
ar
X

iv
:1

10
7.

02
90

v1
  [

he
p-

th
] 

 1
 J

ul
 2

01
1

AEI-2011-041

Asymptotic W-symmetries in three-dimensional

higher-spin gauge theories

A. Campoleoni, S. Fredenhagen and S. Pfenninger

Max-Planck-Institut für Gravitationsphysik

Albert-Einstein-Institut

Am Mühlenberg 1

14476 Golm, GERMANY

andrea.campoleoni@aei.mpg.de, stefan.fredenhagen@aei.mpg.de,

stefan.pfenninger@aei.mpg.de

Abstract

We discuss how to systematically compute the asymptotic symmetry algebras of generic

three-dimensional bosonic higher-spin gauge theories in backgrounds that are asymptot-

ically AdS. We apply these techniques to a one-parameter family of higher-spin gauge

theories that can be considered as large N limits of SL(N) ×SL(N) Chern-Simons theo-

ries, and we provide a closed formula for the structure constants of the resulting infinite-

dimensional non-linear W-algebras. Along the way we provide a closed formula for the

structure constants of all classical WN algebras. In both examples the higher-spin gener-

ators of the W-algebras are Virasoro primaries. We eventually discuss how to relate our

basis to a non-primary quadratic basis that was previously discussed in literature.
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1 Introduction

In a three-dimensional space-time the little group of massless particles does not admit

representations with arbitrary helicity. Nevertheless, one can still consider the analogues

of the field equations that for D > 3 describe the free propagation of spin-s massless

particles, although in D = 2 + 1 they do not propagate any local degree of freedom

for s > 1. Any non-linear completion of these field equations defines a three-dimensional

higher-spin (HS) gauge theory, at least as a classical theory. The first member of this class

is just Einstein gravity, which does not admit wave solutions in D = 2 + 1. Despite the

lack of propagating degrees of freedom, these toy models already display many features

of their higher-dimensional counterparts. They thus often provide a manageable testing

ground for various ideas on field theories involving higher spins.

A marked simplification arises when one considers pure HS gauge theories without

matter: in D = 2+1 the coupling of massless higher-spin fields to gravity can be described

by a Chern-Simons (CS) action for any value of the cosmological constant [1]. On the other

hand, in higher space-time dimensions the non-linear field equations of Vasiliev [2] require

a non-vanishing cosmological constant (see [3, 4] for a review), while on flat backgrounds

a classification of cubic vertices is now available [5], but a complete interacting theory is

still lacking (see [6] for an account of the state of the art).

Even if it is not needed to handle a full interacting theory, a negative cosmological

constant plays an important role in D = 2 + 1. In the gravitational sector it allows for

a richer space of solutions, still without gravitational waves but with black holes [7]. It

also allows to build three-dimensional counterparts of Vasiliev’s models [8], describing

the coupling of two or four scalars to a HS gauge sector. The latter toy models provide

a natural arena to test – with suitable extrapolations – various proposals that relate

holographically Vasiliev’s theory to conformal field theories. This interplay was first

investigated by Sezgin and Sundell [9] (see also [10] for earlier suggestions), while recently

various groups independently elaborated upon a conjecture by Klebanov and Polyakov,

that links Vasiliev’s theory on AdS4 to the large N limit of the three-dimensional critical

O(N) vector model [11, 12].

A first step toward the characterisation of possible two-dimensional CFT duals was

performed in [13, 14], with an analysis of the asymptotic symmetries of some three-

dimensional classical HS gauge theories. The outcome generalises an earlier result by

Brown and Henneaux [15], that defined the class of asymptotically Anti de Sitter solu-

tions of three-dimensional Einstein’s equations such that it contains all physically relevant

solutions and all its elements have finite boundary charges. In D = 2 + 1 these condi-

tions allow for an enhancement of asymptotic symmetries from the AdS algebra to two

copies of a centrally extended Virasoro algebra, with a central charge that grows with the

AdS radius. Adding massless higher-spin fields maintains the conformal symmetry and

actually extends it: each Virasoro algebra is replaced by a centrally extended non-linear

W-algebra, with the same central charge as in pure gravity (see [16] for an introduction to
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W-algebras). The classical asymptotic W-symmetries of [13, 14] were then shown to sur-

vive even at the quantum level in [17], and these observations led Gaberdiel and Gopaku-

mar to conjecture in [18] a duality between suitable large N limits of minimal model

CFT’s with WN × WN symmetry and the Vasiliev-like models of [8] (see also [19, 20, 21]

for some recent additional checks of this conjecture and [22, 23] for its extension to other

classes of minimal models).

In [13, 14, 19] the identification of asymptotic symmetries rests heavily upon the CS

formulation of the HS dynamics, somehow following the derivation of [24] of the original

Brown-Henneaux result. On the one hand, the CS action enables one to define quite

straightforwardly the boundary charges [25]. On the other hand, CS theories defined on a

manifold with boundary admit a non-trivial boundary dynamics, generically described by

a Wess-Zumino-Witten (WZW) action (see, for instance, [26] and references therein). As

a result, the Poisson structure on the phase space of boundary excitations is generically

an affine algebra. However, even if the action of three-dimensional HS gauge theories can

be cast in a CS form, not all solutions of the CS theory are admissible classical higher-spin

configurations. Selecting the class of asymptotically AdS solutions imposes a constraint on

the phase space of the boundary theory and W-algebras emerge as Dirac-bracket algebras

on the constrained phase space.

In the mathematical literature this way of constructing classical W-algebras out of

affine algebras is known as Drinfeld-Sokolov (DS) reduction (see [27] for a review), and it

was first applied to WZW theories at the end of the eighties [28]. It associates a classical

centrally extended W-algebra to any semisimple Lie algebra, independent of whether it

is the gauge algebra of a sensible toy model for higher-spin interactions or not. In this

paper we propose a procedure to compute the structure constants of any W-algebra that

can be obtained by a DS reduction, and we apply it to a class of algebras that are relevant

to the study of higher spins.

In Section 2 we begin by recalling the interplay between the DS reduction and the

asymptotic symmetries of three-dimensional HS gauge theories. Then we present our

procedure to “reduce” a generic affine algebra. We eventually use this tool to shed light

on some general properties of the resulting W-algebras and to analyse some examples that

lay outside of the class of algebras considered in the following sections. Let us already

mention that the DS construction rests upon a gauge choice: different choices lead to

different bases for the W-algebra. Our analysis is focused on the so called “highest-weight

gauge”, thus providing an alternative to similar results that were previously obtained in

the so called “U -gauge” (see chapter 9 of [27]). The highest-weight choice gives a W-

algebra where all generators are primaries with respect to the lowest-spin ones. In the

absence of spin-1 generators all of them are thus Virasoro primaries. In the general case

one can easily recover a basis with this property by shifting the Virasoro current with the

Sugawara energy-momentum tensor built from spin-1 currents.

In Section 3 we return to three-dimensional HS gauge theories. Besides them there

is a one-parameter family that plays a distinguished role, and we focus on it. It was
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first discussed in [29, 30, 31, 32, 33] in the late eighties, when the subject was in its

infancy. All its members are bosonic theories describing, for generic values of a parameter

λ, the coupling to gravity of a set of massless fields where each integer spin from 3

onwards appears once. The interest in this family is twofold: on the one hand, for integer

λ = N the CS action reduces to that of a SL(N) × SL(N) theory, while all other values

of λ provide a sort of large N limit of this rather natural class of toy models for HS

interactions, out of which the case N = 2 coincides with Einstein gravity [34, 35]. On

the other hand, whenever no truncations arise, the field content is the same as in the

gauge sector of Vasiliev’s models, that are actually built upon the same gauge algebras

[8]. The corresponding W-algebras are thus expected to emerge also in the large N limit

of WN × WN minimal models, as discussed in [19, 20, 21].

Even if for different values of λ the field contents coincide, the gauge algebras are

inequivalent [29, 33]. Therefore, as already pointed out in [19], different λ lead to inequiv-

alent asymptotic symmetries. These are given by two copies of an infinite-dimensional

non-linear W-algebra, that we denote by W∞[λ] as in [19]. This family of W-algebras was

introduced independently in [36] and [37], in a non-primary basis with at most quadratic

non-linearities appearing in the Poisson brackets. In Section 3 we use the machinery

developed in Section 2 to provide a closed formula for all structure constants of W∞[λ]

in a Virasoro-primary basis. Our formula reproduces the results for the first few spins

that were computed in [19]. Setting λ = N also gives a closed formula for the structure

constants of WN in a Virasoro-primary basis. In Section 4 we eventually discuss how to

relate systematically our presentation of W∞[λ] to the quadratic basis of [36]. The paper

closes with a summary of our results and some appendices. Appendix A summarises the

structure constants of the one-parameter family of higher spin algebras that we consider.

In Appendix B we collected the proofs of some formulae appearing in the main text, in

particular the formula for the structure constants of W∞[λ]. Finally, in Appendix C we

display the Poisson brackets of the examples of W-algebras that we discuss in the main

body of the text.

Let us finally stress that the characterisation of asymptotically AdS solutions that

triggers our analysis goes beyond the identification of proper fall-off conditions at spa-

tial infinity. Rather, it selects exact solutions of the field equations. The study of exact

solutions is another interesting arena where one may take advantage of the simplicity of

three-dimensional toy models to extract information on their higher-dimensional counter-

parts. Exact solutions of Vasiliev’s models in D > 3 were first obtained in [38] (see [4] for

a review), while recently solutions displaying various similarities with gravity black holes

were presented in [39]. On the three-dimensional side various issues on exact solutions

were discussed in [8, 40, 14, 41, 42, 43]. In Section 3.1.1 we discuss how one could extend

an earlier proposal of [14] in order to express our exact solutions in an alternative form

involving only Lorentz-invariant metric-like fields (see [44] for a review of the metric-like

formulation). Aside from making more transparent the identification between CS theories

and HS gauge theories, we hope that this interplay between alternative approaches pro-

vides useful tools to better understand the exact solutions already discussed in literature,
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such as the intriguing HS generalisations of gravity black holes [39, 40, 42, 43].

2 Asymptotic symmetries from Drinfeld-Sokolov re-

duction

A three-dimensional pure higher-spin (HS) gauge theory coupled to gravity in backgrounds

that are asymptotically AdS can be described by a Chern-Simons (CS) theory supple-

mented by suitable boundary conditions [13, 14]. These translate into the Drinfeld-Sokolov

(DS) constraint on the centrally extended loop algebra that appears on the boundary of a

CS theory. Therefore, asymptotic symmetries are described by the W-algebras that arise

from the DS reduction. In this section we first review the DS reduction in the context

of HS gauge theories. We then provide an algorithm to perform it in the highest-weight

gauge, from which one obtains W-algebras in a basis where all fields are primaries with

respect to the lowest spin ones.

2.1 Higher-spin gauge theories in D = 2 + 1

In D = 2 + 1 Einstein gravity with a negative cosmological constant is equivalent to a

SL(2,R) × SL(2,R) Chern-Simons theory [34, 35]. In fact, up to boundary terms, one

can rewrite the Einstein-Hilbert action as

S = SCS[A] − SCS[Ã] , (2.1)

with

SCS[A] =
k

4π

∫
tr
(
A ∧ dA +

2

3
A ∧ A ∧ A

)
. (2.2)

The fields A and Ã are sl(2,R)-valued differential forms so that, for instance, A =

Aµ
i Ji dx

µ, where the Ji generate the sl(2,R) algebra. We normalise the invariant form

entering the CS action such that

tr (JiJj) =
1

2
η ij ⇒ k =

l

4G
, (2.3)

where l denotes the AdS radius and G is Newton’s constant. The standard first-order

formulation of gravity is recovered by considering the combinations

e =
l

2

(
A− Ã

)
, ω =

1

2

(
A+ Ã

)
, (2.4)

that identify the dreibein and the spin connection.

In a similar fashion, the first-order formulation of the free dynamics of massless bosonic

symmetric fields ϕµ1... µs with s ≥ 2 involves a vielbein-like 1-form and an auxiliary 1-form

which generalises the spin connection [45, 46]. In D = 2 + 1 these two differential forms
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have the same structure (i.e. the same fibre indices), and one can consider linear combina-

tions of them as in (2.4). This eventually allows one to build bosonic massless higher-spin

gauge theories out of G×G Chern-Simons theories [1]. The action has the same form as

(2.1), but now the gauge fields A and Ã take values in a (possibly infinite-dimensional)

Lie algebra g admitting a non-degenerate bilinear invariant form. Vielbeine and spin

connections are identified through (2.4), while the invariance of the action under

δA = dA + [A , λ ] , δÃ = dÃ + [ Ã , λ̃ ] (2.5)

leads to two different kinds of gauge transformations generated by the parameters

ξ =
l

2

(
λ− λ̃

)
, Λ =

1

2

(
λ+ λ̃

)
. (2.6)

Those generated by ξ correspond to local translations in pure gravity (that in D = 2 + 1

are equivalent to diffeomorphisms [35]), while those generated by Λ extend the usual local

Lorentz transformations:

δe = dξ + [ω , ξ ] + [ e , Λ ] , (2.7a)

δω = dΛ + [ω , Λ ] +
1

l2
[ e , ξ ] . (2.7b)

Even if no local fluctuations are present, one can define the “spectrum” of the theory

by looking at the transformation properties of the fields under Lorentz transformations.

It is thus fixed by the choice of a sl(2,R) subalgebra in g that – together with the

corresponding one coming from the second copy of g – identifies the gravitational sector.

Once this selection is made one can consider the branching of g under the adjoint action

of the “gravitational” sl(2,R), so that

g = sl(2,R) ⊕



⊕

ℓ , a

g
(ℓ,a)


 . (2.8)

Each g
(ℓ,a) has dimension 2ℓ + 1 with 2ℓ ∈ N, while the index a accounts for possible

multiplicities. For infinite-dimensional algebras we thus discard by hypothesis sl(2) em-

beddings that would bring on infinite-dimensional irreducible representations in (2.8).

The branching of g induces the decomposition

A(x) = Aµ
i(x)Ji dx

µ +
∑

ℓ , a

ℓ∑

m = − ℓ

A[a] ℓ,m
µ (x) (W ℓ

m)[a] dx
µ , (2.9)

and a similar one for Ã. Here the (W ℓ
m)[a] generate g

(ℓ,a), while the Ji generate sl(2,R) as

in pure gravity. Let us now focus for a while on sl(2) embeddings that do not involve any

half-integer ℓ. In this case the dimension of each g
(ℓ,a) equals the number of independent

off-shell fiber components of the vielbein or of the spin connection associated to a fully

symmetric tensor ϕ [a]
µ1... µℓ+1

[45, 46]. As a result, for any integer ℓ the 1-forms

e[a] ℓ,m
µ =

l

2

(
A[a] ℓ,m

µ − Ã[a] ℓ,m
µ

)
, ω[a] ℓ,m

µ =
1

2

(
A[a] ℓ,m

µ + Ã[a] ℓ,m
µ

)
(2.10)

7



can be identified with the vielbein and the spin connection of a spin-(ℓ+1) field. The spec-

trum is thus specified by the “spins” and the multiplicities appearing in (2.8). Additional

comments on this identification will be presented in Section 3.1.1.

The choice of the principal sl(2,R) embedding in a finite-dimensional non-compact

simple Lie algebra g always fits into this scheme. In this case each ℓ in (2.8) corresponds

to one of the exponents of g, so that all values of ℓ are integers and greater or equal to 1.

The simplest examples in this class are SL(N) × SL(N) CS theories with a principally

embedded gravitational sector. Besides the graviton, they involve fields with spin (ℓ+1) =

3, . . . , N . An infinite-dimensional counterpart of the latter HS gauge theories, with a

similar but unbounded spectrum, will be studied in Section 3. An ampler discussion of

SL(N) × SL(N) theories can be found in [14], while here we would like to briefly discuss

the subtleties that the choice of alternative embeddings entails.

First of all, in general (2.8) also contains half-integer values of ℓ. The corresponding

1-forms in (2.10) cannot be associated to any tensorial field. On the other hand, for

each half-integer ℓ their number equals the number of off-shell components of a spinorial

field ψα
µ1... µℓ+1/2

. Since no local degrees of freedom are involved, the spinorial nature

of the resulting fields does not prevent one from applying the previous construction even

starting from a purely bosonic gauge algebra. A slight generalisation is also possible, since

spinorial fields do not require a spin-connection in the first-order formulation [45, 47, 48].

The doubling of g would then lead to a doubling of the number of these fields in the

spectrum. The same is true for spin-1 fields, corresponding to sl(2,R) singlets in (2.8).

As a result, in general one could even consider G × G̃ Chern-Simons theories, provided

that g̃ is the subalgebra of g needed to reconstruct vielbeine and spin connections for the

fields of integer spin s ≥ 2.1 The basic building blocks of a toy model for HS interactions

would still be available: one has a set of fields that do not propagate any local degree

of freedom and that transform under Lorentz transformations as those used to describe

the free propagation of “higher spins”, in the sense specified at the beginning of the

Introduction.

However, we also know the action of these theories, and we can check if it also displays

the features that one would like to associate to a sensible toy model for HS interactions.

The simplest feature to analyse is the structure of kinetic terms, that is dictated by the

structure of the invariant form appearing in (2.2). To study it, we have to fix our notation.

We denote the generators of sl(2,R) by J±, J0 and we choose the convention

[ J+ , J− ] = 2J0 , [ J± , J0 ] = ± J± . (2.11)

We also choose a basis of g(ℓ,a) such that

[ Ji , (W ℓ
m)[a] ] = (iℓ −m) (W ℓ

i+m)[a] , (2.12)

1An analogue construction is standard in the context of pure supergravity theories in D = 2+1 where,

besides the graviton, only fields with spin s < 2 appear. This allows one to consider super-CS theories

built upon generic G× G̃ supergroups or simply upon SL(2,R) ×G [34].
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where i = 0,±1, and we identified J±1 ≡ J±. Eq. (2.12) forces the Killing form to satisfy

tr
(

(W k
m)[a] (W ℓ

n)[b]

)
= (−1)ℓ−m (ℓ+m)!(ℓ −m)!

