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Abstract

We study the asymptotic distribution of three step estimators of a �nite dimensional parameter
vector where the second step consists of one or more nonparametric regressions on a regressor that
is estimated in the �rst step. The �rst step estimator is either parametric or nonparametric. Using
Newey�s (1994) approach we derive the contribution of the �rst step estimator to the in�uence
function. In this derivation it is important to account for the dual role that the �rst step estimator
plays in the second step nonparametric regression, i.e., that of conditioning variable and that of
argument. We consider three examples in more detail: the Olley and Pakes (1996) production
function estimator, the Heckman, Ichimura and Todd (1998) estimator of the Average Treatment
E¤ect and a semi-parametric control variable estimator.
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1 Introduction

In a seminal contribution Pagan (1984) derived the asymptotic variance of regression coe¢ cient esti-
mators in linear regression models, if the regressors are themselves estimated in a preliminary step.
Pagan called such regressors generated regressors and he characterized the contribution of the esti-
mation error in the generated regressors to the total asymptotic variance of the regression coe¢ cient
estimators. Examples of generated regressors are linear predictors or residuals from an estimated
equation as in Barro (1977) or Shefrin (1979). The estimators considered by Pagan are special cases of
standard two-step estimators, and such estimators can be conveniently analyzed as single step GMM
estimators, as in Newey (1984) or Murphy and Topel (1985). These methods of adjusting the asymp-
totic variance for the �rst stage estimation error are now so well-understood that they can be found
in textbooks such as Wooldridge (2002, Chapter 12.4).

Pagan (1984) considered parametric linear regression models with parametrically estimated gen-
erated regressors. However, econometrics has evolved since then, and the �rst step estimators these
days can be nonparametric estimators obtained by kernel or sieve methods. Newey (1994) discusses
a general method of characterizing the asymptotic variance of two-step GMM estimators of a �nite
dimensional parameter vector, if the moment condition depends on a conditional expectation or a
density that is estimated nonparametrically. A special instance of his method deals with the case of a
linear regression model with a nonparametrically estimated generated regressor. The purpose of this
note is to use Newey�s insights to derive the asymptotic variance of three or even multi-step estimators
in which one of the steps is a nonparametric regression with a generated regressor. This generated re-
gressor can be estimated parametrically or nonparametrically. Therefore we generalize Newey�s result
to the case of a moment condition for a �nite dimensional parameter vector that depends on a condi-
tional expectation (to be estimated nonparametrically) that itself depends on a generated regressor.
Since Newey (1994) a number of estimators have been suggested that have this structure. We consider
three examples: (i) the partially linear production function estimator of Olley and Pakes (1996), (ii)
the Average Treatment E¤ect (ATE) estimator for the case of unconfounded treatment assignment
suggested by Heckman, Ichimura, and Todd (1998) that involves two nonparametric regressions on
the estimated propensity score, (iii) a parametric control variate estimator that depends on a a non-
parametric regression on a �rst stage estimated residual. These examples illustrate the method that
can be used to derive the asymptotic variance of other estimators with the same structure not covered
here.

It turns out that the generalization of Newey�s (1994) results is straightforward, although not
trivial ex ante. The key issue is to account for the contribution of the �rst stage estimation error of
the generated regressor on the the sampling variation of the second stage nonparametric regression.
This contribution consists of two parts. First, there is the e¤ect of the �rst step estimation error on
the independent variable. However, there is a second contribution due to the e¤ect of the �rst stage
estimate on the conditional expectation if we condition on an estimated instead of a population value
of the regressor. It is the latter contribution that is speci�c to our setup and its derivation is the
modest contribution of this note. The approach that we take in the derivation is the same as in Newey
(1994), i.e. we derive the in�uence function of the estimator of the �nite dimensional parameter vector
heuristically. We do not give regularity conditions on the smoothness of the conditional expectations
and/or on the smoothing parameters of the nonparametric estimators that make the di¤erence between
the estimator and its asymptotically linear representation converge to 0 at a rate that is faster than
the parametric rate. Therefore our results do not depend on the particular nonparametric estimator
used.

One can wonder whether the reformulation of the two-step estimator of Pagan (1984) as a one-step
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GMM estimator as in Newey (1984) or Murphy and Topel (1985) can be generalized to the three or
more step estimator considered here. In particular, Ai and Chen (2007) recently considered a variety of
conditional moment restriction estimators, some with a more complicated structure than in this note,
where the conditioning variables are not estimated. Therefore our results are not a special case of,
but rather complement the results in Ai and Chen. Whether our asymptotic variance can be derived
from a one step GMM problem as in Ai and Chen (2007) is the subject of ungoing research.

This short paper has the following structure. In Section 2, we present a parametric example that
provides the basic intuition underlying our results. Our main result is in Section 3. In Sections 4, 5
and 6, we discuss the three examples mentioned above.

2 A Parametric Example

To gain intuition for the results later on we consider a fully parametric, be it somewhat arti�cial
example. Consider the following scenario. We have a random sample wi = (yi; xi; zi) ; i = 1; : : : ; n
from a joint distribution. The scalar parameter � is estimated by a three-step estimator. In the �rst
step, we estimate the scalar parameter � by b� such that

p
n (b�� ��) = 1p

n

nX
i=1

 (xi; zi) + op (1)

with E [ (xi; zi)] = 0 and �� the population value of the parameter. In the second step, we estimate
the coe¢ cients � = (1�; 2�; 3�) of the linear projection of y on 1; x; v with v = ' (x; z; ��), i.e. the

solution to min1;2;3 E
h
(y � 1 � 2x� 3v)2

i
. Because we do not know ��, we use the estimatedbvi = ' (xi; zi; b�), so that the estimator b of � is the OLS estimator of y on x; bv. The estimator

of �� is obtained in the third step b� = 1
n

Pn
i=1 (b1 + b2xi + b3' (xi; zi; b�)), so that we have �� =

E[1� + 2�x + 3�'(x; z; ��)]. Our interest is to characterize the �rst order asymptotic properties of
this estimator.

A standard argument suggests that it su¢ ces to consider the expansion of the form

p
n
�b� � ��� = 1p

n

nX
i=1

(1� + 2�xi + 3�' (xi; zi; ��)� ��)

+
�
1 E [x] E [' (x; z; ��)]

�p
n (b � �)

+ E
�
3�

@' (x; z; ��)

@�

�p
n (b�� ��) + op (1) :

Let us now focus on the adjustments to the in�uence function that account for the estimation error in
the �rst and second step, i.e., the sum of the second and third terms on the right, which we will call
�. A routine calculation1 reveals that

� = �
�
1 E [x] E [' (x; z; ��)]

�
G�1

1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35+ op (1) ; (1)

where

G = �E

24 1 x ' (x; z; ��)
x x2 x' (x; z; ��)

' (x; z; ��) x' (x; z; ��) ' (x; z; ��)
2

35 :
1See Appendix A.
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The expansion (1) can be given an intuitive interpretation by considering an infeasible estima-
tor. Assume that �� is known to the econometrician, and vi = ' (xi; zi; ��) is used in the regres-
sion. Let e denote the resulting OLS estimator of �. The �rst order asymptotic properties ofe� = 1

n

Pn
i=1 (e1 + e2xi + e3' (xi; zi; ��)) can be analyzed using the expansion

p
n
�e� � ��� = 1p

n

nX
i=1

(1� + 2�xi + 3�' (xi; zi; ��)� ��)

+
�
1 E [x] E [' (x; z; ��)]

�p
n (e � �) + op (1)

It can be shown2 that�
1 E [x] E [' (x; z; ��)]

�p
n (e � �) (2)

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1

1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35+ op (1)
Comparing the correction terms (1) and (2) leads us to an interesting conclusion: The in�uence
function for b� is equal to that of the unfeasible estimator e� that ignores the estimation error in the
�rst step, i.e., that in b�!

