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ASYMPTOTICALLY AUTONOMOUS SEMIFLOWS:
CHAIN RECURRENCE AND LYAPUNOV FUNCTIONS

KONSTANTIN MISCHAIKOW, HAL SMITH, AND HORST R. THIEME

Abstract. From the work of C. Conley, it is known that the omega limit set of
a precompact orbit of an autonomous semiflow is a chain recurrent set. Here, we
improve a result of L. Markus by showing that the omega limit set of a solution
of an asymptotically autonomous semiflow is a chain recurrent set relative to
the limiting autonomous semiflow. In the special case that there is a Lyapunov
function for the limiting semiflow, sufficient conditions are given for an omega
limit set of the asymptotically autonomous semiflow to be contained in a level
set of the Lyapunov function.

Introduction

In the well-known paper of Markus [Ma], a fundamental result concerning
the large time behavior of solutions of asymptotically autonomous ordinary
differential equations is obtained. Recall that the nonautonomous system of
differential equations in R"

(0.1) x' = f(t,x),
is said to be asymptotically autonomous—with limit equation

(0.2) y' = g{y),
if

f(t,x)->g(x),        /-too,
where the convergence is uniform on each compact subset of R" . For simplicity,
we assume in this introduction that / and g are continuous functions and that
they are locally Lipschitz on R" . The colimit set, co(to, Xq) , of a bounded
solution x(t) of (0.1) on t > to satisfying x(to) = xq is defined in the usual
way:

(¿>(to, Xq) = \ y : y = lim x(t¡), for some sequence t,■ —> oo >.
I >-°° J

The result of Markus is the following.
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1670 KONSTANTIN MISCHAIKOW, HAL SMITH, AND H. R. THIEME

Theorem [Ma]. The co-limit set co of a bounded solution x(t) of(0.l) on t > to
is nonempty, compact, and connected. Moreover,

dist(x(t), co) -» 0,        i->oo,

and co is invariant under (0.2).

The theorem of Markus says that the colimit set of asymptotically autono-
mous system shares many of the properties known to hold for the colimit set of
an autonomous system. More recently, Conley [Cl, C2] showed that the limit
sets of autonomous systems have the property of chain recurrence. A precise
definition is given in § 1. Later work of Franke and Seigrade [FS] showed that
any nonempty, compact, connected, chain recurrent set, A, for an autonomous
system is an colimit set in the sense that there is a flow on a compact metric
space X and x e X such that the flow restricted to co(x) is topologically
conjugate to the flow on A . Thus, chain recurrence is the property of an co-
limit set that expresses the recurrent behavior of the flow restricted to the limit
set.

In this paper we show that an («-limit set of an asymptotically autonomous
system is chain recurrent with respect to the limiting system. In fact, we obtain
a more general result which is applicable to delay-differential equations, par-
tial differential equations, and other kinds of finite- and infinite-dimensional
dynamical systems. Following the earlier work of the third author [Tl], our
results are framed in the setting of asymptotically autonomous semiflows on
a metric space. This is a natural point of view if one seeks results which are
independent of how a dynamical system is generated.

We also obtain a sort of converse result for the special case of ordinary
differential equations. Namely, if A is any nonempty, compact, connected,
chain recurrent set for (0.2) and yo e A, then there is a smooth function
y/ : [0, co) —» R" such that y/(t) ->0 as t —► oc and such that the colimit set
of the solution of

y'= g(y) + v(t),   y(0) = v0,
is A. This result, together with the previously mentioned one, implies that
the property of chain recurrence essentially captures the recurrence properties
of the autonomous semiflow restricted to the colimit set of an asymptotically
autonomous semiflow. It also shows that the trajectories of an asymptotically
autonomous system may have a more complicated large-time behavior than the
trajectories of the associated limit system (see also [T2]). Finally, in combina-
tion with [Tl], we use it to describe certain chain recurrent sets for (0.2).

Conley [Cl, Lemma 4.IE] points out an interesting connection between the
chain recurrent points of an autonomous flow on a compact metric space and
the Lyapunov functions of this flow. By a Lyapunov function we mean a con-
tinuous function that is nonincreasing along trajectories. If a point is not chain
recurrent with respect to the flow, then there exists a Lyapunov function that is
not constant along the whole trajectory through this point. On the other hand,
it is well known that the colimit set of an autonomous system possessing a
Lyapunov function lies in a level set of the function. This property may fail for
asymptotically autonomous semiflows, but using a lemma of Ball [B], we can
still show the following result which is a generalization to general semiflows of
Ball's result for semilinear evolution equations: each number belonging to the
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CHAIN RECURRENCE AND LYAPUNOV FUNCTIONS 1671

closed interval of real numbers with lower (upper) limit being the limit inferior
(superior) as í -» oo of the Lyapunov function evaluated along a solution of
the asymptotically autonomous semiflow whose orbit is precompact defines a
level set which contains a forward orbit of the autonomous limiting semiflow
initiating from a point of the colimit set of the asymptotically autonomous
system. Several stronger relations of the asymptotically autonomous semiflow
to its limiting autonomous semiflow are identified which imply that the closed
interval degenerates to a single point. That is, the colimit set of the asymptot-
ically autonomous semiflow is contained in a single level set of the Lyapunov
function.