(2ℓ)!
δk,ℓ δm+n,0 (Nℓ)ab , (2.13)

with

(Nℓ)ab = tr
(

(W ℓ
ℓ )[a](W

ℓ
−ℓ)[b]

)
. (2.14)

Eq. (2.13) implies (Nℓ)ab = (−1)2ℓ(Nℓ)ba, so that the matrix Nℓ is symmetric for integer

values of ℓ and skew symmetric for half-integer values of ℓ. This leads respectively to

symmetric or skew symmetric kinetic terms. While unfamiliar, the latter are precisely

as pertains to the bosonic nature of these spinorial fields, and are instrumental in order

to attain a non-trivial kinetic term for them, unless further prescriptions are introduced,

like a grading of the gauge algebra. At any rate, the models that we are considering

involve more than one field, so that an issue should be checked: the relative sign between

different kinetic terms. Even if no local fluctuations are available in three dimensions, one

could still require that no sign differences are present, as it is crucial in higher space-time

dimensions. This is not the case for a generic choice of g and of a sl(2) embedding in

it2. The relative signs between kinetic terms are also affected by the choice of a real form

for g. For instance, as we shall discuss in Section 3.1, these considerations select the real

form sl(N,R) in the case of SL(N) × SL(N) CS theories that we mentioned before.

2.2 Asymptotic symmetries

We are now going to discuss the asymptotic symmetries of asymptotically-AdS configu-

rations. Therefore, our CS theories have to be defined on manifolds M with a cylindrical

boundary ∂M parameterised by a time-coordinate t and an angular coordinate θ. In

order to fix our notation, in this section we first briefly recall the main features of CS

theories on manifolds of this type following the reviews [26, 49]. Then, following [14], we

discuss how the conditions selecting asymptotically-AdS configurations translate into the

Drinfeld-Sokolov constraint.

Let us begin by focusing on a single chiral sector, say the one involving A. As reviewed

in [26, 14], it is always possible to choose the gauge

Aρ = b−1(ρ) ∂ρ b(ρ) , (2.15)

where ρ is a radial coordinate and b(ρ) is an arbitrary function taking values in the gauge

groupG. The gauge (2.15) is preserved by residual gauge transformations with parameters

Λ = b−1(ρ)λ(t, θ) b(ρ) , (2.16)

2While this paper was in preparation, HS gauge theories based on a non-principally embedded gravita-

tional sector were discussed in [43] (see also [14] for previous comments). Its authors proposed to consider

all possible embeddings in a given gauge algebra as different phases of a common theory, related by a

breaking of the Lorentz-like symmetries of (2.7). The opportunities opened by this observation could

well overcome our reservations, but still any attempt to extrapolate possible results to higher dimensions

should face the subtleties that we remarked here.
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and on shell it implies

Aθ = b−1(ρ) a(t, θ) b(ρ) . (2.17)

Here, λ(t, θ) and a(t, θ) are arbitrary g-valued functions. One can then impose the bound-

ary condition (
At

l
−Aθ

)∣∣∣∣
∂M

= 0 (2.18)

that cancels the boundary term appearing in the variation of the action. In pure AdS

gravity, (2.18) is satisfied by all BTZ backgrounds, so that we can safely use it to select the

space of asymptotically-AdS solutions. Requiring (2.18) on the boundary forces At = l Aθ

everywhere in the bulk and removes the gauge invariance, because both a and λ must

depend on ( t
l

− θ) so that there is no more an arbitrary time dependence.

We are left with the g-valued function a(θ) on which the gauge transformations gener-

ated by (2.16) act as

δλa(θ) = λ′(θ) + [ a(θ) , λ(θ) ] , (2.19)

where a prime denotes a derivative in θ. These are not proper gauge transformations

[26, 49], but rather global symmetries generated by the boundary charges

Q(λ) = −
k

2π

∫
dθ tr (λ(θ)a(θ)) , (2.20)

where k times the trace denotes the invariant bilinear form that is used to define the

CS action. The latter observation suffices to fix the canonical structure of the boundary

theory since

δλa(θ) = {Q(λ), a(θ)} (2.21)

implies

{Q(λ), Q(η)} = −
k

2π

∫
dθ tr (η(θ)δλa(θ)) . (2.22)

This Poisson algebra is the centrally extended loop algebra of g (see, for instance, [26, 49]),

and it induces an analogue Poisson structure on the space of on-shell configurations a(θ),

that accounts for the boundary degrees of freedom.

The other chiral sector, involving Ã, can be treated in a similar fashion, but with some

small variations needed to ensure the invertibility of the dreibein. This is guaranteed if

one reaches the following on-shell parameterisation,

l−1Ãt = − Ãθ = b(ρ) ã(t, θ) b−1(ρ) , Ãρ = b(ρ) ∂ρ b
−1(ρ) , (2.23)

and restricts the b(ρ) appearing both in (2.15) and (2.23) to take values in the “gravita-

tional” subgroup of G. Even if the dreibein is always invertible, in [14] (see also [13, 42])

we argued that (2.23) and the corresponding condition for A do not provide a satisfactory

on-shell parameterisation of the space of asymptotically-AdS configurations. We thus

proposed to also require a finite difference between them and the AdS solution at the

boundary,

(A− AAdS)

∣∣∣∣
∂M

= O(1) , (2.24)
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and similarly for Ã. Eq. (2.24) translates into the Drinfeld-Sokolov condition on a(θ) and

thus recovers the conformal symmetry discovered by Brown and Henneaux in the metric

formulation of gravity [15]. A similar characterisation of the space of asymptotically-AdS

solutions was discussed in the context of (super)gravity theories in [24, 50, 51].

To display the consequences of (2.24) on a(θ) it is convenient to denote the adjoint

action of the sl(2,R) generators Ji on the elements of g by Li,

Li x := [ Ji , x ] for x ∈ g . (2.25)

The Li satisfy the same commutation relations (2.11) as the Ji. Since by hypothesis

we consider only sl(2) embeddings that branch g into a (possibly infinite) sum of finite-

dimensional sl(2)-irreducible representations, the eigenvalues of L0 are half integers. We

can thus decompose the gauge algebra into eigenvectors of L0 of negative, zero or positive

eigenvalues,

g = g< ⊕ g0 ⊕ g> . (2.26)

The Drinfeld-Sokolov condition amounts to the constraint that a(θ) − J+ has no compo-

nents corresponding to the negative spectrum of L0,

a(θ) − J+ ∈ g0 ⊕ g> , (2.27)

or equivalently,

Pg< (a(θ) − J+) = 0 , (2.28)

where Pg< is the orthogonal projector onto g<. In HS gauge theories one has to impose

an analogous condition also on ã(θ), but the analysis proceeds along the same lines as the

one for a(θ). Therefore, in the following we continue to focus on a(θ).

The constraints (2.28) are in general of first class3 and they generate gauge transfor-

mations. To get to the reduced phase space, one has to fix the gauge. A natural gauge

choice is the so-called highest-weight gauge

a(θ) = J+ + a−(θ) , (2.29)

where a− satisfies4

L− a−(θ) = 0 . (2.30)

This choice fixes the gauge completely. In the restricted class of solutions satisfying

(2.24) the boundary degrees of freedom are thus described by a−(θ) [28, 52]. We shall

now analyse the symmetries of the constrained boundary theory, which correspond to the

asymptotic symmetries of the HS models that we introduced in Section 2.1.

3When L0 admits half-integers eigenvalues some constraints are second class. However, this does not

affect the possibility to reach the gauge (2.29) [52].
4Note that L

−
increases the L0 eigenvalue, so that a

−
(θ) can be expanded in a set of highest weight

eigenvectors for L0. This rather unintuitive association follows from the convention (2.11) that we chose

for the sl(2,R) algebra.

11



2.3 Drinfeld-Sokolov reduction in highest-weight gauge

To find the symmetries of the constrained theory, we look at the set of symmetry trans-

formations (2.19) that leave the form (2.29) of a(θ) invariant,

L−(δλa) = 0 . (2.31)

This condition translates into

L− ( ∂θ + [ a−(θ), · ] )λ(θ) + L−L+λ(θ) = 0 . (2.32)

The operator L−L+ can be rewritten as

L−L+ = − ∆ + L0(L0 − 1) , (2.33)

where we introduced the quadratic Casimir

∆ = L2
0 −

1

2
(L+L− + L−L+ ) . (2.34)

In the basis of g introduced in (2.12) the operator (∆ − L0(L0 − 1)) acts as

( ∆ − L0(L0 − 1) ) (W ℓ
m)[a] = (ℓ−m)(ℓ+m+ 1) (W ℓ

m)[a] , (2.35)

i.e. by multiplication with a number that is non-zero for m 6= ℓ. We denote by g− (g+)

the space of highest (lowest) weight states,

x ∈ g− ⇔ L−x = 0 , x ∈ g+ ⇔ L+x = 0 . (2.36)

In general, g− and g+ can have a non-trivial intersection which contains the sl(2) singlets.

We also introduce the projection operators P± onto g±, respectively. The operator (∆ −
L0(L0 − 1)) is invertible on the orthogonal complement of g+, and we define

R := −
1

∆ − L0(L0 − 1)
( 1 − P+ ) . (2.37)

In particular we have

RL−L+ = L−L+ R = 1 − P+ . (2.38)

Furthermore we introduce the covariant derivative

Dθ := ∂θ + [ a−(θ), · ] , (2.39)

which commutes with L−, because L−a− = 0.

Applying R to (2.32) and taking into account (2.38), we eventually obtain

λ(θ) = λ+(θ) − RL−Dθλ(θ) . (2.40)

12



Here, λ+(θ) = P+λ(θ) is the lowest-weight part of λ. Eq. (2.40) is solved by

λ(θ) =
1

1 +RL−Dθ

λ+(θ) , (2.41)

which expresses the gauge parameter λ in terms of its lowest-weight part.5 Inserting the

solution (2.41) into the expression (2.19) for δλa, we find

δλa(θ) = P−
1

1 +DθRL−
Dθλ+(θ) = P−

∞∑

n = 0

(
−DθRL−

)n
Dθλ+(θ) . (2.42)

This finally expresses δλa in terms of λ+. One might be worried about the infinite series

appearing in (2.42). For a gauge parameter with definite sl(2) quantum numbers as

λ+(θ) = ǫ(θ)W ℓ
ℓ , however, the series expansion in (2.42) stops at the term with n = 2ℓ.

This is because each term DθRL− involves the application of L−, and (L−)2ℓ+1W ℓ
ℓ = 0,

while L− commutes with Dθ and R does not change the sl(2) quantum numbers. The

indices [a] of (2.9) do not play any role in this argument and thus we omitted them for

simplicity.

In order to identify the Poisson structure on the reduced phase space one can then

substitute (2.42) in (2.22). It is also possible to display the Poisson brackets between

fields of defined conformal spin. To this end one can expand a−(θ) and the independent

part of the gauge parameter, encoded in λ+(θ), in the basis (2.12):

a−(θ) =
2π

k


L(θ)J− +

∑

ℓ , a

W [a]
ℓ (θ) (W ℓ

−ℓ)[a]


 , (2.43a)

λ+(θ) = ǫ(θ)J+ +
∑

ℓ , a

ǫ
[a]
ℓ (θ) (W ℓ

ℓ )[a] . (2.43b)

Here [a] is a colour index, while ℓ is a sl(2) quantum number. The charges (2.20) which

generate the transformations (2.42) then read

Q(λ+) =
∫
dθ ǫ(θ) L(θ) −

∑

ℓ, a, b

(Nℓ)ab

∫
dθ ǫ

[a]
ℓ (θ) W [b]

ℓ (θ) , (2.44)

with the matrices (Nℓ)ab defined in (2.14). By substituting (2.44) in (2.21) one can

eventually read off the Poisson brackets {W [a]
i (θ),W [b]

j (θ′)}. If all values of ℓ are integers,

one can diagonalise (Nℓ)ab and thus determine all Poisson brackets involving W [a]
ℓ by

looking at the gauge transformations generated by ǫ
[a]
ℓ . If some half-integer values of ℓ

appear in (2.8) one can at most make (Nℓ)ab block-diagonal, with a sequence of 2 × 2

blocks. This means that the Poisson brackets of a given field can be extracted from

the gauge transformations generated by the gauge parameter with the “partner” colour

charge.

5A similar formula appears in [53].
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The determination of the Poisson brackets can also formulated covariantly in colour

indices. To this end it is convenient to denote the inverse of the matrix (Nℓ)ab by (Nℓ)
ab,

and to consider

δi [a] W [b]
j (θ) =

∑

c

(Nj)
bc tr

(
(W j

j )[c]
1

1 +DθRL−

Dθ ǫ(θ)(W
i
i )[a]

)
, (2.45)

where
∑

c(Nj)
bc tr(W j

j[c] · ) selects the coefficient in front of the generator (W j
−j)[b], and

the variation is taken with respect to λ+(θ) = ǫ(θ)(W i
i )[a]. From (2.21) we have

δi [a] W [b]
j (θ′) = −

∑

c

(Ni)ac

∫
dθ′′ǫ(θ′′)

{
W [c]

i (θ′′) , W [b]
j (θ′)

}
, (2.46)

so that we can obtain the Poisson brackets from the variation by

{
W [a]

i (θ) , W [b]
j (θ′)

}
= −

∑

c

(Ni)
acδi [c] W [b]

j (θ′)
∣∣∣∣
ǫ(θ′) = δ(θ−θ′)

. (2.47)

2.4 General properties

The Poisson algebra that we obtained in the last section by the DS reduction of a centrally

extended loop algebra of course depends very much on the detailed structure of the algebra

g that we started with and on the choice of a sl(2,R) embedding. On the other hand,

there are a few general properties that we want to discuss here.

2.4.1 Primary basis

The DS reduction in highest-weight gauge always leads to a presentation of the resulting

W-algebra in a basis where all generators are primaries with respect to the lowest spin

ones. If no spin-1 fields are present – as in the case of principal sl(2,R) embeddings – all

generators are thus automatically Virasoro primaries.

If spin-1 fields are present, corresponding to sl(2) singlets in (2.8), we can compute their

Poisson brackets with the other fields by evaluating the gauge transformations generated

by λ+ = ǫ(θ)(W 0
0 )[a]. From the previous discussion we know that we only have to evaluate

the term at zeroth order in the series (2.42),

Dθλ+ = ǫ ′ (W 0
0 )[a] − ǫQ[a] a− . (2.48)

Here, in analogy with (2.25), we denoted by Q[a] the adjoint action of (W 0
0 )[a] on the

elements of the algebra,

Q[a] x := [ (W 0
0 )[a], x ] for x ∈ g . (2.49)

These operators cannot modify the sl(2) quantum numbers, so that we can describe their

action by

Q[a](W
ℓ
m)[b] =

∑

c

(fℓ)
c
ab (W ℓ

m)[c] . (2.50)
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Therefore, all terms in (2.48) belong to g− and the projector P− does not induce any

modification. Expanding a−(θ) as in (2.43a) we eventually get

δ[a]W
[b]
ℓ = − ǫ

∑

c

(fℓ)
b
ac W [c]

ℓ +
k

2π
ǫ ′ δa

b δ0,ℓ . (2.51)

In the singlet sector one can always diagonalise the matrix (Nℓ)ab appearing in (2.44),

but we can also substitute (2.51) in (2.47) to get

{
W [a]

0 (θ),W [b]
0 (θ′)

}
= δ(θ − θ′)

∑

c

(f0)ba
c W [c]

0 (θ′) +
k

2π
(N0)

ab ∂θδ(θ − θ′) , (2.52a)

{
W [a]

0 (θ),W [b]
ℓ (θ′)

}
= δ(θ − θ′)

∑

c

(fℓ)
ba

c W [c]
ℓ (θ′) for ℓ ≥ 1 . (2.52b)

In both cases one index of (fℓ)
b
ac is raised using (N0)ab, that is the inverse of the Killing

metric of the subalgebra of g spanned by the sl(2) singlets. The spin-1 fields W [a]
0 thus

generate the centrally extended Kac-Moody subalgebra (2.52a). They always appear

when non-principal sl(2) embeddings are considered, so that the presence of a Kac-Moody

subalgebra is a neat signature of this class of DS reduction (see also [52] for more comments

on this setup).

Let us now evaluate the Poisson bracket of an arbitrary field with the Virasoro current.

In this case it is sufficient to consider the gauge transformations generated by λ+(θ) =

ǫ(θ)J+. In the computation the singlets behave differently with respect to all other fields

and it is convenient to split a−(θ) as

a−(θ) = â−(θ) +
2π

k

∑

a

W [a]
0 (θ)(W 0

0 )[a] . (2.53)

To proceed we only have to compute the series in (2.42) up to n = 2:

Dθλ+ = L+

(
ǫ′J0 − ǫ â−

)
, (2.54a)

(
−DθRL−

)
Dθλ+ = −

ǫ′′

2
L+J− + ǫ′(L0 + 1)â− + ǫ â′

− +
2π

k
ǫ
∑

a

W [a]
0 Q[a]â− , (2.54b)

(
−DθRL−

)2
Dθλ+ =

ǫ′′′

2
J− . (2.54c)

Summing all contributions that remain after the projection by P− we eventually find

δλa =
ǫ′′′

2
J− + ǫ′(L0 + 1)a− + ǫ a′

− +
2π

k
ǫ
∑

a

W [a]
0 Q[a] â− for λ+ = ǫJ+ . (2.55)

Expanding a−(θ) as in (2.43a), then leads to

δL = ǫL′ + 2 ǫ′L +
k

4π
ǫ′′′ , (2.56a)

δW(a)
ℓ = ǫW(a) ′

ℓ + (ℓ+ 1) ǫ′ W [a]
ℓ + ǫ

2π

k

∑

b , c

(fℓ)
a

bc W [b]
0 W [c]

ℓ for ℓ ≥ 1 , (2.56b)
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while the fields with ℓ = 0 are left invariant. If no spin-1 fields are present, the terms

containing W [a]
0 disappear, and the field W [a]

ℓ transforms as a primary field of conformal

weight (ℓ + 1). Even in the general case one can easily express the result in a Virasoro

primary basis by redefining the Virasoro current as

L̂ := L −
π

k

∑

a , b

(N0)ab W [a]
0 W [b]

0 . (2.57)

With respect to the improved Sugawara Virasoro current L̂ the Poisson brackets read

{
L̂(θ) , L̂(θ′)

}
= δ(θ − θ′) L̂ ′(θ′) − 2 ∂θδ(θ − θ′) L̂(θ′) −

k

4π
∂3

θδ(θ − θ′) , (2.58a)

{
L̂(θ) , W [a]

ℓ (θ′)
}

= δ(θ − θ′) W(a)′(θ′) − (ℓ+ 1) ∂θδ(θ − θ′) W(a)
ℓ (θ′) . (2.58b)

2.4.2 Central terms

Eqs. (2.52a) and (2.58a) display a central term, but central terms do not arise only in

the Kac-Moody or Virasoro subalgebras. On the other hand, their structure is rather

rigid and does not depend on the particular loop algebra to which one applies the DS

procedure. They can be computed by substituting the covariant derivative Dθ with an

ordinary derivative in (2.42). When we consider a transformation by a gauge parameter

of a given conformal spin, say λ+(θ) = ǫ(θ)(W ℓ
ℓ )[a], we find

δλa |Dθ = ∂θ
=

(−1)2ℓ

(2ℓ)!
ǫ(2ℓ+1) (W ℓ

−ℓ)[a] , (2.59)

where the exponent between parentheses denotes the action of the corresponding number

of derivatives on ǫ. To reach this result one just has to combine L+W
ℓ
ℓ−(n+1) = (n+1)W ℓ

ℓ−n

(following from (2.12)) with eq. (2.38). In conclusion, central terms only appear in the

Poisson brackets between fields of the same conformal weight,

{
W [a]

ℓ (θ) , W [b]
ℓ (θ′)

}
=

k

2π(2ℓ)!
(Nℓ)

ab ∂2ℓ+1
θ δ(θ − θ′) + . . . , (2.60)

where (Nℓ)
ab is the inverse of the matrix introduced in (2.14).

