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Asymptotically Convergent Modified Recursive 
Least-Squares with Data-Dependent Updating 

and Forgetting Factor for Systems 
with Bounded Noise 

SOURA DASGUPTA AND YIH-FANG HUANG, MEMBER, IEEE 

Ahstrucf-Continual updating of estimates required by most recursive 

estimation schemes often involves redundant usage of information and may 

result in system instabilities in the presence of bounded output dis- 

turbances. An algorithm which eliminates these difficulties is investigated. 

Based on a set theoretic assumption, the algorithm yields modified least- 

squares estimates with a forgetting factor. It updates the estimates selec- 

tively depending on whether the observed data contain sufficient informa- 

tion. The information evaluation required at each step involves very simple 

computations. In addition, the parameter estimates are shown to converge 

asymptotically, at an exponential rate, to a region around the true parame- 

ter. 

I. INTRODUCTION 

M ANY SYSTEMS commonly found in communica- 
tion and control theory can be modeled by autore- 

gressive exogenous input (ARX) schemes of the form: 
n 

Y, = C U;Yk_i + ~ bjUk-j + uk. 0.1) 
i=l j=O 

Here { yk} and { uk} are the measurable output and input 
sequences, respectively, and { vk } is a sequence of uncorre- 
lated disturbances corrupting the system. An important 
problem in both adaptive signal processing and control 
concerns the use of recursive least squares (RLS) and other 
estimation techniques for the identification of processes 
such as (1.1). 

A feature of most recursive algorithms [l]-[5] is the 
continual update of parameter estimates without regard to 
the benefits provided. Thus even if a new measurement 
contains no fresh information and even if its use fails to 
result in any improvement in the quality of estimation, the 
update does not cease. In practice this may lead to signifi- 
cant redundancies, whose elimination could result in more 
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efficient algorithms with fewer parameter estimate up- 
dates. Accordingly, one of the issues which this paper 
addresses is the formulation of adaptive algorithms having 
more discerning update strategies. 

The second issue of interest relates to the case where a 
bound on the magnitude of vk is available. Such a situa- 
tion occurs frequently in both signal processing and con- 
trol. In speech processing systems, for example, the 
disturbances in voice-band signals obey such a bound. 
Currently available recursive estimators result in predic- 
tion errors which eventually become less than or equal to 
the disturbance bound. However, the parameter estimates 
continue to be updated unless either the prediction error 
goes to zero or the update gain is asymptotically driven to 
zero [6]. While the former situation is necessarily rare, the 
latter removes any ability of tracking slow time variation. 
On the other hand, in most applications the asymptotic 
cessation of the update of parameter estimates is highly 
desirable. In adaptive control, for example, noncessation 
of updating could lead to system instability. 

In this paper, we reformulate RLS estimation with the 
aforementioned issues in mind. Ours is similar to the set 
theoretic approach of [7] and [8] with the following im- 
portant differences. Our algorithm, in the ideal case, is 
assured of convergence and the asymptotic cessation of 
updating, properties lacking in the formulation of [7], [8]. 
Further, in [7], [8] the condition which must be checked at 
each instant, to see if an update is required, entails greater 
computational complexity than does its counterpart in this 
paper. Finally, as simulations show, the use of a time-vary- 
ing information-dependent forgetting factor equips the 
algorithm of this paper with an ability to track slow time 
variations in the unknown coefficients. The use of an 
information-dependent forgetting factor has also been 
made in a different context in [9]. A comparison of the 
strategy of [9] with the one employed here will be made 
after our algorithm is presented. 

Several previous treatments of the bounded noise case 
appear in the literature [2], [lo]-[13]. In some of these, e.g., 
[2], [13], the strategy has been to introduce a dead zone 
which causes the updates to be stopped when the predic- 
tion error becomes smaller than twice the assumed noise 
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bound y. The disadvantage here is that when y is over- 
estimated, the prediction error, in general, has limiting 
values no smaller than twice the assumed bound. For our 
algorithm, simulations show that even with up to 20 per- 
cent overestimation of y, the prediction error approaches 
values smaller than the actual bound on the noise. In 
[lo]-[12] other strategies are proposed in the adaptive 
control context to restrict the magnitude of the parameter 
estimates so as to prevent the information vector from 
becoming unbounded. In many of these, pointwise conver- 
gence of parameter estimates is not achieved, while in the 
others the same difficulty as in [2], [13] is present. 

Section II of this paper is devoted to presenting the 
algorithm; the convergence problems are addressed in 
Section III. A key requirement for the convergence of any 
recursive estimator is that the inputs be sufficiently uncor- 
related or persistently exciting so as to make the coeffi- 
cients in (1.1) uniquely identifiable. Such a requirement is 
present here as well, and Section IV describes conditions 
for meeting it. Section V presents simulation results and 
Section VI makes concluding remarks. The appendices 
contain most of the proofs. 