This paper is organized as follows. In § 1 the definition of an asymptotically
autonomous semiflow is given and sufficient conditions for nonautonomous or-
dinary and delay differential equations to generate asymptotically autonomous
semiflows are provided. Chain recurrence is defined and the colimit set of an
asymptotically autonomous semiflow is shown to be chain recurrent for the lim-
iting semiflow. The case that the limiting system possesses a Lyapunov function
is discussed in §2. Section 3 contains the statement and proof of the converse
result.

The second author would like to acknowledge the support of the Center for
Dynamical Systems and Nonlinear Studies at Georgia Institute of Technology
during his sabbatical leave.

1. Asymptotically autonomous semiflows and chain recurrence
Let (X, d) be a metric space. Consider the mapping <P:AxI^I on

A = {(t, s) : to < s < t < co} . <P is called a nonautonomous semiflow if it is
continuous and satisfies:

(i)  <P(i , s, x) = X , S > to .
(ii) <P(i, s, <P(s, r, x)) = <P(i ,r,x), t > s > r > t0 .

The semiflow is called autonomous, if, in addition,
(iii) <P(i + r, s + r, x) = <I>(i, s, x).

Setting Q(t, x) = <P(i + t0,to,x) then the map 6 : [0, oo) x X -> X will be
referred to as an autonomous semiflow. Since <P(r, s, x) = S(t - s, x), it is
sufficient to study 0. It is continuous and satisfies:

(iv) e(o,x) = x.
(v) e(t,e(s,x)) = e(t + s,x), t,s>o.

Hereafter, we will always refer to the map 0 when considering the autonomous
semiflow. A subset A of X is said to be positively invariant for 6 if for all
a G A and t > 0, &(t, a) e A. A is called invariant if it is positively invariant
and for all a e A and r > 0 there exists b e A such that Q(t, b) = a .

A nonautonomous semiflow O on I is called asymptotically autonomous—
with limit semiflow 0— if 0 is an autonomous semiflow on X and

®(tj + sj, sj, Xj) -» 0(r, x),       j ■-* co,
for any three sequences t¡ -> t,s¡ -* co, x¡ -» x, j —* co, with x, x¡ e
X, 0 < t, tj < co, and Sj > to. For systems of ordinary differential equations,
well-known modes of convergence of the nonautonomous vector field to the au-
tonomous vector field imply that the nonautonomous semiflow is asymptotically
autonomous in the sense defined above. See, e.g., [Ma], [S, p. 184].
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1672 KONSTANTIN MISCHAIKOW, HAL SMITH, AND H. R. THIEME

Consider the systems of ordinary differential equations x' = f(t, x) and
y' = g(y) on R" • We assume that / and g are continuous and that initial
value problems for each system have unique solutions defined for all future
times. Denote by <P(i, s, xo) the solution x(t) of the first system satisfying
x(s) = xo and denote by Q(t, xo) the solution y(t) of the second system
satisfying v(0) = xo.

Proposition 1.1.  <P is asymptotically autonomous with limit semiflow 0 if one
of the two conditions (A) or (B) is satisfied:

(A) f(t, x) -» g(x), t —too, uniformly on compact subsets of R" .
(B) g is locally Lipschitz and for each compact subset K ç R" there is a

function pk '■ [0, oo) -» [0, oo) satisfying ptc(t) -> 0, t —> oo, and

1/t+a
< ßK(t)[f(s,x)-g(x)]ds

it
for every (x, a) e K x [0, 1] and t>0.
Proof. (A) Suppose xj -* xo, tj -* to, Sj —► oo as 7' —► oo. Let T > 0 be such
that tj <T, j > 0, and define

Uj(t) = <P(i + Sj, Sj, Xj)   and   u(t) = &(t, xo)

for 0 < t < T. Since Uj(t) satisfies

X* = f(t + Sj, x),     x(0)=Xj

and f(t + Sj, x) -* g(x), j —» 00, uniformly on compact subsets of R"+1 ,
a standard result in the theory of ordinary differential equations [HI, Chap-
ter 1, Lemma 3.1] implies that u¡(t) —► u(t), j —* 00, uniformly on [0, T].
Consequently,

<b(tj + Sj, Sj, Xj) -> 0(ro, *o)   as j -» 00.

(B) Let Uj be as above and Vj(t) = 0(f, Xj). As v¡ —> u uniformly
on [0, T], there exist a compact set K and e > 0 such that K contains
[j{y '■ \y - vj{t)\ < el where the union is taken over all j and all t e [0, T].
Let L be a Lipschitz constant for g on K and choose 8 > 0 such that
8eLT < e . By our assumption, there exists a function px(t) on t > 0 satisfy-
ing ptc(t) -* 0, t -»• 00, and

I tt+a1/ [[f(s,x)-g(x)]ds < PK{t)

for x G K, 0 < a < T. Choose S > 0 such that pK(s) < 8 for s > S. If
Sj > S, then

\Uj(t) - Vj(t)\ < /      [/(»/ » Uj(n - Sj)) - g(uj(n - Sj))] dn
Jsj

+ / \g{uj(ri))-g(Vj(ri))\dv
Jo

< Pk(sj) + L i \Uj(n) - Vj(r¡)\ dr\.
Jo
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Gronwall's inequality implies that

\Uj(t) - Vj(t)\ < pK(Sj)eLt < 8eLT < e,        0 < t < T.

