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Asymptotically Efficient Estimation of a Bivariate 
Gaussian–Weibull Distribution and an Introduction 

to the Associated Pseudo-truncated Weibull 

STEVE P. VERRILL, JAMES W. EVANS, DAVID E. 

KRETSCHMANN, AND CHERILYN A. HATFIELD 

USDA Forest Service Forest Products Laboratory, Madison, Wisconsin, USA 

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending 
strength (modulus of rupture or MOR). In the past, MOE has often been modeled 
as a Gaussian and MOR as a lognormal or a two or three parameter Weibull. It is 
well known that MOE and MOR are positively correlated. To model the simultaneous 
behavior of MOE and MOR for the purposes of wood system reliability calculations, 
we introduce a bivariate Gaussian–Weibull distribution and the associated pseudo-
truncated Weibull. We use asymptotically efficient likelihood methods to obtain an 
estimator of the parameter vector of the bivariate Gaussian–Weibull, and then obtain 
the asymptotic distribution of this estimator. 

Keywords Bivariate Gaussian-Weibull; Gaussian copula; Likelihood methods; Modu
lus of rupture; Modulus of elasticity; Normal distribution; One-step Newton estimator; 
Reliability; Weibull distribution. 

1. Introduction 

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending 

strength (modulus of rupture or MOR). In the past, MOE has often been modeled as a 

Gaussian and MOR as a lognormal or a two- or three-parameter Weibull; see, for example, 

ASTM, 2010a; Evans and Green, 1988; Green and Evans, 1988. 

Design engineers must ensure that the loads to which wood systems are subjected 

rarely exceed the systems’ strengths. To this end, ASTM D 2915 (ASTM, 2010a) and 

ASTM D 245 or ASTM D 1990 (ASTM 2010b,c) describe the manner in which “allowable 

properties” are assigned to populations of structural lumber. In essence, an allowable 

strength property is calculated by estimating a fifth percentile of a population (actually 

a 95% content, one-sided lower 75% tolerance bound) and then dividing that value by 
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“duration of load” (aging) and safety factors. The intent is that the population can only be 

used in applications in which the load does not exceed the allowable property. Of course 

there are stochastic issues associated with variable loads, uncertainty in estimation, and 

the division of a percentile with no consideration of population variability. Thus, from 

a statistician’s perspective, this is not an ideal approach to ensuring reliability of wood 

systems. However, it is the currently codified approach. 

To apply this approach, one must obtain estimates of the fifth percentiles of MOR 

distributions. Currently, one method for obtaining estimates involves fitting a two-parameter 

Weibull distribution to a sample of MORs. To obtain this fit, either a maximum likelihood 

approach or a linear regression approach based on order statistics is permitted under ASTM 

D 5457 (ASTM, 2010d). 

Unfortunately, these methods are often applied to populations that are not really dis

tributed as two-parameter Weibulls. For example, in the United States, construction grade 2 

by 4’s are often classified into visual categories—select structural, number 1, number 2—or 

into machine stress-rated (MSR) grades. In the case of MSR grades, MOE boundaries are 

selected, MOE is measured nondestructively, and boards are placed into categories based 

upon the MOE bins into which the boards fall. Because MOE and MOR are correlated, 

bins with higher MOE boundaries also tend to contain board populations with higher MOR 

values. The fifth percentiles of these MOR populations are sometimes estimated by fitting 

Weibull distributions to these populations. Statisticians recognize that this poses a problem. 

Even if the full population of lumber strengths were distributed as a Weibull, we would not 

expect that subpopulations formed by visual grades or MOE binning would continue to be 

distributed as Weibulls. 

In fact, such a subpopulation is not distributed as a Weibull. Instead, if the full joint 

MOE–MOR population were distributed as a bivariate Gaussian–Weibull, the subpopulation 

would be distributed as a “pseudo-truncated Weibull” (PTW). In this article, we obtain the 

distribution of a PTW and show how to obtain estimates of its parameters and its quantiles 

by fitting a bivariate Gaussian–Weibull to the full MOE–MOR distribution. To do this, we 

first define a particular form of a bivariate Gaussian–Weibull distribution. In Secs. 2 and 

3 of this article, we describe this form and establish that it can be fit by asymptotically 

efficient likelihood methods in the full MOE–MOR case. In Secs. 4 and 5, we discuss the 

truncated case and derive the density of a PTW. 