II. THE ALGORITHM 

Consider the estimation problem of (1.1) reexpressed 
as 

yk=e*Txk+vk (2.1) 

where 13*~ 2 [a,;.., a,, b,, bl;.., b,] and xz e 

bk-1,’ ” , y&n, uk,’ ’ -9 Uk-m 1. It is worth noting that the 
analysis in the sequel, except for that in Section IV, will 
apply to any system satisfying (2.1) i.e., any xk, and not 
just to ARX processes. It is assumed that for each k, vk is 
bounded in magnitude by y, i.e., 

vi I y2, for all k. (2-2) 

Equations (2.1) and (2.2) together yield 

( yk - e*Txk)2 I y*. (2.3) 

Let S, be a subset of R”+“+l defined by 

Sk = (0: (y, - BTxk)2 < y2, 8 E RnCm+‘). (2.4) 

From a geometrical point of view, Sk is a convex polytope 
[14]. Thus with each measured value of (yk, xk), (2.1) and 
(2.2) together yield a convex polytope in the parameter 
space. 

The fundamental concept of our approach is sum- 
marized in the following. Each Sk can be regarded as a 
degenerate ellipsoid in R”+“‘+’ [7], [8]. At any instant k, 
consider the intersection of the sequence of polytopes 

s,,. * -7 S,. It must contain the modeled parameter 0 * and 
so must any ellipsoid which bounds it. The recursive 
algorithm thus starts with a sufficiently large ellipsoid 
which covers all possible values of 8 *. After (yi, xi) is 
acquired, it finds an ellipsoid which bounds the intersec- 
tion of the initial ellipsoid and S,, and which is in a sense 
“optimal.” Such an ellipsoid is denoted by E,. By the same 

token, one can then obtain a sequence of optimal bound- 
ing ellipsoids (OBE) { Ek}. The estimate for 0 * at the k th 
instant is then defined to be the center of E,. 

Suppose that E,-,, at any instant k - 1, is given by 

E k-l = (8: (8 - ek-l)TPi?l(e - ek-l) 2 o:-l) (2.5) 

for some positive definite matrix P,-, and a nonzero 
scalar ukP i. Then given (y,, xk), an ellipsoid that bounds 
E k-l I’I Sk is given by 

t ( 8: i - xk)(e - ek-l)TP;?l(e - ek-,) 

+xk(yk - eTxk)’ 5 (1 - iik)& + Aky2) (2.6) 

for any 0 I X, < 1. As Theorem 2.1 below shows, there 
exist Pk and uk such that (2.6) can be re-expressed as 

(8: (e - e,>‘pp(e - e,) 5 u:) (2.7) 

where the nonsingularity of Pk will be a subject of later 
elaboration. In the sequel, xk and y, shall be assumed to 
be bounded. 

Theorem 2.1: Consider the inequality 

(1 - hk)(e - ek-l)Tpi:l(e - ek-,) + xk(yk - eTxk)’ 

I (1 - X,)&i + Xky2 (2.8) 

where Pkpl is an N X N positive definite symmetric ma- 
trix, xk, 8, and ok-i are N dimensional vectors, and yk, 
uk-i, y, and A, are scalars with 0 I h, < 1. Then with 

Pi1 = (1 - X,)P& + x,x,x; (2.9a) 

ek = ek-, + hkPkxkGk (2.9b) 

6, = Yk - x,‘ek-l (2.9~) 

u; = (l - Xk)“;-l + xkY2 - 1 _ j,, + x G 
‘kc1 - xk)s,2 t2.9dj 

k k k 
G, = XkTpk-lxk, 

(2.8) is equivalent to 

(2.9e) 

(e - ek)‘p;‘(e - ek) 5 (I,$ (2.10) 

Proof: For 0 I X, < 1, P, must be positive definite 
symmetric as well. Thus from (2.9a) and the matrix inver- 
sion Lemma 

1 
Pk = ~ 

l-h, 
P 

AkPk-~XkX,Tp,-l t2.11j 
k-i- l-X,+X,G, 1 

whence 

Pk [(l - Xk)P&ek-i + hkxkykl 
1 xkpk-~xkx,Tp-l =- 

l-x, 
P 

k-i- l-X,+X,G, 1 
’ [(I - Xk)P&ek-l + xkxkYk] 

xkpk-lxkGk = e k-1 + 
1 - h, + hkGk 

(2.12) 
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where the last step follows by multiplying the terms in the 
previous equation and (2.9~). Moreover, by (2.9b) and 
(2.11) 

Xk 8, = ekp, + ~ P 
AkPk-lXkXkTP-1 

1 -X, k-i - 1 - X,+X,G, 1 Xksk 

= ek-, + xkpk-lxk6k 
1 - X, + X,G, 

(2.13) 

= pk [o - xk)p,=‘lek-l + xkxkYkl ? (2.13a) 

the last step arising from (2.12). Consider next the left-hand 
side of (2.8) which equals 

(1 - hk)eTp&e + Ak(eTxk)2 - 2eT 

’ [ti - xk)p,hek-~ + xkxkYkl 
+ (1 - xk)e;-lp;?lek-l + xky: 

= (e - e,) ‘p,l(e - e,) - eppek 

+(i - Xk)e;MIP;?lek-l + xky: 

Here (Y is a design parameter smaller than one since 
A, = 1 implies that Pk is singular (2.9a). From (2.9d), 
u,‘(O) = uk2-i whence az(Xz) I uiPi. Thus if duz/dh, 2 
0 for every positive X,, then one concludes that the use of 
information available at the k th instant does not improve 
IJ~ and hence at that instant Xz = 0 and no update is 
made. Lemma 2.1, proved in Appendix I, gives explicit 
expressions for calculating X;. 

