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ASYMPTOTIC ZERO DISTRIBUTION FOR A CLASS
OF MULTIPLE ORTHOGONAL POLYNOMIALS

E. COUSSEMENT, J. COUSSEMENT, AND W. VAN ASSCHE

ABSTRACT. We establish the asymptotic zero distribution for polynomials gen-
erated by a four-term recurrence relation with varying recurrence coefficients
having a particular limiting behavior. The proof is based on ratio asymptotics
for these polynomials. We can apply this result to three examples of multiple
orthogonal polynomials, in particular Jacobi-Pinieiro, Laguerre I and the exam-
ple associated with modified Bessel functions. We also discuss an application
to Toeplitz matrices.

1. INTRODUCTION

Let p be a positive measure on the real line for which the support is not finite
and all the moments exist. The corresponding monic orthogonal polynomial P,, of
degree n is then defined by

(1.1) /men(x)du(x)zo, k=0,...,n—1,

with Py = 1 and P_; = 0. A well-known fact is that such polynomials satisfy a
three-term recurrence relation of the form

(1.2) 2P, (2) = Poi1(2) + b, Pp(2) + a2 P, _1(2), ap >0, b, € R,

with initial conditions Py =1 and P_; = 0.

An object of frequent study is the asymptotic zero distribution of the zeros for
a sequence of orthogonal polynomials. The zeros of the polynomials P,,, generated
by (LZ), are real and simple [I3]. With each polynomial P,, we can associate the
normalized zero counting measure

(1.3) v(P,) ;:% > b

P, (z)=0

where 0, is the Dirac point mass at x. If lim, .. v(P,) = v, by which we mean
that

Tim [ fdv(P,) = / fdv
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5572 E. COUSSEMENT, J. COUSSEMENT, AND W. VAN ASSCHE

for every bounded and continuous function f on R (weak-* convergence), then we
call the probability measure v the asymptotic zero distribution of the sequence
{P,}n>0. One of the famous results in this context is the following.

Theorem 1.1 (see, e.g., [24] 28]). Suppose that the recurrence coefficients a, > 0
and b, € R have the limits a > 0 and b € R, respectively. The polynomials Py,
generated by ([L2), then have the asymptotic zero distribution wy, s with density

1
dw K
(1.4) @) =] m/E-a)@—)
x
0, elsewhere,

, z € [v,4],

where v =b — 2a and 6 = b+ 2a.

Remark 1.2. The measure wy, 5 is known as the arcsine measure on [y, d]. It also
minimizes the logarithmic energy of the interval [y, §] [26].

Recently, the result in Theorem [[T] was extended to the case of varying recur-

rence coefficients. Here the notation lim,,,y_; Y, n =Y denotes the property that
in the doubly indexed sequence Y, y we have lim; . Y,,;, v, = Y whenever n; and
N; are two sequences of natural numbers such that N; — oo and n;/N; — ¢ as
J — o0.
Theorem 1.3 (Kuijlaars, Van Assche [21]). Let for each N € N, two sequences
{an,N}021; an.n >0, and {by n}52, bn v € R, of recurrence coefficients be given.
Furthermore, suppose there exist two continuous functions a : (0,4+00) — [0, +00),
b:(0,400) — R, such that

1.5 lim any = a(t), lim by =b(t), >0,
(15) /Ny TN a(t) /Ny N ®)

and define (t) := b(t) — 2a(t), 6 := b(t) + 2a(t), t > 0. For the (orthogonal)
polynomials generated by the recurrence

(16) ZPn’N(Z) = PnJrLN(Z) + bn,NPn,N(Z) + ai’NPn,LN(z),
with initial conditions Py y =1 and P_; ny =0, we then have

. 1 [
(1.7) i v(PoN) = ;/O Whisos)ds, >0,

Here wy 5 is defined by (L4) if v <0 and by o, if v = 6.

Remark 1.4. More recently, Theorem [[.3] was generalized to measurable functions
a and b [20].