In order to understand this apparent puzzle, it is convenient to de�ne b (�) = (b1 (�) ; b2 (�) ; b3 (�))
as the OLS estimator with y as the dependent and x and v = '(x; z; �) as the independent variables.
Note that b = b (b�) and e = b (��). Also (�) is the vector of coe¢ cients of the linear projection
of y on 1; x; '(x; z; �). A naïve derivation of the in�uence function of b� would use the following
decomposition

1. Main term that re�ects the uncertainty left if we know � and ��:

1p
n

nX
i=1

(1� + 2�xi + 3�' (xi; zi; ��)� ��)

2. A term that accounts for the sampling variation in b (��) if we know ��:

�
�
1 E [x] E [' (x; z; ��)]

�
G�1

1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35
3. A term that accounts for the sampling variation in b�:

E
�
3�

@' (x; z; ��)

@�

�p
n (b�� ��)

This naïve decomposition is missing one additional term,3 i.e.,

�
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�

1p
n

nX
i=1

 (xi; zi) (3)

2See Appendix A.
3See Appendix A.
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where

G� = E

264 �3� @'(x;z;��)@�

�3�xi @'(x;z;��)@�

�23�' (x; z; ��) @'(x;z;��)@�

375
As shown in Appendix A �G�1 G�

1p
n

Pn
i=1  (xi; zi) is the e¤ect of the sampling variation in b� on

the sampling distribution of b. De�ning 	(�) = E [1 (�) + 2 (�)x+ 3 (�)' (x; z; ��)], we show in
Appendix B that the missing term is asymptotically equivalent to

p
n (	 (b�)�	(��)). The expression

1 (�)+ 2 (�)x+ 3 (�)' (x; z; ��) that appears in the de�nition of 	(�) can be given an interesting
interpretation. It is the linear projection of y on 1; x; ' (x; z; �) when after projection we substitute
' (x; z; ��) for ' (x; z; �). Note that the linear projection of y on 1; x; ' (x; z; �) has coe¢ cients (�).
This speci�es a function of x; ' (x; z; �) that can be evaluated at any value of these arguments and
here we choose the values x; '(x; z; ��). Hence, � plays two roles. First, it determines the functional
form of the projection, here only the coe¢ cients (�), because the projection is restricted to be linear.
Second, � enters in the variables at which the (linear) projection is evaluated, here x; ' (x; z; ��). If
we substitute the estimator b� then the two correction terms that account for the estimation error inb� correspond to these two roles of � and in this example these two correction terms are opposites
so that their sum is 0. The naïve derivation of the in�uence function ignores the e¤ect of � on the
coe¢ cients of the linear projection.

In general the �rst step estimation plays these two distinct roles. The example in this section
was relatively simple because the linear functional relation can be summarized by a �nite dimensional
vector  (�). The challenge to the econometrician is that when the projection is nonparametric, as is
the case when the generated regressor is used in a nonparametric regression, such simplicity disappears.
By separately considering the two roles that sampling variation in the �rst step plays when we evaluate
its e¤ect on the second stage projection, we can properly adjust the in�uence function. In general the
two corresponding correction terms are not opposite as in the simple example considered here.

3 The In�uence Function of Semiparametric Three-Step Estimators

We now present our two main results on semiparametric three-step estimators. In the �rst step we
estimate a regressor. In the second step we estimate a nonparametric regression with the generated
regressor as one of the independent variables. In the third step we estimate a �nite dimensional
parameter (without loss of generality we consider the scalar case) that satis�es a moment condition
that also depends on the nonparametric regression estimated in the second step. We distinguish
between two cases. The �rst result concerns the case where in the �rst step the regressor is estimated
by a parametric method. The second result concerns the case where in the �rst step the regressor is
estimated by a nonparametric method. As was emphasized in the introduction, our characterization
is based on Newey�s (1994) calculation.

3.1 Parametric First Step, Nonparametric Second Step

We assume that we observe i.i.d. observations wi = (yi; xi; zi) ; i = 1; : : : ; n. The �rst step is identical
to that in Section 2, i.e., we have an estimator b� such that pn (b�� ��) = 1p

n

Pn
i=1  (xi; zi) + op (1)

with E [ (xi; zi)] = 0. The parameter vector � indexes a relation between a dependent variable that
is a component of x (and that we later denote by u) and independent variables that are some or all of
the other variables in x and those in z. Either the predicted value (Sections 4 and 5) or the residual
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(Section 6) of this relationship is an independent variable in the second step nonparametric regression.
The notation '(x; z; �) covers both cases. If ' is a residual then both x and ' can enter in the second
step nonparametric regression. The second step is di¤erent from the parametric example, because our
goal is to estimate

� (x; v�) = E [y j x; v�]
where v� = ' (x; z; ��), i.e., we no longer restrict the projection to be linear. Because we do not
observe ��, we use bvi = ' (xi; zi; ; b�) in the nonparametric regression. Our goal is to characterize the
�rst order asymptotic properties of

b� = 1

n

nX
i=1

h (b (xi; ' (xi; zi; b�)))
with b the nonparametric regression of y on x and bv. We can consider b� as the solution of a sam-
ple moment equation that is derived from a population moment equation that depends on � and
�(x; '(x; z; ��)). As will be seen below it matters whether h is linear (as in Section 2) or not.

Using Newey�s (1994) derivative based approach, we express the in�uence function of b� as a sum of
three terms: (i) the main term 1p

n

Pn
i=1 (h (� (xi; ' (xi; zi; ��)))� ��); (ii) a term that adjusts for the

estimation of b, i.e., 1p
n

Pn
i=1 (h (b (xi; ' (xi; zi; ��)))� h (� (xi; ' (xi; zi; ��)))); and (iii) an adjust-

ment related to the estimation of b�, i.e., 1p
n

Pn
i=1 (h ( (xi; ' (xi; zi; b�)))� h (� (xi; ' (xi; zi; ��)))).

The decomposition here is based on the fact that Newey�s approach can be used �term-by-term�.
Therefore, we may without loss of generality assume that � is a scalar.4

The second component in the decomposition can be easily analyzed as in Newey (1994, pp. 1360
�61). It is equal to

1p
n

nX
i=1

E
�
@h (� (xi; v�i))

@�

����xi; v�i� (yi � � (xi; v�i)) + op (1)
=

1p
n

nX
i=1

@h (� (xi; v�i))

@�
(yi � � (xi; v�i)) + op (1)

As in Section 2 we therefore focus on the analysis of the third component

1p
n

nX
i=1

(h ( (xi; ' (xi; zi; b�)))� h (� (xi; ' (xi; zi; ��))))
We de�ne

 (x; v�;�) = E [y j x; ' (x; z; �) = v�]

g (w;�1; �2) = h ( (x; ' (x; z; �1) ;�2))

Note that the two roles that � plays are made explicit in g (w;�1; �2) that is obtained by substituting
v� = '(x; z; �1) in (x; v�;�2). Note also that � (x; v�) =  (x; v�;��).

With these de�nitions, we can now write

1

n

nX
i=1

h ( (xi; ' (xi; zi; b�) ; b�)) = 1

n

nX
i=1

g (xi; zi; b�1; b�2)
4The fact that Newey�s approach can be used �term-by-term� is illustrated with a slightly di¤erent example in

Appendix E.1. There, we consider the case where the moment function includes multiple nonparametric objects, all of
which are obtained by nonparametric regressions with possibly di¤erent independent variables.
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where b�1 = b�2 = b�, but we keep them separate to emphasize the two roles of b�. It is intuitive to deal
with the two roles that b� plays in the expansion by linearization and this amounts to taking partial
derivatives:

1p
n

nX
i=1

(h ( (xi; ' (xi; zi; b�) ; b�))� h ( (xi; ' (xi; zi; ��) ;��))) = 1p
n

nX
i=1

(g (wi; b�; b�)� g (wi; ��; ��))
=

�
E
�
@g (w;��; ��)

@�1

�
+ E

�
@g (w;��; ��)

@�2

��p
n(b�� ��) + op (1)

Therefore we must compute E
h
@g(w;��;��)

@�1

i
and E

h
@g(w;��;��)

@�2

i
. The computation of the �rst

expectation is easy. Because  (x; ' (x; z; �) ;��) = � (x; ' (x; z; �)), we have

E
�
@g (w;��; ��)

@�1

�
= E

�
@h (� (x; ' (x; z; ��)))

@�

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�
The headache is to compute the second expectation. By the chain rule

E
�
@g (w;��; ��)

@�2

�
= E

�
@h (� (x; ' (x; z; ��)))

@�

@ (x; ' (x; z; ��) ;��)

@�

�
(4)

Unfortunately, it is not obvious how to di¤erentiate  (x; ' (x; z; ��) ;�) with respect to �. After all,
 (x; ' (w;��) ;�) has the functional form of E [y j x; ' (x; z; �) = v�] that depends on �.