2.4.3 Polynomials in the Virasoro generators

There is another property of the W-algebra that does not depend on the particular Lie

algebra g chosen as a starting point for the DS reduction. It is the presence of non-

linearities in the resulting Poisson algebra. This follows from the repeated application

of the covariant derivative in (2.42), but here we would like to display explicitly a class

of polynomial terms that does not depend on the structure of g but only on the branch-

ing (2.8). These are the polynomials that involve just the Virasoro generator L, whose

structure depends only on the commutators (2.12).

16



One can compute the polynomials containing only L by considering only the Virasoro

part in the covariant derivative,

Dθ → ∂θ +
2π

k
L(θ)L− . (2.61)

Furthermore, as in (2.59), it is convenient to consider separately the contributions to δλa

coming from gauge parameters of different spin. Let us for simplicity elide colour indices

and consider λ+(θ) = ǫ(θ)W ℓ
ℓ . This leads to

δλa
∣∣∣∣
Dθ = ∂ + 2π

k
LL−

=
(−1)2ℓ

(2ℓ)!

⌈ℓ⌉∑

r = 0

(
2π

k

)r 2(ℓ−r)+1∑

p1 = 0

2(ℓ−r)+1−p1∑

p2 = 0

. . .

2(ℓ−r)+1−
∑r−1

1
pt∑

pr = 0

× C[ ℓ ]p1... pr L(p1) . . . L(pr) ǫ(2(ℓ−r)+1−
∑r

1
pt) W ℓ

−ℓ ,

(2.62)

where the extremum of the sum over r is ℓ or ℓ+ 1/2, depending on whether ℓ is integer

or half integer. As a result, fields with half-integer spin also admit pure-Virasoro terms

that do not contain derivatives, while if the spin is integer there is at least one derivative

in all terms of (2.62). The “structure constants” appearing in (2.62) read

C[ ℓ ] p1... pr =
2(ℓ−r)+1∑

i1 = p1

2(ℓ−r)+1−i1∑

i2 = 〈p1+p2−i1〉+

. . .

2(ℓ−r)+1−
∑r−1

1
it∑

ir = 〈
∑r

1
pa−
∑r−1

1
it〉+

r∏

s = 1

(∑s
1 pt −

∑s−1
1 it

ps

)

×

(
2 (r − s) + 1 +

r−s+1∑

t = 1

it

)(
2 (l − r + s) −

r−s+1∑

t = 1

it

)
,

(2.63)

where 〈i〉+ = max(0, i). The details of their computation are presented in Appendix B.

Note that the tensors C[ ℓ ]p1... pr are not symmetric for interchanges of the indices ps.

As a result a symmetrisation is needed in order to extract the coefficient appearing in

front of a non-ordered combination of derivatives of L. Let us also stress that the terms

displayed here can only appear in the brackets {W [a]
ℓ (θ),W [b]

ℓ (θ′)}, precisely as in the

discussion of the central terms (that actually come from the term of order zero in the

sum over r). This is due to the proportionality of (2.62) to W ℓ
−ℓ and to the fact that the

adjoint action of sl(2) generators cannot modify the quantum number ℓ. This is no longer

true if one considers the full covariant derivative in (2.42), so that the computation of the

remaining terms in the Poisson algebra requires the knowledge of the detailed structure

of g. In the following we shall exploit it in a couple of examples, before presenting the

main results of this paper in Section 3, where we apply this procedure to compute the

asymptotic symmetries of SL(N,R) × SL(N,R) HS gauge theories and their N → ∞
limits.

2.5 Non-principal embeddings: two examples

In this section we present the main features of DS reductions based on non-principal

sl(2,R) embeddings by studying in detail two examples. The interpretation of the W-

algebras we are going to discuss as asymptotic symmetries of classical HS gauge theories
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could be not completely straightforward due to the comments we presented at the end of

Section 2. On the other hand, we feel it could be instructive to also examine the features

of non-principal DS reductions, also in view of possible applications to other classes of

minimal models aside from those considered in [18, 22, 23]. See also [43] for a discussion

of their possible role in HS gauge theories.

In particular, we perform the DS reductions associated to two non-principal embed-

dings of sl(2,R) in sl(N,R). The algebra sl(N,R) admits a number of inequivalent sl(2)

embeddings equal to the number of partitions of N [54]. One of them is just the trivial

embedding that cannot be used to build a HS gauge theory, and whose DS reduction

gives the affine extension of sl(N,R) rather than a W-algebra [52]. In the sl(3,R) case

there is thus only one non-trivial non-principal sl(2) embedding and we present its DS

reduction, together with the one associated to the corresponding embedding of sl(2,R)

in sl(4,R). In fact, inequivalent embeddings can be obtained by embedding different

n × n representations of sl(2,R) in the fundamental of sl(N,R). In both cases we con-

sider the “next-to-principal” sl(2,R) embeddings in sl(N,R), where one singles out a

(N − 1) × (N − 1) representation of sl(2,R) in the fundamental of sl(N,R).

2.5.1 The Polyakov-Bershadsky W(2)
3 algebra

We consider here the sl(2,R) embedding in sl(3,R) that branches the fundamental rep-

resentation as

8 = 3 + 2 · 2 + 1 . (2.64)

The three-dimensional representation in (2.64) corresponds to the sl(2,R) subalgebra used

to implement the DS reduction. Accordingly to this decomposition, the sl(3,R) algebra

can be realised in terms of the three sl(2,R) generators W 1
i (i = −1, 0, 1), two sets of

generators ψ[a]
m (m = −1

2
, 1

2
; a = 1,−1) of spin 3/2 and one generator W 0

0 of spin 1:
[
W 1

i , W
1
j

]
= (i− j)W 1

i+j , (2.65a)
[
W 1

i , W
0
0

]
= 0 , (2.65b)

[
W 1

i , ψ
[a]
m

]
=
(
i

2
−m

)
ψ

[a]
i+m , (2.65c)

[
W 0

0 , ψ
[a]
m

]
= aψ[a]

m , (2.65d)
[
ψ[a]

m , ψ[b]
n

]
=

a− b

2

(
W 1

m+n +
3

2
(a− b)m(m− n)2 W 0

0

)
. (2.65e)

The presence of two sets of generators with half-integer ℓ allows to consider linear com-

binations of them without spoiling (2.65c), and we defined the ψ[a]
m so that they are

eigenvectors of the adjoint action of W 0
0 . On the other hand, in agreement with the dis-

cussion in Section 2.1, this freedom does not suffice to separate their contributions to the

Killing metric.

The DS reduction based on the embedding (2.64) was first performed independently

by Polyakov and Bershadsky [55] and the resulting W-algebra is usually denoted by W(2)
3 .
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In order to perform it with our techniques, it is convenient to introduce the notation

a− =
2π

k

(
W0(θ)W 0

0 + W [1]
1
2

(θ)ψ
[1]

− 1
2

+ W [−1]
1
2

(θ)ψ
[−1]

− 1
2

+ L(θ)W 1
−1

)
, (2.66)

and to denote the gauge variation with respect to λ+(θ) = ǫ(θ)(W ℓ
ℓ )[a] as δℓ [a]. The

general procedure (2.42) leads eventually to the following transformations preserving the

highest-weight gauge:

δ0W0 =
k

2π
ǫ′ , δ0W

[a]
1
2

= − a ǫW [a]
1
2

, δ0L = 0 , (2.67a)

δ1W0 = 0 , δ1L = 2 ǫ′ L + ǫL′ +
k

4π
ǫ′′′ , (2.67b)

δ1W [a]
1
2

=
3

2
ǫ′ W [a]

1
2

+ ǫW [a] ′
1
2

+ a
2π

k
ǫW [a]

1
2

W0 , (2.67c)

δ 1
2

[a]W
[b]
1
2

= δa
b

(
− ǫL − 2 a ǫ′ W0 − a ǫW ′

0 −
2π

k
ǫW0 W0 −

k

2π
ǫ′′
)
. (2.67d)

The resulting W-algebra is obtained by substituting (2.67) in (2.47), and it coincides

with the one in [55]. We present it in Appendix C. To compute the Poisson brackets

one has to know the structure of the Killing metric of sl(3,R). In our basis it is block-

diagonal with one block for each type of field, except for a mixing in the two sets of spin-3
2

generators ψ[a]
m . In particular, the various matrices (Nℓ)ab of (2.14) are 6

(N 1
2
)ab =

(
0 1

−1 0

)
, N0 =

2

3
. (2.68)

Since one block in the Killing form involves generators with different colour indices, the

structure of the gauge transformation (2.67d) and the corresponding Poisson bracket

(C.1f) differ by more than just a numerical factor, namely also by the colours of the fields

that occur.

The fields W [a]
1
2

are not Virasoro primaries (see (2.67c)). As described in general in

(2.57), and for this example already mentioned in [55], a shift

L → L −
2π

3k
(W0)2 ≡ L̂ (2.69)

leads to a basis where all fields are primaries with respect to L̂.

2.5.2 A non-principal sl(2,R) embedding in sl(4,R)

We consider here the sl(2,R) embedding in sl(4,R) that branches the fundamental rep-

resentation as

15 = 3 + 5 + 2 · 3 + 1 . (2.70)

6 In (2.68) we ordered the generators such that tr
(
ψ

[1]
1

2

ψ
[−1]

−

1

2

)
= 1, while tr

(
ψ

[−1]
1

2

ψ
[1]

−

1

2

)
= −1.
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The first three-dimensional representation in (2.70) corresponds to the sl(2,R) subalgebra

used to implement the DS reduction. In a HS perspective it would thus be associated

to the graviton, while the other two would lead to two coloured massless spin-2 fields.

Accordingly to this decomposition, the sl(4,R) algebra can be realised in terms of the three

sl(2,R) generators W 1
i (i = −1, 0, 1), two extra sets of spin-2 generators φ

[a]
i (i = −1, 0, 1 ;

a = 1,−1), one set of spin-3 generators W 2
m (m = −2, . . . , 2) and the sl(2) singlet W 0

0 as

[
W 1

i , W
1
j

]
= (i− j)W 1

i+j , (2.71a)
[
W 1

i , φ
[a]
j

]
= (i− j)φ

[a]
i+j , (2.71b)

[
W 1

i , W
2
m

]
= (2i−m)W 2

i+m , (2.71c)
[
W 1

i , W
0
0

]
= 0 , (2.71d)

[
W 0

0 , φ
[a]
i

]
= a φ

[a]
i , (2.71e)

[
W 0

0 , W
2
i

]
= 0 , (2.71f)

[
W 2

m , W
2
n

]
= −

1

12
(m− n)

(
2m2 + 2n2 − mn − 8

)
W 1

m+n , (2.71g)
[
W 2

m , φ
[a]
i

]
=

a

6

(
m2 + 6i2 − 3mi − 4

)
φ

[a]
m+i , (2.71h)

[
φ

[a]
i , φ

[b]
j

]
=

a− b

2

(
− a (i− j)W 1

i+j + 2W 2
i+j −

4

3
(2 − 3|i− j|) δi+j,0W

0
0

)
. (2.71i)

As in the previous example, we used the freedom in the definition of the φ[a]
m to let them

be eigenvectors of the adjoint action of W 0
0 .

With the convention

a− =
2π

k

(
W0(θ)W 0

0 + L(θ)W 1
−1 + W [−1]

1 (θ)φ
[−1]
−1 + W [1]

1 (θ)φ
[1]
−1 + W2(θ)W 2

−2

)
, (2.72)

the transformations preserving the highest-weight parameterisation of a− are

δ0W0 =
k

2π
ǫ′ , δ0W [a]

1 = − a ǫW [a]
1 , δ0L = δ0W2 = 0 , (2.73a)

δ1L = 2 ǫ′ L + ǫL′ +
k

4π
ǫ′′′ , (2.73b)

δ1W [a]
1 = 2 ǫ′ W [a]

1 + ǫ
(
W [a]

1

)′
+

2π

k
a ǫW0 W [a]

1 , (2.73c)

δ1W2 = 3 ǫ′ W2 + ǫ (W2)′ , (2.73d)
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δ1 [a]W
[b]
1 = δa

b

(
3a

2
ǫ′′ W0 +

3a

2
ǫ′ W ′

0 +
a

2
ǫW ′′

0

+ 2 ǫ′ L + ǫL′ +
k

4π
ǫ′′′ + 2 a ǫW2

+
2π

k
2 a ǫW0 L +

2π

k

3

2
ǫ′ W0 W0 +

2π

k

3

2
ǫW0 W ′

0

+
(

2π

k

)2 a

2
ǫW0 W0 W0

)
, (2.73e)

δ1 [a]W2 = −
5a

3
ǫ′′ W [−a]

1 −
5a

6
ǫ′
(
W [−a]

1

)′
−

a

6
ǫ
(
W [−a]

1

)′′

−
2π

k
a

8

3
ǫL W [−a]

1 −
2π

k

5

2
ǫ′ W0 W [−a]

1 −
2π

k

3

2
ǫW ′

0 W [−a]
1

−
2π

k

a

2
ǫW0

(
W [−a]

1

)′
−
(

2π

k

)2

a ǫW0 W0 W [−a]
1 , (2.73f)

δ2W2 =
5

6
ǫ′′′ L +

5

4
ǫ′′ L′ +

3

4
ǫ′ L′′ +

1

6
ǫL′′′ +

k

48π
ǫ(5)

+
2π

k

8

3
ǫ′ L L +

2π

k

8

3
ǫL L′ +

2π

k
8 ǫ′ W [−1]

1 W [1]
1

+
2π

k
4 ǫ

(
W [−1]

1

)′
W [1]

1 +
2π

k
4 ǫW [−1]

1

(
W [1]

1

)′
. (2.73g)

In the basis (2.71) the Killing metric splits into blocks for the different field types

except for a mixing in the two extra sets of spin-2 generators. More concretely, the

matrices (Nℓ)ab of (2.14) become

(N1)ab =

(
0 1

1 0

)
, N0 =

3

16
, N2 = 1 . (2.74)

In this case the matrix (N1)ab can be clearly diagonalised, but this would spoil our choice

of working with W 0
0 eigenvectors. Note, however, that its eigenvalues are ±1, so that

the kinetic terms of the two coloured spin-2 fields would have opposite sign in the action

(2.1).

To obtain a W-algebra in a Virasoro-primary basis, one can again shift L as

L → L −
3π

16k
W0 W0 ≡ L̂ . (2.75)

The corresponding Poisson algebra is presented in Appendix C.

3 The structure of W∞[λ] in a primary basis

In this section we use the techniques developed in Section 2 to study an interesting one-

parameter family of higher-spin gauge theories. Their gauge algebras are the direct sum of
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two copies of the infinite-dimensional Lie algebras called hs[λ]. After a brief introduction

to these algebras we shall stress their link with higher spins by discussing the relation

between a suitable basis of their invariant tensors and Fronsdal’s metric-like fields. For

any λ we shall then compute the structure constants of the W-algebra of asymptotic

symmetries in a Virasoro-primary basis.

3.1 The higher-spin algebras hs[λ] ⊕ hs[λ]

In Section 2.1 we have seen that in any three-dimensional HS gauge theory a crucial role

is played by the gauge subalgebra that describes the gravitational sector of the model.

Instead of choosing it among all possible embeddings in a given algebra, one can actually

proceed in a different direction and build HS algebras out of products of generators of the

“gravitational” sl(2,R) ⊕ sl(2,R) gauge algebra.

For instance, following [29, 30, 31, 32, 33, 19], we start with the universal enveloping

algebra of sl(2,R) generated by J± and J0. We then do the identification

C2 := J2
0 −

1

2
(J+J− + J−J+ ) ≡ µ1 , (3.1)

which sets the quadratic Casimir C2 to a particular value µ that we often parameterise as

µ =
1

4

(
λ2 − 1

)
. (3.2)

The algebra obtained in that way is spanned by the identity 1 and the elements

W ℓ
m := (−1)ℓ−m (ℓ+m)!

(2ℓ)!
L ℓ−m

− J ℓ
+ , ℓ ≥ 1 , − ℓ ≤ m ≤ ℓ , (3.3)

where Li denotes the adjoint action of sl(2,R) as in (2.25). From their definition it is

manifest that they satisfy the commutators

[W 1
m , W

ℓ
n ] = (ℓm− n)W ℓ

m+n , (3.4)

and we can identify the generators with ℓ = 1 with the sl(2,R) ones. The whole set of

W ℓ
m generates a Lie algebra hs[λ] whose remaining commutators are fixed by the sl(2)

commutators of eq. (2.11). It branches as

hs[λ] =
∞⊕

ℓ = 1

g
(ℓ) (3.5)

under the adjoint action of the defining sl(2) subalgebra. Different values of the parameter

µ (related to λ by (3.2)) give algebras that are not isomorphic [29, 33].