Lemma 2.1: With Pk positive semidefinite and 

uk’ = c1 - Xkbk2-1 + Aky2 - 1 _ x + x G 
X,(1 - Xk>G (2.9d) 

k k k 

consider Xz of Definition 2.1 and define Pk 2 ( y2 - 
u~-i)/?j$ Then the following is true: 

1) if y2 2 uk2-i + ai, then X*, = 0 (2.14) 
2) otherwise, 

A*, = min (a, vk) (2.14a) 

where 

V k= ( 

which follows from (2.13a). Thus (2.8) becomes 

(e - ek)Tp;l(e - e,) I (1 - A,)& + Aky2 

- [ xky,f - eppek + (1 - xk)e:elp;?lek-l 

After some routine algebra, the result follows. 

We have thus established that (2.7), with the quantities 
of interest defined in (2.9), is a bounding ellipsoid. There 
are such ellipsoids corresponding to every value of h,. We 
choose the OBE to be the one for which ui in (2.7) is the 
smallest, since ui is a bound on the estimation error. Also, 
from an analytical viewpoint, ui is a natural bound on the 
Lyapunov function to be used in Section III. Thus mini- 
mizing IJ~ with respect to X, will facilitate convergence. 
More interestingly, this choice leads to an information 
evaluation criterion which is computationally easier than 
its counterparts in [7], [8]. Note that the notion of X, in 
(2.6), which introduces a forgetting factor (1 - X,), is also 
different from that in [7], 181. The forgetting factor also 
aids in the convergence analysis. Let the optimum value of 
A, be denoted by h$, defined as follows. 

Definition 2.1: The parameter X$ is such that 

1) Xz E [0, a] for some (Y < 1. 
2) uz(X*,) I ai for all X, E [0, a]. 

ifa2=0 k (2.15a) 

ifG,=l (2.15b) 

1 3 ifP,(G, - 1) + 1 > 0 (2xX) 

if flk(Gk - 1) + 1 4 0. (2.15d) 

One can see that y2 < uz- i + Si implies X*, > 0; further- 
more, if y2 < uz-i, then 

ht2-n{cf,l+l+J. (2.16) 

Remark 2.1: A detailed study of computational aspects 
is postponed until later. It suffices to note for the moment 
that Xz = 0 if (2.14) is satisfied. Thus to check if an 
update is required, only the prediction error 6, need be 
found. If (2.14) is found to hold then the calculations in 
(2.15) are not required. 

Remark 2.2: If Sk’ = 0 and (2.14) does not hold, Pk = 
- co. Thus Pk(Gk - 1) + 1 > 0 implies G, < 1, whence 
by (2.15~) and (2.14a) X*, = (Y, since vk 2 1. On the other 
hand, Pk(Gk - 1) + 1 I 0 implies G, > 1, whence vk = (Y. 
Thus (2.15a) is a special case of (2.15~) and (2.15d). 

Having established a recursion for the OBE’s { Ek}, we 
now state what E, is. It is given by 

E, = (e: ~~8~~2 5 l/e} (2.17) 

where l/c is a suitably large number and )j8112 b 0%). In 
general, c can be as small as one pleases and should be 
such that 

lle*112 I 11~. 
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It is evident that according to (2.7) and (2.17) 

PO = I e, = 0 u; = 11~. (2.18) 

As far as computation of ok is concerned, the following 
equation, rather than (2.9a), needs to be implemented: 

P, = &[‘k-I - h*kPk-lXkXkTPk-l/ 
k 

(1 - X; + X*,G,)]. (2.19) 

Of course, in the other equations of (2.9) Xz from Lemma 
2.1 should replace X,. 

Computationally, the greatest complexity lies in (2.19) 
and finding Pk-lxk and G,. If (2.14) holds, then none of 
these need be computed. The relevant condition to be 
checked only involves finding a,, the prediction error. If 
(2.14) is false, then (2.19) requires G, in any case. Thus 
finding Xz involves no additional complexities. Observe 
also that l3,, the center of E,, is the parameter estimate 
and that 1 - Xz can be viewed as an information-depen- 
dent forgetting factor which may vary with time. It is 
worth noting that, conventionally, hz rather than 1 - Xz 
is the notation for forgetting factors. However, hz plays a 
dual role here. While 1 - h$ acts as a forgetting factor, hz 
acts as an update gain in (2.9b) and (2.19). 

As noted in the Introduction, Fortesque et al. have used 
variable forgetting factors in [9]. While our selection of 
these factors is based on the need to minimize the extent of 
the feasible parameter estimate set, the approach in [9] 
arises from a different consideration. There, an informa- 
tion measure related to the cumulative sum of squared 
prediction errors is proposed, and the forgetting factor is 
selected to maintain this measure at a constant value. 
Thus, if the prediction error, at any stage, becomes high, 
less reliance is placed on prior information. 

forgetting factor (1 - Xz) becomes one, that is not the case 
in [9]. It is this feature which equips our algorithm with the 
ability to handle bounded disturbances. 