In this paper we present a (conditional) theorem giving the asymptotic zero
distribution for polynomials satisfying a four-term recurrence relation of the form

(1.8) 2Py n(2) = Pogain(2) + bu NPon(2) + coNnProo1,n(2) + dn N Pr—2.n(2),

where the varying recurrence coefficients have some particular limiting behavior. So,
in a sense it extends Theorem [[.3l Such a four-term recurrence relation appears in
the theory of multiple orthogonal polynomials of Type II. These are a generalization
of orthogonal polynomials which arises naturally in Hermite-Padé approximation of
a system of (Markov) functions [0 10, 22]. In particular, they satisfy orthogonality
conditions with respect to several positive measures [2] 25, [29]. Some of their
applications are situated in diophantine number theory, rational approximation,
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ZERO DISTRIBUTION OF MULTIPLE ORTHOGONAL POLYNOMIALS 5573

spectral and scattering problems for higher-order difference equations and some
associated dynamical systems; see, e.g., [5L [11L [I8] 27]. Recently they also appeared
in random matrix theory for matrix ensembles with external source [3] [7, 8] and
Wishard ensembles [6]. The particular limiting behavior which we are considering
appears in the examples Jacobi-Pineiro, Laguerre I [29] and the example associated
with modified Bessel functions [30].

In Subsection 2.1l we state our main theorem. Next, in Subsection and Sub-
section 2.3l we apply this result to the examples of multiple orthogonal polynomials
mentioned above and some particular kind of Toeplitz matrices. In Section [3] we
discuss a theorem on ratio asymptotics for monic polynomials satisfying the recur-
rence (L8). This will be used to prove our main theorem in Section [l

2. STATEMENT OF RESULTS

2.1. Main theorem. We will study doubly indexed sequences of polynomials
{P,, N}, generated by a four-term recurrence of the form

(2.1) 2P, n(2) = Pryi,n(2) + bp NP N (2) + N Proo1,n(2) + dn N P2, N (2),

with the initial conditions Py vy =1, P_1,xy =0 and P_5 y = 0 and real recurrence
coefficients. In particular, our main theorem gives an explicit expression for the
asymptotic zero distributions
lim v(P, n), t>0,
n/N—t

with some conditions on the zeros of the P, x and some particular limiting behavior
for the recurrence coefficients. As mentioned in the introduction the limit is taken
over any sequence {v(P,; n;)};>1 for which n; — co, N; — oo and n;/N; — x as
j — o0o. We will use this notation throughout the rest of this paper.

Theorem 2.1. Let for each N € N three sequences {bn N}, {cn.N}02, and
{dn,N 152 of real recurrence coefficients be given and assume that there exists a
continuous function « : [0, +00) — [0, +00) such that, fort >0,

2.2 lim b, v =36(t), 1 LN =36)?%, lim d, N = 6(t)3,
(22)  Jim ey =36(),  lm ey =36(8)°  lm dan = B()

7

with B(t) = 43(;). Let P, n be the monic polynomials generated by the recurrence

(ZI) and suppose these polynomials P, n have real simple zeros x?’N <...<zwlN

satisfying the interlacing property x?H’N < :L'?’N < x;.lill’N, for all n,N € N,
j=1,...,n. Then
1 t

(2.3) n}}\I/rLtV(Pn’N) = Z/O V[0,a(s)] ds, t >0,
where vy o) s defined by oo if a =0 and %(x) = %%(%), with

VB (L VI=)Y 4 (1= T= o)

dv[071] s 273 s HAS (Oa 1)7

(2.4) ?(:c) = 47 2231 —x

0, elsewhere,

if a > 0.
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4

0 01 02 03 04 0);5 06 07 08 09 1
FIGURE 1. The density of the measure v 1.

Remark 2.2. Denote by v the right hand side of ([Z3]). The action of this measure
on arbitrary Borel sets is given by

1

t
w(B) = [ Voo (E)ds. B eB®).

Now suppose that for each x > 0 the set {s > 0| x < «a(s)} is an interval, which
we denote by [t_(z),t4(x)]. The density of the measure v; is then
du, 1 /min(t,t+(w)) dv[&a(s)]

(2.5)

(z)ds.

—(x)
dz U Jmintt_ (@) A
This will be the case in each of the examples we present in this paper.

Remark 2.3. Comparing Theorem 2] with Theorem we see that the measure
U[o,1) Plays the role of the arcsine measure in the case of orthogonal polynomials
(satisfying a three-term recurrence relation). The density ([24]) again has the be-
havior ¢;(1 — z)~'/? as = 1 1, but has a different behavior coz=%/3 as = | 0. See
Figure [I

Remark 2.4. The measure vy ;] coincides (after a cubic transformation) with the
asymptotic zero distribution of Faber polynomials associated with the 3-cusped
hypocycloid [19].

