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Abstract 
  
 The term of wave is used in a general way to name any solution of a hyperbolic 
problem ( ) 0L u = , and the method used is a generalization of a geometrical 
process of optics (W.K.B.) consisting in seeking the solution in the form 

( )
0

ji j

j
u e i gωϕ ω −

≥

= ∑ , in term of a real parameter ω  (frequency), unknown functions 

ϕ  (phase) and jg  ( attenuating factors). We thus build such an asymptotic 
solution in the cases of simple and multiple characteristics, provided that the 
Cauchy data has an asymptotic expansion, and observe, like other authors, that the 
phase function is a solution of the classical eikonal equation, and the terms of the 
series are determined by a recursive system of differential equations. We then 
deduce a condition for genuine non linearity of the problem which generalizes that 
of Lax [7] and John [3], and highlight from it the singular behaviour of the first 
term of the formal solution when the characteristics are distinct. We note that, for 
sufficiently small frequency, the asymptotic solution is almost global.  
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 I.    Introduction 

 
We are interested, in this article, with a system of partial derivative equations,  
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hyperbolic and nonlinear, and propose the construction of an asymptotic solution 
in the direction given by G.K.L [5], G.Boillat [4], C.Bruhat [8]. The process 

consists in seeking a solution in the form ∑
∞

=

−≈
0

),(
k

k
k xuu ωϕω     , 

( x  a point of 1+nR , ω  the frequency is a real parameter,ϕ   the phase is a scalar 
function) and to observe, after replacement in the system, the phase and the term 
series ku  . Method known as “W.K.B” was used by Lax [6], then Ludwig [2] and 
G.K.L [5] for the linear systems, generalized then with the nonlinear systems by 
G.Boillat[4], Y.C.Bruhat [8], and exploited since per many authors [1],,[9],… It is 
the form suggested by Lax [6] that we use in this article. 
 

II.  Statement of the problem 
 
Let the system : 

⎩
⎨
⎧

=
=∂=

)(),0(
0),,()(

xfxu
uuxtAuL ν

ν

     summation in ν    (1) 

Where νA   is a )( kk × matrix, nRRxt ×∈ +),( , ),...,(),( 1 kuuxtu =  the unknown 

function, 
t∂
∂

=∂ 0 , 
μ

μ x∂
∂

=∂ , .,...,1 n=μ  

 
Under the conditions of regularity of the coefficients and initial data with 

compact support which ensure the existence and the unicity of a regular local 
solution 0u   in [ ]0, nT R× , one proposes to seek in the polycylinder 0u u ε− ≤  the 

solution of the problem (1) with oscillatory data ( ) ( )
( )

( )0 1
i xef x f x f x
i

ωψ

ω
= +     (2)         

in the form:           ( ) ( )
( )

( )
( )

,
0

1
, , ,

i t x
j

j
j

eu t x u t x g t x
i

ωϕ

ω

∞

=

= +∑                                          (3) 

in term of a real parameter ω  (frequency), of a function ( ),t xϕ  with real values 
(phase) which will be to determine as well as the functions ( ),jg t x . 

By identification, we have : 
    ( ) ( )0, x xϕ ψ= ,  
    ( ) ( )1 10,g x f x= ,     ( )0, 0, 2jg x j= ∀ ≥                 (4) 

Let us note ∇  the vector 
1

,...,
ku u

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

 so that : 

         ( ) ( ) ( ) ( )0 00
0A u A A u uν ν ν ε= + ∇ × − +                 (5) 

where index zero is allotted to any function of u  when 0uu = . 
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While reporting (3) and (5) in (1), one obtains: 

       ( )
( )0

0ji
j

j

F
L u e

i
ωϕ

ω

∞

=

= =∑  which involves        0, 0,1,...,jF j= ∀ = ∞ .         (6) 

As follows : 
   ( ) 1

0 0 0xF A g
ν

νϕ= =                        (7)  
     

   
( ) ( )

( )

