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ASYMPTOTIC VARIATION OF L FUNCTIONS OF

ONE-VARIABLE EXPONENTIAL SUMS

HUI JUNE ZHU

Abstract. Fix an integer d ≥ 3. Let Ad be the dimension-d affine space over
the algebraic closure Q of Q, identified with the coefficient space of degree-d
monic polynomials f(x) in one variable x. For any f(x) in Ad(Q), let Q(f)

be the field generated by coefficients of f in Q. For each prime p coprime to
d, pick an embedding from Q to Qp, once and for all. Let P be the place in

Q(f) lying over p specified by the embedding of Q in Qp (with residue field Fq

say). Suppose f ∈ Ad(Q∩Zp), let NP(f(x) mod P) denote the q-adic Newton
polygon of the L function L(f(x) mod P;T ) of exponential sums of f mod P.
We prove that there is a Zariski dense open subset U defined over Q in Ad such
that for every geometric point f(x) in U(Q) and p large enough (depending
only on f) one has NP(f mod P) = GNP(Ad;Fp) and

lim
p→∞

NP(f(x) mod P) = HP(Ad),

where GNP(Ad;Fp) and HP(Ad) are the generic Newton polygon and the
Hodge polygon, respectively (see [23]).

1. Introduction

In this paper we fix an integer d ≥ 3. Let Q be the algebraic closure of Q. Let
Ad be the affine variety of dimension d over Q, identified with the coefficient space
of degree-d monic polynomials f(x) in one variable x. For any f ∈ Ad(Q) let Q(f)
denote the field generated by coefficients of f over Q. Let p be any prime coprime
to d. Let Qp be the algebraic closure of Qp and let Zp be its ring of integers. For

each p we pick an embedding from Q into Qp. Let P be the place in Q(f) lying
over p specified by the embedding. Henceforth we tacitly understand that such
embeddings are already picked once and for all. Suppose the residue field at P is
Fq for q = pa for some a. Let ordp(·) denote the p-adic valuation in an extension of
Qp with ordp(p) = 1; let ordq(·) be the q-adic valuation, i.e., ordq(·) :=

1
aordp(·).

Let E(x) = exp(
∑∞

j=0
xpj

pj ) be the Artin-Hasse p-adic exponential function. Let γ

be a root of logE(x) in Qp with ordp(γ) =
1

p−1 . Then E(γ) is a primitive p-th root

of unity. We fix this p-th root of unity for the entire paper and denote it by ζp.
Note that Zp[γ] = Zp[ζp].
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Let f ∈ (Zp ∩ Q)[x] be a degree-d monic polynomial. For every positive integer
ℓ let

Sℓ(f mod P) :=
∑

x∈F
qℓ

ζ
TrF

qℓ
/Fp (f(x) mod P)

p .(1)

Then the L function of the exponential sum of f over Fq is defined by

L(f mod P ;T ) := exp(

∞
∑

ℓ=1

Sℓ(f mod P)
T ℓ

ℓ
).(2)

It is well known that L(f mod P ;T ) is a polynomial in 1+TZ[ζp][T ] of degree d−1
(e.g., see remarks in the Introduction of [23]). So we may write,

L(f mod P ;T ) = 1 + b1(f)T + b2(f)T
2 + . . .+ bd−1(f)T

d−1(3)

for some bn(f) ∈ Z[ζp][T ]. It is easy to see that L(f mod P ;T ) becomes independent

of the choice of embedding Q →֒ Qp if p is large enough.

For any polynomial
∑k

n=0 cnT
n over Q let NPq(

∑k
n=0 cnT

n) denote its q-adic
Newton polygon, i.e., the lower convex hull in R2 of the points (n, ordq(cn)) with
0 ≤ n ≤ k. Now let NP(f mod P) := NPq(L(f mod P ;T )). We shall note below

that NP(f mod P) is independent of the choice of embedding Q →֒ Qp. By the
Dieudonné-Manin classification (see [13]), the Newton polygon of an abelian variety
over a finite field is determined by certain ‘formal isogeny types’. Hence the Newton
polygon of a smooth projective curve over a finite field Fq, same as that of its
Jacobian variety, is independent of the choice of Fq. Let NP(Xf mod P) be the
Newton polygon of the Artin-Schreier curve Xf given by affine equation yp − y =
f mod P . One knows that NP(f mod P) = NP(Xf mod P)/(p − 1) where the
latter Newton polygon is shrunk by a factor of p−1 horizontally and vertically (see
[23, Introduction]), all these above imply that NP(f mod P) is independent of the
choice of embedding of Q →֒ Qp.

The Hodge polygon HP(Ad) of Ad is the lower convex hull in R2 of the points

(n, n(n+1)
2d ) with 0 ≤ n ≤ d − 1. It is known that HP(Ad) is a lower bound of

NP(f mod P) (see [20, Propositions 2.2 and 2.3]) and that for every f ∈ Ad(Q∩Zp)
one has NP(f mod P) = HP(Ad) if and only if p ≡ 1 mod d (see [2, (3.11)]). Our
Hodge polygon, which inherits that from [20, 21], is defined combinatorially (so we
shall refer to it as Wan’s Hodge polygon in the remark below). We shall compare
it with classical Hodge polygons in the literature.