Theorem 1 (Contribution parametric �rst stage estimator) The adjustment to the in�uence
function that accounts for the �rst stage estimation error is�

E
�
@g (w;��; ��)

@�1

�
+ E

�
@g (w;��; ��)

@�2

��p
n(b�� ��) (5)

= E
�
@2h (� (x; ' (x; z; ��)))

@�2
(y � � (x; ' (x; z; ��)))

@� (x; ' (x; z; ��))

@v

@' (x; z; ��)

@�

�p
n (b�� ��)+op (1) :

Proof of Theorem 1 We compute the right hand side of (4)

E
�
@h (� (x; ' (x; z; ��)))

@�

@ (x; ' (x; z; ��) ;��)

@�

�
We note that  (x; ' (w;�) ; �) solves the minimization problem

min
s
E
h
(y � s (x; ' (x; z; �)))2

i
so that for all square integrable functions s of x; ' (x; z; �)

E [(y �  (x; ' (x; z; �) ;�)) s (x; ' (x; z; �))] = 0

If we choose

s (x; ' (x; z; �)) =
@h (� (x; ' (x; z; �)))

@�

we have for all �

E
�
(y �  (x; ' (x; z; �) ;�)) @h (� (x; ' (x; z; �)))

@�

�
= 0
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We now take the derivative and evaluate it at � = ��. We �nd

E
�
@g (w;��; ��)

@�2

�
= E

�
@(x; '(x; z; ��);��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
=

�E
�
@(x; '(x; z; ��);��)

@v

@'(x; z; ��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
+

E
�
(y �  (x; ' (x; z; ��) ;��))

@2h (� (x; ' (x; z; ��)))

@�2
@� (x; ' (x; z; ��))

@v

@'(x; z; ��)

@�

�
Adding E

h
@g(w;��;��)

@�1

i
and noting that

E
�
@(x; '(x; z; ��);��)

@v

@'(x; z; ��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
=

E
�
@�(x; '(x; z; ��))

@v

@'(x; z; ��)

@�

@h (� (x; ' (x; z; ��)))

@�

�
we �nd the desired result �

Note that the form of the adjustment term implies that if h is linear, then the �rst stage estimation
error has no e¤ect on the variance of the estimator of �. This was illustrated for the fully parametric
case in Section 2.

3.2 Nonparametric First Step, Nonparametric Second Step

We now assume that the �rst step is nonparametric. Again we have a random sample wi = (yi; xi; zi) ; i =
1; : : : ; n. The �rst step projection of one of the components of x, that we denote by u, on some or
all of the other components of x and on z is denoted by v� = '�(x; z). The �rst step is to estimate
this projection by nonparametric regression. In the second step we estimate  (x; v�) = E [y j x; v�]
by nonparametric regression of y on x; bv = b'(x; z). Our interest is to characterize the �rst order
asymptotic properties of

1

n

nX
i=1

h (b (xi; b' (xi; zi)))
We de�ne

� (x; v�) = E [y j x; '�(x; z) = v�]

 (x; v�; v) = E [y j x; ' (x; z) = v�]

g (w; v1; v2; ) = h ( (x; v1; v2))

with v = '(x; z) and with v1 and v2 playing the roles of �1 and �2.
With these de�nitions, we can now write

1

n

nX
i=1

h (b (xi; bv1; bv2)) = 1

n

nX
i=1

g (wi; bv1; bv2; b)
where bv1 = bv2 = bv. We keep them separate to emphasize their di¤erent roles. Our objective is to
approximate

1

n

nX
i=1

g (wi; bv1; bv2; b)� 1

n

nX
i=1

g (wi; v1; v2; )
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For now we assume that  need not be estimated. As in Newey (1994) we consider a path v� indexed
by � 2 R such that v�� = v� . First, using the calculation in the previous section,

E
�
@

@�1
g (w;��; ��; �)

�
+ E

�
@

@�2
g (w;��; ��; �)

�
=

@

@�
E
�
@2h (� (x; v�))

@�2
(y � � (x; v�))

@� (x; v�)

@v
v�

�
we obtain that

@E [h ( (x; v�; v�))]
@�

����
�=��

=
@E [D (w; v�)]

@�

for

D (w; v�) =
@2h (� (x; v�))

@�2
(y � � (x; v�))

@� (x; v�)

@v
v�:

which is linear in v�. Second, for

�1 (x; z) = E
�
@2h (� (x; '�(x; z)))

@�2
(y � � (x; '�(x; z)))

@� (x; '�(z))

@v

����x; z� :
we have that for any v = '(x; z)

E [D (w; v)] = E [�1 (x; z)'(x; z)]

The variables x in �1(x; z) (and the conditioning variables in the expectation) are the variables in
the subvector of x that enters '(z; x) so that we average over the variables in x that do not enter in
'(z; x).

By Newey (1994) Proposition 4 these two facts imply that the adjustment to the in�uence function
is equal to

�1 (xi; zi) (ui � E [u j xi; zi]) = �1 (xi; zi) (ui � '�(xi; zi))
with u the component of of x that is projected on x; z.

We summarize the result in a theorem:

Theorem 2 (Contribution nonparametric �rst stage estimator) The adjustment to the in�u-
ence function that accounts for the �rst stage estimation error is

1p
n

nX
i=1

�1 (xi; zi) (ui � '�(xi; zi))

with '�(x; z) = E[ujx; z] and

�1 (x; z) = E
�
@2h (� (x; '�(x; z)))

@�2
(y � � (x; '�(x; z)))

@� (x; '�(x; z))

@v

����x; z�
Finally we consider the adjustment for the estimation of . This is essentially about the adjustment

to the in�uence function for
1

n

nX
i=1

h (b (xi; v�i))
Armed with Newey (1994, pp. 1360 �61), we can easily conclude that the adjustment to the in�uence
function is equal to

�2 (xi; v�i) (yi � E [y j xi; v�i])
where

�2 (x; v�) = E
�
@h (� (x; v�))

@�

����x; v�� = @h (� (x; v�))

@�

9



4 The Olley and Pakes Estimator

We consider a simpli�ed version of the production function estimator of Olley and Pakes (1996).
The simpli�cation is that we assume that �rms cannot close and we also ignore �rm ageing. The
Cobb-Douglas production function for �rm i in period t is

yit = �0 + �kkit + �llit + !it + �it

E[!itjkit; !i;t�1] = g(!i;t�1)

!it = ht (iit; kit)

with kit; lit the capital and labor inputs, respectively, !it a productivity index that follows a �rst-order
Markov process, and iit investment. The third equation is the inverse of the �rm�s optimal investment
choice in period t. Substitution of the third equation in the �rst gives (from now on we omit i)

yt = �llt + �t (it; kt) + �t

�t (it; kt) = �0 + �kkt + !t = �0 + �kkt + ht (it; kt)

Olley and Pakes suggest the following three step estimator for �k. In the �rst step �l and �t
are estimated by standard methods for partially linear models, where �l and �t are identi�ed as the
minimizers of

E
�
(yt � �llt � �t (it; kt))2

�
This minimization proceeds in two steps: �rst, for given �l the function is minimized at �t (it; kt) =
�1(it; kt) � �l�2(it; kt) with �1(it; kt) = E [ytj it; kt] and �2(it; kt) = E [ ltj it; kt]. Substitution and
minimization over �l identi�es that parameter. Because �t minimizes an objective function, the
sampling variation of its estimator has no e¤ect on the asymptotic distribution of the estimator of �l.
This is shown in general by Newey (1994), pp. 1357-58.

By the Markov assumption on the productivity index we have

E [yt+1 � �llt+1j kt+1] = �0 + �kkt+1 + E [!t+1j!t; kt+1] = �0 + �kkt+1 + g (!t)

De�ning the forecasting error �t+1 = !t+1 � E [!t+1j!t; kt+1] = !t+1 � g(!t) we have

yt+1 � �llt+1 = �kkt+1 + g (�t(it; kt)� �kkt) + �t+1 + �t+1

where �0 has been absorbed in g. The �k and g are identi�ed as the minimizers of

E
h
(yt+1 � �llt+1 � �kkt+1 � g (�t(it; kt)� �kkt))2

i
with respect to (�; g) where we substitute �l and �t(it; kt) that were identi�ed in the �rst step. Hence
the parameters in the �rst step are (�l; �t), the second step nonparametric regression function is g and
the parameter that is estimated in the third step is �k.