2 1 1 0
1 0 0 0

1 1
0       0

x

i
x

F A g A g A g u

e A g g

ν

ν

ν ν ν
ν ν

ω ϕ ν

ϕ

ϕ

= + ∂ + ∇ × ∂

+ ∇ × =
        (8) 

      ( ) ( ) ( )1 1
0 0, 2j j j

j xF A g G g H g j
ν

νϕ + −= + + = ≥                                 (9) 
where : 
( ) ( )

( ) ( )

0
0 0

1 1 1
0 0            

j j j
x

i j
x x

G g A g A g u

e A g g A g g

ν

ν ν

ν ν
ν

ω ϕ ν ν

ϕ

ϕ ϕ

= + ∇ × ∂

⎡ ⎤+ ∇ + ∇⎣ ⎦

 

And : 
( ) ( )

( )

11
01

2 1
01

               

jj i j l l
l
j i j l l

l

H g e A g g

e A g g

ωϕ ν
ν

ωϕ ν

−− −
=

− − +
=

= ∇ ∂

+ ∇

∑
∑

. 

 

III.  Détermination of the phase ϕ  
 
According to (7), 1g  is a right eigenvector corresponding to the eigenvalue 0 , 

for the approached characteristic matrix ( )0 xA A
ν

νϕ=  and det 0d A= =  ; in other 

words, the sets ( ) ( ){ }1, / , constantent x R t xϕ+∈ =  form a family of  characteristic 
surfaces. Let ( ), constantet xϕ =  to be such a surface, l  the displacement of a point 

of surface, λ  its propagation velocity ; one has dl
dt

λ =  and ( )cos ,i i idx dl N x N dl= =  

where ix
i

x
N

D
ϕ

ϕ
= , ( )1,..., nN N N=  being the unit normal. It is shown that : 

( )0det i
x id D A N Aϕ λ= − . One standardizes the problem by posing 0A I=  (unit) 

because 0A  is regular in the neighbourhood of 00,t u u= = . It is seen that d  is a 
polynomial of  k  degree in λ . The hyperbolicity induces the existence of two 
bases of eigenvectors { }iR  and { }iL , respectively rights and lefts, of the matrix 

i
iA N  and r  real eigenvalues, ( )i r kλ ≤ , with respective multiplicities im . While 

posing ( ), ,i i
t xD t x uδ ϕ ϕ λ= + , one shows that: ( ) ( )i iiAR Rδ= , ( ) ( )i iiL A Lδ=  and 

( )1
imr i

i
d δ

=
=∏  ;  
(one does not summon compared to the index between brackets).  
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The equation 0d =  is thus equivalent to r P.D.E for the function ϕ  : 

    ( )
( ) ( )

0, , 0

0,

i
t xD t x u

y y

ϕ ϕ λ

ϕ ψ

⎧ + =⎪
⎨

=⎪⎩
                                (10) 

     
which admit each one a single local solution (the traditional eikonal equation). 
There are thus r  characteristic families of surfaces  iϕ  , and each one of them 
defines an asymptotic wave for  u . While seeking then u  in the form: 

( )
0 1 1

ir j
jj

eu u g
i

αωϕ
α

α ω

∞

= =
= +∑ ∑ , that one reports in ( )L u , one obtains finally: 

( )
( )1 0

0r ji
jj

F
L u e

i

α
α

ωϕ
α ω

∞

= =
= =∑ ∑ , where, while by vanishing jFα  for each α  and j , 

one finds the equations (7), (8), (9) where ϕ  is replaced by αϕ  and jg  by jgα . 