Remark 1.1. (i) Wan’s Hodge polygon does not generally acquire a geometric
meaning, and we do not know of one for the one-variable exponential sum case
studied in this paper. Nevertheless there is a well-known case in which it does. If f
is an n-variable Laurent polynomial over a finite field, Wan’s Hodge polygon of the
exponential sum of f is defined in [21, Section 1]. It is known that if f = 0 defines
a toric variety (denoted by X) then Wan’s Hodge polygon of the exponential sum
of f does coincide with a variant of classical Hodge polygon which is defined by
‘Hodge numbers’ of certain subgroup of the cohomology Hn−1

c (X,C) with compact
support over the complex C (see [1, Section 5] for details and proofs). This explains
Wan’s terminology of ‘Hodge polygon’.

(ii) Let X be a smooth projective scheme of finite type over a finite field Fq such

that the Hodge cohomology groups Hj(X̂,Ωi
X̂/W (Fq)

) are free W (Fq)-modules of
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finite ranks hi,j(X̂), whereW (Fq) is the ring of Witt vectors over Fq and X̂/W (Fq)
is a lift of X/Fq. Recall that the (m-dimensional) classical Hodge polygon of X (à la

Katz-Mazur) consists of line segments of slope i of horizontal length hi := hi,m−i(X̂)
for all i = 0, . . . ,m. For example, the (1-dimensional) classical Hodge polygon of a
curve X over a finite field of genus g consists of a slope-0 segment of length h0 = g
and a slope-1 one of length h1 = g. It is known that this classical Hodge polygon of
X is a lower bound of its Newton polygon (see [8, 14]). However, for Artin-Schreier
curves this lower bound is not sharp and there is a sharp lower bound, that is
precisely Wan’s Hodge polygon (after blown up by a factor of p − 1 horizontally
and vertically). In summary, Wan’s Hodge polygon is an analog of Katz-Mazur’s
classical Hodge polygon as a lower bound to Newton polygons.

(iii) From a geometrical point of view, it has long been a myth why the Newton
polygons of Artin-Schreier curves Xf are much higher than the classical Hodge
polygon (see [19] for example). It is discovered recently that for the exponential
sum of a one-variable rational function f there is a generalized Wan’s Hodge poly-
gon that determined by the orders of poles of f . (This was conjectured by Poonen
and Adolphson-Sperber independently, proved by [24, Theorem 1.1].) Our The-
orem 1.3 below is asserting that if f is a polynomial then Wan’s Hodge polygon
is asymptotically (for p large) a best lower bound! We anticipate that a natural
generalization of this sort should hold true also for rational functions.

Remark 1.2. The choice of the primitive p-th root of unity ζp does not affect the
Newton polygon. In fact, if ζp is replaced by ζip in (1), then every coefficient bn in

the L function in (3) will be changed by replacing every ζp in its expression by ζip.
The p-adic valuation of bn is invariant under Galois conjugation.

In this paper we prove Theorems 1.3 and 3.3. Part of Theorem 1.3 was formulated
as a conjecture by Daqing Wan communicated to me in 2001 and it is now a one-
dimensional case of a new conjecture collected in [21, Section 1.4]. The case d = 3
of 1.3 is proved by [18, (3.14)] using Dwork’s method. Theorem 1.3 also yields a
complete answer to a question (in one-variable case) proposed by Katz on page 151
[10, Chapter 5.1]. The first slope case is proved recently by [16] by a slope estimate
technique essentially following Katz [9]. A weaker version of this theorem, which
restricts to f ∈ U(Q), is proved in [23] recently. Recall from [23, Section 5] that

GNP(Ad;Fp) := inff∈Ad(Fp)
NP(f) if exists.

Theorem 1.3. There is a Zariski dense open subset U defined over Q in Ad such
that if f ∈ U(Q) and if P is a prime ideal in the ring of integers of Q(f) lying over
p, we have for p large enough (depending only on f), NP(f mod P) = GNP(Ad;Fp).

In particular, for every f ∈ U(Q) one has limp→∞ NP(f mod P) = HP(Ad).

In the proof of Theorem 1.3 (Section 5) we give an explicit formula for the as-
ymptotic generic Newton polygon GNP(Ad;Fp) for p large enough, which depends
only on d and the residue class of p mod d. We consider Theorem 3.3 as a major
technical breakthrough of the present paper. Since it is more involved we post-
pone its discussion to Section 3. Our theorem has the following application in
approximating slopes of Artin-Schreier curves (see [23, Corollary 1.3] for a proof).

Corollary 1.4. There exists a Zariski dense open subset U defined over Q in Ad

such that if f ∈ U(Q) and P is any prime ideal in the ring of integers of Q(f) lying
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over p, we have

lim
p→∞

NP(Xf mod P)

p− 1
= HP(Ad).

The paper is organized as follows. Section 2 carries on our exposition of Dwork
p-adic analysis from [23, Section 2], with emphasis on the semilinear theory, that
is, the spot light is at exponential sums of finite fields that are not prime fields (in
contrast to that in [23, Section 2]). Section 3 contains the main technical theorem
(in Theorem 3.3) of this paper, in which we prove that for a large class of matrix F
representing τ−1-linear Frobenius map over a p-adic ring Oa the Newton polygon
of its characteristic polynomial coincides with that of the matrix Fa representing
linear Frobenius map. Section 4 defines appropriate Zariski dense open subset Wr

in Ad−1 for each residue class r mod d. Proofs for Theorems 1.3 lie in Section 5.
In the same section we also prove that a certain stronger version of Theorem 1.3 is
false, which answers a question of Daqing Wan.