2.2. Application to multiple orthogonal polynomials. There are two types of
multiple orthogonal polynomials, but we will only consider type II. Let uq,..., ur,
r € N, be a set of positive measures on the real line for which the support is not
finite and all the moments exist. Furthermore, let 77 = (nq, ne, ..., n,) be a vector of
r nonnegative integers, which is a multi-indez with length || :=ny +no+ -+ - +n,..
A multiple orthogonal polynomial Pz of type II with respect to the multi-index
7, is a (nontrivial) polynomial of degree < |7i| which satisfies the orthogonality
conditions

(2.6) /meﬁ(x) dpj(x) =0, 0<m<n; -1, ji=1,...,m
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A Dbasic requirement in the study of multiple orthogonal polynomials is that the
system (2.6) has a unique solution (up to a scalar multiplicative constant) of degree
|77]. We call i a normal index for py, ..., u, if any solution of (2.6) has exactly
degree |7i| (which implies uniqueness). If all the multi-indices are normal, then the
system of measures is called perfect. Some famous classes of perfect systems are the
Angelesco systems, Nikishin systems (for » = 2) and AT systems; see, e.g., [25], 29].

Multiple orthogonal polynomials of type II satisfy a recurrence relation of order
r+1. In particular, if we set » = 2 and consider proper multi-indices ,, = (m+s, m),
n € NU{0}, where n = 2m + s, s € {0, 1}, then the polynomials P, := P;,_ satisfy
a four-term recurrence relation of the form

(2.7) 2P, (2) = Pry1(2) + bnPr(2) + cnPr—1(2) + dpPn—2(2),

with the initial conditions Py = 1, P_1 = 0 and P_5 = 0. For three examples
known in the literature the recurrence coefficients in ([2.7) have the particular lim-
iting behavior (Z2), possibly after some re-scaling. In each of these examples the
measures form an AT system on an interval A C R. It is then known that the
zeros of the polynomials P, are simple, lie in A [25] [29] and satisfy the interlacing
property [4]. So, it is possible to apply Theorem 21

2.2.1. Jacobi-Pineiro. The Jacobi-Pineiro polynomials are the multiple orthogonal
polynomials for the system of orthogonality measures
dpj(z) = 2% (1 —2)?dz, j=1,2,

on the interval [0, 1] with aq, a0, 3 > —1 and ag — ;1 ¢ Z. In [29] it was shown that
the monic Jacobi-Pineiro polynomials with respect to proper multi-indices, which
we denote by P21:%2i8 gsatisfy a recurrence relation of the form (7)) for which

. 4 . 4\? , 4\°
(28) Jangobn::’)(a?)’ JHI;O%—")(Q?) ’ Jingodn—(ﬁ) |

By Theorem 2T with «(t) = 1, ¢ > 0, we then easily obtain the following result.

Theorem 2.5. The Jacobi-Pifieiro polynomials P2+*28 have the asymptotic zero
distribution vy 1), defined as in ([2.4).

2.2.2. Multiple Laguerre I. The multiple Laguerre polynomials of the first kind are
orthogonal with respect to the system of measures

dpj(z) =a%e dz, j=1,2,

on [0, +00) with a1, ag > —1 and as—a; ¢ Z. Denote the monic multiple Laguerre I
polynomials with respect to proper multi-indices by L1*2. These satisfy a four-
term recurrence relation of the form (2.7) where, for ¢ > 0,

. bn t . Cp, t2 . dn t 3
2. 1 — =3z 1 =3 = 1 no_ (2.
(29) lim % 3(2)’ i 3(2)’ i = (g)

see [29]. The following theorem is then a corollary of Theorem 2.1

Theorem 2.6. For the multiple Laguerre polynomials of the first kind the limit

. 1
(2.10) I/tL = n/l}\lflit - Z du/N> t>0,
L31°2 () =0
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FIGURE 2. The densities of the measures vl and v, see (ZI0)
and ZI4), with t = £ and t = f’ respectively.

exists and has the density

L
dy;

dx

5 8 27
(2.11) { 779 (37) e (0,22,

0, elsewhere,

where, fory € (0,1),

_3VB(+3VT— (- VI=p)!P - (A -3VT—y)(A +VT-y)'/°
g(y)_ 161 y2/3 :