Although it seems that �k and g are estimated jointly, we have the same structure as in a partially
linear model, so that we �rst minimize over g for given �k. The solution is g (�t(it; kt)� �kkt) =
1(�t(it; kt)��kkt)��k2(�t(it; kt)��kkt) with 1(�t(it; kt)��kkt) = E [yt+1 � �llt+1j�t(it; kt)� �kkt]
and 2(�t(it; kt) � �kkt) = E[kt+1j�t(it; kt) � �kkt]. In estimation the conditional expectations are
replaced by nonparametric regressions. Upon substitution the criterion function depends on �k only,
and the estimator of �k is just the nonlinear least squares estimator. Just as for the partial linear model

10



by Newey (1994), pp. 1357-58 the estimation error in g has no e¤ect on the asymptotic distribution
of �k.5

If we have a random sample (yi;t+1; yit; ki;t+1; kit; li;t+1; lit; iit); i = 1; : : : ; n, then

p
n(�̂k � �k�) =

1p
n

nX
i=1

�
yi;t+1 � b�lli;t+1 � �k�ki;t+1 � bg �b�t(iit; kit)� �k�kit���ki;t+1 � bg0 �b�t(iit; kit)� �k�kit� kit�+op(1)

with

b�t(iit; kit) = b�1(it; kt)� b�lb�2(it; kt)
bg �b�t(iit; kit)� �k�� = b1 �yi;t+1 � b�lli;t+1��� b�t(iit; kit)� �k�kit�� �k�b2 �ki;t+1jb�t(iit; kit)� �k�kit�

bg0 �b�t(iit; kit)� �k�� =
b01 hyi;t+1 � b�lli;t+1��� b�t(iit; kit)� �k�kiti��k�b02[ki;t+1jb�t(iit; kit)��k�kit]�b2[ki;t+1jb�t(iit; kit)��k�kit]
where b01; b02 denote the derivatives of the nonparametric regression estimators. This estimator �ts
into the setup in Section 3 if we set zi = (iit; kit; lit), xi = (yit; ki;t+1; li;t+1) and yi = yi;t+1.

Noting that �rst stage nonparametric estimator b�t(iit; kit) appears as an argument in the second
stage nonparametric regression estimators in ĝ, it plays the two roles discussed earlier, so that we can
derive the in�uence function as in Section 3 with the only added complication that besides nonpara-
metric regression estimators their derivatives appear in the second stage, which in this case does not
matter, because the estimator g is an extremum estimator.

5 Regression on the Estimated Propensity Score

There has been an ongoing debate on the role of the propensity score in the e¢ cient estimation
of the Average Treatment E¤ect (ATE) of an intervention. Since Hahn (1998) derived the semi-
parametric e¢ ciency bound for the ATE, there is a clear target for any proposed (semiparametric)
estimator. Let y0; y1 denote the potential outcomes, d the treatment indicator, y = dy1 + (1 � d)y0
the observed outcome and x a vector of covariates. As shown by Rosenbaum and Rubin (1983)
unconfounded assignment, i.e., y1; y0 ? djx, implies that y1; y0 ? dj' (x) with ' (x) = Pr(d =
1jx). As a consequence the ATE given x can be identi�ed by E [yjd = 1; x] � E [yjd = 0; x] or by
E [yjd = 1; ' (x)]�E [yjd = 0; ' (x)]. These observations have led to a large number of estimators that
can be classi�ed into three groups. The most popular are the matching estimators that estimate the
ATE given x or given ' (x) by averaging outcomes over units with a �similar� value of x or ' (x)
(and subsequently average over the distribution of x or ' (x) to estimate the ATE). Abadie and Im-
bens (2009a), (2009b) are recent contributions. They show that matching estimators that have an

5More speci�cally, Newey (1994), p. 1357 considered the two step estimation where the second step is given by

m (z; �; h) =
@q (z; �; h)

@�

h (F ) = argmaxeh EF
h
q
�
z; �;eh�i

Here because the q depends on �, this parameter is also one of the arguments of h. He goes and concludes that, for this
problem where � and h are simultaneous determined, the estimation error due to h is asymptotically irrelevant.
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asymptotic distribution that is notoriously di¢ cult to analyze, are not asymptotically e¢ cient. The
second class of estimators do not estimate the ATE given x or ' (x) but use the propensity scores as
weights Hahn�s (1998) estimator and that of Hirano, Imbens and Ridder (2003) are examples of such
estimators. These estimators are asymptotically e¢ cient, which suggests that the propensity score is
needed to achieve e¢ ciency. The third class of estimators use nonparametric regression to estimate
E [yjd = 1; x] ;E [yjd = 0; x] or E [yjd = 1; ' (x)] ;E [yjd = 0; ' (x)]. Of these estimators the estimator
based on E [yjd = 1; x] ;E [yjd = 0; x] is known to be asymptotically e¢ cient, which suggests that there
is no role for the propensity score. The missing result is that for the estimator that uses nonparametric
regression on a propensity score that is estimated in a preliminary step. This estimator that was sug-
gested and analyzed by Heckman, Ichimura, and Todd (1998) �ts into our framework and is analyzed
here. Our conclusion is that it has the same asymptotic variance as the imputation estimator, so that
there is no e¢ ciency gain in using the propensity score. This should settle the issue whether there is
a role for the propensity score in achieving semiparametric e¢ ciency. That does not mean that there
is no role for the propensity score in assessing the identi�cation or in the small sample performance
of ATE estimators.

The objective function for the estimator based on a regression on the propensity score has a
structure to which the results in Section 3 do not apply directly, but the basic approach can be easily
adapted.

5.1 Parametric First Step, Nonparametric Second Step

We have a random sample wi = (yi; xi; di) ; i = 1; : : : ; n. In the �rst step, we estimate b� such that
p
n (b�� ��) = 1p

n

nX
i=1

 (di; xi) + op (1)

with E [ (di; xi)] = 0. In the second step, we estimate

 (v�) = (E [y j v�; d = 1] ;E [y j v�; d = 0])0 ;

where v� = ' (xi; ��) is the parametrization of the propensity score. Because we do not observe ��,
we use bv = ' (xi; b�) for the nonparametric regression.

Our interest is to characterize the �rst order asymptotic properties of

b� = 1

n

nX
i=1

(b1 (' (xi; b�))� b0 (' (xi; b�)))
In the setup of Section 3 we have zi = xi, xi = di, yi = yi and the �rst step parameter is �, the second
step parameters are 1; 2 and the third step parameter is the ATE �. To derive the in�uence function
for the ATE, we de�ne

� (v�) = (E [y j d = 1; v�] ;E [y j d = 0; v�])0

 (v�;�) = (E [y j d = 1; ' (x; �) = v�] ;E [y j d = 0; ' (x; �) = v�])0

m (' (x; �1) ; �2; ) = 1 (' (x; �1) ;�2)� 2 (' (x; �1) ;�2)

Note that we have � (v�) =  (v�;��).
With these de�nitions, we can now write

b� = 1

n

nX
i=1

m (' (xi; b�1) ; b�2; b)
12



where b�1 = b�2 = b�. We keep them separate for accounting purposes, i.e., to indicate the two roles
that �̂ plays.

We determine the contribution of b�1, b�2 and ̂ to the in�uence function separately. The contribu-
tion of b that can be derived using Newey (1994) is given in Appendix D, so we focus on characterizing
the adjustment of the in�uence function that re�ects the contributions of b�1 and b�2. In Lemmas 1
and 2 we show that that contribution is equal to

�E
��
E [yjx; d = 1]� �1 ('(x; ��)

' (w;��)
+
E [yjx; d = 0]� �2 ('(x; ��)

1� ' (w;��)

�
@' (x;��)

@�

�p
n(b�� ��)

Lemma 1

E
�
@

@�
m (' (x; ��) ; ��; )

�
=E

�
@

@�1
m (' (x; ��) ; ��; )

�
+ E

�
@

@�2
m (' (x; ��) ; ��; )

�
= E

��
@�1 (' (x;��))

@v
� @�2 (' (x;��))

@v

�
@' (x;��)

@�1

�
+ E

�
@1 (' (x;��) ;��)

@�2
� @2 (' (x;��) ;��)

@�2

�
Lemma 2

E
��

@�1 (' (x;��))

@v
� @�2 (' (x;��))

@v

�
@' (x;��)

@�1

�
+ E

�
@1 (' (x;��) ;��)

@�2
� @2 (' (x;��) ;��)

@�2

�
= �E

��
E [yjx; d = 1]� �1 (' (x;��))

' (x;��)
+
E [yjx; d = 0]� �2 (' (x;��))

1� ' (x;��)

�
@' (x;��)

@�

�
Proof See Appendix C.