Acknowledgments . I am deeply indebt to Hanfeng Li and Daqing Wan for enlight-
ening suggestions and warm encouragements. I also thank Alan Adolphson and the
referee for comments on an earlier version. This research was partially supported
by a grant of Bjorn Poonen from the David and Lucile Packard Foundation and
the University of California at Berkeley.

2. Dwork p-adic theory in a nutshell

The present section is in a sequel to [23, Section 2] yet it is self-contained for
the convenience of the reader. We formulates the Dwork trace formula following
[4, 5, 17, 18] at various stages without further notice. Our trace formula of this
article concerns a Frobenius action on a finite dimensional quotient space, while that
of [23] is considering a Frobenius action on an infinite dimensional vector space.

Let Qpa denote the unramified extension of Qp of degree a. Let Ω1 = Qp(ζp)
and let Ωa = Qpa(ζp). So Ωa is the unramified extension of Ω1 of degree a. Let
O1 = Zp[ζp] and Oa be the rings of integers in Ω1 and Ωa, respectively. Let τ be
the lift of Frobenius endomorphism c 7→ cp of Fq to Ωa which fixes Ω1.

Fix f(x) = xd +
∑d−1

i=1 aix
i ∈ Q[x]. Suppose f(x) = xd +

∑d−1
i=1 aix

i ∈ Fq[x] is a

reduction of f(x). Let f̂(x) = xd +
∑d−1

i=1 âix
i, where âi is the Teichmüller lifting

of ai, that is, âi lies in Zpa such that âi ≡ ai mod p and âqi = âi. We shall write
~a := (a1, . . . , ad−1) and ~̂a := (â1, . . . , âd−1).

Let θ(x) = E(γx) where E(·) is the p-adic Artin-Hasse exponential function and
γ is a root of logE(x) with ordpγ = 1

p−1 (as defined in Section 1). We may write

θ(x) =
∑∞

m=0 λmx
m for λm ∈ O1 . In fact, λm = γm

m! and ordpλm = m
p−1 for

0 ≤ m ≤ p − 1, and ordpλm ≥ m
p−1 for m ≥ p. Let ~m = (m1, . . . ,md−1) ∈ Zd−1

≥0

and let ~A = (A1, . . . , Ad−1) be variables. Denote ~A~m := Am1
1 · · ·A

md−1

d−1 . Define for

any n ≥ 0 a polynomial in Ω1[ ~A] below

Gn( ~A) :=
∑

mℓ≥0
∑d

ℓ=1 ℓmℓ=n

λm1 · · ·λmd
~A~m.

Let G(X) :=
∏d

i=1 θ(âiX
i). So G(X) ∈ Oa[[X ]] and its expansion is precisely

G(X) =
∑∞

n=0Gn(~̂a)X
n ∈ Oa[[X ]].
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Let K be a p-adic field over Ωa. For any c > 0 and b ∈ R let LK(c, b) be the
set of power series

∑∞
n=0BnX

n ∈ Ωa[[X ]] with Bn ∈ K and ordpBn ≥ cn+ b. Let
LK(c) =

⋃

b∈R L(c, b). For example, one may check G(X) ∈ LK( 1
d(p−1) ). Note that

LK(c) is a infinite dimensional vector space over K.
Consider the composition α := τ−1 · ψ ·G(X) on LK(c), where ψ is the Dwork

ψ-operator on LK(c) defined by ψ(
∑∞

n=0BnX
n) =

∑∞
n=0BnpX

n, and G(X) de-
notes the multiplication map by G(X). One observes that α is τ−1-linear Ωa-
endomorphism of LΩa(

p
d(p−1)). Write L and L1 for LΩa(

p
d(p−1)) and its subspace

with no constant terms, respectively. For ℓ ≥ 0 let γℓ :=
∑ℓ

j=0
γpj

pj . Let

R(X) :=

∞
∑

ℓ=0

γℓf̂
τℓ

(Xpℓ

) =

∞
∑

ℓ=0

γℓ

d
∑

i=1

âp
ℓ

i X
ipℓ

.

Let ∇ be a differential operator on L defined formally by

∇ := exp(−R(X)) ·X
∂

∂X
· exp(R(X)).

For any
∑∞

n=0BnX
n ∈ L, we have

∇(

∞
∑

n=1

BnX
n) =

∞
∑

n=0

nBnX
n + (X

∂R(X)

∂X
)(

∞
∑

n=0

BnX
n).

Clearly ∇(L) ⊆ L1 and we define M := L1/∇(L). Then M has the induced τ−1-
linear endomorphism α. (See [18, page 279] for more details.)

Let ~e denote the set of images of {X,X2, . . . , Xd−1} in the quotient space M.
Then ~e form a basis for M over Ωa, and dimΩa M = d−1. Let F be the matrix rep-

resentation of α on M with respect to the basis ~e. Let G[a](X) :=
∏a−1

j=0 G
τ j

(Xpj

).