We note that the bivariate Gaussian–Weibull distribution has uses other than as a gener

ator of pseudo-truncated Weibulls. For example, engineers who are interested in simulating 

the performance of wood systems must begin with a model for the joint stiffness, strength 

distribution of the members of the system; see, for example, Rosowsky and Yu (2004), 

Rosowsky et al. (2005), and Triche and Partain (2006). Provided that we are considering 

the full population, a Gaussian–Weibull is one possible model for this joint distribution. 

Bivariate Gaussian–Weibull distributions have not yet appeared in the literature. How

ever, Gumbel (1960), Freund (1961), Marshall and Olkin (1967), Block and Basu (1974), 

Clayton (1978), Lee (1979), Hougaard (1986), Sarker (1987), Lu and Bhattacharyya (1990), 

Patra and Dey (1999), Johnson et al. (1999), Quiroz Flores (2010), Lee et al. (2011), and 

others have previously investigated bivariate Weibulls. 

We note that the bivariate Gaussian–Weibull distribution that we investigate in the 

current paper is not the only possible bivariate distribution with Gaussian and Weibull 

marginals. In essence we begin with a “Gaussian copula”—a bivariate uniform distribu

tion generated by starting with a bivariate normal distribution and then applying normal 

cumulative distribution functions to its marginals. However, there is a large literature on 

alternative copulas (multivariate distributions with uniform marginals); see, for example, 

http:marginals.In
http:Gaussian�Weibulldistribution.In
http:WeibulldistributiontoasampleofMORs.To
http:theallowableproperty.Of
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Nelsen (1999) and Jaworski et al. (2010). These alternatives would lead to alternative bi

variate Gaussian–Weibulls. Ultimately, the test of the usefulness of our proposed version 

of a Gaussian–Weibull for a particular application will depend on the match between the 

theoretical distribution and data. Still, we believe that the analysis of our proposed version 

in the current paper represents a useful step in the construction and evaluation of bivariate 

Gaussian–Weibull distributions. 

2. A Bivariate Gaussian–Weibull Distribution 

To generate a bivariate Gaussian–Weibull distribution, we follow Johnson and Kotz (1972); 

see also Kotz et al. 2000. (Taylor and Bender, 1988, 1989, introduced this technique in a 

lumber context.) Let X1, X2 be distributed as independent N(0,1)’s. Define X = µ + θX1 
/

and Y = �X1+ 1 − �2X2. Then X is distributed as a N(µ, θ 2), Y is distributed as a N(0,1), 

and their correlation is �. Now let  U = ρ(Y ). Then U is a Uniform(0,1) random variable 

that is correlated with X. Finally, let W = (− ln(1 − U ))1/β/� . Then W is distributed as a 

Weibull with shape parameter β and scale parameter 1/� , and the pair X,W have our joint 

“bivariate Gaussian–Weibull” distribution. (Verrill and Kretschmann, 2010, Appendix B, 

performed simulations that indicate that the sample correlation between X and W will be 

very close to the generating bivariate normal correlation, �.) In this article, we require that 

β >  1. Given this generating process, it is straightforward to show (see Appendix A) that 

the joint density is given by 

gaussweib(x,w; µ, θ, �, �, β) � � ββwβ−1 exp(−(�w)β)  (1)  

1 1 
×∼ / exp (− ((x − µ)/θ

2δ θ 1 − �2 

)

− �y)2 /(2(1 − �2)) , 

where 

y = ρ−1(1 − exp(−(�w)β)) 

and ρ is the N(0,1) cumulative distribution function. 

In Fig. 1, we provide a contour plot of the bivariate Gaussian–Weibull distribution 

for a coefficient of variation (CV) equal to 0.15 and a generating correlation equal to 0.7. 

Additional plots are provided in Verrill et al. (2012a). Note in these plots that as the CV 

declines from 0.35 to 0.25 to 0.15 (as the Weibull shape parameter increases from 3.13 

to 4.54 to 7.91) the density contours become much less elliptical. That is, the distribution 

diverges from a bivariate normal. We would expect this as a Weibull is “like a normal” 

for shape near 3.6 (skewness equals 0.00056, excess kurtosis equals -0.28), and a Weibull 

becomes skewed to the left and leptokurtic as the shape increases. 