5.2 Nonparametric First Step, Nonparametric Second Step

The setup is as in the previous section. The only di¤erence is that the propensity score Pr(d = 1jx) =
'� (x) = v� is nonparametric. We de�ne for v = '(x)

 (v�; v) = (E [y j d = 1; ' (x) = v�] ;E [y j d = 0; ' (x) = v�])0

m (v1; v2; ) = 1 (v1; v2)� 2 (v1; v2)

Note that  (v1; v2) solves the minimization problem

min
s1;s2

E
h
d (y � s1 (' (x)))2 + (1� d) (y � s2 (' (x)))2

i
so that for all (es1 (' (x)) ; es2 (' (x)))

E [d (y � 1 (' (x) ;')) es1 (' (x)) + (1� d) (y � 2 (' (x) ;')) es2 (' (x))] = 0
If we choose

es1 (' (x)) = 1

' (x)

es2 (' (x)) = � 1

1� ' (x)

13



we �nd

E
�
dy

' (x)
� (1� d) y
1� ' (x)

�
= E

�
d1 (' (x) ; v)

' (x)
� (1� d) 2 (' (x) ; v)

1� ' (x)

�
We will now consider a path '� with '�� = '�. Using Lemma 2, we obtain

E
�
@

@�
m (' (x; ��) ; ��; )

�
= � @

@�
E
��
E [yjx; d = 1]� �1 ('� (x))

'� (x)
+
E [yjx; d = 0]� �0 ('� (x))

1� '� (x)

�
' (x)'�

�
and the expectation on the right hand side is linear in '�. As in Section 3.2, Proposition 4 of Newey
(1994) implies that the adjustment to the in�uence function for the estimation of ' is

�
�
E [yjx; d = 1]� E [yj'� (x) ; d = 1]

'� (x)
+
E [yjx; d = 0]� E [yj'� (x) ; d = 0]

1� '� (x)

�
(d� '� (x))

which can be alternatively written as

� E [yjx; d = 1]� E [yj'� (x) ; d = 1]
'� (x)

d+ (E [yjx; d = 1]� E [y j'� (x) ; d = 1])

+
E [yjx; d = 0]� E [yj'� (x) ; d = 0]

1� '� (x)
(1� d)� (E [yjx; d = 0]� E [yj'� (x) ; d = 0]) (6)

To obtain the complete in�uence function of b� we need the contribution of the estimation error inb. This contribution is derived in Appendix D and is equal to
(E [yj'� (x) ; d = 1]� E [yj'� (x) ; d = 0]� ��)+ (7)

d

'� (x)
(y � E [yj'� (x) ; d = 1])�

1� d
1� '� (x)

(y � E [yj'� (x) ; d = 0])

Adding (6) and (7), we obtain the in�uence function of the estimator based on regressions on the
estimated propensity score:

(E [yjx; d = 1]� E [yjx; d = 0]� ��) +
d

'� (x)
(y � E [yjx; d = 1])� 1� d

1� '� (x)
(y � E [yjx; d = 0])

which is the in�uence function of the e¢ cient estimator and also that of the imputation estimator

b�I = 1

n

nX
i=1

(bh1(xi)� bh2(xi))
with h1 (x) = E[yjx; d = 1]; h2 (x) = E[yjx; d = 0]. The imputation estimator involves nonparametric
regressions on x and not on the estimated propensity score. However these two estimators have the
same in�uence function which shows that regressing on the nonparametrically estimated propensity
score does not result in an e¢ ciency gain.
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5.3 Approximating the In�uence Function for the Nonparametric First Step with
a Parametric First Step

We assume that
'� (x) = E [djx] = p (x)0 �� = '(x; ��)

where p (x) is a large but still �nite dimensional vector valued function of x. We can think of this
expression as a series approximation with basis functions p (x). The in�uence function for the least
squares estimator of � is

p
n (b�� �) = pn �E �p (x) p (x)0���1 p (x) (d� '� (x)) (8)

Using the result in subsection 5.1, we can see that the adjustment to the in�uence function for the
�rst step estimation is

� E
��
E [yjx; d = 1]� E [yj' (x; ��) ; d = 1]

' (x; ��)
+
E [yjx; d = 0]� E [yj' (x; ��) ; d = 0]

1� ' (x; ��)

�
@' (x; ��)

@�0

�p
n (b�� �)

= �E
�
	(x) p (x)0

�p
n (b�� �) (9)

where

	(x) =
E [yjx; d = 1]� E [yj' (x; ��) ; d = 1]

' (x; ��)
+
E [yjx; d = 0]� E [yj' (x; ��) ; d = 0]

1� ' (x; ��)

for simplicity. Combining (8) and (9), we conclude that the adjustment to the in�uence function can
be written as

�E
�
	(x) p (x)0

� �
E
�
p (x) p (x)0

���1
p (x) (d� '� (x)) (10)

Now
�
E
�
p (x) p (x)0

���1 E [p (x)	 (x)] are the coe¢ cients of the linear projection of 	(x) on p (x). In
other words, we can write

p (x)0
�
E
�
p (x) p (x)0

���1 E [p (x)	 (x)] = � (	 (x)j p (x))
where �( �j p (x)) denotes the projection on the linear space spanned by p (x). If the dimension of
p (x) is su¢ ciently large, then approximately �(	 (x)j p (x)) � E [	 (x)jx] = 	 (x). It follows that
the adjustment to the in�uence function in (10) is

� E
�
	(x) p (x)0

� �
E
�
p (x) p (x)0

���1
p (x) (d� '� (x))

� �	(x) (d� '� (x))

= �
�
E [yjx; d = 1]� E [yj'� (x) ; d = 1]

'� (x)
+
E [yjx; d = 0]� E [yj'� (x) ; d = 0]

1� '� (x)

�
(d� '� (x))

which is the result in the previous section.

6 A Semiparametric Control Variable Estimator

Hahn, Hu and Ridder (2008) consider a model that is nonlinear in a mismeasured independent vari-
able. The details of their model are not important here. For our purpose it su¢ ces to note that
their estimator uses a control variable and the asymptotic analysis requires dealing with a generated
regressor in a V-statistic. Because of the V-statistic structure, the results in Section 3 do not apply
directly, but the basic approach can be easily modi�ed. Suppose that an econometrician observes a
random sample wi = (yi; xi; zi) ; i = 1; : : : ; n, and an estimator of a parameter � has the following
three steps:
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1. Estimate a �nite dimensional parameter b� by nonlinear least squares of x on  (z; �) and obtain
the residuals bv = x�  (z; b�) = '(x; z; �̂) that are our generated regressors.

2. Estimate �(x; v�) = E [y j x; v�] nonparametrically using the sample (yi; xi; bvi) ; i = 1; : : : ; n. Call
the estimator b�(x; bv). Let L (x) = Ev� [�(x; v�)] and bL (x) = 1

n

Pn
j=1 b�(x; bvj).

3. Assume that L (x) = R (x; ��) for a known function R and de�ne b� as the solution of the
minimization problem

min
�

1

n

nX
i=1

1C (xi)
�bL (xi)�R (xi; �)�2

for some set C. In the sequel we will ignore the indicator function 1C for simplicity.

Let b� denote the solution to the preceding minimization problem, which solves the moment con-
dition

0 =
1

n

nX
i=1

�bL (xi)�R�xi; b��� @R
�
xi; b��
@�

:

Characterization of asymptotic distribution of b� requires characterization of the in�uence function of
1p
n

nX
i=1

�bL (xi)� L (xi)� r (xi) ;
where r (xi) = @R (xi; ��)/ @�. We de�ne

' (x; z; �) = x�  (z; �)
 (x; v�;�) = E [y j x; ' (x; z; �) = v�]

g (x; �1; �2; ; Fxz) =

Z
 (x; ' (~z; �1) ;�2) r (x) dFxz(~z)

where an integral with respect to bFxz is just an average over x; z. Note that because of the V statistic
structure we integrate with respect to the distribution of x; z that appear in '(x; z). To distinguish
this from the x over which we average separately, we use the notation ~z = (x; z).

With these de�nitions, we can now write

1

n

nX
i=1

bL (xi) r (xi) = 1

n

nX
i=1

g
�
wi; b�1; b�2; b; bFxz� ;

where b�1 = b�2 = b� but written separately for accounting purposes. As in Section 4, we will evaluate
the adjustment to the in�uence function term-by-term, i.e. one parameter at a time with the other
parameters at their population values. The contribution of b and bFxz can be derived as in Newey
(1994) and by the V-statistic projection theorem, respectively, and we concentrate on the contribution
of b�.