It follows that Uj(t) e K for all t e [0, T] if 7 is such that Sj > S and that
Ujr -» u, j -* 00, uniformly. As in part (A), this completes the proof.   D

A similar result holds for functional differential equations with bounded de-
lays. Let C = C([-r, 0], R"), t > 0, and / : R x C -* R", g : C -* R" be
continuous. Consider the equations

x'(t) = f(t,xt)   and   y'(t) = g(yt).
As usual, xt e C is defined by xt(s) = x(t + s), -r < s < 0. We assume that
initial value problems have unique solutions defined for all future time. If for
every compact subset K of C there is a neighborhood V of K such that

f(t,<p)^g(9),        t^oo,
uniformly for cp e V, then the semiflow <S>(t, s, <p) = x,(s, cp) is asymptotically
autonomous with limit semiflow 0(i, cp) = Vi(0, cp). The proof uses [HV,
Chapter 2, Theorem 2.2] as in the proof of (A) of the proposition.

Using the same ideas as in the proof of Proposition 1.1 (A) one can also treat
semilinear evolution systems

du -,      .jj = Au + f(t, u),

following the work of Ball [B]. Assuming that A generates a Co-semigroup T
on the Banach space X and / : [io, 00) x X —> X is continuous, we consider
mild solutions of the system, that is, continuous solutions of the variation of
constants formula

u(t) = T(t - r)u(r) + J T(t- s)f(s, u(s)) ds.

It will be assumed that mild solutions exist, are uniquely determined by u(r)
and extend to t > r. Consider also the time-independent system

dv

and the mild formulation

-jj = Av + g(v)

v(t) = T(t)v(0) + [ T(t-s)g(v(s))ds.
JoJo

Assume that g : X —> X is Lipschitz on each bounded subset of X and that
mild solutions extend to t > 0. If

f(t,u)->g(u), t^oo,
uniformly on bounded subsets of  X,  then the nonautonomous semiflow
<P(r, r, u(r)) = u(t) is asymptotically autonomous with limit semiflow

S(t,v(0)) = v(t).
If 4> is a nonautonomous semiflow on X and (s, x) e [to, 00) x X, then

the forward orbit of O through (s, x) is defined to be

c?<t,(s, x) = {<P(i ,s,x):t>s}cX.
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If cf<t>(s, x) has compact closure in X, then the colimit set of (s, x) (or of
(f<5>(s, x)) is defined by

coç>(s,x) = f){®(t,s,x):t >t},
x>s

where, for a subset A of X, A denotes the closure of A in X. In other words,
y G co<t,(s, x) if there is a sequence t}■ —► oo, t} > s, such that <P(£7, s, x) —>
y,j->oo.

In the case of an autonomous semiflow 0, the colimit set is independent of
s and hence we denote it by coq(x):

coe(x) = f|{0(í,x):í>i}.
t>0

It has the following well-known properties [H2].

Proposition 1.2. Let 0 be an autonomous semiflow and suppose that cfQ(x) =
{&(t, x) : t > 0} has compact closure in X. Then co&(x) has the following
properties:

(a) coe(x) is nonempty, compact, and connected.
(b) coq(x) is invariant.
(c) o)q(x) attracts 0(t, x) :

distA-(0(i, x), coe(x)) —> 0,        t->oc.

In addition to the above properties, coq(x) consists of chain recurrent points
for the semiflow 0, restricted to the compact invariant set coe(x). The notion
of chain recurrence and the above-mentioned result are due to Conley [Cl, C2].
We give a brief description of the basic ideas.

Definition 1.3 (Chain recurrence). Let A be a nonempty positively invariant
subset of X and x, y e A. For e > 0, t > 0, an (e, f)-chain from x to
y (in A) is a sequence {x = xx, x2, ... , xn+x = y ; tx, t2, ... , tn} of points
x¡ e A and times r, > / such that d(Q(t¡, x¡), xi+x) < s , i = 1, 2, ... , n . A
point x e A is called chain recurrent (in A) if for every e > 0, t > 0 there is
an (e, r)-chain from x to x in A. The set A is said to be chain recurrent if
every point in A is chain recurrent in A. We will be primarily interested in
the case that A is compact, connected and invariant.

The following lemma rephrases Theorem 3.3 in [Cl]. For the convenience
of the reader Conley's proof is repeated below.

Lemma 1.4. Let A be connected and chain recurrent. Then, for any x, y e
A, e > 0, T > 0, there exists an (e, T)-chain from x to y.
Proof (Conley). As A is connected, for any 8 > 0, there exist zx, ... , zn+x e
A , with x = zx and zn+x = y such that

d(zj, zj+x) <8,        j=l,...,n.

Let e > 0 and 3 = e/2. Fix j e {1,...,«}. As z¡ e A and A is chain
recurrent, there exists a (8, T)-chain from z¡ to z¡,

Zj — xx,..., xm+i — Zj,       xk e a .
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Then
Zj—Xif..., Xm ) -fm+1 = ^j+l

is an (e, ?)-chain from z; to z;+1 . Combining all (e, T)-chains from zj for
Zj+X, j = 1, ... , n , yields an (e, r)-chain from x = zx to y = zn+x.   D

The following result is due to Conley [C2] in the case of a flow. We are
unaware of a reference for the result in the case of a semiflow, so we include a
proof (following one given by Robinson [R] for mappings).

Proposition 1.5. Let the hypotheses of Proposition 1.2 hold. Then coe(x) is chain
recurrent.