3. Asymptotic Distribution of the Estimated Parameter Vector 
of the Bivariate Gaussian–Weibull Distribution 

Assume that we have have n independent pairs of observations, (x1, w1), . . . , (xn, wn) from  

the bivariate Gaussian–Weibull distribution. Then we have the following theorem. 

Theorem 3.1. 

D∼ 
n(θ̂ − θ) ≤ N(0, I (θ )−1), (2) 

http:from3.13
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Figure 1. Contour plot of the bivariate Gaussian–Weibull density for Gaussian and Weibull coeffi

cients of variation equal to 0.15 and a generating correlation of 0.7. 

where θ � (µ, θ, �, �, β)T , µ, ˆ �, ˆ β)T is the one-step Newton estimator based on θ̂ � ( ˆ θ ,  ̂ � ,  ̂

bivariate Gaussian–Weibull theory (the gradient and Hessian used to calculate the Newton 

step correspond to the first and second partials of the full Gaussian–Weibull likelihood), 

and the step is taken from the initial estimate θ i � (µi, θi, �i, �i, βi)
T where µi, θi are the 

usual univariate maximum likelihood estimators of the mean and standard deviation of a 
/

 n
Gaussian (x̄ and j=1(xj − x̄)2/n ), �i, βi are the usual univariate maximum likelihood 

estimators of 1/scale and shape for a Weibull (see, for example, Johnson et al., 1994), �i∼ 
is the n-consistent estimator of � introduced in Appendix B, and the elements of I (θ ) are 

listed in Appendix C. That is, θ̂ is given by the Newton step 

θ̂ = θ i − H−1g|θ i 
(3)|θ i 

where the jth element of the gradient g|θ i 
is the first partial of the log likelihood with respect 

to the jth parameter at θ i and the j, kth element of the Hessian H|θ i 
is the second partial 

of the log likelihood with respect to the jth and kth parameters at θ i . 

Proof. The proof is an application of Theorem 4.2 of Chapter 6 of Lehmann (1983). 

To invoke Lehmann’s theorem, we must first establish that the � estimator introduced in ∼ 
Appendix B is indeed n-consistent. The proof of this fact is outlined in Appendix B and 

is provided in full in Verrill et al. (2012a). 

We must then establish Lehmann’s conditions. That his conditions (A0)–(A2) and A 

hold is clear. Lehmann’s condition (B)(8) is established in Appendix E1 of Verrill et al. 

(2012a). Lehmann’s condition (B)(9) is established in Appendices E2 and E3 of Verrill et al. 

(2012a). The fact that the information matrix is positive definite (Lehmann’s condition C) 

is established in Appendix D of the current paper. Lehmann’s condition (D) is established 

in Appendix J of Verrill et al. (2012a). D 
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2961 Efficient Estimation of a Bivariate Gaussian-Weibull 

4. A Truncated Bivariate Gaussian–Weibull Distribution 

In wood engineering applications, it is often the case that we do not have data from a 

full bivariate Gaussian–Weibull distribution. Instead, we have data from the subpopulation 

that is formed by considering lumber whose MOE values lie between two pre-determined 

limits, cl and cu (that is, we have machine stress-rated lumber). It is clear that the joint 

density in this case is 

gaussweib(x, w; µ, θ, �, �, β)/ (ρ ((cu − µ)/θ ) − ρ((cl − µ)/θ )) (4) 

for x between cl and cu and 0 elsewhere. 

5. The Pseudo-Truncated Weibull Distribution 

The pseudo-truncated Weibull distribution function at w is given by integrating the truncated 

bivariate Gaussian–Weibull density (4) over the region [cl, cu] × [0, w]. That is, from 

Eq. (1), 

 w 

FPTW(w) = F1(s) × F2(s)/ (ρ((cu − µ)/θ ) − ρ((cl − µ)/θ )) ds (5) 
0 

where 

F1(s) � � ββsβ−1 exp(−(� s)β )  (6)  

and 
 cu 

F2(s) � ∼ 
1 

/

1 
exp 

(

− ((x − µ)/θ − �y)2 /(2(1 − �2))
) 
dx (7) 

cl 2δ θ 1 − �2 

/ /

= ρ((cu − µ)/(θ 1 − �2 ) − �y/ 1 − �2 ) 
/ /

− ρ((cl − µ)/(θ 1 − �2 ) − �y/ 1 − �2 ), 

where 

y = ρ−1(1 − exp(−(� s)β )) 