A key difference between the two approaches is the 
absence of Xz as a gain factor in [9]. Thus, whereas the 
algorithm of this paper will cease updating when the 

error converges exponentially to a region in which 

vk - e*ii2 I Y%, (3.3) 

where 

0 < asI I Pk-l < a,I. (3.4) 

Moreover, 

)mmIlek+l - ekii = o (3.5) 

lim Sk2 E [0, y2]. (3.6) 
k-cc 

With a further restriction on xi, we show that 

lim Xz = 0. 
k-+cc 

(3.7) 

Note throughout this section, expressions like (3.6) should 
not be taken to mean that lim k ~ ,$2 exists but rather that 
Si becomes asymptotically less than or equal to y2. These 
results require first the following lemma and the assump- 
tion that G, and xk are bounded. 

Lemma 3.1: Consider (2.9), (2.14), (2.15), and (2.19). 
Then, 

lim uz E [0, y”] (3.8) 
k-m 

where the rate of convergence is exponential. 

Proof: From (2.9d) 

(uk” - y’) - (u;-1 - y’) I -A*,(q-, - y’). (3.9) 

Moreover, from Lemma 2.1, uz-i > y2 implies h? 2 
min {(Y, l/(1 + 6)). Thus the result follows. 

We now prove (3.3) using Lyapunov theory. 

Theorem 3.1: Consider (2.1), (2.9), (2.14), (2.15), and 
(2.19). Suppose 8* E E,. Then 8* E E, for all subsequent 
k. Moreover, if (3.4) holds, then 8, converges exponentially 
to a region where (3.3) holds. 

v, = Ae,Tp, ‘Ae, 

with Af3, A 0 * - 8,. Using analysis similar to that 
we find that 

Proof: Consider the Lyapunov function 

(3.10) 

in [15], 

III. CONVERGENCE ISSUES vk = (l - x”,)vk-, + ‘?ht - 1 _ A* + Xz+tG . 
k k k 

(3.11) 

In this section convergence properties associated with 
(2.9), (2.14), (2.15), and (2.19) are examined. Clearly, the 

Thus 

r /-I ,*\0? 
infinite memory associated with (2.19) guarantees that Pk 
is always positive definite. However, some of the results 
presented here require that (pi, a2 exist such that for all k, 

v, - v&l 5 -A; 
\I - Ai;)Oi 

1 - X*, + h*,G, 1 * 

(3.12) 

O<cu,IIP,Ia,I<co. (3.1) A1so 

In Section IV we shall show that (3.1) is satisfied if there 
v, < (1 - kj$& + [ok’- (1 - x*,)&l], 

exist N, (us, and (Ye such that for all k, i.e., 

k+N v, - 0; < (1 - A”,)[ vk-, - u;-11. (3.13) 
O<n,I< y, XiX,~IcQI< co. (3.2) 

i=k 
Note that 

With (3.1) holding, it is shown first that the parameter V k-1 5 Uzpl iff @* E Ekpl 
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which implies 

V,< ui whence l3* E E,. 

Thus by (3.13) it can be seen that if 0* E E,, then 
8 * E E, for all k. Moreover, (3.12) implies that 

(v, - y’) - (vk-1 - y2) < -x:[v,-, - y2]. (3.14) 

Thus V, - y2 converges exponentially to a value smaller 
than 0 if X2 is uniformly nonzerd while V, > y2. Now 
V, > y2 implies uz > y2, whence by Lemma 2.1 

h:rminja, l+k). 

Since G, is bounded, the result follows from (3.4). 

We shall comment on the case when 8 * @ E, later. The 
theorem below deals with the convergence of a range of 
other parameters. In particular, it shows that in the limit, 
parameter estimate variation decays to zero and that 

u;-l + Sk’ I y2. 

Theorem 3.2: For bounded G, (i.e., (3.1) holding) with 
(2.1), (2.9), (2.14), (2.15), and (2.19), the following holds 
with 0* E E,: 

Fmmiiek+l - 8k1i = O? (3.5) 

lim (ui-i -t 82) E [0, y”], 
k-rm 

(3.15) 

and 

lim 8: E [0, y’]. 
k-m 

(3.6) 

Proof See Appendix II. 

Remark 3.1: Equation (3.15) does not necessarily imply 
that Xz goes to zero, as Xi goes to zero iff Pk goes to one. 
If 82 approaches zero faster than ui-i approaches y2, Pk 
may not approach one. Thus for hz to vanish we need 
some further conditions such as those used in Theorem 3.3. 

Remark 3.2: The quantities ui-i and 8:, respectively, 
measure the parameter and prediction errors. Condition 
(3.15) states that their sum, in the limit, falls below y2. 
However, if y: < y2 is such that vi I yf, V, would now 
be governed by (see (3.14)) 

(3.16) 

Thus unless X2 vanishes before ui-i + 8; I yf occurs, 
the sum of V,- i and 8: could still become smaller than 
yf. Now hz goes to zero only when uk2-i + 82 < y2. Thus 
provided V, is sufficiently smaller than IJO’, one can see 
from (3.13) that V,-, + 82 may well be close to y: before 
updating ceases. 