This construction shows that one can identify hs[λ] with the subspace orthogonal to

the identity in the quotient of the universal enveloping algebra of sl(2,R) by the ideal

generated by (C2 − µ1) [29, 30, 31, 32, 33, 19],

U(sl(2,R))

〈C2 − µ1 〉
= hs[λ] ⊕ C . (3.6)
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The whole quotient is an associative algebra. The product of the W ℓ
m was given in [30]

(see also [31]) as

W k
m ⋆ W ℓ

n =
1

2

k+ℓ∑

i = |k−ℓ|

fλ

(
k ℓ i

m n m+ n

)
W i

m+n , (3.7)

where the identity is denoted by W 0
0 and the λ-dependent structure constants are defined

in Appendix A. The product (3.7) allows one to realise the Lie product on hs[λ] as a

⋆-commutator:

[W k
m , W

ℓ
n ] =

k+ℓ−1∑

i = |k−ℓ|+1

i+k+ℓ odd

fλ

(
k ℓ i

m n m+ n

)
W i

m+n . (3.8)

The associative product (3.7) was also used in [31] to define an invariant bilinear form

on hs[λ] as

tr
(
W k

mW
ℓ
n

)
:=

6

(λ2 − 1)
W k

m ⋆ W ℓ
n

∣∣∣
W i

p = 0 for i > 0
, (3.9)

i.e. by extracting the term proportional to the identity from the product. The invariant

form (3.9) allows to define a CS action based on the algebra hs[λ] ⊕ hs[λ] as in (2.1).

Eq. (3.5) then shows that – for a generic value of λ – the spectrum of the corresponding

HS gauge theory contains all integer spins from 2 to ∞, and each of them appears only

once. However, when λ is integer, the invariant form (3.9) degenerates as one can see

from its explicit expression:

tr
(
W k

mW
ℓ
n

)
= (−1)ℓ−m Nℓ(λ)

(ℓ+m)!(ℓ −m)!

(2ℓ)!
δk,ℓ δm+n,0 , (3.10a)

Nℓ(λ) = −
6 (ℓ!)2

(2ℓ+ 1)!

ℓ∏

i = 2

(i− λ)(i+ λ) . (3.10b)

The normalisation factors Nℓ(λ) follow from the definitions in Appendix A. For integer

λ = N the CS action (2.1) thus actually corresponds to that of a sl(N,R) ⊕ sl(N,R)

theory.7 Another interesting value of the parameter is λ = 1/2 that gives the three-

dimensional Fradkin-Vasiliev algebra [56].

Before concluding this review, let us notice that the W ℓ
m with odd ℓ form a subalgebra

of hs[λ] that we denote by ho[λ]. As a result, one could well build a HS gauge theory

on top of ho[λ] ⊕ ho[λ]. For λ /∈ N its spectrum contains all even integer spins greater

than zero.8 For λ ∈ N the truncation to even spins of the AN ⊕ AN CS theories leads to

7The normalisation factor that we introduced in (3.9) thus plays a double role: on the one hand it

gives tr
(
W 1

1W
1
−1

)
= −1. On the other hand it guarantees that λ = 1 still provides a gauge theory

involving all spins from 2 to ∞, as in [18].
8A similar truncation is available also in higher space-time dimensions where it leads to the so called

minimal Vasiliev models (see e.g. [3]).
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BN ⊕BN gauge algebras for odd N and to CN ⊕CN gauge algebras for even N [32], while

the D series of simple Lie algebras cannot be recovered in this fashion.

Moreover, commutators of generators with even ℓ (corresponding to fields of odd spin!)

can be always expanded in a sum of generators with odd ℓ. On the other hand, mixed

commutators (one odd and one even ℓ) always give only terms with even ℓ. As a result,

it is possible to rescale by i all generators with even ℓ to get a different real form of hs[λ].

As already mentioned, for integer λ = N the previous construction gives the sl(N,R)

real algebra, i.e. the maximal non-compact real form of sl(N). The rescaling by i of the

generators with even ℓ leads to the next-to-maximal non-compact real form of sl(N), i.e.

su(N−1
2
, N+1

2
) for odd N or su(N

2
, N

2
) for even N . Additional comments on the possible

real forms for λ /∈ N can be found in §3.1 of [30]. Note, however, that the rescaling by

i reverses the sign of the normalisation factors N2j in (3.10) and, in turn, of the kinetic

terms of the fields of odd spin. The maximal non-compact real form seems thus to be

preferred to build a HS gauge theory. As noticed in [14], additional subtleties emerge if

one consider CS actions built upon two different real forms of the same gauge algebra.

In the following we shall avoid all of them by focusing on CS theories based on gauge

algebras hs[λ] ⊕ hs[λ], with hs[λ] fixed by (3.3) and (3.8).

3.1.1 Metric-like fields and invariant tensors of hs[λ]

The previous discussion about hs[λ] suffices to fully characterise a classical HS gauge

theory for any admissible value of λ, in a form which generalises the frame formulation of

Einstein gravity. However, even sticking to this algebraic framework one can extract some

information on the “metric-like” formulation of these theories, involving Lorentz-invariant

symmetric fields ϕµ1... µs (see e.g. [44] for a review). To this end, it is crucial to realise

that the two classes of gauge transformations discussed in Section 2.1 play a very different

role. Those generated by ξ in (2.7) generalise local translations, while those generated

by Λ generalise local Lorentz transformations. As stressed in [14], all metric-like fields

should be invariant under local Lorentz-like transformations. Moreover, one can write

them in terms of the vielbeine, since the spin connections are just auxiliary fields. In

the sl(3) ⊕ sl(3) CS theory discussed in detail in [14] these conditions suffice to fix the

structure of all fields in the spectrum: the metric gµν and the spin-3 field ϕµνρ. Collecting

all vielbeine in the vector eA ≡ eµ
Adxµ and all generators of the algebra in the vector TA,

up to a normalisation constant they read

g ∼ tr ( e · e ) = eAeB tr (TATB ) , (3.11)

ϕ3 ∼ tr ( e · e · e ) =
1

3!
eAeBeC tr (T(ATBTC) ) , (3.12)

where the parentheses denote the symmetrisation of the indices they enclose, with unit

normalisation. The cyclicity of the trace guarantees the extended Lorentz invariance. The

same result holds for the trace of an arbitrary power of the vielbeine,

δΛe = [ e , Λ ] ⇒ δΛtr (en) = n tr (en−1[ e , Λ ]) = 0 . (3.13)
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As a result, for s > 3 the invariance under Lorentz-like transformations does not suffice

to fix the structure of ϕµ1... µs. For instance, for s = 4 one can consider both tr(e4)

and tr(e2)tr(e2) and one has to single out the linear combination that defines ϕµνρσ. This

freedom corresponds to the existence of two Lorentz-like invariant combinations of rank-4:

ϕµνρσ and g(µν gρσ).

The realisation of the Lie algebra hs[λ] as a ⋆-commutator algebra proposed in [30, 31]

provides a powerful tool to analyse this problem at least for the first values of the spin.

In fact,

kA1... As ≡
1

s!
tr (T(A1

. . . TAs) ) :=
6

(λ2 − 1) s!
T(A1

⋆ . . . ⋆ TAs)

∣∣∣
TA = 0

(3.14)

is a symmetric invariant tensor of hs[λ] (which coincides with the Killing metric (3.9)

for s = 2). Its contraction with the vielbeine eA gives a Lorentz-like invariant tensor of

rank s.9 Metric-like fields should then result from the contraction of the vielbeine with

the elements of a particular basis of the polynomial ring of invariant tensors of hs[λ].

This is clear for all AN ⊕AN , BN ⊕BN and CN ⊕CN CS theories that can be extracted

from the hs[λ] ⊕ hs[λ] one. In fact, their spectra are given by the exponents of the gauge

algebras, and are thus in one to one correspondence with the ranks of their independent

Casimir operators. Each Casimir operator is, in turn, uniquely associated to a symmetric

invariant tensor (see, for instance, [58] and references therein). It is natural to suppose

that the same is true even for non-integer λ.

Since the relative coefficients between different invariant tensors of the same rank

cannot be fixed by the extended Lorentz invariance, they should be fixed by the additional

requirements that ϕµ1... µs must satisfy:

1. it has to be doubly traceless as its linearised counterpart (see e.g. [44]);

2. in the linearised regime its rewriting in terms of the vielbeine has to reproduce the

definition in a free theory.

To impose the first condition one should invert the general definition of the metric (3.11).

For this reason we refrain from discussing it here, deferring to future work a full discussion

of the problem. On the other hand, the second condition is more tractable and already

suffices to fix the structure of spin-4 and spin-5 fields for any λ.

The linearised definition of ϕµ1... µs can be most conveniently recalled by describing the

vielbein e ℓ,m of (2.10) as a symmetric traceless tensor ea1... aℓ (that has 2ℓ + 1 indepen-

dent components as e ℓ,m). Denoting the background vielbein by ēµ
a and the linearised

fluctuations by hµ
a1... as−1 , for s > 2 in a linear regime one has

ϕµ1... µs ∼ ē(µ1

a1 . . . ēµs−1

as−1hµs) a1... as−1
. (3.15)

9See [57] for a similar construction for D > 3.
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This means that, differently from gµν , it is usually assumed that higher-spin fields do not

receive any background contribution, while the tracelessness of ha1... as−1 guarantees the

doubly tracelessness of ϕµ1... µs .

Imposing the matching of the most general Lorentz-like invariant combination with

(3.15) one obtains

ϕ4 ∼ tr e4 −
1

10
(3λ2 − 7)

(
tr e2

)2
, (3.16)

ϕ5 ∼ tr e5 −
5

21
(3λ2 − 13) tr e2 tr e3 . (3.17)

However, starting from s = 6 this comparison does not suffice to fix all free coefficients.

In fact, the most general Lorentz-like invariant combination reads

ϕ6 ∼ tr e6 + α(λ) tr e2 tr e4 + β(λ)
(

tr e2
)3

+ γ(λ)
(

tr e3
)2
. (3.18)

The condition (3.15) gives

α(λ) = −
5

6
(λ2 − 7) , β(λ) =

1

42
(6λ4 − 71λ2 + 125) , (3.19)

but the term tr(e3) does not admit any background contribution. As a result, ( tr e3 )
2

does not contribute at first order as well, and the matching with (3.15) cannot put any

constraint on γ(λ). Some extra information follows from the observation that all ϕs we

were able to identify vanish in the sl(N) ⊕ sl(N) theories with N < s. This is expected

because in these cases there are no fields of spin s in the spectrum.10 One can thus

impose the same condition on ϕ6 and this forces γ(λ) = (1/3)(λ2 −1) for N = 3, 4, 5. It is

however not clear to us if this condition suffices to also force the double trace constraint

for arbitrary values of λ, while the uniqueness of (3.16) and (3.17) should ensure the

double tracelessness of ϕ4 and ϕ5. An explicit check would anyway provide a non-trivial

consistency check of the whole construction, and we hope to report on it soon.

3.2 Gauge transformations preserving the highest-weight gauge

We now take the algebras of the last subsection as starting point for a DS reduction in

the highest-weight gauge, and we determine the structure of the corresponding family of

infinite-dimensional W-algebras. Since no sl(2)-singlets appear in (3.5), all generators

will be Virasoro primaries. The asymptotic symmetries of the hs[λ] ⊕ hs[λ] CS theories

that we just discussed are given by two copies of the resulting W-algebras, that we denote

by W∞[λ] as in [19]. The cases with λ ∈ N and λ = 1/2 were already discussed in [14] and

10A general expression for a basis of the centraliser of sl(N) whose elements vanish when their rank

exceeds N was considered in [58]. All tensors in this basis are orthogonal to each other and then, in

particular, they are all traceless. On the other hand, the invariant tensors that give the metric-like fields

do not satisfy this property. Therefore, they coincide with those in [58] only for λ = N < s.
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[13], respectively. A discussion of the general case was also anticipated in [19]. In these

works, however, the computation of structure constants was completed only for fields of

spin s ≤ 3 (see also [36, 37] for an earlier treatment of W∞[λ] algebras and [59] for an

abstract proof that they are actually related to the DS reduction of hs[λ]).

Before displaying the structure constants, let us notice that one can easily evaluate

the maximum order of non-linearity appearing in the Poisson brackets. Consider a gauge

parameter of definite spin, λ+ = ǫ(θ)W ℓ
ℓ . When we act on it with the covariant derivative

entering (2.42), the term in W ℓ1
−ℓ1

gives a result with ℓtot ≤ ℓ + ℓ1 − 1 and L0-eigenvalue

ℓ− ℓ1. If we apply the covariant derivative r-times, we arrive at a L0-eigenvalue
∑
ℓi − ℓ

in a representation with ℓtot ≤
∑
ℓi + ℓ− r. In addition, the action of Dθ is accompanied

by at least r − 1 applications of L−, that means the L0-eigenvalue is
∑
ℓi − ℓ + r − 1.

Clearly, if the L0-eigenvalue exceeds ℓtot, the expression vanishes, and this happens if

−ℓ + r − 1 > ℓ − r, i.e. r ≥ ℓ + 1. In conclusion, in the Poisson brackets of a field with

sl(2) label ℓ there can be at most a non-linearity of order ℓ, as in the Virasoro polynomials

discussed in Section 2.4.3. Actually, as we shall see, the pure-Virasoro terms are the only

ones that saturate this bound. This limitation also accounts, for instance, for the linearity

of the Virasoro algebra, that only contains spin-2 fields, and for the quadratic order of

non-linearity of the W3 algebra.

As in subsections 2.4.2 and 2.4.3 the structure constants can be computed by consid-

ering the gauge variation induced by a parameter of given spin, say λ+ = ǫ(θ)W i
i . The

details of the evaluation of the series (2.42) are presented in Appendix B, while here we

directly present our result. In this case the general decomposition (2.43a) can be cast in

the form

a−(θ) =
2π

k

∞∑

j = 1

Wj(θ)W
j
−j , (3.20)

where we identified L with W1 since no ambiguities can arise due to the absence of colour

indices. The gauge variation of each Wj(θ) with respect to λ+ = ǫ(θ)W i
i reads

δiWj =
k

2π(2i)!
ǫ(2i+1) δi,j

+
i∑

r = 1

i+j−r∑

L = |i−j|+r

i+j+L+r even

∑

{at}

∑

{pt}

C[i, j]a1... ar ; p1... pr W(p1)
a1

. . . W(pr)
ar

ǫ(n̂−
∑r

1
pt) .

(3.21)

Here, as in (2.62), an exponent between parentheses denotes the action of the correspond-

ing number of derivatives on the field, while n̂ denotes the total number of derivatives

which is

n̂ := i+ j − L− r + 1 . (3.22)

For each r the sums over a’s and p’s distribute over these indices the “total spin” L and
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the total number of derivatives n̂. They thus read

∑

{at}

:=
L∑

a1 = 1

L−a1∑

a2 = 1

. . .

L−
∑r−2

1
at∑

ar−1 = 1

δ
ar , L−

∑r−1

1
at
, (3.23a)

∑

{pt}

:=
n̂∑

p1 = 0

n̂−p1∑

p2 = 0

. . .

n̂−
∑r−1

1
pt∑

pr = 1

. (3.23b)

Note that for i = j, the terms that saturate the bound on the order of non-linearity are the

pure Virasoro terms of Section 2.4.3. On the other hand, for j < i the upper extremum of

the sum over r cannot be reached due to the collapsing of the sum over L. As a result, all

Poisson brackets involving fields of labels less or equal to ℓ contain polynomials of order

strictly lower than ℓ. The only exception is {Wℓ(θ),Wℓ(θ
′)} that contains a polynomial

of order ℓ involving only L and its first derivative. Eq. (3.21) also shows that the Poisson

brackets (obtained from (3.30) below) of W∞[λ] are invariant under the map

Wi → (−1)i+1Wi , (3.24)

which is thus an automorphism of W∞[λ].

In addition to these structural results, we can even provide a closed formula for the

structure constants:

C[i, j]a1... ar ; p1... pr =
(−1)n̂+r−1

(2j)!

(
2π

k

)r−1 n̂∑

q1 = p1

n̂−q1∑

q2 = 〈(p1+p2)−q1〉+

. . .

n̂−
∑r−1

1
qt∑

qr = 〈
∑r

1
pt−
∑r−1

1
qt〉+

×

min(ar+b0−1 ,
∑r−1

1
at+j−r+1)∑

b1 = max(|ar−b0|+1 , M(r−1, j))

ar+b0+b1 even

. . .
min(a2+br−2−1 , a1+j−1)∑

br−1 = max(|a2−br−2|+1 , M(1, j))

a2+br−1+br even

×
r∏

s = 1

(∑s
1 qt −

∑s−1
1 pt

ps

)
[ j + bs −

r−s∑

1

at −
r−s+1∑

1

qt − r + s ]ar−s+1−bs−1+bs

× fλ

(
ar−s+1 bs−1 bs

− ar−s+1 − j +
∑r−s+1

1 at +
∑r−s+1

1 qt + r − s . . .

)
. (3.25)

Here [a]n denotes the descending Pochhammer symbol defined in (A.3b), while 〈a〉+ =

max(0, a) and

M(s, ℓ) := 2 max ({at}
s
t=1 , ℓ ) −

s∑

t = 1

at − ℓ+ s . (3.26)

By substituting λ = N with N integer in (3.25) one obtains a closed formula for the struc-

ture constants of the classical WN algebra. Note that eq. (3.25) expresses the structure

constants of W∞[λ] in terms of those of hs[λ]. The techniques of Appendix B actually

allow to express the structure constants of any classical W-algebra (that can be obtained

by a DS reduction) in terms of those of the corresponding Lie algebra.
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3.2.1 Gauge transformations up to spin 4

In order to better elucidate the structure of our result, we now use the closed formula

(3.25) to present all gauge transformations δiWj with i, j < 4. Letting λ = 4 the following

results determine the structure constants of W4. We shall focus on variations with i ≤ j,

since those with j > i do not lead to new independent Poisson brackets. Moreover, in

each δiWj the gauge parameter will be always denoted by ǫ, since no ambiguities can

arise. As in (3.21), δiWj denotes indeed the component along W j
−j of the gauge variation

of a−(θ) induced by the gauge parameter λ+ = ǫ(θ)W i
i .