Let αa := ψa ·G[a](X), which is a (linear!) endomorphism of M over Ωa. The case
a = 1 is thoroughly studied in [23]. Let Fa be the matrix representation of αa on
M with respect to this monomial basis ~e. The map α on M is given by α~e = ~eF .

Since αa = αa and α is τ−1-linear we see easily that Fa = FF τ−1

· · ·F τ−(a−1)

.
For any positive integer n let Mn(·) denote the set of all n by n matrix over some

ring. Let In denote the n by n identity matrix. By Dwork trace formula (see [6,
Theorem 2.2] or [18, Section 2 and in particular (2.35)] [4, discussions in Section 2]
for details) for any prime P over p of degree a we have

L(f mod P ;T ) = det(Id−1 − Tαa|M) = det(Id−1 − TFa).(4)

Remark 2.1. One observes that the computation of the above L function is re-
duced to the process of diagonalization (or triangularization) of the matrix Fa.
Write Qp∞ for the fraction field of W (Fp). Even though the Dieudonné-Manin
classification [13] asserts that it is plausible over Qp∞(ζp), it is far more than a
small business in practice. One of our hardest tasks broils down to proving a
stronger version of the Dieudonné-Manin classification holds in the sense that our
matrix can be diagonalized (or triangularized) over the base field Ωa. This is ac-
complished in Section 3. Our other challenging tasks include finding the Zariski
open subset set defined over Q, which is done in Section 4.

Example 2.2. Below we give a simple example only to demonstrate the essential
difficulty and new effects amounted in Wan’s conjecture when passing from Fp to
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Fpa . Let p ≡ −1 mod 4 and f(x) = x4 + cx in Fpa . For p large enough we can
compute and get

F =









γp−1

(p−1)! ĉ
p−1 γp−2

(p−2)! ĉ
p−2 γp−3

(p−3)! ĉ
p−3

γ2p−1

(2p−1)! ĉ
2p−1 γ2p−2

(2p−2)! ĉ
2p−2 γ2p−3

(2p−3)! ĉ
2p−3

γ3p−1

(3p−1)! ĉ
3p−1 γ3p−2

(3p−2)! ĉ
3p−2 γ3p−3

(3p−3)! ĉ
3p−3









in M3(Ωa), where ĉ is the Teichmüller lifting of c in Ωa. Then our Frobenius

matrix is Fa = FF τ−1

· · ·F τ−(a−1)

. If a = 1, the diagonalization process is linear
algebra, that is, one needs C−1FC diagonal for some C over Ω1. For a > 1, the
process is τ−1-linear, that is, one needs C−τFC diagonal for some C over Ωa. The
semilinear algebra involved is highly nontrivial (see Proposition 3.1). The reader
who is interested in complete numerical analysis of lower degree cases are referred
to two new papers [6] and [7].

3. The two Newton polygons

This section is technical and a key technical ingredient in our argument is a
version of p-adic Banach fix point theorem.

Let m be a positive integer. For any m by m matrix M in with coefficients
in Ωa (i.e., M ∈ Mm(Ωa)) and any 1 ≤ n ≤ m let M [n] denote the submatrix

of M consisting of its first n rows and columns. Let Ma := MM τ−1

· · ·M τ−(a−1)

.
We observe that if ordpMij → ordpMi1 for every j, ordpMi,1 − ordpMi−1,1 > ξ

for some constant ξ > 0 for every i, and ordp detM
[n] →

∑n
i=1 ordpMi1 for every

1 ≤ n ≤ m, then NPq(det(Im − TMa)) = NPp(det(Im −TM)). This observation is
highly nontrivial, so we will prove it in 3.1 below. Let

δ(M) := (p− 1) min
1≤i≤m−1

( min
1≤j≤m

ordpMi+1,j − max
1≤j≤m

ordpMij);

η(M) := (p− 1) max
1≤n≤m−1

(ordp detM
[n] −

n
∑

i=1

min
1≤j≤n+1

ordpMij).

It is easy to observe that η and δ are nonnegative integers.
Write det(Im − TM) = 1 + c′1T + · · · + c′mT

m ∈ Ωa[T ], and det(Im − TMa) =
1 + b′1T + · · ·+ b′mT

m.

Proposition 3.1. Let M be in Mm(Oa) (recall Oa is the ring of integers in
Ωa) such that δ(M) > mη(M). Then ordpc

′
n = ordp detM

[n]. There exists a
unique upper triangular matrix C in Mm(Ωa) with all 1’s on its diagonal and with
ordpCij ≥ − η

p−1 such that M ′ := C−τMC in Mm(Ωa) is lower triangular. Set

detM [0] := 1. For any 1 ≤ n ≤ m one has

ordpM
′
nn = ordp detM

[n] − ordp detM
[n−1].(5)

Moreover, M ′ has strictly increasing p-adic orders down its diagonal.