VI. Calculation of the attenuating factors jg  

Let us write the system bicaracteristic relating to the problem (10): 

( )
( ) ( )

( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

0
0

0
0 0

0

1

, 0 , 1,...,

,

0 ' 0, ,

, 0 , , '

i
x i

i
x

i i
x

i i

i i
x x

dt
d

dx x y n
d D

dp
D

d
p p y p y f y

dp
D p y p p D

d

μ

μ

μ μ

μ
μ μ

τ

ϕμ λ μ
τ ϕ

ϕ λ
τ

λ

ϕ λ ψ ϕ
τ

⎧ =⎪
⎪
⎪
⎪ = = =
⎪
⎪
⎪⎪ = − ∂⎨
⎪
⎪ = = −
⎪
⎪
⎪ = − ∂ = =
⎪
⎪
⎪⎩

                                   (11) 

The determination of the factors jg  returns to the resolution of the systems (7), 
(8), (9) along the bicaracteristics solution of (11). The equation (7) shows that 1g  
belongs to subspace generated by the right eigenvectors associated to the null 
eigenvalue i

0δ . 
Lemma 1: If iL  and jR  are respectively the  eigenvectors left and right of 0A  

associated with the same eigenvalue 0=δ , then, along the bicaracteristics  
solution of (11), one has the relation: 

        
0 , 1, ...,i j i j dx

L A R L R n
dt
μμ μ= =

     (12). 
Lemma 2: Standardization : 

         ij
ji RL δ=        ( symbol of Kronecker) 

− Simple characteristics: in this case, A  has k  real eigenvalues distinct 
kδδ ,...,1   and two bases of eigenvectors { }KiL 1   and { }kjR 1 . Let us fix the null  
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eigenvalue 0=δ , with which are associated the eigenvectors L  and R . From (7), 
one deduces that:       Rg 1

1 σ=                                                        (13)  
where ),(1 xtσ   is a function with real values on 1+nR  which it is necessary to 
calculate. While reporting (13) in 1LF , (8), using lemmas 1,2 and while placing 
oneself on a characteristic )),(,( ytxt , one obtains the differential equation of 

Bernoulli:       0)( 2
11

1 =Θ+Γ+ σσ
σ
dt

d                                           (14)  

         
where       

           

( ) ( )
( ) ( )

0
0 0

0

,

, i
x

t y LA R L A R u

t y e L A R R
ν

ν ν
ν ν

ωϕ νϕ

⎧Γ = ∂ + ∇ × ∂⎪
⎨
Θ = ∇ ×⎪⎩                (15) 

 
According to (4) and the expression of )(1 yf   in the base { }),0( yR j , one has: 
 )(),0(),0( 1

1 yfyLy =σ          (16) 
The problem (14), (16) defines in a single way ),(1 ytσ . By reporting its value 

in the system (8), this one becomes an algebraic linear system compared to 2g  
and thus has a particular solution 2h   modulo R , and so Rhg 22

2 σ+=    where 

2σ   is a scalar function which one will determine by the relation 02 =LF . Let us 
reason by induction on 2≥j . Let us suppose known the factors 11 ,..., −jgg  such 
as :  Rhg jj

j
11

1
−−

− += σ .       

The equality (9) : 0)()( 21
01 =++= −−

−
jjj

j gHgGgAF  is a linear system in 
jg   which the resolution gives us a particular solution jh  modulo R , thus 

Rhg jj
j σ+=    where the unknown function jσ  will be then solution of the 

equation 0=jLF , which is:     )()()( 1−−−=+ j
jj

j gLHhLGRLG
dt

d
σ

σ
.  

It is a linear differential equation for jσ  and the initial value 
),0(),0(),0( yhyLy jj −=σ   is obtained by expressing the vector jh   in the base  

{ }iR . Thus all the factors can be calculated successively. 
 
Multiple characteristics: we treat the case of a multiplicity m  with an eigen 

subspace of dimension m . Let the bases of the eigenvectors { }βR  and { }εL , 
m,...,1, =εβ  , respectively on the right and on the left of the matrix 0A , 

corresponding to the null eigenvalue 0δ . From 01
00 == gAF  one deduces that 

1g  is a linear combination of the vectors βR , so :  ββσ Rg 1
1 =                    (17) 

   
 that one reports in  01 =FLε , by using lemma 1,  to obtain: 
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0)( 111
1 =Θ+Γ+ γββγ

ε
ββ

ε

β
βε σσσ

σ
dt

dRL      (18),  

with γεβ ,,  varying from 1 to m  ; and  

    ( ) 0
0 0

L A R L A R uβ ε ν β ε ν β
ε ν νΓ = ∂ + ∇ × ∂

,  

    ( ) ( )
0 0

i i
xe L A R R e D A R L Rβγ ωϕ ε β γ ωϕ β ε γ

ε ϕ λΘ = × =
. 