The first gauge transformations just display that all fields are primaries with respect

to the Virasoro field L ≡ W1,

δ1L = ǫL′ + 2 ǫ′L +
k

4π
ǫ′′′ , (3.27a)

δ1Wℓ = ǫW ′
ℓ + (ℓ+ 1) ǫ′ Wℓ , ℓ = 2, 3, ... . (3.27b)

Augmenting the conformal weight of the gauge parameter by one we find

δ2W2 = −
3

7
(λ2 − 9) [ W ′

3 ǫ+ 2 W3 ǫ
′ ] +

1

12
[ 2 L′′′ǫ+ 9 L′′ǫ′ + 15 L′ǫ′′ + 10 L ǫ′′′ ]

+
16π

3k

[
LL′ǫ+ L2ǫ′

]
+

k

48π
ǫ(5) . (3.27c)

If one substitutes λ = 3 in (3.27c), the transformations that we already displayed suffice

to build the W3 algebra (see e.g. [14]) and, as already anticipated, they contain at most

quadratic polynomials in the generators. For generic λ one can also look at the component

along W 3
−3 of the gauge variation induced by ǫ(θ)W 2

2 ,

δ2W3 = −
2

9
(λ2 − 16) [ 2 W ′

4 ǫ+ 5 W4 ǫ
′ ]

+
1

15
[ W ′′′

2 ǫ+ 6 W ′′
2 ǫ

′ + 14 W ′
2 ǫ

′′ + 14 W2 ǫ
′′′ ]

+
4π

15k
[ 25 L′ W2 ǫ+ 18 L W ′

2 ǫ+ 52 L W2 ǫ
′ ] . (3.27d)

29



The next higher transformation is

δ3W3 =
5

33
(λ2 − 16)(λ2 − 25) [ W ′

5 ǫ+ 2 W5 ǫ
′ ]

−
1

30
(λ2 − 19) [ W ′′′

3 ǫ+ 5 W ′′
3 ǫ

′ + 9 W3 ǫ
′′ + 6 W3 ǫ

′′′ ]

+
1

360

[
3 L(5)ǫ+ 20 L(4)ǫ′ + 56 L(3)ǫ′′ + 84 L′′ǫ(3) + 70 L′ǫ(4) + 28 L ǫ(5)

]

−
2π

15k
(29λ2 − 284)

[
W2W ′

2 ǫ+ W2
2 ǫ

′
]

−
28π

15k
(λ2 − 19) [ L′ W3 ǫ+ L W ′

3 ǫ+ 2 L W3 ǫ
′ ]

+
π

90k

[
177 L′L′′ǫ+ 78 LL′′′ǫ+ 295 L′2ǫ′ + 352 LL′′ǫ′ + 588 LL′ǫ′′ + 196L2ǫ′′′

]

+
32π2

5k2

[
3 L2L′ǫ+ 2 L3ǫ′

]
+

k

1440π
ǫ(7) . (3.27e)

Here a cubic polynomial involving only the Virasoro generators appears, while all other

polynomials are at most quadratic, in agreement with the discussion following (3.23).

Setting λ = 4 in this and the previous transformations, one obtains the whole W4 algebra.

The gauge variations (3.27a–3.27e) agree with those presented in eqs. (3.25–3.29) of

[19], where their fields Ls are identified with ours by

Ls(θ) = Ns−1(λ)Ws−1(θ) (3.28)

involving the factors Ni defined in (3.10b). The normalisation chosen in [19] leads to

Poisson brackets that do not contain poles in λ, so that it is possible to discuss the

truncation to WN directly at that level. The price to pay is the presence of poles in λ in

the definition of a−(θ). Therefore, strictly speaking, some intermediate steps of the DS

reduction are not well defined for integer λ.

3.3 Poisson bracket algebra

The Poisson brackets of W∞[λ] can be obtained from the gauge transformations (3.21)

following the general procedure outlined at the end of Section 2.3. In this case there are

no colour indices so that (2.44) reads

Q(λ+) = −
∞∑

ℓ = 1

Nℓ(λ)
∫
dθ ǫℓ(θ) Wℓ(θ) , (3.29)

where Nℓ(λ) denotes the normalisation factors that we introduced in (3.10b). Eq. (2.47)

thus simplifies to

{
Wi(θ) , Wj(θ

′)
}

= −
1

Ni(λ)
δi Wj(θ

′)
∣∣∣∣
ǫ(θ′) = δ(θ−θ′)

. (3.30)
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Note that for integer λ a diverging factor can appear in this expression since Ni(λ) vanishes

for i ≥ λ. However, in these cases (3.30) is clearly meaningless since the charges involving

Wi vanish as well. For λ ∈ N the Poisson algebra is thus generated by the Wi with i < λ.

The Poisson brackets that one obtains with this procedure have the same structure as the

gauge transformations (3.21), barring the substitution

ǫ(n)(θ′) → (−1)n ∂
(n)
θ δ(θ − θ′) , (3.31)

and the normalisation factors Ni(λ). The Poisson brackets associated to the explicit gauge

transformations (3.27) are collected in Appendix C.

4 A quadratic basis for W∞[λ]

In the last section we have discussed the algebras W∞[λ] that arise from the DS-reduction

of hs[λ] in the highest-weight gauge. The corresponding Poisson brackets {Wi,Wj} are

non-linear expressions in the fields where the degree of non-linearity is bounded by the

minimum of i and j, so that if one considers fields of higher and higher spins, arbitrarily

high degrees of non-linearity can appear. On the other hand, the algebra W∞[λ] has a

basis such that the Poisson brackets involve at most quadratic polynomials in the fields.

In this section, we want to derive the explicit basis transformation that relates theses two

bases.

We start by a general discussion of gauge freedom in the DS-reduction. We then present

in Section 4.1 a recursive algorithm that can be used to determine the transformation to

the highest-weight basis for the DS-reduction of any Lie algebra. In Section 4.2 a quadratic

basis for WN is reviewed, and in Section 4.3 the basis transformation from the highest-

weight basis to the quadratic basis is determined. These results are used in Section 4.4

to derive the corresponding basis transformation for W∞[λ].

We have seen in Section 2 that the asymptotic W-symmetries arise from the symmetry

transformations (2.19) with the constraint (2.28) that implements the asymptotic AdS

condition. The gauge transformations generated by these constraints can be used to

choose a certain gauge, e.g. the highest-weight gauge (2.29) for a(θ) that we used in the

last sections. This gauge choice is very natural, but in some situations other choices can

be more convenient.

To discuss this gauge freedom we introduce the differential operators

la = ∂θ + a(θ) , (4.1)

where we have chosen a representation of the Lie algebra g. On such a differential operator

we can act with (θ-dependent) group elements g(θ) by conjugation,

la 7→ g−1(θ)lag(θ) , (4.2)
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which implies the transformation

a(θ) 7→ g−1(θ)∂θg(θ) + g−1(θ)a(θ)g(θ) (4.3)

on a(θ). For infinitesimal transformations g(θ) = 1 + λ(θ) this reduces to (2.19). The

AdS or Drinfeld-Sokolov condition (2.28) is respected by transformations g(θ) that take

values in the subgroup N ⊂ G that is generated by g> (defined in (2.26)). On each of the

gauge orbits g−1lag with g ∈ N we can pick a representative corresponding to a certain

gauge choice.

4.1 Recursive basis transformation

Given any such representative ∂θ + J+ + b(θ), we now describe a procedure how to recur-

sively find the representative ∂θ + J+ + a−(θ) in the highest-weight gauge on the same

orbit, and the gauge transformation g(θ) ∈ N that connects the two representatives,

g(θ)−1 (∂θ + J+ + b(θ)) g(θ) = ∂θ + J+ + a−(θ) . (4.4)

We write the representation matrices g(θ) as g(θ) = 1+h(θ), where h(θ) has an expansion

h(θ) = h1(θ) + h2(θ) + · · · , (4.5)

with L0h
n = nhn, n > 0. From (4.4) we obtain

− L+h(θ) + a−(θ) = ∂h(θ) + b(θ) + b(θ)h(θ) − h(θ)a−(θ) . (4.6)

When we act on this equation by RL−, where R is the operator that was defined in (2.37),

we arrive at

h(θ) = −RL− (∂h(θ) + b(θ) + b(θ)h(θ) − h(θ)a−(θ)) . (4.7)

On the other hand, when we act on (4.6) by the projector P−, we find

a−(θ) = P− (∂h(θ) + b(θ) + b(θ)h(θ) − h(θ)a−(θ)) . (4.8)

These two equations, (4.7) and (4.8), can be used to construct the basis transformation

recursively. Let

b(θ) = b0(θ) + b1(θ) + · · · , a−(θ) = a0
−(θ) + a1

−(θ) + · · · , (4.9)

where L0bn = nbn, and similarly for an
−. Projecting (4.7) to L0 eigenvalue n we find

hn = −RL−


∂hn−1 + bn−1 +

∑

1≤m≤n−1

bn−m−1hm −
∑

1≤m≤n−1

hman−m−1
−


 . (4.10)

Analogously, we can project (4.8) to L0 eigenvalue n to obtain

an
− = P−


∂hn + bn +

∑

1≤m≤n

bn−mhm −
∑

1≤m≤n

hman−m
−


 . (4.11)

Suppose that b(θ) is given, and that we have determined hm(θ) and am
− (θ) for m < n. We

can use (4.10) to obtain hn(θ), and then determine an
−(θ) by (4.11).
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4.2 A quadratic basis for WN

We have seen how to construct in general the basis transformation to the highest-weight

basis recursively in the eigenvalues of L0. We now want to become more specific for the

Lie algebras sl(N) and the corresponding W-algebras WN , for which another natural

basis exists. We use the defining representation by square matrices of size N , in which

J+ is represented as

J+ =




0

−1 0

0 −1 0
. . .

. . .
. . .

0 −1 0



. (4.12)

The Drinfeld-Sokolov condition states that a(θ) is of the form

a(θ) = J+ + u(θ) , (4.13)

where u(θ) is upper triangular. The subgroup N consists of all matrices of the form 1 +h

where h is strictly upper triangular. A natural gauge choice is to demand that u(θ) only

has one non-zero row (the first one),

u =




0 u1 · · · uN−1

0 0 · · · 0
...

...
...

0 0 · · · 0



. (4.14)

With this choice one obtains a basis for the WN algebras that has at most quadratic

non-linearities in the Poisson brackets. The nice feature of this basis is that there is a

simple way to express the gauge transformations and thus the Poisson brackets with the

help of pseudo-differential operators, which we shall briefly review in the following (for

details see e.g. [27]).

The infinitesimal transformations g(θ) = 1 + λ(θ) that respect the gauge choice are

uniquely determined in terms of the first column of λ. We introduce the differential

operators

λi =
N−1∑

j = 0

λij ∂
N−j−1 (4.15)

of order at most N − 1 corresponding to the rows of λ, the pseudo-differential operator

λ0 =
n−1∑

i = 0

∂−N+iλ0j (4.16)

corresponding to the first column, and the differential operator

L = ∂N + u1∂
N−2 + · · · + uN−1 (4.17)
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associated to the gauge fields. The matrix λij is then given by the equations

λi = ∂N−i−1(λ0L)+ − (∂N−i−1λ0)+L (4.18)

in terms of its first column, where ( )+ denotes the projection of a pseudo-differential

operator to its regular part (the non-negative powers of the differential). This is the

analogue of (2.41) in the highest-weight gauge. The gauge transformation can also be

expressed in such a way,

δλL = L(λ0L)+ − (Lλ0)+L . (4.19)

From here one can easily obtain the Poisson brackets. As L only appears quadratically

on the right-hand side of (4.19), the Poisson brackets are at most quadratic in the fields

ui. This is quite different from the highest-weight basis, where the degree of non-linearity

is N − 1.

4.3 Basis transformation for WN

The obvious question arises how the gauge choice of the last subsection and the highest-

weight gauge are related. As the corresponding Poisson brackets have different orders of

non-linearities, the basis transformation has to be non-linear. We could use our recursive

construction from Section 4.1 to relate these two bases, but there is another more elegant

way of relating them. The operator la = ∂θ + a(θ) can be used to define a system of N

first order differential equations on some functions f0, . . . , fN−1,

la(f0, . . . , fN−1)T = 0 . (4.20)

Due to the specific form (4.13) of a(θ) this system of differential equations is equivalent

to a single N th order differential equation for fN−1. The other functions f0, . . . , fN−2 are

then given in terms of fN−1 by

fj = det ((∂ + J+ + u)r,s)j+1≤r,s≤N−1 fN−1 , (4.21)

where the determinant is evaluated with the convention that the entries of the first row

appear to the left of entries of the second row, and so on. The scalar differential operator

L that determines the differential equation for fN−1,

LfN−1 = 0 , (4.22)

can also be expressed as a determinant [27],

L = det(∂ + J+ + u) . (4.23)

Two differential operators la and la′ that are related by a gauge transformation in N give

rise to the same scalar differential operator L. If u is of the form (4.14) (all rows vanish

except for the first), we have

L = ∂N + u1∂
N−2 + ..+ uN−2∂ + uN−1 . (4.24)
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By evaluating the operator L we can thus relate any choice of representatives to the

u-basis.

We now want to work out the basis transformation explicitly for the highest-weight

basis of sl(N). The matrix representing J− reads

J− =




0 1 · (N − 1) 0

0 2 · (N − 2) 0
. . .

. . .

0 (N − 1) · 1

0



. (4.25)

The highest-weight vectors in sl(N) are Wm
−m = Jm

− with m = 1, . . . , N − 1, so that a−

can be expanded as

a−(θ) =
2π

k

(
W1(θ)J− + · · · + WN−1(θ)JN−1

−

)
, (4.26)

or, as matrix,

a− =
2π

k




0 W1P1(1) W2P2(1) W3P3(1) · · · WN−1PN−1(1)

0 0 W1P1(2) W2P2(2) · · · WN−2PN−2(2)

0 0 0 W1P1(3) · · · WN−3PN−3(3)
. . .

0 W1P1(N − 1)

0




. (4.27)

Here, the Ps are defined in terms of ascending and descending Pochhammer symbols

(see (A.3a) and (A.3b)),

Ps(i) = (i)s[N − i]s . (4.28)

The determinant (4.23) is evaluated by summing over all permutations of the N columns

while respecting the row ordering (l = ∂ + J+ + a−),

L = det l =
∑

σ∈SN

l1σ(1)l2σ(2) · · · lNσ(N) . (4.29)

We can order the terms by their degree of non-linearity in the Wm. The term without any

Wm is simply ∂N . A linear term comes from the part of the determinant where exactly

one entry of the upper triangle contributes:



. . .

∂ · · · · · · WsPs(i+ 1)

−1
. . .

...
. . .

. . .
...

−1 ∂
. . .




. (4.30)
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There is only one permutation such that besides WsPs(i+ 1) only ∂’s and (−1)’s appear

leading to the contribution

2π

k
∂i

θWsPs(i+ 1)∂N−s−i−1
θ .

The total contribution linear in Ws is then

LWs =
2π

k

N−s−1∑

i = 0

∂i
θ WsPs(i+ 1)∂N−s−i−1

θ (4.31)

=
2π

k

N−s−1∑

i = 0

i∑

p = 0

(
i

p

)
Ps(i+ 1)W(p)

s ∂N−s−p−1
θ (4.32)

=
2π

k

N−s−1∑

p = 0

N−s−1∑

i = p

(
i

p

)
Ps(i+ 1)W(p)

s ∂N−s−p−1
θ (4.33)

=
N−s−1∑

p = 0

C(s, p,N)W(p)
s ∂N−s−p−1

θ . (4.34)

The coefficients C(s, p,N) can be written as

C(s, p,N) =
2π

k

N−s−1∑

i = p

(
i

p

)
Ps−1(i+ 1) (4.35)

=
2π

k

N−s−p−1∑

j = 0

(j + 1)p

p!
(j + p+ 1)s[N − j − p− 1]s (4.36)

=
2π

k

N−s−p−1∑

j = 0

(j + 1)p+s

p!
(N − s− p− j)s (4.37)

=
2π

k
s!

(
p+ s

p

)
(N − s− p)s

N−s−p−1∑

j = 0

(s+ p+ 1 −N)j(p+ s+ 1)j

(1 + p−N)jj!
(4.38)

=
2π

k
(s!)2

(
p+ s

p

)(
N − p− 1

s

)

2F1(s+ p+ 1 −N, s+ p+ 1; 1 + p−N ; 1) .

(4.39)

The hypergeometric function 2F1 at argument 1 is given by

2F1(s+ p+ 1 −N, s+ p + 1; 1 + p−N ; 1) =
(N − p)s+p+1

(s+ 1)s+p+1

, (4.40)

so that after some manipulations we find

C(s, p,N) =
2π

k
(s!)2

(
p+ s

p

)(
N + s

2s+ p+ 1

)
. (4.41)

The linear contribution to the determinant is thus

Llinear =
2π

k

∑

s

(s!)2
∑

p

(
p+ s

p

)(
N + s

2s+ p+ 1

)
W(p)

s ∂N−s−p−1
θ . (4.42)
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The higher order terms appear as products of such linear blocks, and the total deter-

minant is given by

L =

⌊ N
2

⌋∑

r = 0

(
2π

k

)r ∑

s1,...,sr

∑

i1,...,ir

∂i1
θ Ws1ps1(i1 + 1)

× ∂i2
θ Ws2Ps2(i1 + i2 + s1 + 2) · · · WarPar(i1 + · · · + ir + s1 + · · · + sr−1 + r)∂

ir+1

θ .