Remark 3.3: The approach of this paper is predicated 
on 8* E E,. If 0* P E,, then the notion of bounding 
ellipsoids no longer applies. Yet ek remains a valid esti- 
mate of t9 *, V, still decreases as long as ht # 0, and the 
stopping condition is still (2.14). However, too great a 

violation of 8 * E E, could cause IJ~ to become negative. 
Thus at the point of convergence 8: could exceed y2. 

With slow time variations in 8* the algorithm should 
still perform well, for as long as 0 *(k) E E,, small changes 
in 0 * beyond initial convergence would result in large a,, 
violation of (2.14), and the resumption of tracking. Large 
time variations could cause difficulties similar to those 
explained for large violations of 8* E E,. A modification 
to the algorithm for handling large time variations will be 
the subject of a forthcoming paper. 

Remark 3.4: A conceivable alternative to the X*, selec- 
tion strategy outlined above is to set X!J = 0 as soon as 8; 
becomes smaller than y2. However, the strategy selected 
here often leads to even smaller eventual 8: and 6:. 

We now discuss the convergence of Xz, which together 
with the results of Theorem 3.2 implies the convergence of 
the OBE E,. 

Theorem 3.3: Consider the system (2.1) and the (2.9), 
(2.14), (2.15), and (2.19). Suppose there exist (Ye, (us, and 
Ni > 0 such that for all k, 

(3.17) 

Then 
lim h*k = 0. 

k-+m 

Proof: See Appendix II. 

Remark 3.5: Condition (3.17) essentially demands that 
uk and vk be sufficiently uncorrelated with each other. The 
next section clarifies this issue further. 

IV. PERSISTENCE OF EXCITATION 

In Section III we stated that the satisfaction of (3.1) and 
(3.17) is required for certain convergence results. As is the 
case in many other identifiers [4], [5], [15], this translates to 
a persistence of excitation condition on the input and a 
lack of correlation condition on uk and vk. In this section, 
these results are formalized. We show first that (3.1) is 
implied by (3.2) and then go on to suggest ways in which 
(3.2) can be satisfied. 

Theorem 4.1: With P, defined in (2.19) and xk such 
that, for some positive (us, (Ye, and N, and all k 

k+N 

O<a,II c x,x’<a,I< CO, 
i=k 

(3.2) 

there exist (pi, a2 > 0 such that 

0 < a,I I Pk I a,I < co (3.1) 

as long as 0 I XT < (Y < 1. 

Proof: See Appendix III. 

Remark 4.1: The result can be interpreted as follows. 
Looking at measurements over a finite interval is equiv- 
alent to looking at measurements over an arbitrarily long 
interval with infinite discounting factor on all but a finite 
subinterval. 
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The following result shows two conditions under which 
(3.2) can be satisfied. It is proved in Appendix III. 

Theorem 4.2: Consider the system (1.1) (2.1). Assume 
that z” + C::,$Z._~Z~ and CJm,Ob,,-jzj are coprime and 
(1.1) is stable. Define 

and 

W,(k) = bk, uk-l,’ * ‘9 Uk-n-mlT (4.1) 

W,(k) = [w~(k),~k-~,‘.‘,uk-n]T. (4.2) 

Then if there exist pi, & > 0 such that for all k 

k+N 

(4.3) 

then (3.2) is satisfied. Alternatively, if there exist &, & > 0 
such that 

k+N 

&I + ny21 5 C W,(i)Wz(i) I pqI (4.4) 
i=k+n 

for all k, then (3.2) is satisfied. 

Remark 4.2: Equation (4.3) states that the inputs uk 
should be sufficiently rich in frequency and must be uncor- 
related with the noise. Equation (4.4) on the other hand, 
states that the input should be rich enough to overcome 
the effect of the noise. In practice the noise sequence is 
usually uncorrelated with the input sequence, thus (4.3) is 
easier to satisfy. 

Remark 4.3: The above theorem states conditions under 
which all of the convergence results in the previous section, 
except limk,, k X* = 0, are satisfied. Of course, even if X*, 
does not go to zero, lie,,, - f3,11 still may vanish in the 
limit. 

Below, we show how condition (3.17) sufficient for 
lim k _ ,Xz = 0, can be satisfied. The proof follows in the 
same vein as that of the previous theorem and is omitted. 

Theorem 4.3: Under the assumptions of Theorem 4.2 
define 

W,(k) = [w:(k), vk,‘. . > h-n] T- 

Then (3.17) is satisfied if there exist &, &, > 0 such that 
k+N 

&I 5 c W,(k)W:(k) s &I (4.5) 
i=k+n 

for all k. 

Remark 4.4: Observe that (4.5) implies (4.3). In fact, 
(4.5) and (4.3) are almost the same, and it is highly 
unlikely that (4.3) is satisfied yet (4.5) is not. 

V. SIMULATIONS 

Consider the system 

y, = 0.3yk-, - 0.28yk-, + 0.46y,-, - o.ly,-, + vk 

where uk is a zero mean uniformly distributed white noise 
sequence, bounded in magnitude by one. Suppose that 
each of the four actual parameters undergoes a ten-percent 

step change in magnitude at every 200 sampling points. 
Then Figs. 1-4, respectively, show the trajectories of 1) 
actual parameters, 2) the RLS estimates, and 3) the esti- 
mates generated by the algorithm of this paper with (Y = 
0.9. The superior tracking ability of this algorithm over 
that of RLS is evident. Moreover, in the 2000-sample 

OL. 2cQo 

- SAMPLE NUMBER k 

Fig. 1. Tracking of parameter O1 (starting value = 0.3). 