Our proof uses the following intuitive result.

Lemma 1.6. Let T > 0 and (f£(x) = {&(t, x) : t > T}. Given y e coe(x) and
e > 0, to > 0, there exists an (e, to)-chain

{y = y\,yi, ■ ■ ■,y¡,y,+i =y;h,t2,... ,t¡}

such that yi e cfg(x) for i = 2, ... , I, t,• = io, 1 < /' < / - 1, to < U < 2i0 .
Proof. Suppose that y = lim,,-^ &(sn, x) where sn —* oo, n —> oo . Choose n
such that sn> T and d(G(s„ + t, x), Q(t, y)) < e for 0 < t < t0 . Set yx = y
and y2 = Q(s„ + to, x) and tx = to . Then

d(Q(ti ,yi),yi) = d(e(t0, y), e(s„ + t0,x))<e.

Choose m such that sm > s„ + 2/0 and d(&(sm, x), y) < e. Let k > 1
be such that sm - s„ - to = kt0 + r for some r, 0 < r < to ■ Let y^ =
0(s„ + 2i0, x), y4 = Q(s„ + 3t0,x), ... , yk+x = G(sn + kt0, x), yk+2 = y , and
ti = to, 1 < /' < k, tk+x = t0+r. Then d(Q(t¡, y¡), yi+x) = 0, i=l,2, ... ,k,
and d(e(tk+x, yk+x), yk+2) = d(e(sm,x),y)<s.   D

Proof of Proposition 1.5. Let y e coe(x) and e > 0, to > 0. By Lemma 1.6, for
each « = 1,2,..., there exists a (j¡, í0)-chain belonging to cfg(x) having the
properties described in Lemma 1.6 with e = l/n . Let yf, 1 < i < l„ + 1, be
the points of the (\, io)-chain) t" be the times, I < i <ln (t" = to, I < i <
ln-l,h< tl < 2t0) and set Cn = {yn : 1 < i < l„).

Since C" C(fe(x) and (?&(x) is compact in X, by passing to a subsequence,
if necessary, we can assume that C" —» C as n —> oo in the Hausdorff metric on
the space of closed subsets of (f&(x), where C is a compact subset of tf&(x).
In fact, as y G C c cfg(x) it follows that y G C c toe(x).

Choose 3, 0 < 8 < e/3, such that whenever zx, z2 e cf&(x) and d(zx, z2)
< S then d(Q(t, zx), G(t, z2)) < e/3 for 0 < t < 2t0. Fix n such that
l/n < e/3 and D(C , C) < 8 , where D denotes the Hausdorff metric. Drop
the superscript n on yf and t" . Then we have

d(G(tx, yx), y2) = d(B(tQ, y), y2) < ¿ < |.

Set zx = y and choose z2 e C such that d(z2, y2) < S < e/3 . Then

d(S(tx, zx),z2) = d(0(to,y),z2)
< d(e(t0, y), y2) + d(y2, z2) < 2e/3.
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Since d(z2, y2) < 8 , it follows that

¿(0(í2,z2),0(í2,y2))<e/3.

Choose z3 g C such that úf(z3, y3) < 8 < e/3. Then

d(e(t2, z2), z3) < d(B(t2, z2), Q(t2, y2)) + d(Q(t2, y2), y3) + d(y3, z3)
e      1      .

< T+- + S <e.3     n
Furthermore, i/(z3, y3) <3 implies

¿(0(i3,z3),0(r3,y3))<e/3,

so we choose z^eC such that d(zn,y^) < 3 < e/3. As above, d(&(ti, z3), Z4)
< e . Clearly, we may continue in this way, finding z, g C with d(z¡, y¡) < 8 ,
i = 1,2, ... , I = ln and t,■, i = 1, 2, ... , l-l, such that d(Q(t¡, z¡), zi+x) <
e for / = 1, 2, ... ,1 - 1 . Since d(z¡, y¡) < 3, we may conclude that
d(S(t¡, z/), 0(i/, y¡)) < e/3. Set z/+1 = y and observe that

d(e(t¡, z,), z/+1) < d(S(t,, z,), Q(t,, y,)) + d(S(t¡, y,), y)
e      1      2
3     «      3

We have constructed an (e, i0)-chain in C c coe(x) joining the point y to
itself. Since y e coq(x) , e > 0, to > 0 were arbitrary, it follows that coe(x) is
chain recurrent. This concludes our proof.   D

In [Tl] it is observed that if O is a nonautonomous semiflow which is asymp-
totically autonomous with limit semiflow 0, then O and 0 can be imbedded
in a single autonomous semiflow ¥ on the larger metric space Z = [t0, 00] x X,
where [io, 00] is compactified in the usual way, by

xiltf   i       .._ ( (t + s,Q>(t + s,s,x)),        t0<s<oo,
T?{t ,   [S , Xj)  —   <

I. (00, 0(r, x)), s — 00

for í > 0. More precisely, ¥ : [0, 00) x Z —» Z is continuous and enjoys the
property of being a semiflow on Z .