Proof. If we define Lo (z) := L21:2(Nz)/N™, then the polynomials satisfy a
recurrence relation of the form (21) and the asymptotic property ([2.2]) with «(t) =
2t ¢ > 0. So, applying Theorem 1] we get

t 1
dl/t 1 8 dv [0 1] 8z 18 1 dU[O 1]
== | = | = |ds=-= [ - : du.
dx() t/ 27s dx 27s s t27/u dx (u) du
5 2%
Set = € (0, %) and z = /1 — 27t Applying the substitution y < /1 — u we then
obtain
dvf 143 [? 4 - _ _
avy” _ 13Ve 1 /3(1 — )=5/3 4+ (1 5/3(1 _ 4)—4/3
@ = o | (00— ) P dy
143 (7
_ L3V9 1 —5/3(1 _ )=4/3¢
T | Atu) Ay y
SR BN S TR
S8 (14 )21 —y)V/3 |
This completes the proof. O
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2.2.3. Multiple orthogonal polynomials associated with modified Bessel functions.
In [30] one considered multiple orthogonal polynomials with respect to the orthog-
onality measures
dpur(z) = 2%y (1) Az, dpia(x) = 2 py 1 () da
on (0,400) with kK > —1, v > 0 and
py(z) = 2072 K, (2V/x), x>0,

where K, is the modified Bessel of the second kind, also known as the Macdonald
function [I, p. 374]. For the type II multiple polynomials with respect to proper
multi-indices, P, the recurrence coefficients in (217) are known [30, Theorem 4].
In particular, for ¢t > 0,

b c d
2.12 lim — = 3t2, lim — = 3t?, lim — =1¢%.
(212) WL N2 W W N oW N
Theorem 1] then implies the following asymptotic result for the zeros of these
polynomials.

Theorem 2.7. For the multiple orthogonal polynomials associated with modified
Bessel functions the limit

1

2.1 M.— lim =

(2.13) Yt n/}\Ifrit’Il Z Ou /N2
Py (2)=0

exists and has the density

2
dv weh(se).  2e(0.5),

RN

(2.14)
elsewhere,

where

_ 33 (1+ m>1/3 —(1- m)l/:a

A y2/3 ’

h(y)

y € (0,1).

Proof. Define the polynomials P}i%(z) := PY"(N?z)/N?". By (2I2) these satisfy
a recurrence relation of the form (2]) having the asymptotic property (Z2]) with
a'(t) = %, t > 0. Set z € (0, %) and z = 52%. Applying Theorem [ZT] then
gives

t 1
dvM 1 4 d 4 1 2 1d
Vi () =2 / Vo (A o1 L oy gy
dx t 2752 dax  \ 27s? 227z ) Vu dx

z

2T
3 3

Similarly as in Theorem [Z.6] we apply the substitution y «<» /1 — u and get

M 1 1 [VITF
Wil - LB (1+y) 01 —y) "%y
dx 12277 \/z iz
Vi=z
111 (1 + y) 1o
= = — — ,
2331z \1—y e
From this we easily obtain (Z.14]). O
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2.3. Application to Toeplitz matrices. Set a > 0, 8 = é—‘;‘, and define the
Toeplitz matrices

36 1 0 ... ... 0
362 38 1 :
3 2 . .
Ty = po3m 381 - e R™*™, neN.
0 ﬂ?’ 362 35 0
0 ... 0 pB* 332 38

Note that the eigenvalues of T, coincide with the zeros of the monic polynomial
*(z) = det(zI,, — T%), n € N. These polynomials satisfy the recurrence relation

(2.15) 2Qn(2) = Qnia(2) +36QR(2) + 367 Q01 (2) + 5 Qs (2),
with @ = 1 and Q¢;, = @Q¢, = 0. The following asymptotic result for the
eigenvalues of the matrices T2 then follows from Theorem 211

Theorem 2.8. The limiting eigenvalue distribution of the matrices T, with o > 0,
is given by the measure vy o), defined as in Theorem 211

Proof. The homogeneous recurrence relation

0=@Qn1(0) +36Q7(0) +35°Q5_1(0) + 57 Qn_5(0)
with Q§(0) =1 and Q@%,(0) = Q%4(0) = 0 has the solution

2
10 =cor (145 +5). nen

So, since 3 = é—‘; > 0 all the T} are nonsingular. Next, define

1 0 A 0
36 1
362 33 1
7o = 3 382 35 1 e R (1)
0 B 352 33 1
0 ... 0 B 332 38 1
and notice that T = (A%)3 with
1 0 0
g 1
Ao — 0 8 1 c RIHD X (1),
T (|
0 ... 0 8 1

Since /13 is totally nonnegative, T;j‘ is totally nonnegative, see, e.g., [I5, p. 74, 1°],
and so also T)*. By [15] p. 100, Theorem 10] we then get that the 7% are oscillation
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matrices. Consequently, the zeros of the polynomials @, are simple and positive
[15, p. 87, Theorem 6] and satisfy the interlacing property [15, p. 107, Theorem 14].
The theorem then easily follows from Theorem 2] and the recurrence [2Z.13). O

Remark 2.9. The polynomials satisfying the recurrence relation with constant co-
efficients ([27I5]) are the multiple Chebyshev polynomials of the second kind after a
cubic transformation [I2] [I4]. These are an example of multiple orthogonal polyno-
mials of type II extending the well-known Chebyshev polynomials of the second kind
[13]. The corresponding orthogonality measures can be found in [I2], Corollary 4.2],
[T4, Theorem 4.1].