For the contribution of b�1 we compute
Ex
�Z

@

@�
 (x; ' (~z; �) ;��) r (x) dFxz(~z)

�����
�=��

= Ex
�Z

@

@�
� (x; ' (~z; �)) r (x) dFxz(~z)

�
= �Ex

�Z
@� (x; ' (~z; ��))

@v

�
�@ (~z; ��)

@�

�
r (x) dFxz(~z)

�
� �1
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To obtain the contribution of b�2 we �rst observe that
Ex
�Z

 (x; ' (~z; ��) ;�) r (x) dFxz(~z)

�
=

Z Z
 (x; v�;�) r (x)

f (x) f (v�)

f (x; v�)
f (x; v�) dxdv�

= E
�
 (x; v�;�) r (x)

f (x) f (v�)

f (x; v�)

�
Because  (x; ' (x; z; �1) ;�2) solves the minimization problemmins E

h
(y � s (x; ' (x; z; �1)))2

i
so that

0 = E [(y �  (x; ' (x; z; �1) ;�2)) s (x; ' (x; z; �1))]

for all square integrable function s (x; ' (x; z; �1)). In particular, we should have

0 = E
�
(y �  (x; ' (x; z; �1) ;�2)) r (x)

f (x) f (' (x; z; �1))

f (x; ' (x; z; �1))

�
;

which we di¤erentiate with respect to � and evaluate at � = �� to obtain

E
�
@ (x; v�;��)

@�2
r (x)

f (x) f (v�)

f (x; v�)

�
= E

�
(y �  (x; v�;��)) r (x)

@

@v

�
f (x) f (v�)

f (x; v�)

�
@' (x; z; ��)

@�1

�
� E

�
@ (x; v�;��)

@v
r (x)

@' (x; z; ��)

@�1

f (x) f (v�)

f (x; v�)

�
We therefore obtain

@

@�
E
�
 (x; v�;��)

f (x) f (v�)

f (x; v�)

�
= �E

�
(y � � (x; v�)) r (x)

@

@v

�
f (x) f (v�)

f (x; v�)

�
@ (z; ��)

@�

�
+ E

�
@� (x; v�)

@v
r (x)

@ (z; ��)

@�

f (x) f (v�)

f (x; v�)

�
= �2

The contribution of the �rst step estimation to the in�uence function is then

(�1 + �2)
p
n(b�� ��)

7 Conclusion

We studied the asymptotic distribution of three step estimators of a �nite dimensional parameter
vector where the second step consists of one or more nonparametric regressions on a regressor that is
estimated in the �rst step. The �rst step estimator is either parametric or nonparametric. Although
we heavily use Newey�s (1994) approach and no results beyond that paper are needed, the application
of those results in the type of three step estimators that we consider is not trivial. Published results
not always seem to account for the �rst step estimation in the proper way. The three examples that
we study in detail are interesting in their own right, but it should be emphasized that our results can
easily be adapted to other three step estimators.
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Appendix

A Proof of (1)

We �rst examine the adjustment to the in�uence function of b to account for the estimation error ofb�. Noting that b is an M-estimator corresponding to the population moment equation
E

2664
y � 1 � 2x� 3' (x; z; �)

x (y � 1 � 2x� 3' (x; z; �))
' (x; z; �) (y � 1 � 2x� 3' (x; z; �))

 (x; z)� �

3775 = 0
we obtain upon linearizing the corresponding sample moment equation and upon solving for

p
n(b��)

p
n (b � �) = �G�1 1p

n

nX
i=1

0@24 "i
xi"i

' (xi; zi; ��) "i

35+G� (xi; zi)
1A+ op (1)

where
"i = yi � 1� � 2�xi � 3�' (xi; zi; ��)

G = �E

24 1 x ' (x; z; ��)
x x2 x' (x; z; ��)

' (x; z; ��) x' (x; z; ��) ' (x; z; ��)
2

35
and

G� = �E

264 3�
@'(x;z;��)

@�

3�x
@'(x;z;��)

@�

23�' (x; z; ��)
@'(x;z;��)

@�

375
Likewise, we obtain from the population moment equation

E

24 y � 1 � 2x� 3' (x; z; ��)
x (y � 1 � 2x� 3' (x; z; ��))

' (x; z; ��) (y � 1 � 2x� 3' (x; z; ��))

35 = 0
that

p
n (e � �) = �G�1 1p

n

nX
i=1

24 "i
xi"i

' (wi; ��) "i

35+ op (1)
It follows that

� =�
�
1 E [x] E [' (x; z; ��)]

�
G�1

1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35
�
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�

1p
n

nX
i=1

 (xi; zi)

+ E
�
3�

@' (x; z; ��)

@�

�
1p
n

nX
i=1

 (xi; zi)
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Now note that

�
�
1 E [x] E [' (x; z; ��)]

�
G�1

=
�
1 E [x] E [' (x; z; ��)]

�0@E
24 1 x ' (x; z; ��)

x x2 x' (x; z; ��)

' (x; z; ��) x' (x; z; ; ��) ' (x; z; ��)
2

351A�1

=
�
1 0 0

�
and therefore,

E
�
3�

@' (x; z; ��)

@�

�
�
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�

= E
�
3�

@' (x; z; ��)

@�

�
+
�
1 0 0

�
E

264 �3� @'(x;z;��)@�

�3�x@'(x;z;��)@�

�23�' (x; z; ��) @'(x;z;��)@�

375
= 0

It follows that

� = �
�
1 E [x] E [' (x; z; ��)]

�
G�1

1p
n

nX
i=1

24 "i
xi"i

' (xi; zi; ��) "i

35 :
B Interpretation of (3)

In order to understand the additional term

�
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�

1p
n

nX
i=1

 (xi; zi) ;

we examine

(1 (b�) + 2 (b�)E [x] + 3 (b�)E [' (x; z; ��)])� (1 (��) + 2 (��)E [x] + 3 (��)E [' (x; z; ��)])
=
�
1 E [x] E [' (x; z; ��)]

�
( (b�)�  (��))

Because  (�) is de�ned by the moment equation

E

24 y � 1 (�)� 2 (�)x� 3 (�)' (x; z; �)
x (y � 1 (�)� 2 (�)x� 3 (�)' (x; z; �))

' (x; z; �) (y � 1 (�)� 2 (�)x� 3 (�)' (x; z; �))

35 = 0
which holds for all �, we can use the implicit function theorem to derive

@ (�)

@�
= �G�1 G�

It follows that

@

@�
(1 (�) + 2 (�)E [x] + 3 (�)E [' (x; z; ��)]) =

�
1 E [x] E [' (x; z; ��)]

� @ (�)
@�

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�
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so that
p
n (	(b�)�	(��)) = pn � 1 E [x] E [' (x; z; ��)]

�
( (b�)�  (��))

=
�
1 E [x] E [' (x; z; ��)]

� @ (��)
@�

p
n (b�� ��)

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�

p
n (b�� ��)

= �
�
1 E [x] E [' (x; z; ��)]

�
G�1 G�

1p
n

nX
i=1

 (xi; zi)

C Proof of Lemmas in Section 5

Proof of Lemma 1

E
�
@

@�
m (' (x; ��) ; ��; )

�
=E

�
@

@�1
m (' (x; ��) ; ��; )

�
+ E

�
@

@�2
m (' (x; ��) ; ��; )

�
= E

�
@

@�
(1 (' (x; �1) ;��)� 2 (' (x; �1) ;��))

�����
�1=��

+ E
�
@

@�
(1 (' (x; ��) ;�2)� 2 (' (x; ��) ;�2))

�����
�2=��

= E
��

@�1 (' (x;��))

@v
� @�2 (' (x;��))

@v

�
@' (x;��)

@�

�
+ E

"
@1 (' (x;��) ;�2)

@�2

����
�2=��

� @2 (' (x;��) ;�2)

@�2

����
�2=��

#

Proof of Lemma 2 Note that  (' (x; �) ;�) solves the minimization problem

min
s1;s2

E
h
d (y � s1 (' (x; �)))2 + (1� d) (y � s2 (' (x; �)))2

i
so that

E [d (y � 1 (' (x; �) ;�)) es1 (' (x; �)) + (1� d) (y � 2 (' (x; �) ;�)) es2 (' (x; �))] = 0
for all functions (es1 (' (x; �)) ; es2 (' (x; �)))0. In particular, this should hold for

es1 (' (x; �)) = 1

' (x; �)

es2 (' (x; �)) = � 1

1� ' (x; �)
or

E
�

dy

' (x; �)
� (1� d) y
1� ' (x; �)

�
= E

�
d1 (' (x; �) ;�)

' (x; �)
� (1� d) 2 (' (x; �) ;�)

1� ' (x; �)

�
(11)

Noting that

E
�

dy

' (x; �)

�
= E

�
E [dyjx]
' (x; �)

�
= E

�
E [djx]E [yjx; d = 1]

' (x; �)

�
= E

�
' (x; ��)E [yjx; d = 1]

' (x; �)

�
;

20



we obtain
@

@�
E
�

dy

' (x; �)

�����
�=��

= �E
�
E [yjx; d = 1]
' (x; ��)

@' (x; ��)

@�

�
(12)

Analogously we obtain

@

@�
E
�
(1� d) y
1� ' (x; �)

�����
�=��

= E
�
E [yjx; d = 0]
1� ' (x; ��)

@' (x; ��)

@�

�
(13)

Combining (12) and (13), we have

@

@�
E
�

dy

' (x; �)
� (1� d) y
1� ' (x; �)

�����
�=��

= �E
��
E [yjx; d = 1]
' (x; ��)

+
E [yjx; d = 0]
1� ' (x; ��)

�
@' (x; ��)

@�

�
(14)

Now we note that
@

@�
E
�
d1 (' (x; �) ;�)

' (x; �)