True ~ 
RLzj . . . . . . . . 

OBE ---- 

-0.0 ’ 1 1 1 ’ ’ 0 ’ I ’ I 0 ’ 3 
0 500 1000 1500 2000 

- SAMPLE NUMBER k 

Fig. 2. Tracking of parameter 0, (starting value = - 0.28) 

1.2 

IO 
I OBE ---- 0.8 

4 

0.6 

500 1000 1500 2000 

- SAMPLE NUMBER k 

Fig. 3. Tracking of parameter 0, (starting value = 0.46). 

True - 
. . . . . . . 

L 4 

-0.6’ 
0 500 1000 1500 2coo 

- SAMPLE NUMBER k 

Fig. 4. Tracking of parameter 0, (starting value = - 0.1) 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 5, 2009 at 11:25 from IEEE Xplore.  Restrictions apply.



DASGUPTA AND HUANG: ASYMPTOTICALLY CONVERGENT MODIFIED RECURSIVE LEAST-SQUARES 389 

interval the number of updates is only 209, and the final 
prediction error is 8: = 0.6 < 1. 

In all the examples we tried, with or without time 
variation, the number of updates did not exceed 15 percent 
of the number of samples, representing a significant com- 
putational saving. Moreover, even when the noise bound y 
was over estimated by 20 percent of its actual value, the 
resulting prediction errors were smaller than the actual 
bound. The implication here is that, should the modeler be 
uncertain about the value of y, a conservative estimate of 
y could yet result in 16kl less than the actual y. 

From the example given, it appears that the initial 
behavior of the OBE algorithm is inferior to RLS when 
time variations are absent. This is not surprising partly due 
to the smoother transients of RLS. The OBE does not 
update as often as RLS, and when updates are made they 
turn out to be more substantial. Also, without time varia- 
tions the need for having weighted information in the 
initial stages is less compelling, as redundancies in infor- 
mation are less frequent. At the same time, other ad- 
vantages of the OBE, particularly the computational sav- 
ing due to infrequent updates, amply justify its use. 

VI. CONCLUSION 

A reformulation of RLS estimation based on a bounded 
noise assumption has been shown to yield an algorithm 
whose updates are information-dependent. A Lyapunov 
approach has been used to prove the asymptotic conver- 
gence of the estimates. There are several key features of 
the algorithm. 1) By eliminating redundant updates of the 
parameter estimates, computational complexity can be ex- 
pected to improve. 2) In the face of bounded output 
disturbances, asymptotic cessation of updating is still en- 
sured once the sum of the prediction error and a certain 
bound on the estimation error becomes smaller than the 
disturbance bound. 3) The convergence of the estimation 
error to a region determined by the degree of excitation 
and the measurement disturbance bound is exponential. 
This is a property which strengthens the robustness char- 
acteristics of the algorithm. 4) Finally, the algorithm can 
cope with modest departures from idealistic assumptions. 
Thus even if the system has slow time variation or the 
disturbance sequence does not strictly obey the imposed 
magnitude bound, the algorithm can still be expected to 
perform adequately. 
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APPENDIX I 
PROOF OF LEMMA 2.1 

By the definition of Xz and (2.9d) we have that 

u,2(A*,) I: u;(o) = &I. (A.11 

Thus if dui/dX, 2 0 everywhere on X, E [0, LX], then A*, = 0. 
From (2.9d) 

da,2 
- = y2 - uiel - Sk’ 

(1 - A,)* - X;Gk 

‘% (1 - X, + XkGk)2 
(A.4 

and 

d*a* k 26,2G, 
- = 
dX:, (1 - X, + XkGk)3 

(A.31 

If 6iGk # 0, the positive definiteness of Pkel implies that 
d*ui/dAi has the same sign as (1 - X, + X,G/,), which for any 
h, E [0, 1) is positive. Let us prove Lemma 2.1 case by case. 

Case I: Sk” = 0. From (A.2), du:/dX, < 0 if and only if 
y* < u;-i. Thus 

Note that in this case both (2.15a) and (2.16) are satisfied. Now, 
for subsequent cases, it is assumed that 6, + 0. 

Case ZZ: G, = 1, 

da; 
~ = 8;[pk - 1 + 2X,] 
4 

with Pk defined in the statement of the Lemma. Also, d2ui/d$ 

2 0 for any X, 2 0. Thus ui is minimized when 

1 - bk 
x,=2’ Pk < l. 

If Pk 2 1, (1 - Pk)/2 is nonpositive and X*, = 0. Note that 
Pk 2 1 is equivalent to y2 2 uz-t + 82, (2.14), provided that 
6, # 0. Thus both (2.15b) and (2.16) are satisfied. 