There are several classical techniques for converting nonautonomous systems
into autonomous ones. Including time as a state variable, as we have just done,
is a classical way of reducing the uniqueness and existence proof for nonau-
tonomous ordinary differential equations to the autonomous case [NS]. For gen-
eral nonautonomous equations it is an unproductive way to study the large time
behavior of solutions, but for an asymptotically autonomous system it offers a
convenient reduction to the autonomous case which is simpler than the theory
of skew product flows which has been suggested by Miller and Sell [Mi, MS 1,
MS2, Sel, Se2] for general nonautonomous ordinary differential equations, in-
tegral equations, and delay differential equations. Skew product flows give rise
to autonomous systems on a larger state space that typically includes a space
of vector fields, or their analogs, and subtle topological considerations are re-
quired to obtain a suitable topology on the space that guarantees continuity.
These complications are aggravated when these ideas are extended to general
processes as proposed by Dafermos [D] and LaSalle [L]. See [H2, Sa] for more
on skew product flows and further references.
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It will be convenient at a later point to have an explicit metric for Z . We take
the metric p((s, x), (t, y)) = \h(s)-h(t)\ + d(x, y) where h : [t0, co] -+ [0, 1]
is the map h(t) = (t - to)/(I + (t - to)), t < oo, and «(oo) = 1.

If (s, x) e Z and s < oo, then there is a simple relationship between
coy(s, x) and co<p(s, x) which is contained in the following result.

Lemma 1.7 [Tl]. Let O be an asymptotically autonomous semiflow with limit
semiflow 0, and let cf<p(s, x) have compact closure in X. Then &g(s, x) has
compact closure in Z and

(1.1) {oo} X CO®(s , X) = COyii(s , x) .

Note that since O is a nonautonomous semiflow, we must include the "start-
ing time" 5 in the colimit set notation, co<t>(s, x), whereas *P is an autonomous
semiflow starting at t = 0 at the state (s, x) e Z so the notation, coy(s, x),
reflects that 5 is part of the state (s, x) for the semiflow *F.

Propositions 1.2 and 1.5, applied to the semiflow *F, together with Lemma
1.7 and the fact that *F(i, (oo, y)) = (oo, &(t, y)) for all y G co^s, x) yield
the following result, all but the last of which appears in [Tl]. For ordinary
differential equations, Markus [Ma] proved (a), (b), and (c).

Theorem 1.8. Let O be an asymptotically autonomous semiflow with limit semi-
flow 0, and let cf<s,(s, x) have compact closure in X. Then co = coq>(s, x) has
the following properties:

(a) co is nonempty, compact, and connected.
(b) co is invariant for the semiflow 0:

0(i, co) = co   for each t > 0.

(c) co attracts <P(£, s, x):

distx(<P(£, s, x), co) -> 0,        t —> oo.

(d) co is chain recurrent for 0.
Proof. By Lemma 1.7, cfy(s, x) has compact closure in Z and, consequently,
by Proposition 1.2, co^s, x) is nonempty, compact, and connected. By (1.1),
co has these properties. Since coy(s, x) — {oo} x co is invariant for *F, it
follows that co is invariant for 0. Similarly, {oo} x co is chain recurrent for
*F, by Proposition 1.5, and this immediately implies that co is chain recurrent
for 0. Finally, since

distz(V(r, (s, x)), {oo} x co) = 1+       ^_      + distx(<ï>(/, s, x), co)

tends to zero as t —► oo , by Proposition 1.2(iii), it follows that

distx(®(t, s, x), co) -> 0   as r —>oo.   D

Assertions (a) and (c) of Theorem 1.8 hold without the assumption that <P
is asymptotically autonomous. Assertion (b) was established by Markus [Ma]
for ordinary differential equations and by Thieme [Tl] in the present context.
Assertion (d) appears to be new, if not surprising. It implies, for example, that
the compact, connected invariant set depicted in Figure 1 cannot be the omega
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Figure 1. An invariant set consisting of two equilibria
and a connecting orbit as above is not the omega limit
set of an asymptotically autonomous semiflow.

limit set of an asymptotically autonomous semiflow since it fails to be chain
recurrent.

As noted in [Tl], a consequence of the invariance of co for the semiflow 0
is that there is a full 0-orbit through each point y e co which belongs to co.
More precisely, there exists a continuous map w : R —> co satisfying «(0) = y
and Q(t, n(s)) = n(t + s) for all t > 0, 5 G R.

Theorem 1.8 states that co-limit sets of the asymptotically autonomous semi-
flow <P, with limit semiflow 0, belong to the class of compact, connected sub-
sets of X which are invariant and chain recurrent for 0. It is natural to ask
whether any subset of X with these properties is an co-limit set of some asymp-
totically autonomous semiflow <P having 0 as an autonomous limit semiflow.
In a later section we show that this is indeed the case for systems of ordinary
differential equations.

2. Asymptotically autonomous semiflows and Lyapunov functions
Let (X, d) be a metric space and 0 : [0, oo) x X —> X be an autonomous

semiflow on X.