3. RATIO ASYMPTOTICS

In [21] Kuijlaars and Van Assche have proven a theorem that gives explicit ratio
asymptotics for orthogonal polynomials with converging varying recurrence coeffi-
cients. In this section we give an extension of this result to polynomials satisfying a
(specific) four-term recurrence relation instead of a three-term recurrence relation.

Theorem 3.1. Suppose we have for each N € N sequences {b, n}520, {cn,N}req
and {d, N} of real recurrence coefficients and let P, n be the monic polynomials
generated by the recurrence

(31) ZPn,N(Z) == Pn+l,N(Z) + bn,NPn,N(Z) + Cn,NPn—l,N(Z) + dn,NPn—Z,N(Z)a

with Poy =1, P.1y =0 and P_y y = 0. Assume that for some fized t > 0 the
recurrence coefficients have the limits

4o 40\ A
2) = — li = — li —
(82) hm boy 3(27)’ n/Nt N 3(27> ) (27) ’

with o > 0. Furthermore, assume that the polynomials P, n have real simple zeros

N < < amN satisfying the interlacing property x?H’N < x?’N < x?_tll’N,
for alln, N € N, j =1,...,n. Moreover, suppose that for some t* >t there exist
m < 0, M > « such that all zeros of P, n belong to [m, M| whenever n < t*N.
Then
1 z
- ¢ (_)7 o> 07
. P, n(2) a’ \a
(3.3) lim ———— =
n/N—t Pn—i—l,N(z) 1
) o = Oa
z

uniformly on compact subsets of C\ [m, M|, where ¢ is defined by

a1 o= T (220 {14 vVITD P+ (1 - VT2 1)

4 2
with wg = e and
Vet = pl/ze%, p>0, 6¢€]l0,2n),
(3.5) (pe?)1/3 = p1/3e%, p>0, 0¢€(—m, +ml.

Remark 3.2. In the case that the recurrence coefficients do not depend on N the
existence of the limit (83) was already proven in [4]. Our proof will be based on
similar arguments.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5580 E. COUSSEMENT, J. COUSSEMENT, AND W. VAN ASSCHE

Remark 3.3. Under the conditions of Theorem ] by taking the derivative of (B3]

we get
1¢'(z/a)
. n/N—t \ Pon(2)  Pay1n(2) . 0
_Z o=0,

)

z
uniformly on compact subsets of C \ [m, M].

In order to prove Theorem Bl we need part (a) of the following lemma. The
whole lemma will be used in the proof of Theorem 2] as well. It can be found in,
e.g., [2I, Lemma 2.2], but we include a short proof for completeness.

Lemma 3.4. Suppose that the zeros of the monic polynomials p,—1 and p,, with
degree n — 1 and n, respectively, are simple and real, interlace and lie in [m, M].
Then

Pn1(2) 1
< VzeC\ [m,M
B pn(z) | = dist(z, [m, M])’ z € C\ [m, M],
pn—l(z) 1 )
b 2 50 if |z| > max(|m/|, |M]).
) |2 2 g i1l > max(ml, M)
Proof. Denote the real zeros of p,, by y1,...,y,. Since p,_1 and p,, are monic and

their zeros interlace, there exist w; > 0, Z _,wj =1, so that

n

Pn1(2) 3 w

pol2) Sz

Then note that, because y; € [m, M], for all z € C\ [m, M] we have |z — y;| >
dist(z, [m, M]), 1 < j < n. This immediately proves part (a) of the 1emma
If |z| > max(|m|, |[M|), then |y;/z| < 1 and therefore (1= ylg/ )>11<j<n

Hence
1|~ wy 1 N w, 1
il I >R e —
Bl e R A O3k R F PP
which proves part (b). O

We also need the following properties of the function ¢.

Lemma 3.5. The function ¢ is analytic on C\ [0,1] and satisfies

(a) z¢(z) = ( 492(7)> , zeC\0,1],

(b) ¢(2) =271+ 0(272), as z — 0o.