Case ZZZ: Pk( G, - 1) + 1 > 0. By (A.2), 

duk’ 
- =o 
dh 

iff X, = 

(A.51 

Since 1 + Pk(Gk - 1) > 0, X, is real. It is easy to show that only 

corresponds to a minimum. Moreover, in (A.6) 

and 

1-G 1 
&<o’&> l-G = 

k 1+sc,’ 

Further, if A, in (A.6) is greater than (Y, it is easy to see that 

duk’ 
--<o 
dh 

for all A, E [0, a]. Thus X$ is as given by (2.14a) and (2.15~). In 
addition, (2.16) clearly is satisfied for G, > 0. If G, = 0, then 
X, = 1 and Pk < 1. Thus (2.14a), (2.15~) and (2.16) hold. 
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Case IV: Pk( G, - 1) + 1 I 0. Suppose the equality holds. 
Then 

(1 - A,)2 - ?$Gk 

(1 - X, + h,G$ 1 

GkG = 
(1 - G,)(l - X, + XkGk)’ 

With the fact that 0 I G, and fik = l/(1 - Gk) we have fik 2 1 
if and only if G, < 1 and fik < 0 if and only if G, > 1. Further, 
dai/dX, has the same sign as (1 - Gk). Thus A*, equals 0 if 
Pk 2 1 and equals (Y if Pk < 0. Note that fik < 1 is not possible 
for this case. If Pk (Gk - 1) + 1 < 0, then (AS) is complex and 
daz/dX, has the same sign everywhere. Now, 

da,2 

db 
= G[Pk - 11 

x,=0 
Thus hz = (Y if fik I 1 and X*, = 0 otherwise. Hence (2.14a), 
(2.15d), and (2.16) are satisfied. 

APPENDIX II 
PROOFOFTHEOREMS 3.2 AND 3.3 

Proof of Theorem 3.2 

By Theorem 3.1 

ll* E E, =c. O* E Ek * uk’ 2 0 Qk. (B.1) 

Thus if (B.4) is violated and (B.l) holds, 

lim Pk E[l,m) ~5 klimm&i + sk” E [OT y2] 
k’m 

a kbmmSi E [0, y2] whence lim hz = 0, 
kdco 

which contradicts (B.4). On the other hand, if (B.4) holds, then 
(3.5) is automatically satisfied. 

Further, (B.4) implies, for arbitrary e > 0, there exists N such 
that for any k 2 N 

qs,2 I c2. (B.8) 

Suppose (3.6) is not true. Then lim, _ ,8; f 0. Suppose 6; > y2. 
Then 

AZ2 I c2/y2. (B.9) 

We shall show that 

fik 2 1 - O(e). (B.lO) 

Consider the three cases of (2.15) applicable to this situation. 
Case I: G, = 1, 

Case II: Pk(Gk - 1) + 1 I 0. If e2/y2 < OL, then fik 2 1. 
Case III: Pk (G, - 1) + 1 > 0. For small enough e, 

Also by (A.2) if X$ > 0, then 

da,2 1 

Gk 

- &(Gk - 1) + 1 
= { X*,(G, - 1) + l}” 

rr 

‘% 
10 1 Gk 

&=A: 
i 

-1. 

X*S2G 
*Pk= G,-1 [X*,(G,-1)+112 1 

(1 - h*,)Sk’ kk k 
0 y2 - u;-I - 

1 - X*, -+ X;G, ’ - (1 - X*, + X*,Gk)2 . 1 G, - 1 - h12(Gk - 1)2 - 2X*,(G, - 1) 
=- 

Thus G, - 1 { A*,(& - 1) + ‘}’ 

Xe2S2G 
uk" I $-I - k k k (B.2) = 1 Az2(Gk - 1) 

(1 - X; + X*,Gk)2 ’ { X*,(G, - 1) + l}’ - { A*,(& - 1) + I}’ 

Of course if, in the limit, 1; = 0, then 0k+l = ok and by Lemma 
2.1, both (3.5) and (3.15) are satisfied. Equations (B.l) and (B.2) 

2x*, 

imply - {X;(Gk - 1) + l}’ 

lim Xt26iGk = 0. W) 2 1 - O(e). 
k-+m 

To show (3.5), we need to show that 
Thus (B.10) holds. Hence 

lim h*k2S,2 = 0. (B.4) 
y2 2 6-I + Sk’ - O(E) 

k-m and (3.6) and (3.15) are satisfied. 
Now (B.3) implies that for all c > 0 there exists N, such that 

for aI k > N, * Proof of Theorem 3.3 

X;26;Gk -=z E. (B.5) From the proof Theorem 3.2 one can see that 
Suppose for some k, Xz2Sz > a > 0. Then 

G, < c/a. 

so 

(B.6) 
and 

1 - h*k 
Pk - 1 _ j,* + A*G 

k k k Now 

lim X?J2S,2 = 0 
k+m 

lim j\ek - 8,-,/l = 0. 
k+m 

(B.11) 

(B.12) 

1 

= ‘zh*, Pk - 1 + (x*,/l _ hz)Gk 
[ 1 6, = A9;p1xk + vk. 

From (3.17) and (B.12), over any interval of length N,, 6, 
I s;x*,[pk - 1 + o(e)]. (B.7) cannot be arbitrarily small. Thus at least one li exists in every 
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interval of length Ni such that for some a2, 8; 2 a2 > 0. Now 

by Theorem 3.2, for all E there exists N2 such that for all i 2 N, 

and k = li, 

q-l - y2 + Sk’ I E 

and so 

q-I I y2 - a2 + t 

whence for small enough z 

bk ’ O. 