From results (5)–(7), the pseudo-truncated Weibull density is given by 

fPTW(w) = � ββwβ−1 exp(−(�w)β )  (8)  
( ( (

/

)

/

)

× ρ (cu − µ)/ θ 1 − �2 − �y/ 1 − �2 

( (

/

)

/

))

− ρ (cl − µ)/ θ 1 − �2 − �y/ 1 − �2 

/(ρ((cu − µ)/θ ) − ρ((cl − µ)/θ )), 

where 

( ))−1 
(

y = ρ 1 − exp −(�w)β 

Thus, as we would expect, for � = 0, the pseudo-truncated Weibull density is simply the 

Weibull density, � ββwβ−1 exp(−(�w)β ). 
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Figure 2. Weibull probability plot of a pseudo-truncated Weibull with generating coefficient of 

variation equal to 0.25 and generating correlation equal to 0.0. The straight line is the ordinate equals 

abscissa line. 

In Appendix K of Verrill et al. (2012a), we show that as � ≤ 1, the density of a 

pseudo-truncated Weibull density converges to the density of a truncated Weibull. 

Figures 2 and 3 are (one version of) Weibull probability plots of PTW data. We plot the 

ordered data from a PTW sample against the predicted ordered data from the best Weibull 

6
0

 
8

0
 

1
0

0
 

1
2

0
 

A
c
tu

a
l 
o

rd
e

r 
s
ta

ti
s
ti
c
s
 

60 80 100 120 

Predicted order statistics 

Figure 3. Weibull probability plot of a pseudo-truncated Weibull with generating coefficient of 

variation equal to 0.25 and generating correlation equal to 0.99. The straight line is the ordinate 

equals abscissa line. 
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Efficient Estimation of a Bivariate Gaussian-Weibull 

fit to the data. If the data really were Weibull, then the plots would be approximately linear. 

In Fig. 2, the generating X, Y correlation was 0, so the data actually was Weibull and the 

plot is approximately linear. In Fig. 3, the generating X, Y correlation was 0.99, so the 

data was “far from Weibull” and the plot is quite nonlinear. For both data sets, the Weibull 

coefficient of variation was 0.25 and cl and cu corresponded to the 0.2 and 0.8 quantiles of 

the Gaussian distribution. 

In Appendix L of Verrill et al. (2012a), we formally establish that for � ≥= 0, pseudo

truncated Weibull distributions are not Weibull distributions. 

6. Summary 

In the context of wood strength modeling, we have introduced a bivariate Gaussian–Weibull 

distribution and the associated pseudo-truncated Weibull distribution. In this article, we 

have obtained the asymptotic distribution of the estimated parameter vector for a bi

variate Gaussian–Weibull distribution. In Verrill et al. (2012b,c) we describe a Web-

based program that obtains this asymptotically efficient estimate, simulations that in

vestigate the small sample properties of this estimate, and additional simulations that 

establish that Weibull fits to PTW data can yield poor estimates of probabilities of 

failure. 
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2965 Efficient Estimation of a Bivariate Gaussian-Weibull 

Appendix A—Bivariate Gaussian–Weibull Density 

Let X, Y have a joint bivariate normal distribution with 

X ≡ N(µ, θ 2) 

Y ≡ N(0, 1) 

and correlation(X, Y ) = �. 

Since Y ≡ N(0, 1), we know that ρ(Y ) is distributed as a Uniform (0,1). (Here, ρ 

denotes the N(0,1) cumulative distribution function.) Thus, we know that 

W � (− ln (1 − ρ(Y )))1/β /� ≡ Weibull(�, β)  (A.9)  

(a two-parameter Weibull distribution with scale parameter 1/� and shape parameter β). 

We then say that X, W have a bivariate Gaussian–Weibull distribution with parameters 

µ, θ , �, � , and β. 

Using the multivariate form of the change-of-variables theorem (see, for example, 

Rudin 1987), we can calculate the joint density function of X,W . First, we invert Eq. (9) 

to obtain 

−1 
( ( ))

Y = ρ 1 − exp −(�W )β

Thus, the transform that takes (x,w) to (x, y) is  

    

=

T(x,w) = T1(x,w) 

T2(x,w)

The corresponding Jacobian matrix is

= x 

ρ 1 − exp(−(�w)β)−1 
( )

    

σT1/σx σT1/σw 1 0 

σT2/σx σT2/σw 0 � ββwβ−1 exp(−(�w)β)/π(ρ−1(1 − exp(−(�w)β)))

and the absolute value of its determinant is 

det = � ββwβ−1 exp(−(�w)β)/π(ρ−1(1 − exp(−(�w)β))). 

