
1

M
.

2Assume Xn and X to be a random variable sequence and a random variable, if lim
n→∞

P{|Xn − X| > ǫ} = 0 for any ǫ > 0,

then we say that Xn converges in probability to X.
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Fig. 1. Average throughput for different environments. βγ0 = 1.

Therefore, the average throughput of user i with the scheduling, E{Rs
i}, is given by

E{Rs
i} =

1

M
E{Rhom

total}.

E. Numerical Results

We assume that all users experience i.i.d. Nakagami fading. Let βγ0 = 1. Figure 1 shows

the average total throughput in the Nakagami fading channels with different values of m. For

comparison, we also plot the average throughput in the AWGN channel with the same average

SNR in Figure 1.

It is shown in Figure 1 that the asymptotic results are still accurate even if the number of

users is small. The figure shows that the throughput increases with the number of users in the

fading scenario with dynamic scheduling. As m increases, the fading fluctuation of the channel

reduces, and the multiuser diversity gain is also diminished.



14

V. THROUGHPUT ANALYSIS FOR NORMALIZED-SNR-BASED SCHEDULING

In the previous sections, we presented the asymptotic throughput analysis for the homogeneous

fading case. In reality, the values of the average SNR of users vary according to their path losses

and shadowing. Denote the average SNR of user i as γi. We consider a scenario in which different

users have the same normalized SNR distribution F (γ) but with different average SNR, γi’s.

We assume that F (γ) satisfies ω(F ) = ∞ and (11).

Obviously, the MSC scheduling results in unfair channel access probabilities. When the

normalized-SNR-based scheduling is used, the base station schedules the user with the largest

normalized SNR to get the channel, which is mathematically expressed in (3). Define the effective

normalized SNR at the transmitter as

Γeff = max
i∈M

Γi

γi

.

Because of the identical distribution of the normalized SNR, the previous results based on

extreme value theory is still applicable to the effective normalized SNR, and all users have the

same channel access probability as well; that is,

Pi =
1

M
.

Thus, the average throughput of user i can be expressed as

E{Rs
i} =

1

M

∫
∞

0

B log2(1 + βγiγ)dFΓeff
(γ) (26)

Recalling (7) and the LTD theorem, in the i.i.d. fading case if the distribution of SNR FΓ(γ)

satisfies (11), then, with a large M ,

∫
∞

0

log2(1 + βγ)dFΓeff
(γ) ≈ log2

(

1 + βF−1
Γ (1 −

1

M
)

)

+ E0 log2

(
1 + βF−1

Γ (1 − 1
Me

)

1 + βF−1
Γ (1 − 1

M
)

)

.

(27)

Comparing (26) and (27), we obtain the average throughput for user i as follows:

E{Rs
i} ≈

B

M

{

log2

(

1 + βγiF
−1(1 −

1

M
)

)

+ E0 log2

(
1 + βγiF

−1(1 − 1
Me

)

1 + βγiF−1(1 − 1
M

)

)}

,
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for a large M . Therefore, with the normalized-SNR-based scheduling, each user obtains the same

multiuser diversity gain as that in the homogeneous scenario and has the same channel access

probability, but its average throughput depends on its average SNR.

Furthermore, we will compare the total throughput in the heterogeneous and homogeneous

scenarios. We assume that

γ0 =
1

M

M∑

i=1

γi, (28)

σ2
γ =

1

M

M∑

i=1

(γi − γ0)
2.

It can be proven that when the number of users M is large,

−
B

2 ln 2

σ2
γ

γ2
0

≤ E{Rhet
total} − E{Rhom

total} ≤ 0. (29)

This means that the homogeneous case leads to the maximum total throughput when (28) holds.

VI. CONCLUSION

Using extreme value theory, we have proposed an asymptotic average throughput analysis for

the MSC scheduling with a general fading distribution, which not only has concise expressions,

but also provides accurate results. This asymptotic analysis shows that the use of the simple

scheduling techniques and the feedback of channel state information can significantly improve the

bandwidth efficiency. We have also extended the analysis into a scenario in which different users

experience different path losses. The results shows that the normalized-SNR-based scheduling

can obtain the same multiuser diversity gain as that in the homogeneous case while maintaining

access-time proportional fairness.

APPENDIX A

PROOF OF THE LTD THEOREM

Proof: According to the results of extreme value theory in Section II-B, we have to show

that

lim
r→∞

d

dr

[
1 − FR(r)

fR(r)

]

= 0,
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if

lim
γ→∞

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

= 0. (A.1)

Since

1 − FR(r)

fR(r)
=

1 − FΓ(T−1(r))

fΓ(T−1(r)) (T−1)′ (r)
,

we have

d

dr

[
1 − FR(r)

fR(r)

]

= −1 −
[1 − FΓ(T−1(r))]

[
f ′

Γ(T−1(r))((T−1)
′
(r))2 + fΓ(T−1(r)) (T−1)

′′
(r)

]

[
fΓ(T−1(r)) (T−1)′ (r)

]2

= −1 −
[1 − FΓ(T−1(r))]f ′

Γ(T−1(r))

f 2
Γ(T−1(r))

︸ ︷︷ ︸

−
[1 − FΓ(T−1(r))] (T−1)

′′
(r)

fΓ(T−1(r))
[
(T−1)′ (r)

]2

︸ ︷︷ ︸

Part I Part II

(A.2)

Because T−1(r) is monotonically increasing with x and T−1(r) → ∞ as r → ∞,

lim
r→∞

[1 − FΓ(T−1(r))]f ′
Γ(T−1(r))

f 2
Γ(T−1(r))

= lim
γ→∞

[1 − FΓ(γ)]f ′
Γ(γ)

f 2
Γ(γ)

It is easy to check that

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

= −1 −
[1 − FΓ(γ)]f ′

Γ(γ)

f 2
Γ(γ)

.