Now ui is nonincreasing. Thus for all k 2 fNz, 

(B.13) 

From (B.ll) for any e > 0 there exists N3 such that for all 
k 2 N3, 

q2s,2 _( c. 

Thus either AZ2 I O(e) or 82 I O(e). In the latter case, by (B.13), 
Pk 2 a,/O(c) > 1 for sufficiently small 6, whence At = 0. This 
completes the proof. 

APPENDIX III 
PROOF OF THEOREMS 4.1 AND 4.2 

Proof of Theorem 4.1 

We first show that (3.4) holds, so (3.1) follows. The upper 
bound follows from the boundedness condition in (3.2), which 
implies for any unit vector 7 

k+N 

(C.Oa) 

From (2.19) 

Pi1 = 

Thus 

J = qTPilq = lbl(l - Xi> + I!1 i=T+l(l - ‘i) h,CxJq)’ 
.i* i 

where 0 I hi I a < 1. Consider the stationary points of J with 
respect to Ai: 

C?J 
- = - +..+,Q - 'i) - rl i=jfii+jtl - 't)'j( xTll)2 
ah 

+ ijIl C1 - ‘i)) ( xTq)2 = O. 
i 

Cc.O) 

For I= 1 

aJ -= 
ah 

- f12t1 - Ai) +@-+~d’=0. 

This implies that either 

(XT?) = 1 (C.1) 

or 

(C.2) 

Since 0 5 Xi I a < 1, (C.2) cannot hold and so (C.l) holds. 
For I = 2, 

-=- 
2 

i=$+2tl - Ai) - ,gl i=j$i+2tl - m(xN2 

7 1 

+ l$3t1 - 4) (+I)’ = 0 

CJ - ii (1 - Aj) - A&l - A,) 
i=li#2 

+(~~l~“,))(x~~)=o 

- -~(l-h,)[l-X,+X,-x:$] =o 
i=3 

* x,TTJ=l. 

Continuing this sequence, we find either x:7 = 1 or the mini- 
mum is at one of the extremities. If xT~ = 1, then J is clearly 1, 
no matter what the value of the Xi is. If x,rn # 1, then we need 
consider either A, = 0 or Xi = a. In the former case J = 1, while 
in the latter 

J = (1 - a)” + a,$1 - a)kP’($xj)2. 

Thus for k I N, 

$“p;l?j 2 (1 - a)“. 

Now suppose there does not exist an ag such that the lower 
bound of (3.4) holds for all k. Then in view of (C.3), for an 
arbitrary e > 0 there exists k > N and a unit vector n such that 

(1 - a)” + $r(l - “)k-j(?jTxj)2 I e. 

Then for any finite N 

aj=$mN(l - “)kPj( $xj)2 I E 

so 

and (C.Oa) is violated. Thus the lower bound of (3.2) implies that 
of (3.4). 

Proof of Theorem 4.2 

The approach used here is similar to that in [15]. Define d as 
the unit delay operator. Then (1.1) can be re-expressed as 

where 

Suppose the lower bound of (3.2) is violated. Then for all e > 0, 
there exist a unit vector .$A [y~,...,y,,,170,...,11,,]T and a k 

Atd>Y, = B(d)% + vk 

A(d) = 1 - i aid’ 
r=l 

B(d) = F bjdJ. 
j=O 
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such that for any i E [k, k + N] REFERENCES 

=) tu,d’v,+ fqjdJu; <e, 

i=l j=O 

Define 
n 

PI 

Qi E [k, k + N] PI 

131 

Vi E [k, k + N] , 
141 

[51 

and 

c xd’ = y(d) 
i=l 

E qjdj = g(d). 
j=O 

[61 
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lu(d)x+dd)uil<~, QiE[k,k+N] 

e. Iy( d)ajYi-j + q(d)ajUz-jl< GjL QiE[k- j,k+N] 

- lv(d)A(d)y;+7)(d)A(d)u;l<O(E), QiE[k-n,k+N]. tw 

* ly(d)B(d)~i+Il(d)‘(d)ui+Y(d)Vil<’(~), ViE[k-n,k+N] 

* I{y(d)B(d)+l7(d)A(d)}ui+Y(d)Vil<’(~), ViE[k-n,k+N] 

NOW y(d)B(d) + q(d)A(d) Z 0 as otherwise, 

PI 
A = _ 

A( d-‘) n-1 

j~oYn-j(dpl)i 
[91 

which violates the assumption that B( d-‘) and A(d-l) are 

coprime since the degree of A(d-‘) is n and that of WI 
C~,~y,-j(d-‘)j is n - 1. 

Thus there exists a x, bounded away from zero such that VI 

Ix%(i)1 < O(r), ViE[k-n,k+N] WI 

so (4.3) is violated; hence (4.3) implies the desired result. More- 
over, by (C.4) 1131 

n 

h+V(d) + dd)Atd)l u,I < O(c) + 
r 

c 0: [141 
i=l 

I O(E) + hy. WI 

Thus (4.4) is violated. Note that the upper bounds follow easily 
from our boundedness assumptions. 
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