Proof. By the choice of branch cuts for the square and the cubic root, see (B3,
the function ¢ is certainly analytic on C\ (—o0,1]. For z < 0, a simple calculation
also shows that lim. o ¢(x + i€) = lim,|o ¢(x — i€). So ¢ is analytic on C\ [0, 1]. If

we define

(3.7) ug(z) i ==-1+v1 -z,

then

(3.8) ug(2)u_(z) = z, ug(2) +u_(z) = —2.
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Using this gives

(1 + 4¢(2))3 - . (W3(u+(2))1/3 + (u_(z))1/3>3

27 8

= 2 a (2 Bt (wnlus () + (- (2))).

which verifies part (a) of the lemma.

Next, we will prove that ¢ tends to zero as z — co. From part (a) we then obtain
that lim,_., 2¢(2z) = 1 and, since ¢ is analytic in a neighborhood of infinity, this
implies part (b) of the lemma. Applying the formula (a+ b)(a®+b? — ab) = a® + b3
and ([B.8), we observe that

4 3wq 21/3
(3.9) —_— ¢(Z) = — ) 5 _ 1
27 w3 [(ug (2))1/3]° + [(u=(2))1/3]" = wy21/3

Now take for a moment z = 1+ L, with L > 0. By the definition of the square root
we have u (1 4+ L) = —1 +iv/L. So we can write

up(1+L) = p(L)e(Fre®),

u_(1+L) = pL)e=53==0) <)< g
Obviously we then get
(310) Bl D)) = () eelFriew),
(3.11) [(u_(l + L))l/ﬂ2 = (p(L))3ei(-5-3=)),
Finally, notice that
(3.12) Jim (L) =0 and p(L) ~ VL, L — +oo.
Hence, combining (3.9), (3I0) and BII), we obtain

4 3
LEI-EOO 27 p(1+1L) = LETOO ci(3e(D) + e—i(3e(D) +1 -1=0

Since ¢ is analytic in a neighborhood of infinity, then also lim, . ¢(z) = 0. ]
Now we give the proof of Theorem [B.11

Proof of Theorem 3.1l It is enough to prove the cases @ = 0 and a = 1. The more
general case o > 0 is then obtained by taking P, n(z) := Py n (@z) /o™

We first prove the case a = 1. By the assumptions on the zeros of the polynomials
P, n every member of

3.13 N | NeN, n<tN
(3.13) { Proan (2)

satisfies the estimate in part (a) of Lemma B4l So, the family (B.I3) is uni-
formly bounded on compact subsets of C\ [m,M]. By the theorem of Montel
[17, p. 563] we then know that (B.I3) is a normal family on C\ [m, M]. For a
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sequence {(n;, Nj)}j>1, with n;, N; — oo, nj/N; — t as j — oo, we have that, if
7 is sufficiently large, the function
- PN, (2)
(314) f] (Z) . Pnj+1,Nj (Z)
belongs to the normal family (3.I3]). The corresponding sequence {f;};>1 then has
a subsequence that converges uniformly on compact subsets of C\ [m, M]. If we can
prove that the limit of any such subsequence is ¢, then, by a standard compactness
argument, the full sequence {f;};>1 converges uniformly on compact subsets of
C\ [m, M] to ¢. This then proves the theorem in the case a = 1.

We will show that for each sequence n;, N; — oo with n;/N; — ¢ such that the
functions {f;}i>1 converge uniformly on compact subsets of C \ [m, M], we have

(3.15) f(z) = Zlirglo fi(z) = o(2) + O(z7%), as z — 00,

for each k¥ € N. The uniqueness of the Laurent expansion around infinity then
implies that f(z) = ¢(z). We show this by induction on k. The case k = 1 follows
from Lemma (b) and f;(z) = O(z71), for every i > 1. Next, suppose that
the claim holds for some k£ > 1 and consider a sequence {(n;, N;)};>1 such that
n;, N; — 00, n;/N; — x and the functions {f;};>1 converge uniformly on compact
subsets of C \ [m, M] to some function f as i — oo. If we put

Pn-fl N, (Z)
i(z —_— z € C\ [m, M],
w(e) = Tl \fm
Pn»72 N. (Z)
hi(z) = —/——————, z € C\ [m, M],
) Pm—LNi(Z) \ [ ]
then from the recurrence relation (B.I]) we obtain
(316) z = fi(z)_l + bn, N, + Cny N, gl(’z) + dn; N, hl(z)

Since t < t* we may assume without loss of generality that n; < t*N; for every i > 1.
Then {g;};>1 and {h;};>1 are subsets of the normal family (3.13]). Therefore, there
is a sequence i; — oo, j — 00, such that {g;; };>1 and {h;; };>1 converge uniformly
on compact subsets of C \ [m, M] with limits g and h, respectively. If we pass to
such a subsequence and take limits in (B.I6), then by [3.2) we find