Thus, the Gaussian–Weibull pdf at x,w is 

bivnorm(x, y, µ, θ, �) × det, (A.10) 

where 

−1 
( ( ))

y = ρ 1 − exp −(�w)β (A.11) 

and 

1 1 
bivnorm (x, y, µ, θ, �) = × / × exp(arg) 

2δ θ 1 − �2 

where 

(

2
)

arg = − (x − µ)2/θ 2 − 2�(x − µ)y/θ + y /(2(1 − �2)) 
(

2
)

2 2 2= − (x − µ)2/θ 2 − 2�(x − µ)y/θ + � y + y 2 − � y /(2(1 − �2)) 

http:�(�w)�(A.11
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2966 Verrill et al. 

2= − ((x − µ)/θ − �y)2 /(2(1 − �2)) − y /2 

That is, the Gaussian–Weibull pdf at x,w is given by 

( )

gaussweib(x,w; µ, θ, �, �, β) � � ββwβ−1 exp −(�w)β (A.12) 

1 1 
×∼ / exp (− ((x − µ)/θ

2δ θ 1 − �2 

−�y)2/(2(1 − �2))) 

√ 
Appendix B— n-consistent Initial Estimators of the Parameters 

We first list a lemma that provides a useful fact about the tail behavior of normal distri

butions. Versions of this fact have appeared previously in the statistical literature. See, for 

example, the discussions of “Mills’ ratio” in Kendall and Stuart (1977) and Johnson et al. 

(1994). The particular form of the fact described in Lemma 1 is due to Gordon (1941). A 

simple proof of Lemma 1 is given in Verrill and Durst (2005). 

Lemma B.1. For x <  0, 

2x /(x 2 + 1) < ρ(x)/ (π(x)/(−x)) < 1 (B.13) 

and for x >  0, 

x 2/(x 2 + 1) < (1 − ρ(x))/(π(x)/x) < 1, (B.14) 

where ρ(x) is the N(0,1) cumulative distribution function and π(x) is the N(0,1) probability 

density function. 

Now, to invoke Theorem 4.2 of Lehmann (1983) to establish that our final estimators 

of the parameters are asymptotically efficient, we need to establish that our initial estimates ∼ ∼ ∼ 
of the parameters are n-consistent. (ân is a n-consistent estimator of a if n(ân − a) = 

Op(1). A sequence of random variables {Xn} is Op(1) if given any β >  0, we can find 

constants Mβ, Nβ such that n > Nβ implies that Prob(|Xn| > Mβ) < β.) As our initial 

estimators of µ and θ , we take the univariate Gaussian maximum likelihood estimators 
/

x̄ = xi/n and s = (xi − x̄)2/n. As our initial estimators of � and β we take the 

univariate Weibull maximum likelihood estimators, �̂ and β̂; see, for example, Johnson ∼ 
et al., 1994. Thus, our initial estimators of µ, θ , � , and β are n-consistent. Our initial 

estimator of � is given by 

/

�̂ � ŝxy/ sxx ŝyy (B.15) 

where 

n 
L

ŝxy � (xi − x̄)(ŷi − ŷ̄) 

i=1 

n 
L

sxx � (xi − x̄)2 

i=1 

http:�x�)2/n.As
http:�(�w)�(A.12
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2967 Efficient Estimation of a Bivariate Gaussian-Weibull 

n 
L 

ŝyy � (ŷi − ŷ̄)2 

i=1 

n 
L 

ŷ̄ � ŷi/n 

i=1 

and 
( ( ))

−1 β ŷi � g(wi ; �̂ , β̂) � ρ 1 − exp −(�̂ wi)
ˆ

(B.16) 

Theorem B.1. 

∼ 
n (�̂ − �) = Op(1) 

where �̂ is defined in Eq. (15). 

Proof. We only outline the proof here. Details can be found in Appendix B of Verrill et al. 

(2012a). 