Let us observe that (18) is a system of m  differential equations to the m  
unknown factors m

1
1
1 ,...,σσ  whose initial values are solutions of the system of 

Cramer: 

   ∑ ∑
= =

==
r r

yRyygyf
1 1

1
11 ),0(),0(),0()(

α α

αβαβα σ            (19) 

where one points out that α  indicates the number of roots of the characteristic 

polynomial, each one of them of multiplicity αm , ∑
=

=
r

km
1α

α , so that the system 

{ }αβR  is complete. Thus, (18), (19) determine in a single way the m  functions 
m
1

1
1 ,...,σσ  and consequently the factor 1g . The relation 01 =F  considered as a 

linear system in 2g  gives us a particular solution 2h  modulo an eigenvector βR , 
and so : ββσ Rhg 22

2 += . Let us reason by induction on 2≥j . Let us suppose 
known the factors 11 ,..., −jgg  such as: ββσ Rhg jj

j
11

1
−−

− +=  ; then the linear 

system in jg  : ( ) ( )1 2
1 0 0j j j

jF A g G g H g− −
− = + + =

 have a particular solution jh  

modulo βR , then ββσ Rhg jj
j += , that one reports in 0=jFLε , by using lemma 

1, to lead finally to the system of m  differential equations to the m  unknown 

factors βσ j  : 
( ) ( ) ( ) ( )1j j

j j

d
L R L G R L G h L H g

dt

β
ε β ε β β ε ε

σ
σ −+ = − −

.    

Initial values ),0( yj
βσ  can be given by the system  

( ) ( ) ( )1 1
0, 0, 0,

j

r r
jy R y h yβ αβ α

α α
σ

= =
= −∑ ∑   whose determinant [ ]αβR  does not 

vanish. Thus the process is complete. 

V.        PRINCIPAL RESULTS 

V.1. Genuine non linearity 

In the linear case, A  does not depend on u , 0=Θ , and the equation (14) is 
reduced to that obtained by Lax [6] and Ludwig [2]. It is obvious that for a truly 
nonlinear case, Θ  does not vanish and it is not enough which A  depends on u . 
The condition of nonlinearity required by Lax [7] when  1, 2n k= = , and by F. John 
[3] when 1=n ,    k unspecified, is :  ( 0)0 ≠×∇ Rλ . 
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 Let us show that this condition is the same one here: 

( ) ( )00
i i

xe L A R R e L A R R
ν

ωϕ ν ωϕϕΘ = ∇ × = ∇ ×  

( ) ( ) ( )
( )

00 0 0

0                           = i

LA R R L R A R L A R R

L A R R e ωϕ

⎡ ⎤∇ × = ∇ × + ∇ ×⎣ ⎦

∇ × = Θ
 

Because   0 0A R = . 
In addition: 
( ) ( )

( ) ( ) ( )
0 0

00 0 0              =

LA R R L R R

R LR L R R R

δ

δ δ λ

⎡ ⎤ ⎡ ⎤∇ × = ∇ ×⎣ ⎦ ⎣ ⎦
∇ × + ∇ × = ∇ ×

 

Because 0 0δ = and 1LR =  ;  and so  ( ) ( )0 0
i i

xe R e D Rωϕ ωϕδ ϕ δΘ = ∇ × = ∇ ×   
and consequently            
                                    0)(0 0 ≠×∇⇔≠Θ Rλ  

V.2.  Blow up of the solution 

It is known that, in the case of this system, the solution exists only in the 
neighbourhood of the initial data.   
 Let us show that one observes the same phenomenon here. 
The first term of the asymptotic development of u  being 1

1g Rσ=  where 1σ  

checks : ( ) ( )( )21
1 1(14)         , , 0

d
t y t y

dt
σ

σ σ+Γ +Θ =  ; ( ) ( ) ( )1
1(16)          0, y L y f yσ =  

along the characteristics ( )( ), ,t x t y where ( ) ( ) ( )( )00, , ,L y L y f y D yψ= . 