(3.17) 2= —— +3 (i) 13 (i)gg(z) + (ifg(z)h(z), € C\ [m, M.
7(2) 27 27 27
By the induction hypothesis we now have that
g(z) = é(2)+0(="F), z — 00,
h(z) = ¢(2)+ 0=, z — 00.
Applying this to (BI7), by Lemma we then get

ﬁ — .3 (%) 3 (%)2 é(z) (%)3 6(=)? + O(="%) = @ + O,
Since ¢(z) = O(=~1), this implies

_ ¢(2) __ ¢x) e
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So we proved that [BI5]) also holds with k replaced by k + 2. Therefore, it holds

for all k.
Finally, for the case o = 0 the proof is similar. In fact, (3.3) then easily follows
by taking limits in (3.16]). O

4. PROOF OF THEOREM [2.1]

In order to prove the asymptotic result in Theorem [2.1] we first have a closer
look at the function %, which is analytic on C\ [0, 1]. Here we will use the relation

o' (2) ) 1 1 3<8¢(z) )—1
(4.1) = = — -1)

o(z) <8<2<7z> _ 1) 22 22\ 27

which can be obtained by differentiating part (a) of Lemma 35l First of all, we are
interested in the jump across its branch cut.

Lemma 4.1. The jump of the function % across its branch cut is given by

o Platie) o @lx—ie) . dupa
(4.2) m(x):= 161%1 pY P lglﬁ)l o i) 278 4 (x), z € (0,1),

where v 1) is defined as in Theorem 211

Proof. Let x € (0,1). By (41l we easily obtain

w = () () )

Applying the definitions (3.3 we get

lim (—1 +v1- meiif)l/B = &% (1 +v1-— :6)1/3 )

€l0
1/3 .
liﬁr)l (—1 —V1- xeii5> / = e 's (1 FV1-— x)1/3 )

Using the notation vy (z) := (14 /1 — 2)'/? we then have

laiﬁ)l w —1=23z13 {e_%ﬂvi(x) + e%rij(a:)} -3.
So, also applying the relations z/3 = v (z)v_(x) and 2 = vy (2)® +v_(x)?3, equa-
tion (£3) becomes
m(z) = 2\2//§3i , vy () —zv, (x)
T2 (1730 (2) 1 0 (2) — 2)° 4 322 (v, (2) — v_(2))?

- 2:52—\//332 (vg(x) = v (2) 7 [(v-(2)? = vy (2)*)? + Buy (2)*0(2)?]

If we multiply the numerator and denominator both by vy (z) + v_(x), then we
finally obtain

—1

m(z) = 2/3i vy (z) +v_(x) _ V3i vy (z) +v_(z)
22 oy (@ + o (@) (03 (@) o @) 2228 Tz
which proves ([£.2)). O
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A second point of interest is the behavior of the function % in the neighborhood
of its branch points 0 and 1.

Lemma 4.2. Near the points 0 and 1 we have

¢/ (ee”) —2/3
(4.4) o o (g ) . 210, 6e(0,21),
¢ (1 + ee'?) B ~1/2 B
(4.5) ‘¢(1+ee1‘9) - O(s ) £10, O (-mm).
Proof. For 6 € (0,2m) we easily see that
: 0y _ _2_7 4g(ee™) _ 1/3
161{51(;5(56)— 1 —or +1—(9(€ ), elo.

Applying this to the first equality in (@I]) then gives expression (£.4).
We now take 6 € (—m, 7). We then have uy (1 + ce??) = —1 & \/Ee”TH, where
we use the notation [B7), and applying the definition of the third root (BH) we get
27

i 3w mi mi 27
. 6 3 5 -3 L _ J——
(4.6) 16%1(;5(1 +ee’) = 1 < 5 {wge 35 e 3 } 1> g

If we write ui (1 + ce??) := pi(e,0)e™= (% meaning the polar coordinates, then a
closer look gives

n+(g,0) = £m F Vecos (0/2) + O(e), €0,

and
(4.7) R (1 F % cos (9/2)) +0(e), €10,
(4.8) pi(e,0)3 =1+ g sin(6/2) + O(e), €]0.

From this we easily obtain

1+ e’ ;
W—lz—\/@eg+0(s), el0.

Applying (@8] and (£9) to the first equality in ([@I]) then finally leads to ([@H). O

As a corollary of Lemma ] and Lemma we obtain that % is the Stieltjes
transform of the measure vjg 1}, up to a minus sign.