�����
�=��

= E
�
@

@�

�
' (x; ��) 1 (' (x; �) ;�)

' (x; �)

������
�=��

= E
�
@1 (' (x; ��) ;��)

@v

@' (x; ��)

@�1

�
+ E

�
@1 (' (x; ��) ;��)

@�2

�
� E

�
1 (' (x; ��) ;��)

' (x; ��)

@' (x; ��)

@�1

�
(15)

and likewise
@

@�
E
�
(1� d) 2 (' (x; �) ;�)

1� ' (x; �)

�����
�=��

= E
�
@2 (' (x; ��) ;��)

@v

@' (x; ��)

@�1

�
+ E

�
@2 (' (x; ��) ;��)

@�2

�
+ E

�
2 (' (x; ��) ;��)

1� ' (x; ��)
@' (x; ��)

@�1

�
(16)

Combining (15) and (16), we obtain

@

@�
E
�
d1 (' (x; �) ;�)

' (x; �)
� (1� d) 2 (' (x; �) ;�)

1� ' (x; �)

�����
�=��

= E
��

@�1 (' (x; ��))

@v
� @�2 (' (x; ��))

@v

�
@' (x; ��)

@�1

�
+ E

�
@1 (' (x; ��) ;��)

@�2
� @2 (' (x; ��) ;��)

@�2

�
� E

��
E [yj' (x; ��) ; d = 1]

' (x; ��)
+
E [yj' (x; ��) ; d = 0]

1� ' (x; ��)

�
@' (x; ��)

@�1

�
(17)

By (11) the left hand side of (17) is equal to the right hand side of (14), and upon substitution and
rearranging the resulting expression we conclude that

E
��

@�1 (' (x; ��))

@v
� @�2 (' (x; ��))

@v

�
@' (x; ��)

@�1

�
+ E

�
@1 (' (x; ��) ;��)

@�2
� @2 (' (x; ��) ;��)

@�2

�
= �E

��
E [yjx; d = 1]� E [yj' (x; ��) ; d = 1]

' (x; ��)
+
E [yjx; d = 0]� E [yj' (x; ��) ; d = 0]

1� ' (x; ��)

�
@' (x; ��)

@�1

�
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D The In�uence Function of the Imputation Estimator

The ATE is
�� = E [h1 (x)� h2 (x)]

with

h1 (x) = E [yj d = 1; x]
h2 (x) = E [yj d = 0; x]

The ATE satis�es the moment equation

0 = E [m (x; ��; h1; h2)]

where
m (x; ��; h1; h2) = h1 (x)� h2 (x)� ��

The imputation estimator for the ATE is

b� = 1

n

nX
i=1

�bh1 (xi)� bh2 (xi)�
We are interested in

1p
n

nX
i=1

�bh1 (xi)� bh2 (xi)�
so that we need to consider

E[D (x)0 h (x)]

with D (x) = (1;�1)0 and D (x)0 h (x) is linear in h.
Following Newey (1994) de�ne a path indexed by the scalar parameter � for the distribution of

(y; d; x) with density f(�; �) where f(�; 0) = f(�) the population density of (y; d; x). If E� denotes an
expectation with respect to the distribution with density f(x; �), then we de�ne the corresponding
paths for the projections h1(x; �) = E�[yjx; d = 1] and h2(x; �) = E�[yjx; d = 0]. The path h(x; �) is
the minimizer of a single objective function

E�
�
d
�
y � eh1 (x)�2 + (1� d)�y � eh2 (x)�2�

so that the following orthogonality condition holds

E�
h
d (y � h1 (x; �)))eh1 (x) + (1� d) (y � h2 (x; �))eh2 (x)i = 0

for all functions
�eh1 (x) ;eh2 (x)�0. Choose �eh1 (x) ;eh2 (x)� = � 1

'�(x)
;� 1

1�'�(x)

�
, i.e.,

E�
�

d

'� (x)
(y � h1 (x; �))�

1� d
1� '� (x)

(y � h2 (x; �))
�
= 0 (18)

or

E�
�

d

'� (x)
y � 1� d

1� '� (x)
y

�
= E�

�
d

'� (x)
h1 (x; �)�

1� d
1� '� (x)

h2 (x; �)

�
(19)

= E� [h1 (x; �)� h2 (x; �)]
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The �nal expression is useful to compute the derivative as in Newey (1994), equation (4.5). By the
chain rule (evaluate the derivatives at � = 0)

@E�
h

d
'�(x)

g1 (x; �)� 1�d
1�'�(x)g2 (x; �)

i
@�

=
@E�

h
d

'�(x)
h1 (x)� 1�d

1�'�(x)h2 (x)
i

@�

+
@E
h

d
'�(x)

h1 (x; �)� 1�d
1�'�(x)h2 (x; �)

i
@�

where we use the fact that the derivative of the projection paths at � = 0 are equal to h1; h2. Therefore
combining this with the result above

@E
�
D (x)0 h(x; �)

�
@�

=
@E [h1 (x; �)� h2 (x; �)]

@�

=
@E
h

d
'�(x)

h1 (x; �)� 1�d
1�'�(x)h2 (x; �)

i
@�

=
@E�

h
d

'�(x)
h1 (x; �)� 1�d

1�'�(x)h2 (x; �)
i

@�
�
@E�

h
d

'�(x)
h1 (x)� 1�d

1�'�(x)h2 (x)
i

@�

=
@

@�

�
E�
�

d

'� (x)
y � 1� d

1� '� (x)
y

�
� E�

�
d

'� (x)
h1 (x)�

1� d
1� '� (x)

h2 (x)

��
so that at � = 0

@E
�
D (x)0 h(x; �)

�
@�

=
@

@�
E�
�

d

'� (x)
(y � h1 (x))�

1� d
1� '� (x)

(y � h2 (x))
�

= E
��

d

'� (x)
(y � h1 (x))�

1� d
1� '� (x)

(y � h2 (x))
�
S (y; d; x)

�
;

with S(�) = @ ln f(�;�)
@�

���
�=0
. Therefore the adjustment to the in�uence function is

d

'� (x)
(y � h1 (x))�

1� d
1� '� (x)

(y � h2 (x))

and the in�uence function of the imputation estimator is

(h1 (x)� h2 (x)� ��) +
d

'� (x)
(y � h1 (x))�

1� d
1� '� (x)

(y � h2 (x)) (20)

so this estimator is e¢ cient.
The ATE is also equal to

�� = E [h1 ('� (x))� h2 ('� (x))]
with

h1 (x) = E [yj d = 1; '� (x)]
h2 (x) = E [yj d = 0; '� (x)]

so that the same argument as above shows that the in�uence of the imputation estimator that uses
regressions on the population propensity score is

(h1 ('� (x))� h2 ('� (x))� ��) +
d

'� (x)
(y � h1 ('� (x)))�

1� d
1� '� (x)

(y � h2 ('� (x))) (21)
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The asymptotic variances implied by (20) and (21) are

E
�
(� (x)� ��)2 +

Var (y1jx)
'� (x)

+
Var (y0jx)
1� '� (x)

�
(22)

and

E

"
(� ('� (x))� ��)2 +

(y1 � h1 ('� (x)))2

'� (x)
+
(y0 � h0 ('� (x)))2

1� '� (x)

#
(23)

where � (x) = h1 (x)� h2 (x) and � ('� (x)) = h1 ('� (x))� h2 ('� (x)) = E [� (x)j'� (x)]. Using

E
h
(y1 � h1 ('� (x)))2

���xi = E
h
((y1 � h1 (x)) + (h1 (x)� h1 ('� (x))))2

���xi
= Var (y1jx) + (h1 (x)� h1 ('� (x)))2

E
h
(y0 � h0 ('� (x)))2

���xi = Var (y0jx) + (h0 (x)� h0 ('� (x)))2
and

E
h
(� (x)� ��)2

���'� (x)i = E h((� (x)� � ('� (x))) + (� ('� (x))� ��))2���'� (x)i
= E

h
(� (x)� � ('� (x)))2

���'� (x)i+ (� ('� (x))� ��)2
we note that

E

"
(y1 � h1 ('� (x)))2

'� (x)

#
= E

�
Var (y1jx)
'� (x)

�
+ E

"
(h1 (x)� h1 ('� (x)))2

'� (x)

#

E

"
(y0 � h0 ('� (x)))2

1� '� (x)

#
= E

�
Var (y0jx)
1� '� (x)

�
+ E

"
(h0 (x)� h0 ('� (x)))2

1� '� (x)

#
E
h
(� (x)� ��)2

i
= E

h
(� (x)� � ('� (x)))2

i
+ E

h
(� ('� (x))� ��)2

i
:

Therefore, we can see that the di¤erence of (23) and (22) is equal to

E

"
(h1 (x)� h1 ('� (x)))2

'� (x)
+
(h0 (x)� h0 ('� (x)))2

1� '� (x)

#
� E

h
(� (x)� � ('� (x)))2

i
= E

"
a (x)2

'� (x)
+

b (x)2

1� '� (x)
� (a (x)� b (x))2

#

for a (x) = h1 (x) � h1 ('� (x)) and b (x) = h0 (x) � h0 ('� (x)). Therefore, the di¤erence of (23) and
(22) is equal to

E
�
1� '� (x)
'� (x)

a (x)2 +
'� (x)

1� '� (x)
b (x)2 � 2a (x) b (x)

�

= E

24 s1� '� (x)
'� (x)

a (x)�

s
'� (x)

1� '� (x)
b (x)

!235 � 0
which establishes relative e¢ ciency of imputation using on x over imputation using '� (x).
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E Additional Results on In�uence Functions with Multiple Non-
parametric Components

E.1 Newey�s Approach with Multiple Nonparametric Components

Although Newey�s (1994) analysis is general enough to cover this topic, his analysis on pp. 1360 �61
does not explicitly deal with multiple non-parametric objects with potentially di¤erent regressors. It
is therefore useful to spell out exactly what is needed to deal with the situation.