Definition 2.1. p:I-»R is called a Lyapunov function (for the semiflow 0)
if the following hold:

(i) cp is continuous.
(ii) cp decreases along forward orbits; i.e., cp(Q(t,x)) is a nonincreasing

function of t > 0.
We consider an asymptotically autonomous semiflow O on X with limit-

semiflow 0. <P and 0 are embedded into the autonomous semiflow *P on
[to, oo]xX. The following result is then a consequence of Theorem 2.3 in Ball
[B].
Theorem 2.2. Let cp be a Lyapunov function for 0, and let the forward Q>-orbit
starting at (s, x) beprecompact. Further, let

/?oo = liminf^(<I>(i, s, x)),    ß°° =limsup9>(<I>(r, s, x)).
t—>oo Í—»OO

Then, for any ß e [/?oo, />°°], there exists some y e co<p(s, x) such that
cp(Q(t,y)) = ß for all t>0.
Proof. We introduce the functional y/(s, x) = cp(x) on the metric space [so>°°)
x X. According to Theorem 2.3 in [B] we have to show that, for

f(t) = y/(V(t, (s, x))) = cp(<S>(t + *,*,*)),
we have

(2.1) liminf(/(r)-/(r + T))>0,    Vt>0.
/—»oo
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We suppose that (2.1) does not hold. Then there exists some e > 0, t > 0 and
a sequence tj —> oo, j —► oo , such that

lim sup(/(îy) - f(tj + t)) < -e.
j—»oo

Since the forward orbit starting at (s, x) is precompact, after choosing
another subsequence, we can assume that there exists some y e X such that
<&(tj + s,s,x)->y,j—»co. Hence

-e > limsup(cp(Q>(tj + s, s, x)) - cp(Q>(t} + x + s, s, x)))
./-»oo

= lims\xp(cp(<b(tj + s, 5, x)) - tp(<b(tj + T + s, tj +s, <!>(tj +s,s, x)))).

As 0 is asymptotically autonomous with limit semiflow 0 and </> is continu-
ous, we have

-e>cp(y)-cp(Q(x,y))>0,
because cp is a Lyapunov function for 0. The contradiction proves (2.1) and
the theorem.   D

Corollary 2.3. Let cp be a Lyapunov function for 0, and let the forward Q>-orbit
starting at (r, x) be precompact. Further assume that any compact subset K of
X contains at most countably many forward Q-orbits on which cp is constant.
Then there exists some ß e R such that cp(y) = ß for any y e co®(r, x). In
particular, there exists a full Q-orbit 6 through any y e co®(r, x) such that
tp(9(t)) = ß for all teR.

The assumption that there are only countably many forward orbits on which
cp is constant is rather restrictive. We aim at dropping it at the expense of
requiring that cp is Lipschitz on compact subsets and that the convergence of
the asymptotically autonomous semiflow to its limit semiflow is sufficiently fast.

Definition 2.4. Let n : (0, oo) —► R be a monotone decreasing function with
n(t) —► 0, t —► oo. An asymptotically autonomous semiflow <P with limit
semiflow 0 is called //-asymptotically autonomous if, for any compact set K
in X, there exist some Sk > 0, Bk > 0 such that

d(<b(t + s,s,x),Q(t,x))< n(s) -n(t + s),       s > sK, 0 < t < eK , x e K.

Theorem 2.5. Let O be n-asymptotically autonomous for an appropriate func-
tion n. Let the O-orbit starting at the point (r,x) be precompact and cp be a
Lyapunov function for the limit semiflow 0 such that cp is Lipschitz on com-
pact subsets of X. Then there exists some ß e R such that cp(y) — ß for
all y e co<t>(r, x). In particular, there exists a full Q-orbit 6 through any
y e co<t>(r, x) such that tp(6(t)) = ß for all teR.
Proof. Let K be the closure of the forward O-orbit starting at (r, x). Now
choose n, etc, Sk according to Definitions 2.4. Let A > 0 be the Lipschitz
constant of cp on K. We define

y/(s, x) — cp(x) + An(s),       s > sk , x e X.

Claim 1.   ip(*¥(t, (s, y))) <y/(s,y) for s >sK, y e K, 0 < t <eK .
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Proof of Claim 1.
y/(s, y) - ¡¡/(^(t, (s, y))) > cp(y) + An(s) - cp(<b(t + s, s, y)) - An(t + s)

> cp(Q(t, y)) - tp(®(t + s, s, y)) + A(n(s) - n(t + s))
> A(n(s) - r¡(t + s)- d(0(t,y),Q>(t + s,s, y)))
>0.

Claim 2.   ip("V(t, (r, x))) < ip(*¥(s, (r, x))) for t > s > sK ■
Notice that [sk , oo] x K contains T(r, (r, y)) for t > sk - r, t>0. Claim

2 now follows from Claim 1 via the semiflow property of ^ in a standard
fashion.

By Claim 2 we have that ^(^(t, (r, x))) -* ß, t -> oo for some ß e R.
Hence f(Q>(t+r, r, x)) —> ß , t -> co, by the definition of ip and the properties
of m . Hence <p(y) = ß for any y G co<t>(r, x). As any y G co<p(r, x) lies on a
full 0-orbit, the second assumption follows as well.   D

The following result may be more esthetically appealing.

Definition 2.6. An asymptotically autonomous semiflow d> with limit semiflow
0 is called integrable asymptotically autonomous if, for any compact set K in
X, there exist some sk > 0 and an integrable function £, : [sk , co) —» [0, oo)
such that

liminfyí/(<I)(í + 5,s,y),0(í,y))<(í(5),       s>sK, yeK.