(4.43)

Here, ir+1 = N − r −
∑r

1 ij −
∑r

1 sj , and all ij ≥ 0, sj ≥ 1. As in the linear example

above, we commute all differentials to the right, which produces derivatives of the fields

Wsj
, e.g. for the first field Ws1 we have

∂i1
θ Ws1(θ) =

i1∑

m1 = 0

(
i1
m1

)
W(m1)

s1
(θ)∂i1−m1

θ . (4.44)

For the second field Ws2 we find

∂i1+i2−m1
θ Ws2(θ) =

i1+i2−m1∑

m2 = 0

(
i1 + i2 −m1

m2

)
W(m2)

s2
(θ)∂i1+i2−m1−m2

θ , (4.45)

and we introduce similar summation variables mj counting the derivatives of the other

fields Wsj
. We also introduce the variables

kl =
l∑

j = 1

ij , pj =
l∑

j = 1

mj . (4.46)

The determinant L then becomes

L =
∑

r

(
2π

k

)r ∑

s1,...,sr

∑

0≤k1≤···≤kr≤N−r−S

∑

0≤p1≤···≤pr,pj≤kj

W(p1)
s1

W(p2−p1)
s2

· · · W(pr−pr−1)
sr

∂N−r−pr−S
θ

×

(
k1

p1

)(
k2 − p2

p2 − p1

)
· · ·

(
kr − pr−1

pr − pr−1

)

× Ps1(k1 + 1)Ps2(k2 + s1 + 2) · · ·Psr(kr +
r−1∑

j = 1

aj + r) , (4.47)

where S =
∑r

j=1 sj. This means that a given term W(p1)
s1

· · · W(pr−pr−1)
sr

∂N−r−pr−S
θ appears

with a coefficient

C({sj}, {pj}, N) =
(

2π

k

)r N−S−r∑

kr = pr

kr∑

kr−1= pr−1

· · ·
k2∑

k1 = p1

(
k1

p1

)
· · ·

(
kr − pr−1

pr − pr−1

)

× (k1 + 1)s1 · · · (kr +
r−1∑

j=1

sj + r)sr

× (N − k1 − s1)s1 · · · (N − kr −
r∑

j=1

sj − r + 1)sr . (4.48)
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By comparison with (4.24), these coefficients determine the basis transformation,

uq =

⌊ q+1
2

⌋∑

r=1

∑

{s}
S+r ≤ q+1

∑

{p}
pr = q+1−r−S

C({sj}, {pj}, N)W(p1)
s1

· · · W(pr−pr−1)
sr

. (4.49)

The coefficients (4.48) depend in a simple way on the number of derivatives, pj, and

we can combine the coefficients belonging to a certain set of fields of spins s1, . . . , sr into

a generating function with auxiliary variables αj ,

C̃({sj}, {αj}, N) =
(

2π

k

)r N−r−S∑

pr= 0

pr∑

pr−1= 0

· · ·
p2∑

p1= 0

C({sj}, {pj}, N)αp1
1 α

p2−p1
2 · · ·αpr−pr−1

r

(4.50)

=
N−r−S∑

kr= 0

· · ·
k2∑

k1= 0

(k1 + 1)s1 · · · (kr +
r−1∑

j = 1

sj + r)sr

× (N − k1 − s1)s1 · · · (N − kr −
r∑

j = 1

sj − r + 1)sr

× (1 + αr)
kr−kr−1(1 + αr + αr−1)

kr−1−kr−2 · · · (1 + αr + · · · + α1)
k1 .

(4.51)

By going back to the variables ij = kj − kj−1, we can write it as a generalised hypergeo-

metric function,

C̃({sj}, {αj}, N) =
(

2π

k

)r

(1)s1(N − s1)s1 · · · (r +
r−1∑

j = 1

sj)sr(N − r + 1 − S)sr

×
∑

i1,...,ir≥0

(1 + s1)i1(1 −N + s1)i1

(1)i1(1 −N)i1

· · ·
(r +

∑r
j=1 sj)i1+···+ir(r −N +

∑r
j=1 sj)i1+···+ir

(r +
∑r−1

j=1 sj)i1+···+ir(r −N +
∑r−1

j=1 sj)i1+···+ir

× (1 + αr)
ir · · · (1 + αr + · · · + α1)i1 . (4.52)

The sum is bounded by i1 + · · · + ir ≤ N − r − S because the last Pochhammer symbol

in the numerator would vanish otherwise.

4.4 Basis transformation for W∞[λ]

In the last subsection we have determined the basis transformation that relates the

highest-weight basis and a quadratic basis for WN . A quadratic basis also exists for

W∞[λ]. On the one hand, [36] generalised the construction of WN via pseudo-differential

operators to a one-parameter family of infinite dimensional W-algebras with quadratic

non-linearities. On the other hand, [59] showed that these algebras can be understood

as a Drinfeld-Sokolov reduction of hs[λ]. In the work of [59], they used a realisation of

hs[λ] in terms of infinite matrices, in which J+ and J− are given by the infinite analogues

of (4.12) and (4.25) with N replaced by λ.
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From this construction it is obvious that also the basis transformation of the last

subsection can be generalised to W∞[λ]: we have to work out the transformation for large

matrices and then replace the explicit N -dependence in the coefficients by λ. Of course,

the size of the matrices is also determined by N , which means that we first have to take

N large, until a given coefficient C({sj}, {pj}, N) of the basis transformation stabilises to

a certain polynomial in N , and then replace N by λ.

The main difficulty is now that in the expression (4.48) the number N also appears in

the range of the sums, and thus we cannot directly replace N by λ. Instead we would

have to perform the sum to get an expression which manifestly is a polynomial in N such

that we can do the replacement. In the example of the linear contribution this is easily

possible: the sum can be performed and the final expression (4.41) is written manifestly

as a polynomial in N of degree 2s+ p + 1.

For the non-linear terms we shall instead encode the coefficients in terms of generating

functions, in which the dependence of the summation range on N can be avoided. We

already introduced the functions C̃({sj}, {αj}, N) with the auxiliary variables αj , which

are generalised hypergeometric functions. In the expression (4.52) for C̃ we could leave

out the N -dependent restriction in the summation range, because this restriction is auto-

matically implemented by the vanishing of one of the Pochhammer symbols, so that we

could replace N by λ. This, however, does not lead to the correct answer, because the

function obtained in such a way does not depend polynomially on λ. Let us illustrate this

in the example of the linear terms. For them, the generating function is

C̃(s, α,N) =
2π

k
(1)s(N − s)s

∑

i ≥ 0

(1 + s)i(1 −N + s)i

(1)i(1 −N)i

(1 + α)i (4.53)

=
2π

k
(1)s(N − s)s2F1(1 + s, 1 −N + s; 1 −N ; 1 + α) . (4.54)

The function that one obtains by replacing N by λ is not continuous at λ = N , but

instead one has

lim
λ→N

(λ− s)s 2F1(1 + s, 1 − λ+ s; 1 − λ; 1 + α)

= (N − s)s 2F1(1 + s, 1 −N + s; 1 −N ; 1 + α)

+ (−1)s(1 +N)s(1 + α)N
2F1(1 + s, 1 +N + s; 1 +N ; 1 + α) . (4.55)

This suggests to extrapolate the function C̃(s, α,N) to

C̃(s, α, λ) =
2π

k
(1)s(λ− s)s 2F1(1 + s, 1 − λ+ s; 1 − λ; 1 + α)

−
2π

k
(1)s(−1)s(1 + λ)s(1 + α)λ

2F1(1 + s, 1 + λ+ s; 1 + λ; 1 + α) (4.56)

=
2π

k
(s!)(λ− s)2s+1

(
Γ(λ)

Γ(1 + s+ λ)
2F1(1 + s, 1 + s − λ; 1 − λ; 1 + α)

+
Γ(−λ)

Γ(1 + s− λ)
(1 + α)λ

2F1(1 + s, 1 + s+ λ; 1 + λ; 1 + α)

)
. (4.57)
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An elementary transformation of the hypergeometric function leads to

C̃(s, α, λ) =
2π

k
(s!)2

(
λ+ s

2s+ 1

)

2F1(1 + s, 1 + s− λ; 2 + 2s; −α) . (4.58)

The coefficient of each power αp is a polynomial in λ, which coincides with C(s, p,N)

in (4.41) when we replace N by λ.

In principle one can apply this procedure also to the general non-linear terms. One

replaces N by λ in the generalised hypergeometric function, and determines the discon-

tinuity at λ = N to find the correct extrapolation to λ 6= N . The function one obtains

in such a way, however, is not of practical use, unless one finds a transformation to a

(generalisation of a) hypergeometric function that has an expansion in αi. Such a step

might be difficult to perform in general, therefore we shall pursue another strategy here.

Again, this is illustrated in the case of the linear terms, where we already know the correct

answer.

Let us go back to the expression (4.51) for C̃. In the linear case it reads

C̃(s, α,N) =
2π

k

N−s−1∑

i = 0

(i+ 1)s(N − i− s)s(1 + α)i . (4.59)

Now, (N − i− s)s is the coefficient of γs in (s!)(1 + γ)N−i−1, and (i+ 1)s is the coefficient

of βs in (−1)s(s!)(1 + β)−i−1. With the help of the auxiliary variables β and γ we can

then write C̃ as

C̃(s, α,N) =
2π

k
(s!)2(−1)s

N−s−1∑

i = 0

(1 + γ)N−i−1(1 + β)−i−1(1 + α)i

∣∣∣∣
γsβs

, (4.60)

where it is indicated that in an expansion in γ and β we only keep the term involving

γsβs. We perform the geometric sum to obtain

C̃(s, α,N) =
2π

k
(s!)2(−1)s (1 + γ)N−1

(1 + β)

(
1+α

(1+β)(1+γ)

)N−s
− 1

1+α
(1+β)(1+γ)

− 1

∣∣∣∣∣∣
γsβs

. (4.61)

We rewrite the denominator as

(
1 + α

(1 + β)(1 + γ)
− 1

)−1

=
(1 + β)(1 + γ)

α

[
1 −

1

α
((1 + β)(1 + γ) − 1)

]−1

. (4.62)

The term in the square bracket is expanded for small β and γ, while α is kept fixed. We

arrive at

C̃(s, α,N) =
2π

k
(s!)2(−1)s

(
(1 + γ)s(1 + β)s−N(1 + α)N−s − (1 + γ)N

)

×
∑

m ≥ 0

α−m−1(β + γ + βγ)m

∣∣∣∣
γsβs

. (4.63)
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When we further expand this expression, the coefficients of αpβsγs are polynomials in N ,

and we can replace N by λ. We obtain

C̃(s, α, λ) =
2π

k
(s!)2(−1)s

∑

p ≥ 0

s∑

u,v = 0

(
u+ v

v

)(
s+ u

u+ v

)(
s− λ

s− u

)(
λ− s

1 + p+ u+ v

)
αp . (4.64)

It can be verified that this result agrees with the previously derived expression (4.58).

The strategy just described can easily be applied to the general non-linear terms. We

start from (4.51), and introduce auxiliary variables β1, . . . , βr and γ1, . . . , γr. We can then

write

C̃({sj}, {αj}, N) =
(

2π

k

)r r∏

j = 1

(sj!)
2(−1)sj

N−r−S∑

kr= 0

· · ·
k2∑

k1= 0

× (1 + γr)
kr−1−kr−1 · · · (1 + γr + · · · + γ2)

k1−k2−1(1 + γr + · · · + γ1)
N−k1−1

× (1 + βr)
kr−1−kr−1 · · · (1 + βr + · · · + β1)−k1−1

× (1 + αr)
kr−kr−1 · · · (1 + αr + · · · + α1)

k1

∣∣∣∣γs1
1 ···γsr

r

β
s1
1 ···βsr

r

. (4.65)

When we introduce the notation

Aj = αj + · · · + αr , Bj = βj + · · · + βr , Cj = γj + · · · + γr , (4.66)

the expression simplifies to

C̃({sj}, {αj}, N) =
(

2π

k

)r r∏

j = 1

(sj!)
2(−1)sj

(1 + C1)
N

∏r
j=1(1 + Cj)(1 +Bj)

N−r−S∑

kr= 0

· · ·
k2∑

k1= 0
(

(1 + A1)

(1 +B1)(1 + C1)

)k1

· · ·

(
(1 + Ar)

(1 +Br)(1 + Cr)

)kr−kr−1 ∣∣∣∣γs1
1 ···γsr

r

β
s1
1 ···βsr

r

.

(4.67)

We can now successively evaluate the geometric sums, starting with the sum over k1 giving

k2∑

k1= 0

(
(1 + A1)(1 +B2)(1 + C2)

(1 +B1)(1 + C1)(1 + A2)

)k1

=

(
(1+A1)(1+B2)(1+C2)
(1+B1)(1+C1)(1+A2)

)k2+1
− 1

(
(1+A1)(1+B2)(1+C2)
(1+B1)(1+C1)(1+A2)

)
− 1

. (4.68)

We expand the denominator in the auxiliary variables except for α1 (the denominator

vanishes if all auxiliary variables are set to zero; since α1 appears in all denominators that

arise from the geometric sums, it is enough to keep this parameter finite while expanding

in all others). Thus we have

(
(1 + A1)(1 +B2)(1 + C2)

(1 +B1)(1 + C1)(1 + A2)
− 1

)−1

=

(1 +B1)(1 + C1)(1 + A2)

α1(1 +B2)(1 + C2)

{
1 +

1

α1

(
(1 + A2) −

(1 +B1)(1 + C1)(1 + A2)

(1 +B2)(1 + C2)

)}−1

. (4.69)
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From the expansion of the expression in the curly brackets we only get negative powers

of α1. Therefore, the term coming from the −1 in the numerator of (4.68) does not

contribute any non-negative power of α1, and we can neglect it if we later project on

non-negative powers of α1. Performing all geometric sums in that way we arrive at

C̃({sj}, {αj}, N) =
(

2π

k

)r r∏

j = 1

(sj!)
2(−1)sj

(1 + A1)
N−S(1 +B1)−N+r+S(1 + C1)

r+S

∏r
j=1(1 + Cj)(1 +Bj)

α−r
1

×
r∏

j = 1

{
1 +

1

α1

(
(1 + A2) −

(1 +B1)(1 + C1)(1 + Aj+1)

(1 +Bj+1)(1 + Cj+1)

)}−1
∣∣∣∣∣∣ γ

s1
1 ···γsr

r

β
s1
1 ···βsr

r

non-neg. powers of α1

. (4.70)

Here, we have set S = s1 + · · · + sr, and Ar+1 = Br+1 = Cr+1 = 0. When we expand

in the auxiliary variables (with the expansion in α1 done only after all other expansions

have been performed), the coefficients are polynomials in N . Therefore we can replace N

by λ in the expression (4.70) and obtain a generating function for the coefficients of the

basis transformation for an arbitrary value of the parameter λ. When we do the explicit

expansion (for details see Appendix B), we obtain our final result,

C({sj}, {pj}, λ) =
(

2π

k

)r r∏

j = 1

(sj!)
2(−1)sj

∑

r
(1)
j ,...,r

(6)
j ≥0

j=1,...,r−1

∑

a,b,c≥0

∑

b1,...,br−1≥0
c1,...,cr−1≥0

(−1)pr−p1−a

×

(
2S + pr − p1 − a− b− c−

∑r−1
j=1

(
bj + cj + r

(1)
j + · · · + r

(6)
j

)

S + pr − p1 − a− b−
∑r−1

j=1

(
bj + r

(2)
j + r

(3)
j + r

(5)
j + r

(6)
j

)
)

×

(
S + pr − p1 − a− b−

∑r−1
j=1

(
bj + r

(2)
j + r

(3)
j + r

(5)
j + r

(6)
j

)

S − b−
∑r−1

j=1

(
bj + r

(2)
j + r

(5)
j

)
)

×

(
−λ+ r + S − 1 +

∑r−1
j=1 r

(3)
j

b

)(
r + 2S − 1 − b−

∑r−1
j=1

(
bj − r

(3)
j + r

(5)
j

)

c

)

×

(
λ− S

r + 2S + pr − b− c−
∑r−1

j=1

(
bj + cj

)
)(

r + 2S + pr − b− c−
∑r−1

j=1

(
bj + cj

)

a

)

×
r−1∏

j = 1


(−1)r

(3)
j +r

(4)
j +r

(5)
j

(
r

(1)
j + · · · + r

(6)
j

r
(1)
j

)(
r

(2)
j + · · · + r

(6)
j

r
(2)
j

)
· · ·

(
r

(5)
j + r

(6)
j

r
(5)
j

)

×

(
−1 − r

(1)
j − · · · − r

(5)
j

bj

)(
−1 − r

(1)
j − · · · − r

(4)
j

cj

)(
pr − pj −

∑r−1
i=j+1 r

(3)
i

pj+1 − pj

)

×

(
sr +

∑r−1
i=j

(
si − bi − r

(5)
i

)

sj

)(
sr +

∑r−1
i=j

(
si − ci − r

(4)
i

)

sj

)
 . (4.71)
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The sum is finite, because the product of the first two binomial coefficients vanishes unless

a+
r−1∑

j = 1

(
r

(3)
j + r

(6)
j

)
≤ S + pr − p1 (4.72)

b+
r−1∑

j = 1

(
bj + r

(2)
j + r

(5)
j

)
≤ S (4.73)

c+
r−1∑

j = 1

(
cj + r

(1)
j + r

(4)
j

)
≤ S . (4.74)

The coefficients (4.71) determine the basis transformation via (4.49), the first terms read

u1 =
2π

k

(
λ+ 1

3

)
W1 (4.75a)

u2 =
8π

k

(
λ+ 2

5

)
W2 +

4π

k

(
λ+ 1

4

)
W(1)

1 (4.75b)

u3 =
72π

k

(
λ+ 3

7

)
W3 +

24π

k

(
λ+ 2

6

)
W(1)

2 +
6π

k

(
λ+ 1

5

)
W(2)

1

+
4π2

3k2

(
λ+ 1

5

)
(5λ+ 7)W1W1 (4.75c)

u4 =
1152π

k

(
λ+ 4

9

)
W4 +

288π

k

(
λ+ 3

8

)
W(1)

3 +
48π

k

(
λ+ 2

7

)
W(2)

2

+
8π

k

(
λ+ 1

6

)
W(3)

1 +
16π2

k2

(
λ+ 2

7

)
(7λ+ 13)W1W2

+
8π2

k2

(
λ+ 1

6

)
(5λ+ 7)W1W

(1)
1 (4.75d)

u5 =
28800π

k

(
λ+ 5

11

)
W5 +

5760π

k

(
λ+ 4

10

)
W(1)

4 +
720π

k

(
λ+ 3

9

)
W(2)

3

+
80π

k

(
λ+ 2

8

)
W(3)

2 +
10π

k

(
λ+ 1

7

)
W(4)

1

+
64π2

5k2

(
λ+ 2

8

)
(44 + λ(34 + 7λ))W2W2

+
576π2

k2

(
λ+ 3

9

)
(3λ+ 7)W1W3

+
64π2

k2

(
λ+ 2

8

)
(7λ+ 13)

(
W(1)

1 W2 + W1W(1)
2

)

+
10π2

k2

(
λ+ 1

7

)
(7λ+ 10)W(1)

1 W(1)
1 +

4π2

k2

(
λ+ 1

7

)
(21λ+ 29)W(2)

1 W1

+
8π3

63k3

(
λ− 1

6

)
(3843 + λ(1717 + 7λ(51 + 5λ)))W1W1W1 . (4.75e)
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This result reproduces11 the basis transformation that was determined in [19] for the first

few spins, if one uses the identification of fields given in (3.28) and divides our u’s by a

factor −2π
k

(
λ+1

3

)
.