Lemma 4.3. Let ¢ be defined by B4); then

(4.9)

P (z 1
(4.10) (- [ @, secipal
with vy 1) defined as in Theorem 211

Proof. By Lemma 1] and Lemma and applying Lemma (b) to (@), the
function % satisfies the following additive Riemann-Hilbert problem:

(P1) f is analytic in C\ [0, 1],

(P2) 1sif101f(x+ i€) — lsiﬁ)lf(x —ig) = 2mi %(m), for x € (0,1),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ZERO DISTRIBUTION OF MULTIPLE ORTHOGONAL POLYNOMIALS 5585
(P3) f(z)=—2"1+0(27%), asz— oo,

(P4) f(»)=0 (2’2/3), as z — 0,
f(2)=0(1-2)7Y2), asz—1

If f and g are both solutions of this Riemann-Hilbert problem, then it is easily seen
that f —g is analytic in C\ {0, 1}. Moreover, 0 and 1 are removable singularities by
(P4). Liouville’s Theorem and (P3) then imply f = g, meaning that the Riemann-
Hilbert problem has a unique solution. So it is enough to show that

f6) = [ - dvgn@),  zeC\D.1)

T

satisfies (P1)-(P4). Properties (P1) and (P3) easily follow from the fact that %
is a probability measure on (0,1). By the Plemelj-Sokhotskii formula for Cauchy
integrals, see, e.g., [23, p. 43, (18.1)], f satisfies (P2). Finally, the behavior at

the branch points, see (P4), easily follows from [23 p. 74, (29.5) and (29.6)] and
D). 0

Remark 4.4. As an easy consequence of Lemma [£.3] we obtain

, 1¢'(z/a) a0
(4.11) —/md%,a] (z) = alqb(z/oz) z€C\0,al,
-, a =0,

where vjg o) is defined as in Theorem 2.1

We are now ready to prove Theorem 211

Proof of Theorem 21l Let t > 0 and fix a number ¢* > t. Clearly, the convergence
[22) and the fact that the function « is continuous on [0, 00) imply that the recur-
rence coefficients are uniformly bounded if n/N is restricted to compact subsets of

[0, 00). So,
(4.12) 0 < R:=sup{l+|bon|+ |cnn|+|dnn| : n <N} < F00.
By the recurrence (1)) we have P, n(z) = det(zI, — Ly n), with
oy 10 ... S 0
an by 1 :
(4.13) Lo = don con ban 1
0 dsn csn  ban 0
1
0 - 0 dpn-1,N Cpn-1,N bn—1n

As a consequence, the zeros of P, n are bounded by || Ly, ||oc. For n < t*N we then
have that the simple zeros of P, y lie in the interval [—R, R|. Moreover, they are
assumed to satisfy the interlacing property (for fixed N) and one can observe that

da(st)\?
a(st)§<1+ 57 ) <R, for each 0 < s < 1.
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So, by Remark B.3] and Remark (4] we establish

P/ z =4 z 1
(4.14) lim Lan—l’N( ) — Lan’N( ) :/—dU[o,a(st)] ()
n/N—t P\_an-{—l,N(z) P\_an,N(Z) zZ—X

uniformly on compact subsets of C \ [-R, R], where 0 < s < 1 and |sn] denotes
the greatest integer less than or equal to sn.

Note that
(4.15)

L0 IR (Lt (Marsl) L),
n n e PkJrl Z Pk(z> 0 PLanJrl(Z) PLsnj (Z> ’
For n < t*N the zeros of the polynomials P, y are simple, lie in [—R, R] and satisfy
the interlacing property for fixed N. From Lemma B4 (b) we then get

P
’M <22, 2| > R.

Pl_snj 7N('Z)

With a similar argument as in Lemma [B4] (a) we can also prove

( PLan,N(Z) ) 1
Plisnj+1,n(2)) | ~ dist(z, [-R, R])?’

Combining these two results we have, for |z| > R,

P(sanrl(Z) . P(snj (Z)
PLan+1(Z) PLan(Z)

z € C\ [-R,R].
PLan,N(Z)

< Plon),n(2) >/|
Plsnjy1.8(2)
2|7|
dist(z, [ R, R])?’
So, we can apply Lebesgue’s dominated convergence theorem on ([IH]), and by

‘ PLanJrl,N(Z)

(4.16)

([{14)) we obtain
1 1
1i dv (P, _ d
n/JI\I}ILt Z—x U N)(x) / }(x) s
(4.17) = / / c— 7 dU[O,a(s)] (x)ds,
for |z| > R. By [16l Theorem 2], which is a gloss on the theorem of Grommer and
Hamburger [31], p. 104-105], we then finally establish (23)). O
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