To be useful to the reader, we make some remarks on what leads us to the
formulation of the hypothesis in 3.1 and 3.3: Choose a different basis ~ew :=
{(γ1/dX)i}1≤i≤d−1 for LΩa(γ1/d)(

p
d(p−1) ) over Ωa(γ

1/d). Let Fw be the matrix for

α under this basis. Then one notes that ordpF
w
ij ≥ i/d+ rij/d(p− 1) where rij is

the least nonnegative residue of −(pi − j) mod d. As p → ∞ this lower bound of
ordpF

w
ij converges to i/d for every i and j.
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Proof. 1) Let C be an upper triangular matrix with (i, j)-th entry denoted by
indeterminant Cij and with all 1’s on its diagonal. For any 1 ≤ j ≤ m and all
i = 1, . . . , j − 1 set

(C−τMC)ij = 0.(6)

Write D := C−τ . Then D is also upper triangular with all 1’s on its diagonal. So
we have

(C−τMC)ij =
m
∑

k=i

j
∑

ℓ=1

DikMkℓCℓj =

j−1
∑

ℓ=1

MiℓCℓj+Mij+
m
∑

k=i+1

j
∑

ℓ=1

Mkℓ(DikCℓj) = 0.

Then one verifies that (6) is equivalent to

(7) M [j−1]







C1j

...
Cj−1,j






+







M1j

...
Mj−1,j






+







∑m
k=2

∑j
ℓ=1Mkℓ(D1kCℓj)

...
∑m

k=j

∑j
ℓ=1Mkℓ(Dj−1,kCℓj)






= 0.

Now we introduce some notations. For 1 ≤ i, j ≤ m, letM(i,j) denote the subma-
trix ofM with its i-th row and the j-th column removed. LetM∗ denote the adjoint
matrix of M , that is, the matrix whose (i, j)-th entry is equal to (−1)i+j detM(j,i).

From linear algebra we have thatMM∗ =M∗M = detM . Consider ~C-monomials,
i.e., consider all Cij ’s and C

τ
ij ’s as variables where 1 ≤ i < j ≤ m. Our hypothesis

on M implies that detM [n] 6= 0 for every 1 ≤ n ≤ m. Thus we may multiply
(M [j−1])−1 on the left-hand-side of (7) and get for all 1 ≤ i < j

Cij = wi(~C) + vi(8)

where wi(~C) = − (M [j−1])∗

det(M [j−1])

∑m
k=i+1

∑j
ℓ=1Mkℓ(DikCℓj) and vi = − (M [j−1])∗

det(M [j−1])
Mij .

It is easy to see that

ordp(M
[j−1])∗Mij ≥ min

1≤i≤j−1
ordp

j−1
∑

ℓ=1

(−1)i+ℓ(detM
[j−1]
(ℓ,i) )Mℓj(9)

≥

j−1
∑

ℓ=1

min
1≤k≤j

(ordpMℓk).

Thus

(10) ordp(vi) ≥

j−1
∑

ℓ=1

min
1≤k≤j

(ordpMℓk)− ordp detM
[j−1] ≥ −

η

p− 1
.

Then the p-adic valuation of coefficients of any ~C-monomial in ~w(~C) is ≥ δ−η
p−1 by

comparing to ~v.
Now change variables by setting Xij := γηCij for all 1 ≤ i < j ≤ m. Write

zi( ~X) for γηwi(~C) as polynomials in Xij and Xτ
ij , one has Xij = zi( ~X) + viγ

η.
We claim that the right-hand-side of (8) for all j = 1, . . . ,m together defines a

contraction map with regard to Xij ’s on O
m(m−1)

2
a . It suffices to show that zi( ~X)

has all coefficients of p-adic valuation positive. If this is the case, then the Banach
fixed point theorem applies and one has integral solutions Xij and consequently
C,M ′ ∈ Mm(Ωa) with ordpCij ≥ − η

p−1 .
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Note that D = C−τ = (C∗)τ . For any 1 ≤ t < k ≤ m, it is an exercise to show

that Dtk = (−1)t+k det(C(k,t))
τ is a degree k − t polynomial in ~C. Thus wi(~C) is

of degree ≤ m in ~C Now it is another elementary exercise to show that coefficients

of ~X in zi( ~X) has p-adic order ≥ δ−mη
p−1 , which is positive by our hypothesis upon

M .
2) From now on we assume C is as chosen above. It is an exercise to see for all

1 ≤ j ≤ m one has

M ′
jj = (DMC)jj =

∑

1≤i<j≤m

MjiCij +Mjj +
∑

1≤i≤j<k≤m

MkiDjkCij .

Also note that

detM [j] = detM [j−1](Mjj +

j−1
∑

i=1

Mjivi),

so one has

(11) M ′
jj =

detM [j]

detM [j−1]
+

j−1
∑

i=1

Mjiwi +
∑

1≤i≤j<k≤m

MkiDjkCij .

By some simple computations, one finds every term exact the first one on the right-
hand-side of (11) has p-adic valuation > ordp detM

[j] − ordp detM
[j−1]. Applying

the isoscele principle, one concludes that ordp(M
′
jj) = detM [j] − ordp detM

[j−1].
This proves (5).