One poses ( ) ( )
0

, ,
t

h t y s y ds= Γ∫  and  ( ) ( )1, ,h iz t y e t yωϕσ+= . 

Let us report the value of 1σ  drawn from (20) in (14), (16), the problem 
becomes: 

   
( ) ( )

( ) ( ) ( ) ( )

2 2
0

1

,

0,

h
x

i y

dz e D R z a t y z
dt
z y e L y f yωψ

ϕ λ−⎧ = − ∇ × =⎪
⎨
⎪ =⎩

    (21) 

where ( ),a t y  does not vanish since ( )0 0Rλ∇ × ≠ .  Like suppy f B∈ =  compact  

in nR  , ∃  a constant M  such as    ( ) ( ) [ ]0 , , , ,M a t y t y O T B〈 ≤ ∀ ∈ × . 
Let us consider the characteristics 2NC  and 2 1NC +  with respective initial phases 

( ) 2Ny πψ
ω

=  and ( ) ( )2 1
,

N
y N Z

π
ψ

ω
+

= ∈  on which ( ),z t y  is real and one have: 

( ) ( ) ( )
( ) ( ) ( )

1

1
0

,
1 ,

t

L y f y
z t y

L y f y a s y ds
=

− ∫
 on 2NC , and 

( ) ( ) ( )
( ) ( ) ( )

1

1
0

,
1 ,

t

L y f y
z t y

L y f y a s y ds

−
=

+ ∫
 on 2 1NC +  

Let 1
1 suppB f=  and let us consider the two parts 



1366                                                                            A. Hamlaoui and S. Boutaba 
 
 

( ) ( ){ }1
1 1/ 0B y B L y f y m+ = ∈ ≥ 〉  and 

( ) ( ){ }1
1 2/ 0B y B L y f y m− = ∈ ≤ − 〈 . 

Let us notice that the continuous functions ( ) 1
0

1
,

1
m

z t y
m Mt

=
−

 and 

( ) 2
1

2
,

1
m

z t y
m Mt

=
−

   for 0t ≥ ,  cannot exist respectively for  ( ) 1
1t m M −≥  and  

( ) 1
2t m M −≥ . 

 If ( )0 0Rλ∇ × 〈 ,  then  ( ), 0a t y M≥ 〉 . 
− On the characteristics 2NC  issued from ( )0, y  where y B+∈ , a continues 

solution ( ),z t y  of (21) cannot exist for ( ) 1
1t m M −≥ , because  ( ) ( )0, ,z t y z t y≥ . 

− On 2 1NC +  issued from ( )0, y  where y B−∈ , one have ( ) ( )1, ,z t y z t y≥ , then 
( ) 1

2T m M −
p . 
 If ( )0 0Rλ∇ × f , then  ( ), 0a t y M≤ − p . 
− On 2NC  issued from  y B−∈ , one have : ( ) ( )1, , 0z t y z t y− ≥ 〉 ,  then  

( ) 1
2T m M −

p . 
− On 2 1NC +  issued from y B+∈ , one have  : ( ) ( )0, , 0z t y z t y− ≥ 〉 , then 

( ) 1
1T m M −

p . 
In all the cases, a regular solution of (21) exists only for  ( ) 1

max0 t T mM −≤ =p   

With  ( )1 2min ,m m m= . 
 
Note: for a sufficiently small frequency ω , y  in a compact set, ( )yψ  may not 

take the values Nπ
ω

, N  integer, the solution ( ),z t y  of ( )21  with complex values, 

remains limited, and consequently this last proposal does not exclude the 
existence of global solutions.  
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