Thus, we have

lim
r→∞

Part I = lim
r→∞

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

. (A.3)

Let T̃−1(r) =
2

x
B

β
. Due to the fact that

(
T−1

)′′
(r) =

ln 2

B

(
T−1

)′
(r),

and (T̃−1)′(r) = (T−1)′(r), it follows that

lim
r→∞

Part II = lim
r→∞

ln 2[1 − FΓ(T−1(r))]

BfΓ(T−1(r)) (T−1)′ (r)
(A.4)

= lim
r→∞

ln 2[1 − FΓ(T−1(r))]

BfΓ(T−1(r))
(

T̃−1
)′

(r)
. (A.5)
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Since T̃−1(r) = T−1(r) + 1
γ

and T̃−1(r) → ∞ as r → ∞,

lim
r→∞

1 − FΓ(T̃−1(r))

fΓ(T̃−1(r))
= lim

r→∞

1 − FΓ(T−1(r))

fΓ(T−1(r))
,

if (A.1) holds. Thus, we have

lim
r→∞

Part II = lim
r→∞

ln 2[1 − FΓ(T̃−1(r))]

BfΓ(T̃−1(r))
(

T̃−1
)′

(r)

= lim
r→∞

ln 2[1 − FΓ(T̃−1(r))]

BfΓ(T̃−1(r))T̃−1(r) ln 2
B

= lim
γ→∞

1 − FΓ(γ)

fΓ(γ)γ
(A.6)

Combining (A.3) and (A.6), we obtain

lim
r→∞

d

dr

[
1 − FR(r)

fR(r)

]

= lim
γ→∞

d

dγ

[
1 − FΓ(γ)

fΓ(γ)

]

+ lim
γ→∞

1 − FΓ(γ)

fΓ(γ)γ
. (A.7)

According to L’Hospital’s rule, for a function g(x) such as g(x) → ∞ as x → ∞, if

lim
x→∞

g′(x) = 0, then lim
x→∞

g(x)

x
= 0. Equation (A.1) results in

lim
γ→∞

1 − FΓ(γ)

fΓ(γ)γ
= 0,

Therefore, we obtain

lim
r→∞

d

dr

[
1 − FR(r)

fR(r)

]

= 0.

Since

F−1
R (x) = T (F−1

Γ (x)),

= B log2(1 + βF−1
Γ (x)),

we can obtain the normalizing constants (12) and (13) according to the results of extreme value

theory in Section II-B.



18

APPENDIX B

PROOF OF EQUATION (19)

Proof: Let X ≥ 0 be a random variable with distribution function F (x) and E{X} is

finite. The expected residual life of X is given by

R(t) = E{X − t|X ≥ t}

=
1

1 − F (t)

∫
∞

t

1 − F (x)dx.

Theorem 2.1.3 and Lemma 2.7.2 in [10] show that if F (x) is in the domain of the Gumbel

distribution,

bM = R(aM), (B.1)

and

lim
t→∞

R(t)

t
= 0. (B.2)

Since aM monotonically increases with M , (B.1) and (B.2) directly indicates that

lim
M→∞

bM

aM

= lim
M→∞

R(aM)

aM

= lim
t→∞

R(t)

t

= 0

APPENDIX C

PROOF OF INEQUALITY (29)

Proof: When the number of users M is large, we only consider use the first term, aM , to

evaluate the average throughput. Thus, the average total throughput in the heterogeneous scenario

is given by

E{Rhet
total} =

M∑

i=1

E{Rs
i}

≈
B

M

M∑

i=1

log2

(

1 + βγiF
−1(1 −

1

M
)

)

,
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and the average total throughput in the homogeneous scenario is

E{Rhom
total} ≈ B log2

(

1 + βγ0F
−1(1 −

1

M
)

)

,

We obtain

E{Rhet
total} − E{Rhom

total} ≈
B

M

M∑

i=1

log2

(
1 + βγiF

−1(1 − 1
M

)

1 + βγ0F−1(1 − 1
M

)

)

→
B

M

M∑

i=1

log2

(
γi

γ0

)

, as M → ∞. (C.1)

(C.1) is valid since F−1(1 − 1
M

) → ∞ as M → ∞.

With the following inequality,

x −
1

2
x2 ≤ ln(1 + x) ≤ x, for x ≥ 0, (C.2)

we will consider the upper and lower bounds, respectively. For the upper bound, it follows from

(C.1) and (C.2) that

E{Rhet
total} − E{Rhom

total} ≤
B

ln(2)M

M∑

i=1

(
γi

γ0
− 1

)

= 0.

Similarly, the lower bound is given by

E{Rhet
total} − E{Rhom

total} >
B

ln(2)M

M∑

i=1

(
γi

γ0
− 1

)

−
1

2 ln 2

B

M

M∑

i=1

(
γi

γ0
− 1

)2

= 0 −
B

2 ln 2

[

1

M

M∑

i=1

(
γi

γ0

)2

− 1

]

= −
B

2 ln 2

σ2
γ

γ2
0

.
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