3) By a similar argument as above, one can show that there exists an upper

triangular matrix C′ with all 1’s on the diagonal such that M ′′ := C′−1
MC′ is

lower triangular and

ordpM
′′
jj = ordp detM

[j] − ordp detM
[j−1]

for 1 ≤ j ≤ m. It follows easily that ordpc
′
n =

∑n
ℓ=1 ordpM

′′
ℓℓ = ordp detM

[n].
4) Finally we shall omit the proof of the last statement. The basic idea is using

(5) to reduce to show ordp detM
[n+1] + ordp detM

[n−1] > 2 ordp detM
[n]. �

Remark 3.2. For the purpose of computing L function according to Dwork’s trace
formula (4), the relation between NPq(det(Id−1 −TFa)) and NPp(det(Id−1 − TF ))
has been explored in the literature (see for example [20]) since the latter is much
more straightforward to compute. However, as passing from F to Fa, the only
thing we knew previously is that their corresponding Newton polygons have the
same lower bounds (i.e., the Hodge polygon) and these Newton polygons are not
generally equal. See some discussion including a good example in [8, Section 1.3]
and a study of ordinary case in [20, Theorem 2.4]. Little is known besides these,
yet the passage of Newton polygon data from F to Fa is the bottleneck in sharp
slope estimations generally. In the theorem below we formulate an explicit criterion
under which the two aforementioned Newton polygons coincide.

Theorem 3.3. LetM be in Mm(Oa) such that δ(M) > mη(M). Then NPq(det(Im−
TMa)) = NPp(det(Im − TM)), and they are equal to the lower convex hull in R2

of the points (n, ordp detM
[n]) for 0 ≤ n ≤ m.
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Proof. Let C,M ′ ∈ Md−1(Ωa) be as in 3.1, then Cτa

= C and M ′τ
a

=M ′. So

C−τMaC
τ = C−τa+1

(M τa

M τa−1

· · ·M τ )Cτ

= (C−τMC)τ
a

(C−τMC)τ
a−1

· · · (C−τMC)τ

= M ′τ
a

M ′τ
a−1

· · ·M ′τ

= (M ′)a.

By 3.1, one knows that (M ′)a is lower triangular with

ordp((M
′)a)jj =

a−1
∑

ℓ=0

ordp(M
′
jj)

τℓ

= a(ordpM
′
jj) = a(ordp detM

[j]−ordp detM
[j−1]).

Since

det(Im − TMa) = det(Im − TC−τMaC
τ ) = det(Im − T (M ′)a),

and that ordpM
′
jj being strictly increasing according to j, one has

ordqb
′
n =

1

a

n
∑

j=1

ordp((M
′)a)jj =

1

a

n
∑

j=1

a(ordp detM
[j] − ordp detM

[j−1])

= ordp(detM
[n]).

Thus ordqb
′
n = ordp detM

[n] = ordqc
′
n for every n. This finishes the proof. �

4. Zariski dense open subset Wr in Ad−1

We shall use an auxiliary d− 1 by d− 1 matrix F † defined by F †
ij(
~̂a) := Gτ−1

pi−j(
~̂a)

for every ~̂a. We outline our approach as below: (1) we find a Zariski dense open

subset Xr of f ’s in which ordpFij = ordpF
†
ij =

⌈ pi−j
d ⌉

p−1 ; (2) we find a Zariski dense

open subset Wr of f ’s in which ordp(detF
[n]) = ordp(det(F

†)[n]) = n(n+1)
2d + ǫn,

both for all p ≡ r mod d and p large enough. Basically we are looking for sufficient
condition on p and f such that the Frobenius matrix F satisfies the hypothesis of
3.1. This is the key observation prepared for the proof in Section 5.

We adopt the same notation as that in [23, Section 3]. For convenience of the
reader, we give complete definitions for all statements of our theorems. Let r be
a positive integer with 1 ≤ r ≤ d − 1 and gcd(r, d) = 1 for the rest of the section.
For any 1 ≤ i, j ≤ d − 1, let rij (resp. r′ij) be the least nonnegative residue of
−(ri− j) mod d (resp. ri− j mod d). Let δij = 0 for j < r′i1 +1 and let δij = 1 for
j ≥ r′i1 + 1.

Let 1 ≤ n ≤ d − 1. Let ~v := (v1, . . . , vn) ∈ Zn
≥0 let |~v| :=

∑n
ℓ=1 vℓ and ~v! :=

v1! · · · vn!. For any 0 ≤ t ≤ n let St
n denote the subset of the symmetric group

Sn consisting of all σ such that
∑n

i=1 ri,σ(i) = minσ′∈Sn

∑n
i=1 ri,σ′(i) + dt. For any

1 ≤ i, j ≤ n and 0 ≤ s ≤ n define a subset of Zd−1
≥0 by

Ms
ij := {~m = (m1, . . . ,md−1) ∈ Zd−1

≥0 |
d−1
∑

ℓ=1

ℓmd−ℓ = rij + ds}.

Then let

Hs
ij(
~A) :=

∑

~m∈Ms
ij

( ri1−1
d + d− 1)( ri1−1

d + d− 2) · · · ( ri1−1
d − δij + s+ 1− |~m|)

~m!
~A~m.
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Clearly Hs
ij lies in Q[ ~A] = Q[A1, . . . , Ad−1]. For any 0 ≤ t ≤ n let

f t
n(
~A) :=

∑

s0+s1+···+sn=t
s0,...,sn≥0

∑

σ∈S
s0
n

sgn(σ)
n
∏

i=1

Hsi
i,σ(i)(

~A).

Let tn be the least nonnegative integer t such that f t
n 6= 0. Let

Ψd,r( ~A) :=
∏

0≤j−1≤i≤d−1

H0
ij(
~A), Φd,r( ~A) :=

∏

1≤n≤d−1

f tn
n ( ~A).