5 Conclusions

In the absence of matter couplings, the interactions of higher-spin gauge fields in D =

2 + 1 can be described by Chern-Simons (CS) actions. The asymptotic symmetries of

asymptotically-AdS solutions of the field equations are given by the W-algebras that

result from the Drinfeld-Sokolov (DS) reduction of the gauge algebras. In this paper we

presented a procedure to compute the structure constants of all classical W-algebras that

can be obtained from the DS reduction of a (possibly infinite-dimensional) Lie algebra

with a non-degenerate Killing form. We used it to discuss some general properties of the

resulting W-algebras, and we applied it to a class of infinite-dimensional Lie algebras,

denoted by hs[λ], that play an important role as higher-spin gauge algebras. A CS action

with gauge algebra hs[λ] ⊕ hs[λ] describes indeed the coupling to gravity of a set of

symmetric fields ϕµ1... µs with ranks s = 3, 4, . . . ,∞. The field content is thus the same as

in the gauge sector of Vasiliev’s models [8]. The algebra of asymptotic symmetries is a

classical centrally extended infinite-dimensional W-algebra, that we denoted by W∞[λ].

We determined its structure constants in (3.21) in a basis where all its generators Wi are

Virasoro primaries, and where {Wi,Wj} is a polynomial in the generators of the same

order as the minimum of the labels i and j.

For integer λ = N the Killing form degenerates and the CS action becomes that of a

sl(N,R) ⊕ sl(N,R) theory. The results presented here thus complete the analysis of the

asymptotic symmetries of this class of higher-spin theories that we initiated in [14], and

provide a closed formula for the structure constants of all classical WN algebras in a Vi-

rasoro primary basis. For λ = 1/2 the gauge algebra coincides with the three-dimensional

Fradkin-Vasiliev algebra [1, 56], and our formula provides the structure constants of the

infinite-dimensional asymptotic W-algebra of [13]. For generic λ it also reproduces the

first few structure constants of W∞[λ] that were computed in [19]. We eventually pre-

sented a way to systematically relate our basis to the non-primary quadratic basis of [36],

where W∞[λ] first appeared in the context of KP hierarchies.

To stress the relation between hs[λ] ⊕ hs[λ] CS theories and HS gauge theories, in

Section 3.1.1 we also discussed how one could express the metric-like fields ϕµ1... µs in terms

of the vielbeine and spin connections entering the CS action. We were able to establish this

relation up to s = 5, and it would be interesting to complete the identification following the

lines we proposed. In fact, the relative simplicity of the models we considered could well

shed light on the interplay between the disparate approaches that were proposed over the

years to tackle the difficult analysis of higher-spin interactions in D ≥ 3 + 1. Recovering

11Up to the W-algebra automorphism in (3.24).
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a non-linear completion of the metric-like formulation of Fronsdal or its generalisations

(see e.g. [44]) out of the frame-like formulation of Vasiliev (see e.g. [3, 4]) could be a

first important step in this direction. Moreover, this would also allow a reconsideration

of our findings along the lines of the original Brown-Henneaux analysis of the asymptotic

symmetries of Einstein gravity [15].

Another context where our results could stimulate further developments is the study of

higher-spin realisations of the AdS/CFT correspondence. The asymptotic symmetries of

the bulk theory should indeed correspond to global symmetries of the boundary CFT. It is

still not clear whether the pure higher-spin gauge theories that we discussed admit a CFT

dual, but the three-dimensional Vasiliev’s models of [8] – describing the coupling to scalar

matter of the same gauge fields we considered – are also built upon hs[λ] ⊕ hs[λ] gauge

algebras. The suggestive asymptotic W-symmetries of pure three-dimensional higher-

spin gauge theories already led Gaberdiel and Gopakumar to conjecture a holographic

duality between the large N limit of minimal models with WN × WN symmetry and

three-dimensional Vasiliev’s models [18]. Since W-symmetries are the cornerstone of this

conjecture, it would be important to reconsider our analysis – rather closely related to the

CS formulation of the dynamics – in order to extend it to Vasiliev’s models. In the mean-

time, we hope that our detailed description of W∞[λ] already help further quantitative

checks of this proposal beyond those recently presented in [19, 20, 21].

Acknowledgements

We are grateful to X. Bekaert, D. Francia, M. R. Gaberdiel, J. Hoppe, E. Joung, H. Nicolai,

A. Sagnotti, M. Taronna, M. A. Vasiliev and especially to S. Theisen for useful discussions.

A.C. would like to thank the «Ettore Majorana» Foundation and Centre for Scientific

Culture of Erice for hospitality while this work was in its final stage of preparation.

A Structure constants of hs[λ]

The structure constants that appear in the definition of the ⋆-product (3.7) can be ex-

pressed in terms of those defined in [30] (see also [19]) as

fλ

(
k ℓ i

m n m+ n

)
= qk+ℓ−i−1 g k−1 , ℓ−1

k+ℓ−i−1 (m,n;λ) , (A.1)

where q is a normalisation factor that must be equal to 1/4 for any finite λ, but that

is useful to discuss the λ → ∞ limit of hs[λ] (see e.g. [19]). Moreover, in [30] it was
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proposed that the functions gi , j
k (m,n;λ) are given by

gi , j
k (m,n;λ) =

1

2(k + 1)!
φi , j

k (λ)N i , j
k (m,n) , (A.2a)

N i , j
k (m,n) =

k+1∑

p = 1

(−1)p

(
k + 1

p

)
(2i+ 2 − k)p[2j + 2 − p]k−p+1[i+ 1 +m]k−p+1[j + 1 + n]p ,

(A.2b)

φi , j
k (λ) =

⌊k⌋∑

p = 0

p∏

q = 1

[(2q − 3)(2q + 1) − 4(λ2 − 1)](k − 2q + 3)(k/2 − q + 1)

q(2i− 2q + 3)(2j − 2q + 3)(2i+ 2j − 2k + 2q + 3)
. (A.2c)

Here ⌊k⌋ denotes the integer part of k, while (a)n and [a]n denote respectively the ascend-

ing and descending Pochhammer symbols,

(a)n := a(a + 1) . . . (a+ n − 1) , (A.3a)

[a]n := a(a− 1) . . . (a− n+ 1) . (A.3b)

See also [30] for some alternative rewritings of eqs. (A.2). An expression for the hs[λ]

structure constants was also provided in [32] in terms of Clebsch-Gordan and generalised

Wigner - 6j - symbols. See [29] and [33] for the proof that different values of λ lead to

algebras which are not isomorphic.

B Structure constants of W∞[λ]

In this appendix we prove the expression for the structure constants of W∞[λ] that we

displayed in eq. (3.21). The involved steps closely follow those needed to compute the

polynomials in the Virasoro generators that appear in the Drinfeld-Sokolov reduction of

a generic algebra. They were presented in eq. (2.62) and we shall begin by proving it,

before moving to eq. (3.21). We close this appendix with a proof of eq. (4.71) that,

through eq. (4.49), determines the basis transformation needed to connect our result with

the quadratic basis of [36].

Proof of eq. (2.62)

In order to prove eqs. (2.62) and (2.63) it is convenient to omit possible colour indices and

to consider the gauge parameter λ+ = ǫ(θ)W ℓ
ℓ . Using the truncated covariant derivative
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of (2.61), each summand in (2.42) then takes the form

(−DRL−)nDλ+ = (−1)n

{
∂ n+1ǫ (RL−)n

+
n+1∑

r = 1

(
2π

k

)r n−r+1∑

i1 = 0

(n−r+1)−i1∑

i2 = 0

. . .

(n−r+1)−
∑r−1

1
it∑

ir = 0

∂ i1

(
L ∂ i2

(
. . .
(
L ∂ ir

(
L ∂(n−r+1)−

∑r

1
itǫ
))))

× (RL−)i1L−(RL−)i2+1 . . . L−(RL−)ir+1L−(RL−)(n−r+1)−
∑r

1
it

}
W ℓ

ℓ , (B.1)

where we also omitted the θ dependence in both ordinary and covariant derivatives. One

can check this expression by recursion. To this end, let us compute separately the two

summands in

(−DRL−)n+1Dλ+ = −
{
∂ +

2π

k
LL−

}
(RL−)(−DRL−)nDλ+ . (B.2)

The first one reads

− ∂(RL−)(−DRL−)nDλ+ = (−1)n+1

{
∂ n+2ǫ (RL−)n+1

+
n+1∑

r = 1

(
2π

k

)r n−r+2∑

i1 = 1

(n−r+2)−i1∑

i2 = 0

. . .

(n−r+2)−
∑r−1

1
it∑

ir = 0

∂ i1

(
L ∂ i2

(
. . .
(
L ∂ ir

(
L ∂(n−r+2)−

∑r

1
itǫ
))))

× (RL−)i1L−(RL−)i2+1 . . . L−(RL−)ir+1L−(RL−)(n−r+2)−
∑r

1
it

}
W ℓ

ℓ . (B.3)

In order to rebuild (B.1) with n → n + 1 two contributions are missing: the terms with

i1 = 0 in the first sum over derivatives and the term with r = n + 2 in the sum over the

order of non-linearity. They come from the second summand in (B.2) that can be cast in

the form

−
2π

k
LL−(RL−)(−DRL−)nDλ+

= (−1)n+1
n+2∑

r = 1

(
2π

k

)r n−r+2∑

i2 = 0

. . .

(n−r+2)−
∑r−1

2
it∑

ir = 0

L ∂ i2

(
. . .
(
L ∂ ir

(
L ∂(n−r+2)−

∑r

2
itǫ
))))

× L−(RL−)i2+1 . . . L−(RL−)ir+1L−(RL−)(n−r+2)−
∑r

2
it

}
W ℓ

ℓ (B.4)

and thus gives all terms with i1 = 0. This suffices to conclude because the term with

r = n+ 2 does not contain derivatives.

The next step is the elimination of the operators in (B.1) using

L− W
ℓ
ℓ−p = − (2ℓ− p)W ℓ

ℓ−(p+1) , (B.5a)

(RL−)i W ℓ
ℓ−p =

p!

(p+ i)!
W ℓ

ℓ−(p+i) . (B.5b)
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Both identities follow from the commutators (2.12). In particular, one can get (B.5b)

combining W ℓ
ℓ−p = (n+ 1)−1L+W

ℓ
ℓ−(p+1) with (2.38). Taking advantage of (B.5) we get

(−1)r(n + r)! (RL−)i1L−(RL−)i2+1 . . . L−(RL−)ir+1L−(RL−)(n−r+1)−
∑r

1
it W ℓ

ℓ (B.6)

=
r−1∏

s = 0

(
(n− r + 1) −

r−s∑

t = 1

it + 2s+ 1

)(
2ℓ− (n− r + 1) +

r−s∑

t = 1

it − 2s

)
W ℓ

ℓ−(n+r) .

In order to make contact with eq. (2.62) we can now evaluate the derivatives in (B.1),

∂ i1

(
L ∂ i2

(
. . .
(
L ∂ ir

(
L ∂ (n−r+1)−

∑r

1
itǫ
))))

=
i1∑

p1 = 0

i1+i2−p1∑

p2 = 0

. . .

∑r

1
ik−
∑r−1

1
pt∑

pr = 0

r∏

s = 1

(∑s
1 it −

∑s−1
1 pt

ps

)
L(p1) . . . L(pr)ǫ(n−r+1−

∑r

1
pt) ,

(B.7)

and eventually exchange the sums over i’s and p’s. Here, as in the main body of the

text, an exponent between parentheses denotes the action of the corresponding number

of derivatives on the field. The rewriting (B.7) leads to

(−DRL−)nDλ+ =
(−1)n

n!
ǫ(n+1) W ℓ

ℓ−n +
n+1∑

r = 1

(−1)n+r

(n + r)!

(
2π

k

)r

×
n−r+1∑

p1 = 0

. . .

(n−r+1)−
∑r−1

1
pt∑

pr = 0

C̃[n, r]p1... pr L(p1) . . . L(pr)ǫ(n−r+1−
∑r

1
pt) W ℓ

ℓ−(n+r) .

(B.8)

The coefficients C̃[n, r]p1... pr are defined by

C̃[n, r]p1... pr =
n−r+1∑

i1 = p1

(n−r+1)−i1∑

i2 = 〈(p1+p2)−i1〉+

. . .

(n+r−1)−
∑r−1

1
it∑

ir = 〈
∑r

1
pt−
∑r−1

1
it〉+

r∏

s = 1

(∑s
1 it −

∑s−1
1 pt

ps

)

×

(
(n− r + 1) −

r−s+1∑

t = 1

it + 2s− 1

)(
2ℓ− (n− r + 1) +

r−s+1∑

t = 1

it − 2(s− 1)

)
,

(B.9)

where, as in (2.63), we introduced 〈a〉+ = max (0, a).

To conclude we have to apply the projector P− to (B.8) and to sum over n as in

(2.42). The projection selects the terms in W ℓ
−ℓ out of (B.8), thus forcing (n + r) = 2ℓ.

We recovered in this way the upper bound n ≤ 2ℓ already discussed after (2.42). The

condition r ≤ n + 1 also induces a lower bound on the number of terms that contribute

to (2.42). For λ+ = ǫ(θ)W ℓ
ℓ one actually has

δλa(θ) =
2ℓ∑

n = ⌊ℓ⌋

P− (−DRL−)nDǫW ℓ
ℓ , (B.10)

where ⌊ℓ⌋ is the integer part of ℓ. Reorganising (B.10) as a sum over the order of non-

linearity (e.g. over r = 2ℓ− n) eventually leads to (2.62).
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Proof of eq. (3.21)

The first step of the proof is the natural extension of (B.1). Also in this case we consider

the gauge variation induced by a gauge parameter with a definite L0 eigenvalue, say

λ+ = ǫ(θ)W i
i . In order to proceed it is convenient to introduce the operators

wa x := [W a
−a , x ] for x ∈ hs[λ] , (B.11)

that enable one to cast the hs[λ]-covariant derivative in the form

D = ∂ +
2π

k

∞∑

a = 1

Wa(θ)wa . (B.12)

As usual we identified L with W1 and L− with w1. Following (B.3) and (B.4) one can

then prove by recursion that

δλa = P−

2i∑

n = 0

(−DRL−)nDλ+ = P−

2i∑

n = 0

(−1)n

{
∂ n+1ǫ (RL−)n +

n+1∑

r = 1

∞∑

a1 = 1

. . .
∞∑

ar = 1

×
(

2π

k

)r n−r+1∑

q1 = 0

. . .

(n−r+1)−
∑r−1

1
qt∑

qr = 0

∂ q1

(
Wa1∂

q2

(
. . .
(
War−1∂

qr

(
War∂

(n−r+1)−
∑r

1
qtǫ
))))

× (RL−)q1 wa1(RL−)q2+1 . . . war−1(RL−)qr+1 war(RL−)(n−r+1)−
∑r

1
qt

}
W i

i . (B.13)

The first contribution in (B.13) gives the central terms that we already discussed in detail

in Section 2.4.2. We shall thus often omit it in the following.

The L0 eigenvalue of the hs[λ] generator resulting from the application of the chain of

operators on W i
i can be read off quite easily from (B.13). It is

m = −

(
i −

r∑

t = 1

at − n

)
(B.14)

since each wat insertion lowers it by −at and for each n there are n operators (RL−). On

the other hand, as already discussed at the beginning of Section 3.2, the maximum value

of the final spin is

ℓ =
r∑

t = 1

at + i − r . (B.15)

Since m must satisfy |m| ≤ ℓ, the variable r is bound to obey r ≤ min(n + 1, 2i − n).

Reversing the order of the sums over r and n this leads to

δλa =
ǫ(2i+1)

(2i)!
W i

−i + P−

i∑

r = 1

(
2π

k

)r ∞∑

a1 = 1

. . .
∞∑

ar = 1

2i−r∑

n = r−1

(−1)n

{
. . .

}
W i

i , (B.16)

where the terms between braces have the same structure as those appearing in the second

and in the third line of (B.13). Note that in getting (B.16) we already took into account

that hs[λ] only contains generators with integer spin.
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We can now evaluate the action of the operators on W i
i using (3.8) and (B.5b): with

the identification b0 = i we obtain

(RL−)q1 wa1(RL−)q2+1 . . . war−1(RL−)qr+1 war(RL−)(n−r+1)−
∑r

1
qt W i

i

=
1

(br +
∑r

1 at − i+ n)!

ar+b0−1∑

b1 = |ar−b0|+1

ar+b0+b1 odd

ar−1+b1−1∑

b2 = |ar−1−b1|+1

ar−1+b1+b2 odd

. . .
a1+br−1−1∑

br = |a1−br−1|+1

a1+br−1+br odd

×
r∏

s = 1

(n− i+ bs +
∑r

r−s+1 at −
∑r−s+1

1 qt − r + s)!

(n− i+ bs−1 +
∑r

r−s+2 at −
∑r−s+1

1 qt − r + s)!

× fλ

(
ar−s+1 bs−1 bs

−ar−s+1 i− n−
∑r

r−s+2 at +
∑r−s+1

1 qt + r − s . . .

)
W br

i−n−
∑r

1
at
.