Theorem 2.7. Let O be an integrable asymptotically autonomous semiflow. Let
the O-orbit starting at the point (r, x) be precompact, and let cp be a Lyapunov
function for the limit semiflow 0 such that cp is Lipschitz on compact subsets
of X. Then there exists some ß e R such that cp(y) = ß for all y e co<t>(r, x).
In particular, there exists a full S-orbit 6 through any y G co<¡>(r, x) such that
cp(d(t)) = ß for all teR.
Proof. Let K be the closure of the forward <P-orbit starting at (r, x). Let
A > 0 be the Lipschitz constant of cp on 0([O, 1] x K). Then, as cp is a
Lyapunov function for 0, we have for s > Sk , yeK, 0 < t < 1, that

<p(®(t + s, s, y)) - cp(y) < cp(Q>(t + s, s, y)) - <p(e(t, y))
<Ad(Q>(t + s,s,y),e(t,y)).

Hence, by Definition 2.6, for s > sk , y G K,

liminf -(cp(<S>(t + s, s, y)) - cp(y)) < AÇ{s).

Define
/»OO

n(s)=A       i{o)dtx
Js

and
w(s, y) = <p(y) + n(s).

Then

liminf j(ip(V(t, (s, y))) - y/(s, y)) < 0,       s>sK,yeK.
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Note that, for t > Sg ■— r, *P(i, (r, x)) is contained in [sk , oo) x K. The
semiflow property of ¥ then implies that

liminf \-(¥(V(t + h,(r,x)))-y/(V(t,(r,x))))<0
n\0    n

for sufficiently large t. Hence y/(fV(t, (r, x))) is eventually decreasing in t
and thus has a limit ß . By the definitions of "¥, y/, and n, cp(®(t + r, r, x))
converges to ß as t -> oo . Hence co<¡>(r, x) is contained in the /Mevel set of
cp . In particular, there exists a full 0-orbit through any point of co<j>(r, x) that
is contained in the /?-level set of cp .   D

3. A CONVERSE TO THEOREM 1.8

Consider the systems of ordinary differential equations

(3.1) y' = g(y)
on R" . We assume that g is locally Lipschitz and that solutions of initial value
problems for (3.1) exist for all future times. The notation y • t will be used for
the solution of (3.1) starting at y at t = 0.

The main result of this section is a converse to Theorem 1.8; it says that every
compact, connected, chain recurrent invariant set for (3.1) is the co-limit set of
some asymptotically autonomous system with limit (3.1). The asymptotically
autonomous system is of a particularly simple form.

Theorem 3.1. Let A be a compact, connected, chain recurrent, invariant set for
(3.1), and let yo e A. Then there exists a C°° function \p : [0, oo) -* R", such
that y/(t) -»0 as t —► oo and A is the co-limit set of the solution of

y'= g(y) + w(t),   y(0) = y0.
Moreover, for any e > 0, ip can be chosen such that y/(t) < e, 0 < t < oo.

The following preliminary results are required in the proof of Theorem 3.1.
Let £ : R —► R be a C°° function satisfying the following: Ç(t) — 0 if

and only if t $. (0, l),Ç(t) = 1 for t e (1/4, 3/4), t;(t) is increasing on
0 < t < 1/4, and ¿¡(t) is decreasing on 3/4 < t < 1.

Consider the system

(3.2) y' = g(y) + c¿;(trt)
where c e R" and 7 > 0. Let y(t, y0, c) denote the solution of (3.2) satisfying
y(0, yo, c) = yo. (We will fix 7 in the following lemma so we do not include
it in our notation.)

Lemma 3.2. Let K c R" be compact and 8 > 0. Then, there exists 7 > 0 such
that y(t, yo, c) is uniquely defined on 0 < t < 1 ,for all yo e K and all c e R"
satisfying \c\ < S. There exist positive constants k¿, i = 1, 2, such that, for all
y0eK,ci,c2 with \c¡\ <8,

kx\c2-cx\ < |y(7,y0,c2)-y(7,y0,cï)| <k2\c2-cx\.

Moreover, there exists some e > 0 such that, if b e R" satisfies

\b-y0-l\ <e,
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then there exists a unique c — «(yo, b) with \c\ < 8 satisfying

y(~t,yo, c) = b.
Finally, c = h(yo, b) tends to zero as b tends to yo-7, uniformly in yo e K.
In fact,

kx\c\ <\b-y0-t\.
Proof. Standard existence results for ODEs imply that, given 3 > 0, there exists
tx > 0 such that for every yo G K, \c\ < 8, and 7 > 0 there exists a unique
solution of (3.2) and y(0) = yo, which we temporarily write as y(t, yo, c ,T),
defined for 0 < t < tx. We stress that tx is independent of (y0, c, 7) restricted
as above. Furthermore

C = {y : y = y(t, y0, c,1), y0 e K, \c\ < 8, 0 < t < tx ,1 > 0}
is bounded in R" . Let L be a Lipschitz constant for g on C and fix 1 < tx
so that LteLt < 1 ¡4. Hereafter, we drop 7 from the list of arguments of y . A
Gronwall estimate gives

\y(t, yo, c2) - y(t, yo, cx)\ < leL'\c2 -cx\,       0 < r < 7.
Note that

y:= [ Ç(s)dse (1/2, 1).
Jo

Integrating (3.2), we find that

y(7,y0,c)=yo+ / g(y(s, y0, c))ds + yd.
Jo

From this and y > 1 ¡2, we see that

(l/2)~t\c2-cx| < |y(7,y0, c2)-y(7,y0, cx)\

+ \ L\y(s,y0,c2)-y(s,yo,cx)\ds
Jo

< \y(~t,yo, c2)-y(t,y0, cx)\+~tL~teLt\c2-cx\
< \yC~t, yo, c2) - y(7, y0, c.)| + ( 1 /4)7|c2 -cx\.