Let Xr and Yr be the subset of A
d−1 consisting of all f(x) = xd+ad−1x

d−1+· · ·+a1x
with Ψd,r| ~A=~a 6= 0 and Φd,r| ~A=~a 6= 0, respectively. Let Wr := Xr ∩ Yr .

For any b ∈ Z let γ>b denote a term with ordp(·) >
b

p−1 . We define γ≥b similarly.

For any m by m matrix M and n ≤ m let M [n] denote the truncated submatrix of
M consisting of its first n rows and columns. Let

ǫn :=
minσ∈Sn

∑n
ℓ=1 rℓ,σ(ℓ) + dtn

d(p− 1)
.(12)

Lemma 4.1. 1) Let ~a ∈ Xr(Q). There exists N > 0 such that for p > N we have
for any 0 ≤ j − 1 ≤ i ≤ d− 1 that

ordpF
†
ij(
~̂a) =

⌈

pi−j
d

⌉

p− 1
.(13)

2) Let ~a ∈ Yr(Q). There exists N > 0 such that for p > N we have for every
1 ≤ n ≤ d− 1 that

ordp det(F
†)[n](~̂a) =

n(n+ 1)

2d
+ ǫn.(14)

Proof. Since F †
ij = Gτ−1

pi−j , it suffices to prove our assertion for Gpi−j . Let notation

be as in [23, 4.2 and 4.3]. By [23, 4.2], for p ≥ (d2 + 1)(d− 1) we have

K0
ij(
~A) = unH

0
ij(
~A) + γ≥p−1(15)

for some p-adic unit un in Zp. Thus by [23, 4.3] one has

Gpi−j( ~A) = unH
0
ij( ~A)γ

⌈pi−j
d ⌉ + γ>⌈

pi−j
d ⌉.

By the hypothesis ~a ∈ Xr(Q), we have H0
ij(~a) 6= 0. So for p large enough one gets

ordp(Gpi−j(~̂a)) =

⌈

pi−j
d

⌉

p− 1
.

This proves 1). Part 2) follows immediately from [23, 4.3]. �

Lemma 4.2. Let ~a ∈ Xr(Q). For 0 ≤ j− 1 ≤ i ≤ d− 1 and for p large enough one
has

ordpFij(~̂a) =

⌈

pi−j
d

⌉

p− 1
.

Proof. The auxiliary matrix F † is p-adically close to F in the following sense. For
any ~a ∈ Ad−1(Q) and 1 ≤ i, j ≤ d− 1 we have

ordp(Fij(~̂a)− F †
ij(
~̂a)) ≥

pi− j

d(p− 1)
+

p

d(p− 1)
.(16)



ASYMPTOTIC VARIATION OF L FUNCTIONS OF ONE-VARIABLE EXPONENTIAL SUMS11

(See [6, Lemma 3.2] for a complete proof or follow the proof of Theorem 3.10 in
[18].)

By (13) and (16) there exists N > 0 such that for all p > N we have

ordp(Fij(~̂a)− F †
ij(
~̂a)) > ordpF

†
ij(
~̂a).

By the isosceles triangle principle, we have ordpFij(~̂a) = ordpF
†
ij(
~̂a), hence our

assertion follows from (13). �

Proposition 4.3. The subset Wr is Zariski dense open in Ad−1 defined over Q. For
~a ∈ Wr(Q) and p large enough, one has for all 1 ≤ n ≤ d−1 and 0 ≤ j−1 ≤ i ≤ d−1
that

ordpFij(~̂a) =

⌈

pi−j
d

⌉

p− 1
, ordp detF

[n](~̂a) =
n(n+ 1)

2d
+ ǫn.

Proof. By [23, Section 3] one knows that Ψd,r 6= 0 and Φd,r 6= 0. Thus the first
assertion follows. The first equality is precisely proved in Lemma 4.2 above. We
shall focus on the second equality for the rest of our proof. Write ∆ for the set
{1, . . . , n}. By definition,

detF [n] =
∑

σ∈Sn

sgn(σ)
∏

ℓ=1

((Fℓ,σ(ℓ) − F †
ℓ,σ(ℓ)) + F †

ℓ,σ(ℓ))

=
∑

σ∈Sn

sgn(σ)

n
∏

ℓ=1

F †
ℓ,σ(ℓ)

+
∑

σ∈Sn

sgn(σ)
∑

∆1(∆

(
∏

ℓ∈∆1

(Fℓ,σ(ℓ) − F †
ℓ,σ(ℓ))

∏

ℓ′∈∆−∆1

F †
ℓ′,σ(ℓ′)).

By (16) and (13) (since ~a ∈ Xr(Q)), for p large enough we have

ordp(detF
[n] − det(F †)[n])

≥ min
σ∈Sn,∆1(∆

(
∑

ℓ∈∆1

ordp(Fℓ,σ(ℓ) − F †
ℓ,σ(ℓ)) +

∑

ℓ′∈∆−∆1

ordpF
†
ℓ′,σ(ℓ′))

≥ min
σ∈Sn,∆1(∆

(
∑

ℓ∈∆1

(
pℓ− σ(ℓ)

d(p− 1)
+

p

d(p− 1)
) +

∑

ℓ′∈∆−∆1

pℓ′ − σ(ℓ′)

d(p− 1)
)

≥
n(n+ 1)

2d
+

p

d(p− 1)
.