Suppose that we are dealing with m (z; h1 (x1) ; : : : ; hJ (xJ)). Note that m depends on h�s only
through their values. Using his equation (3.17), we have

@E [m (z; h1 (�) ; : : : ; hJ (�))]
@�

=
JX
j=1

E
�
Dj (z)

@hj (xj ; �)

@�

�

=
@

@�
E

24 JX
j=1

Dj (z)hj (xj ; �)

35
= E [D (z; h1 (�) ; : : : ; hJ (�))]

for

Dj (z) =
@m (z; h1; : : : ; hJ)

@hj

����
h1=h1(x1);:::;hJ=hJ (xJ )

Note that

E [D (z; eg1; : : : ; egJ)] = E
24 JX
j=1

Dj (z) egj (xj)
35 = E

24 JX
j=1

�j (xj) egj (xj)
35

for
�j (xj) = E [Dj (z)jxj ]

Let gj (xj ; �) = argminegj E�
h
(yj � egj (xj))2i for a path. Note that �j (xj) satis�es the orthogonality

E� [(yj � gj (xj ; �)) �j (xj)] = 0, or

E� [�j (xj) gj (xj ; �)] = E� [�j (xj) yj ]

Then by the chain rule,

@E [D (z; h1 (�) ; : : : ; hJ (�))]
@�

=
@E
hPJ

j=1 �j (xj) gj (xj ; �)
i

@�

=
@E�

hPJ
j=1 �j (xj) gj (xj ; �)

i
@�

�
@E�

hPJ
j=1 �j (xj) gj (xj)

i
@�

=
@E�

hPJ
j=1 �j (xj) yj

i
@�

�
@E�

hPJ
j=1 �j (xj) gj (xj)

i
@�

=
@E�

hPJ
j=1 �j (xj) (yj � gj (xj))

i
@�

= E

240@ JX
j=1

�j (xj) (yj � gj (xj))

1AS (z)

35
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It follows that the adjustment to the in�uence function is equal to

JX
j=1

�j (xj) (yj � gj (xj))

This derivation simply veri�es that the adjustment can be computed �term by term�.

E.2 Veri�cation by Ai & Chen�s (2007) Asymptotic Variance Formula

Because Newey did not explicitly deal with multiple nonparametric components explicitly, it would
be useful for readers�peace of mind to make sure that the derivation is not �awed. For this purpose,
it is useful to look at Ai & Chen (2007). They considered a very general model, but it can be easily
mapped into ours:

E [yj � gj (xj)jxj ] = 0; j = 1; : : : ; J

E [m (z; g1 (x1) ; : : : ; gJ (xJ))� �] = 0

Their notation is a little messy, so we need to approach it with care. First of all, they are dealing with
J moments, whereas we are dealing with J + 1 moments. See their equation (1).

Second, using their de�nition of mj in the middle of page 9, we come up with

Mj = E [yj jxj ]� gj (xj) ; j = 1; : : : ; J

MJ+1 = E [m (z; g1 (x1) ; : : : ; gJ (xJ))]� �

In order to avoid confusion, I used M instead of m.

Third, we need to get the pathwise derivative for the deviation
�e�; eg1; : : : ; egJ�, which is written

�� �� in Ai & Chen. Using the de�nition on page 15, we �nd

dMJ+1

dh
[�� ��] =

JX
j=1

E
�
@m (z; g1 (x1) ; : : : ; gJ (xJ))

@gj
egj (xj)�

= E

24 JX
j=1

Dj (z) egj (xj)
35

dMj

dh
[�� ��] = �egj (xj) ; j = 1; : : : ; J

Fourth, we need to �nd w� as de�ned on page 18. (Because � here is one dimensional, we do not
need to work with multiple ls, and the dependence on l is suppressed.) According to their analysis on
page 18, all we need to do is to �nd w�1 (x1) ; : : : ; w

�
J (xJ) that minimizes

E

24 JX
j=1

(wj (xj))
2 +

0@E
24�1� JX

j=1

Dj (z)wj (xj)

351A235 =
0@E

241 + JX
j=1

Dj (z)wj (xj)

351A2+ JX
j=1

E
h
(wj (xj))

2
i

It can be shown that the solution is given by

w�j (xj) = �
E [Dj (z)jxj ]

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i
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Proof is provided later.
Fifth, we need to calculate as in their page 19

Dw� (x) =

266664
w�1 (x1)
...

w�J (xJ)

E
h
�1�

PJ
j=1Dj (z)w

�
j (xj)

i
377775

We can ignore their Vw� because there is no misspeci�cation in our model.
Sixth, we calculate as in their Theorem 4.1on page 21,

E
�
Dw� (x)

0Dw� (x)
�
=

0@E
241 + JX

j=1

Dj (z)w
�
j (xj)

351A2 + JX
j=1

E
h�
w�j (xj)

�2i
As for the �rst term on the right, we have

E

241 + JX
j=1

Dj (z)w
�
j (xj)

35 = E
241� PJ

j=1Dj (z)E [Dj (z)jxj ]

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i
35

= 1�
E
hPJ

j=1 (E [Dj (z)jxj ])
2
i

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i

=
1

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i

As for the second term on the right, we have

JX
j=1

E
h�
w�j (xj)

�2i
=

PJ
j=1 E

h
(E [Dj (z)jxj ])2

i
�
1 + E

hPJ
j=1 (E [Dj (z)jxj ])

2
i�2

Therefore, we have

E
�
Dw� (x)

0Dw� (x)
�
=

0@ 1

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i
1A2 + PJ

j=1 E
h
(E [Dj (z)jxj ])2

i
�
1 + E

hPJ
j=1 (E [Dj (z)jxj ])

2
i�2

=
1

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i

Seventh, we write

� =

26664
y1 � g1 (x1)

...
yJ � gJ (xJ)

m (z; g1 (x1) ; : : : ; gJ (xJ))� �

37775
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and

Dw� (x)
0 � =

JX
j=1

w�j (xj) (yj � gj (xj)) + E

24�1� JX
j=1

Dj (z)w
�
j (xj)

35 (m� �)
= �

PJ
j=1 E [Dj (z)jxj ] (yj � gj (xj))

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i � 1

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i (m� �)

= �
(m� �) +

PJ
j=1 E [Dj (z)jxj ] (yj � gj (xj))

1 + E
hPJ

j=1 (E [Dj (z)jxj ])
2
i

calculate as in their Theorem 4.1 on page 21


� = Var
�
Dw� (x)

0 �
�
=
Var

�
(m� �) +

PJ
j=1 E [Dj (z)jxj ] (yj � gj (xj))

�
�
1 + E

hPJ
j=1 (E [Dj (z)jxj ])

2
i�2

Finally, using their Theorem 4.1, our asymptotic variance is equal to


��
E
�
Dw� (x)

0Dw� (x)
��2

=
Var

�
(m� �) +

PJ
j=1 E [Dj (z)jxj ] (yj � gj (xj))

�.�
1 + E

hPJ
j=1 (E [Dj (z)jxj ])

2
i�2

1/
�
1 + E

hPJ
j=1 (E [Dj (z)jxj ])

2
i�2

= Var

0@(m� �) + JX
j=1

E [Dj (z)jxj ] (yj � gj (xj))

1A
Now, Inspection of this asymptotic variance formula indicates that it is equivalent to adjusting

the in�uence function m � � by
PJ
j=1 E [Dj (z)jxj ] (yj � gj (xj)). This is exactly what our earlier

derivation would suggest.
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