Consequently,

(l/4)7|c2-ci| < |y(7,y0, c2)-y(7,y0, cx)\.
It follows that the map c h-» y (7, y0, c) is injective and that its inverse «,
defined by b >-> c = «(yo, b), is Lipschitz with Lipschitz constant 4/7. Hence
the image of {c : \c\ < 3} under y(7, yo, •) is an open set containing a ball
with center yo • 7 and radius e > 0. The other statements of the lemma follow
with kx = 7/4, k2 = lea.   D

The following lemma actually holds for autonomous semiflows in general.

Lemma 3.3. Let T > 0, e > 0, and y o G A, where A is as in Theorem 3.1.
Then there exist sequences {y,},>i C A, {r,},>o, U> T, such that

\yi-ti-yi+i\<e,    i>0,       \yi-ti-yi+x\^0,    /->oo.
Furthermore, for each natural number I, A is the closure of {y,},>/.
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In other words, the (e, T)-pseudo-orbit in A starting at y o, defined by

yo*t = y¡-(t-Si-X),       Sj-X<t<Sj,

where 5, = J2'n=o *« • has A as its co-limit set and its jumps converge to 0 as
times tend to infinity.
Proof. This is a simple consequence of the compactness of A and Lemma 1.4.
For each natural number n, let An be a finite subset of A such that every
point of A is within 1/« of a point of An . Now, starting at yo, construct
an (e, T)-chain from yo to a point of Ax and from that point to a different
point of Ax, and so on until every point of Ax has been visited. From the last
point of Ax visited, construct an (e/2, r)-chain from that point to a point in
A2 and continue constructing (e/2, T)-chains connecting points in A2 until all
points have been visited. Continuing in this way we obtain the desired infinite
pseudo-orbit.   D

Proof of Theorem 3.1. Take K = A in Lemma 3.2. Let J(t) = £,(tfi). Let
T > 27, e < kx, and yo * t be the infinite (e, T)-pseudo-orbit given in Lemma
3.3. Define ¿¡j(t) = ¿f(i - sj + 7) and

OO

V(t) = Z2cJ<jW

where
Cj = h(yj'(tj-Y),yj+X).

Observe that the support of t¡¡ is [s¡ -t, Sj] and therefore, since t}■ > T > 27,
the supports of ¿¡j and Çk do not intersect for j ^ k . Furthermore, as

\yj-tj-yj+x\ <e<kx,
Cj is well defined by Lemma 3.2. Since y, • tj - y,+i —» 0 as j —► oo and

ki\cj\ < \yj-tj-yj+x\,
we conclude that Cj —> 0 as j -» co and, in particular, it follows that \p(t) —> 0
as t —> oo. Let y(t) be the solution of

y' = g(y) + v(t) >   y(0) = y0.
Then y(t) = yo * t except for t in the intervals (Sj - 7, sf) where y(t) =
y(t - Sj +1, yj - (tj - t), Cj) and y(t, yo, c) is as in Lemma 3.2. yo * t is
the pseudo-orbit obtained in Lemma 3.3. Since y/(t) —► 0, t —» oo, and the
solutions of ODEs depend continuously on their (locally Lipschitz continuous)
vector fields (see [HI]), we have that \y(t) - yo * t\ —> 0, t —> oo . In particular
y has the same co-limit set as the pseudo-orbit yo * / which is the set A by
Lemma 3.3.   D

As an example, consider the case that (3.1) is the Duffing equation

(3.3) y'x =y2,    y2=yx-y\.

The function cp(y) = y\/2 - y\/2 + y\/4 is constant along trajectories of (3.3).
If -l/4<a<£><oo, then any connected component, A, of tp~l([a, b]) is
a compact, connected, chain recurrent, invariant set for (3.3).  Consequently,
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by Theorem 3.1, given (y, ,y2) e A, there exists a smooth function ¿¡(t) =
(£i(t)> &(t)) on t > 0, satisfying ¿¡¡(t) -» 0 as í —► oo and such that the
co-limit set of the solution of

x'x=x2 + t;x(t),    x2 = xx - jc? + {2(0

satisfying Jti(0) = y., x2(0) = y2 is ^ . This example also illustrates the fact
that Theorem 2.2. is sharp.

We mention that, if a < b, the functions £■, ¿;2 cannot both be chosen to
be integrable. Otherwise Theorem 2.7 would apply and the co-limit set would
be contained in a level set of cp .

Theorem 3.1, in connection with the description of co-limit sets of asymp-
totically autonomous semiflows in [Tl, Theorem 4.2], can be used to describe
chain recurrent sets for (3.1).

Theorem 3.4. Let g be continuously differentiable on R" and A be a compact,
connected, chain recurrent, invariant set for (3.1). Assume that the co-limit set
of any forward bounded solution of (3.1) contains a critical point and that all
critical points of (3.1) are hyperbolic. Then A consists of exactly one critical
point or it contains a cyclic chain of orbits of (3.1) that connect critical points.

The assumption that all critical points are hyperbolic can be replaced by the
more general assumption that all critical points are isolated compact invariant
sets for (3.1), notably when g is only locally Lipschitz rather than continuously
differentiable. In the plane a more precise description of A is possible (see [T2,
Theorem 1.5]).
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