Since ~a ∈ Yr(Q) and since ǫn goes to 0 as p approaches ∞, for p large enough
this is strictly greater than ordp det(F

†)[n] by (14). By the isosceles principle, we
concludes our assertion. �

5. The asymptotic generic Newton polygon and slope filtration

Let notations be as in previous sections. In particular, recall the matrices F and
Fa represent the τ−1-linear and linear Frobenius maps α and αa, respectively.

Let W :=
⋂

r Wr where r ranges in all 1 ≤ r ≤ d − 1 with gcd(r, d) = 1. Let

f(x) = xd + ad−1x
d−1 + · · · + a1x + a0 ∈ Ad. Let U be the pre-image of W in Ad

under the projection map ι : Ad → Ad−1 by ι(f) = ~a with ~a = (a1, . . . , ad−1). Let
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P be any degree-a prime ideal in Q(f) over p. By (4) one has

L(xd + · · ·+ a1x mod P ;T ) = det(Id−1 − Fa(~̂a) · T )

= 1 + b1(~a)T + · · ·+ bd−1(~a)T
d−1 ∈ Z[ζp][T ].

One observes (see [23, Section 5]) that ordq(bn(f)) = ordq(bn(~a)).

Proof of Theorem 1.3. By [23, Theorem 5.1], for p large enough one has GNP(Ad;Fp)
equal to the the lower convex hull of points

(n,
n(n+ 1)

2d
+ ǫn) for 0 ≤ n ≤ d− 1,(17)

each of which is a vertex (recall ǫn from (12)). By 4.3, one sees that W is Zariski
dense open in Ad−1 and so is U in Ad by its definition. According to the discussion
preceding the proof, it then suffices to prove our statements for ~a ∈ W(Q). Suppose
~a ∈ W(Q). From 4.3 it is not hard to verify that as p increases δ(F ) is unbounded

while η(F ) is bounded. Thus for p large enough, F (~̂a) ∈ Md−1(Ωa) clearly satisfies
the hypothesis of 3.3. So, by 3.3, one has ordqbn(~a) = ordp(detF

[n]). Then by
4.3 one sees that NP(f mod P) is equal to the aforementioned convex hull given
in (17). Finally, one notes that ǫn goes to 0 as p goes to infinity, this proves the
theorem. �

Remark 5.1. We remark on another consequence of our results in 3.1 and 3.3
from a different viewpoint. It can be shown, by a symmetric argument as that in
3.1, that the two Frobenius matrices F and Fa for the exponential sums of f are
diagonalizable over the base field Ωa provided f ∈ U(Q) and p is large enough.
This implies that for f ∈ U(Q) and p large enough, the F -crystal M (arisen from
one-variable exponential sum in Section 2) has a slope filtration over Ωa. More
precisely, it is isogenous over Ωa to the direct sum of rank-one F -crystals of slopes
1
d + ǫ1,

2
d + (ǫ2 − ǫ1), · · · , and

d−1
d + (ǫd−1 − ǫd−2) respectively (necessarily in a

strictly increasing order). This provides an improvement, in the case of one-variable
exponential sums, to the Dieudonné-Manin classification which asserts that the F -
crystal has a slope filtration over Qp∞(ζp) (see the classic of Manin [13, Chapter
II], or see [11, Theorem 5.6] and [8]).

In the proposition below we show that a certain stronger version of Theorem 1.3
is false. This answers a question of Daqing Wan, proposed to me via email.

Proposition 5.2. There does not exist any Zariski dense open subset U over Q of
Ad such that the following is satisfied:

For any strictly increasing sequence {pi}i≥1 of primes, and for any sequence

{fi(x)}i≥1 ∈ U(Q), where Pi is a prime idea of Q(fi) lying over pi, one has

lim
i→∞

NP(fi mod Pi) = HP(Ad).

Proof. Suppose there is such a Zariski dense open subset U defined over Q in Ad.
Then U contains the complementary set of zeros of h(~t) for some nonzero polynomial
h(~t) ∈ Q[~t] with ~t = (t0, . . . , td−1) as the variable. Since h(~t) 6= 0 we also have

h(p~t) 6= 0 for any prime p. We will construct a contradiction. Choose primes
pi ≡ −1 mod d such that the sequence {pi}i≥1 is strictly increasing. Let fi(x) =

xd + pici,d−1x
d−1 + · · ·+ pici,1x+ pici,0 where ~ci = (ci,0, . . . , ci,d−1) ∈ Q

d
satisfies

h(pi~ci) 6= 0. This exists because h(pi~t) 6= 0. We observe easily that fi ∈ U(Q) and
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fi(x) ≡ xd mod Pi for every Pi over pi in Q(~ci). The latter congruence implies
that NP(fi mod Pi) = NP(xd mod pi). It is well-known that for pi ≡ −1 mod d
the NP(xd mod pi) is a straight line of slope 1/2 (see [23, Section 6]). Apparently
this limit is not equal to the Hodge polygon. This proves the proposition. �

References

[1] Alan Adolphson; Steven Sperber: On the zeta function of a complete intersection. Ann.
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