(B.17)

The final spin is br. As a result, we should bring the sum over br in the first position

among all other summations. In this fashion we can eventually select a particular br to

read the gauge variation of Wbr . Due to its selected role, in the following we shall define

j = br. Bringing the sum over j in the first position casts the summations over b’s in

(B.17) in the form

∑r

1
at+i−r∑

j = max(1 , M(r,i))∑r

1
at+i+r even

min(ar+b0−1 ,
∑r−1

1
at+j−r+1)∑

b1 = max(|ar−b0|+1 , M(r−1, j))

ar+b0+b1 even

. . .
min(a2+br−2−1 , a1+j−1)∑

br−1 = max(|a2−br−2|+1 , M(1, j))

a2+br−1+br even

(B.18)

with

M(s, ℓ) := 2 max ({at}
s
t=1 , ℓ ) −

s∑

t = 1

at − ℓ+ s . (B.19)

The sum over j commutes with all other summations with the exception of those on

ak. Before performing this last exchange let us evaluate the projector P−. It forces the L0

eigenvalue of the generator appearing in (B.17) to coincide with j. Therefore it imposes

n = (i+ j) −
r∑

t = 1

at . (B.20)

Both (B.20) and the extrema of the sum over j only depend on the sum of all at. Let us

thus introduce L =
∑r

1 ak. For L ≤ i the lower bound of the sum over j is given by (B.18)

as j ≥ i− L+ r. On the other hand, for L > i the lower bound comes from (B.20) since

L− i+ r − 1 > M(r, i). In conclusion we are led to consider

∞∑

L = 1

∑

{at}

L+i−r∑

j = |L−i|+r

i+j+L+r even

=
∞∑

j = 1

i+j−r∑

L = |i−j|+r

i+j+L+r even

∑

{at}

(B.21)

where the multiple sum over the a’s must be such that
∑r

1 at = L. Substituting everywhere

(B.20) and expanding the derivatives as in (B.7) eventually lead to (3.21).
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Proof of eq. (4.71)

We start from (4.70), and first expand the factors of the last product,

{
1 +

1

α1

(
(1 + A2) −

(1 +B1)(1 + C1)(1 + Aj+1)

(1 +Bj+1)(1 + Cj+1)

)}−1

=

{
1 −

1

α1(1 +Bj+1)(1 + Cj+1)

[
C1 +B1(1 + C1) + Aj+1(1 +B1)(1 + C1)

− Cj+1 −Bj+1(1 + Cj+1) −A2(1 +Bj+1)(1 + Cj+1)
]}−1

(B.22)

=
∑

r
(1)
j ,...,r

(6)
j ≥0

(α1(1 +Bj+1)(1 + Cj+1))
−r

(1)
j −···−r

(6)
j

×

(
r

(1)
j + · · · + r

(6)
j

r
(1)
j

)(
r

(2)
j + · · · + r

(6)
j

r
(2)
j

)
· · ·

(
r

(5)
j + r

(6)
j

r
(5)
j

)

× [C1]
r

(1)
j [B1(1 + C1)]

r
(2)
j [Aj+1(1 +B1)(1 + C1)]

r
(3)
j

× [−Cj+1]
r

(4)
j [−Bj+1(1 + Cj+1)]

r
(5)
j [−A2(1 +Bj+1)(1 + Cj+1)]

r
(6)
j . (B.23)

For j = r this expression simplifies to

{
1 +

1

α1
((1 + A2) − (1 +B1)(1 + C1))

}−1

=
∑

r
(1)
r ,r

(2)
r ,r

(6)
r ≥0

α−r
(1)
r −r

(2)
r −r

(6)
r

1

×

(
r(1)

r + r(2)
r + r(6)

r

r
(1)
r

)(
r(2)

r + r(6)
r

r
(2)
r

)
[C1]

r
(1)
r [B1(1 + C1)]

r
(2)
r [−A2]r

(6)
r . (B.24)

In the next step we expand the powers of (1 +A1), (1 +B1) and (1 +C1) with summation

variables a′, b, c, respectively, and the powers of (1+Bj+1) and (1+Cj+1) with summation
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variables bj , cj with j = 1, . . . , r − 1. We obtain

C̃({sj}, {αj}, N) =
(

2π

k

)r r∏

j=1

(sj !)
2(−1)sj

∑

r
(1)
j ,...,r

(6)
j ≥0

j=1,...,r−1

∑

r
(1)
r ,r

(2)
r ,r

(6)
r

∑

a′,b,c≥0

∑

b1,...,br−1≥0
c1,...,cr−1≥0

×
r−1∏

j=1


(−1)r

(4)
j +r

(5)
j +r

(6)
j

(
r

(1)
j + · · · + r

(6)
j

r
(1)
j

)(
r

(2)
j + · · · + r

(6)
j

r
(2)
j

)
· · ·

(
r

(5)
j + r

(6)
j

r
(5)
j

)

×

(
−1 − r

(1)
j − · · · − r

(5)
j

bj

)(
−1 − r

(1)
j − · · · − r

(4)
j

cj

)


× (−1)r
(6)
r

(
r(1)

r + r(2)
r + r(6)

r

r
(1)
r

)(
r(2)

r + r(6)
r

r
(2)
r

)(
λ− S

a′

)(
−λ+ r + S − 1 +

∑r−1
j=1 r

(3)
j

b

)

×

(
r + S − 1 +

∑r−1
j=1

(
r

(2)
j + r

(3)
j

)
+ r(2)

r

c

)
α

−r−r
(1)
r −r

(2)
r −r

(6)
r −

∑r−1

j=1

(
r

(1)
j +···+r

(6)
j

)

1

×Aa′

1 B
b+r

(2)
r +

∑r−1

j=1
r

(2)
j

1 C
c+r

(1)
r +

∑r−1

j=1
r

(1)
j

1 A
r

(6)
r +

∑r−1

j=1
r

(6)
j

2

×
r−1∏

j=1

(
A

r
(3)
j

j+1B
bj+r

(5)
j

j+1 C
cj+r

(4)
j

j+1

) ∣∣∣∣∣∣ γ
s1
1 ···γsr

r

β
s1
1 ···βsr

r

non-neg. powers of α1

. (B.25)

We want to extract the coefficients with powers β
sj

j and γ
sj

j . In particular the sum of

the exponents of the Bj and of the Cj have to match S = s1 + · · · + sr. This fixes the

summation variables r(1)
r and r(2)

r to

r(1)
r = S − c−

r−1∑

j=1

(
cj + r

(1)
j + r

(4)
j

)
(B.26)

r(2)
r = S − b−

r−1∑

j=1

(
bj + r

(2)
j + r

(5)
j

)
. (B.27)

In the next step we expand the power of B1 = β1 +B2,

B
S−
∑r−1

j=1

(
bj+r

(5)
j

)

1

∣∣∣∣
β

s1
1

=

(
S −

∑r−1
j=1

(
bj + r

(5)
j

)

s1

)
B

S−s1−
∑r−1

j=1

(
bj+r

(5)
j

)

2 , (B.28)

then the power of B2 = β2 +B3, and so on, similarly for the Cj .

To extract the coefficients C({s}, {p}, λ) we also have to project to powers α
pj−pj−1

j .

The sum of the exponents of the Aj plus the exponent of α1 has to match pr, this can be

used to fix a′ to

a′ = r + 2S + pr − b− c−
r−1∑

j=1

(bj + cj) . (B.29)

52



Now we expand the power of A1 = α1 + A2,

A
r+2S+pr−b−c−

∑r−1

j=1
(bj+cj)

1 =
∑

a≥0

(
r + 2S + pr − b− c−

∑r−1
j=1 (bj + cj)

a

)

× α
r+2S+pr−a−b−c−

∑r−1

j=1
(bj+cj)

1 Aa
2 . (B.30)

The sum of exponents of A2, . . . , Ar has to match pr − p1 leading to the condition

r(6)
r = pr − p1 − a−

r−1∑

j=1

(
r

(3)
j + r

(6)
j

)
, (B.31)

which fixes r(6)
r . In the next step the power of A2 is expanded as

A
pr−p1−

∑r−1

i=2
r

(3)
i

2

∣∣∣∣
α

p2−p1
2

=

(
pr − p1 −

∑r−1
i=2 r

(3)
i

p2 − p1

)
A

pr−p2−
∑r−1

i=2
r

(3)
i

3 , (B.32)

then the power of A3, and so on. This leads to the final result (4.71).

C Poisson brackets of W
(2)
3 , W

(2)
4 and W∞[λ]

In this appendix we present the Poisson brackets of the two examples of W-algebras that

we discussed in Section 2.5. We also present the Poisson brackets of W∞[λ] for fields of

weight ℓ ≤ 3. Imposing λ = 3 and rescaling them by N2(3) they give the W3 algebra, while

imposing λ = 4 and rescaling them by N3(4) they give the W4 algebra. In this fashion

they allow to compare the W(2)
3 and W(2)

4 algebras with their counterparts associated to

a principal sl(2) embedding.

Poisson structure of W
(2)
3

Here we present the full W(2)
3 algebra of [55] before implementing the shift (2.75), with the

convention that all fields on the right-hand side depend on θ′ and δ′(θ − θ′) ≡ ∂θδ(θ − θ′).

Exponents between square brackets denote colour indices, while exponents between paren-

theses specify the number of derivatives acting on the corresponding object.
{
W0(θ) , W0(θ′)

}
=

3k

4π
δ′(θ − θ′) , (C.1a)

{
W0(θ) , W [a]

1
2

(θ′)
}

= a
3

2
δ(θ − θ′) W [a]

1
2

, (C.1b)

{
W0(θ) , L(θ′)

}
= 0 , (C.1c)

{
L(θ) , L(θ′)

}
= δ(θ − θ′) L′ − 2 δ′(θ − θ′) L −

k

4π
δ(3)(θ − θ′) , (C.1d)

{
L(θ) , W [a]

1
2

(θ′)
}

= δ(θ − θ′) W [a] ′
1
2

−
3

2
δ′(θ − θ′) W [a]

1
2

+ a
2π

k
δ(θ − θ′) W0W [a]

1
2

, (C.1e)
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{
W [a]

1
2

(θ) , W [b]
1
2

(θ′)
}

= δa+b , 0

(
−

k

2π
a δ′′(θ − θ′) − a δ(θ − θ′) L (C.1f)

+ δ(θ − θ′) W ′
0 − 2 δ′(θ − θ′) W0 − a

2π

k
δ(θ − θ′) W0W0

)
,

This algebra is written in a non-primary basis, as can be seen explicitly in (C.1c) and

(C.1e). Redefining L as in (2.69), the correct transformation in (C.1c) is recovered and

the distracting term in (C.1e) is removed as discussed in Section 2.5.1.

Poisson structure of W
(2)
4

Here we present the full W(2)
4 algebra after the shift (2.75). As before, all fields appearing

on the right-hand side are functions of θ′ and δ′(θ − θ′) ≡ ∂θδ(θ − θ′).

{
L̂(θ) , L̂(θ′)

}
= δ(θ − θ′) L̂ ′ − 2 δ′(θ − θ′) L̂ −

k

4π
δ(3)(θ − θ′) , (C.2a)

{
L̂(θ) , W [a]

ℓ (θ′)
}

= δ(θ − θ′) W [a] ′
ℓ − (ℓ+ 1) δ′(θ − θ′) W [a]

ℓ , ℓ = 0, 1, 2 , (C.2b)

{
W0(θ) , W0(θ′)

}
=

8k

3π
δ′(θ − θ′) , (C.2c)

{
W0(θ) , W [a]

1 (θ′)
}

= a
16

3
δ(θ − θ′) W [a]

1 , (C.2d)

{
W [a]

1 (θ) , W [b]
1 (θ′)

}
= δa+b , 0

(
k

4π
δ(3)(θ − θ′)

−
3a

2
δ′′(θ − θ′) W0 +

3a

2
δ′(θ − θ′) W ′

0 −
a

2
δ(θ − θ′) W ′′

0

+ 2 δ′(θ − θ′) L̂ − δ(θ − θ′) L̂ ′ − 2 a δ(θ − θ′) W2

−
2π

k
2 a δ(θ − θ′) W0L̂ +

2π

k

21

16
δ′(θ − θ′) W0W0

−
2π

k

27

16
δ(θ − θ′) W0W ′

0 −
(

2π

k

)2 11a

16
δ(θ − θ′) W0W0W0

)
, (C.2e)

{
W [a]

1 (θ) , W2(θ′)
}

=

−
5a

3
δ′′(θ − θ′) W [−a]

1 +
5a

6
δ′(θ − θ′) W [−a] ′

1 +
a

6
δ(θ − θ′) W [−a] ′′

1

+
2π

k
a

8

3
δ(θ − θ′) L̂ W [−a]

1 −
2π

k

5

2
δ′(θ − θ′) W0W

[−a]
1

+
2π

k

3

2
δ(θ − θ′) W ′

0W [−a]
1 +

2π

k

a

2
δ(θ − θ′) W0W

[−a] ′
1

+
(

2π

k

)2 5a

4
δ(θ − θ′) W0W0W [−a]

1 , (C.2f)
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{
W2(θ) , W2(θ′)

}
=

k

48π
δ(5)(θ − θ′)

+
5

6
δ(3)(θ − θ′) L̂ −

5

4
δ′′(θ − θ′) L̂ ′ +

3

4
δ′(θ − θ′) L̂ ′′ −

1

6
δ(θ − θ′) L̂(3)

+
2π

k

8

3
δ′(θ − θ′) L̂L̂ −

2π

k

8

3
δ(θ − θ′) L̂L̂ ′

+
2π

k

5

64
δ(3)(θ − θ′) W0W0 −

2π

k

15

64
δ′′(θ − θ′) W0W ′

0

+
2π

k

9

64
δ′(θ − θ′) ( W ′

0W ′
0 + W0W ′′

0 ) −
2π

k

1

32
δ(θ − θ′) ( 3 W ′

0W ′′
0 + W0W ′′′

0 )

+
2π

k

1

2
δ′(θ − θ′) L̂ W0W0 +

(
2π

k

)3 3

128
δ′(θ − θ′) W0W0W0W0

−
(

2π

k

)2 1

4
δ(θ − θ′)

(
2 L̂ W0W ′

0 + L̂ ′ W0W0

)

−
(

2π

k

)3 3

64
δ(θ − θ′) W0W0W0W ′

0

+
2π

k
8 δ′(θ − θ′) W [−1]

1 W [1]
1 −

2π

k
4 δ(θ − θ′)

(
W [−1]

1 W [1]
1

)′
. (C.2g)

Poisson structure of W∞[λ]: the first brackets

Here we present the first Poisson brackets of W∞[λ], i.e. the {Wi,Wj} with i, j < 4. As

in the previous examples all fields appearing on the right-hand side are functions of θ′

and δ′(θ − θ′) ≡ ∂θδ(θ − θ′). Moreover, Nℓ denotes the normalisation factor (3.10b).

{
L(θ) , L(θ′)

}
= δ(θ − θ′) L′ − 2 δ′(θ − θ′) L −

k

4π
δ(3)(θ − θ′) , (C.3a)

{
L(θ) , Wℓ(θ

′)
}

= δ(θ − θ′) W ′
ℓ − (ℓ+ 1) δ′(θ − θ′) Wℓ , ℓ > 1 , (C.3b)

{
W2(θ) , W2(θ

′)
}

= −
2N3

(N2)
2

[
δ(θ − θ′) W ′

3 − 2 δ′(θ − θ′) W3

]

−
1

12N2

[
2 δ(θ − θ′) L(3) − 9 δ′(θ − θ′) L′′ + 15 δ′′(θ − θ′) L′ − 10 δ(3)(θ − θ′) L

]

−
16π

3kN2

[
δ(θ − θ′) LL′ − δ′(θ − θ′) L2

]
−

k

48πN2
δ(5)(θ − θ′) , (C.3c)

{
W2(θ) , W3(θ

′)
}

= −
N4

N2N3

[
2 δ(θ − θ′) W ′

4 − 5 δ′(θ − θ′) W4

]

−
1

15N2

[
δ(θ − θ′) W(3)

2 − 6 δ′(θ − θ′) W ′′
2 + 14 δ′′(θ − θ′) W ′

2 − 14 δ(3)(θ − θ′) W2

]

−
4π

15kN2

[
25 δ(θ − θ′) W2 L′ + 18 δ(θ − θ′) L W ′

2 − 52 δ′(θ − θ′) L W2

]
, (C.3d)
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{
W3(θ) , W3(θ

′)
}

= −
3N5

(N3)
2

[
δ(θ − θ′) W ′

5 − 2 δ′(θ − θ′) W5

]

+
(λ2 − 19)

30N3

[
δ(θ − θ′) W(3)

3 − 5 δ′(θ − θ′) W(2)
3 + 9 δ′′(θ − θ′) W ′

3 − 6 δ(3)(θ − θ′) W3

]

−
1

360N3

[
3 δ(θ − θ′) L(5) − 20 δ′(θ − θ′) L(4) + 56 δ′′(θ − θ′) L(3) − 84 δ(3)(θ − θ′) L′′

+ 70 δ(4)(θ − θ′) L′ − 28 δ(5)(θ − θ′) L
]

+
2π(29λ2 − 284)

15kN3

[
δ(θ − θ′) W2W ′

2 − δ′(θ − θ′) (W2)2
]

−
π

90kN3

[
177 δ(θ − θ′) L′L(2) + 78 δ(θ − θ′) LL(3) − 295 δ′(θ − θ′) (L′)

2

− 352 δ′(θ − θ′) LL′′ + 588 δ′′(θ − θ′) LL′ − 196 δ(3)(θ − θ′) L2
]

+
28π(λ2 − 19)

15kN3

[
δ(θ − θ′) W3L

′ + δ(θ − θ′) LW ′
3 − 2 δ′(θ − θ′) LW3

]

−
32π2

5k2N3

[
3 δ(θ − θ′) L2L′ − 2 δ′(θ − θ′) L3

]
−

k

1440πN3
δ(7)(θ − θ′) . (C.3e)
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W-algebra from a gauged WZNW point of view,” Annals Phys. 203 (1990) 76.

[29] E. Bergshoeff, M. P. Blencowe and K. S. Stelle, “Area Preserving Diffeomorphisms

And Higher Spin Algebra,” Commun. Math. Phys. 128 (1990) 213.

[30] C. N. Pope, L. J. Romans and X. Shen, “W(infinity) And The Racah-Wigner Alge-

bra,” Nucl. Phys. B339 (1990) 191.

[31] M. A. Vasiliev, “Higher spin algebras and quantization on the sphere and hyper-

boloid,” Int. J. Mod. Phys. A 6 (1991) 1115.

[32] E. S. Fradkin and V. Y. Linetsky, “Infinite Dimensional Generalizations Of Simple

Lie Algebras,” Mod. Phys. Lett. A 5 (1990) 1967.

[33] M. Bordemann, J. Hoppe and P. Schaller, “Infinite Dimensional Matrix Algebras,”

Phys. Lett. B232 (1989) 199.
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