Define 

n 
L 

sxy � (xi − x̄)(yi − ȳ) 

i=1 

n 
L 

y)2 syy � (yi − ¯

i=1 

n 
L 

ȳ � yi/n, 

i=1 

where 

−1 
( ( ))

yi � g(wi ; �, β) � ρ 1 − exp −(�wi)
β (B.17) 

(The distinction between the “hatted” variables in definitions (16) and the “unhatted” 

variables in definitions (17) is that in the hatted case, �, β  are replaced by their estimates 

ˆ β.)� ,  ̂

We know that 

∼ 
r � sxy/ sxxsyy  

∼ ∼  
is a n-consistent estimator of �. (That is, we know that n(r − �) = Op(1).) Thus, we 

will be done if we can show that 

∼ 
n (r − �̂) = Op(1) (B.18) 

We have 

/∼ 
r − �̂ = sxy/ sxxsyy − ŝxy/ sxx ŝyy 

n n 
i=1(xi − x̄)(yi − ȳ) i=1(xi − x̄)(ŷi − ŷ̄) 

= ∼ − ∼ 
sxxsyy sxxsyy 

http:�(��wi)�(B.16
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2968 Verrill et al. 

n n 
i=1(xi − x̄)(ŷi − ȳ̂) i=1(xi − x̄)(ŷi − ŷ̄)

+ ∼ − /

sxxsyy sxx ŝyy 

� D1 + D2 (B.19) 

∼ 
To show that nD1 = Op(1), we need to show that 

n∼ L

( )

n (xi − x̄) yi − ȳ − (ŷi − ŷ̄) /n = Op(1) (B.20) 

i=1 

pn
By the Cauchy-Schwarz inequality and the fact that i=1(xi − x̄)2/n ≤ θ 2, we know that 

we can establish result (20) by establishing that 

n 
L

( )2 
yi − ȳ − (ŷi − ȳ̂) = Op(1) (B.21) 

i=1 

and it is clear that result (21) follows if 

n 
L 

(yi − ŷi)
2 = Op(1) (B.22) 

i=1 

n n 2(This follows because i=1(zi − z̄)2 � z .)i=1 i 

From definitions (16) and (17) we have 

n n 
L L

( ( ))2
(yi − ŷi)

2 = g(wi ; �, β) − g wi ; �̂ , β̂ (B.23) 

i=1 i=1 

By Taylor’s theorem this equals 

n 2 
L σg(wi ; θ )

|θ∗,i 
(�̂ − � ) + 

σg(wi ; θ )
|θ∗,i 

(

β̂ − β
) 

(B.24)
σ�  σβ 

i=1 

where θ = (�, β)T and θ∗,i � (�∗,i, β∗,i)
T lies on the line between (�, β)T and (�̂ , β̂)T . 

Thus, given the Cauchy-Schwarz inequality, to establish result (22), it is sufficient to 

establish 

L n 
σg(wi ; θ)

2 

|θ∗,i 
(�̂ − � )2 = Op(1) (B.25) 

σ�  
i=1 

and 

n 2 
L σg(wi ; θ ) ( )2ˆ|θ∗,i 

β − β = Op(1) (B.26) 
σβ 

i=1 

Because �̂ and β̂ are the maximum likelihood estimates of � and β, to establish results 

(25) and (26), it is sufficient to establish 

L n 
σg(wi ; θ )

2 

|θ∗,i 
/n = Op(1) (B.27) 

σ�  
i=1 

http:wi;��,��(B.23
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2969 Efficient Estimation of a Bivariate Gaussian-Weibull 

and 

L n 
σg(wi ; θ )

2 

|θ∗,i 
/n = Op(1)  (B.28) 

σβ 
i=1 

Consider result (27). We have 

n 2 2 
L Lσg(wi ; θ )  σg(wi ; θ )

/n =  /n|θ∗,i  
|θ∗,i

σ�   σ�  
i=1  wi<wlow 

L σg(wi ; θ )
2 

+  /n|θ∗,i
σ�  

wlow�wi �wup 

L σg(wi ; θ )
2 

+  /n|θ∗,i
σ�  

wup<wi 

� S1 + S2 + S3, 

where 0 < wlow < wup. Now  we have  

σg(wi ; θ )  ( ) ( −1 
( ( )))β∗,i −1 β∗,i|θ∗,i 

= β∗,i�∗,i wi exp −(�∗,iwi)
β∗,i /π ρ 1 − exp −(�∗,iwi)

β∗,i . (B.29)
σ�  

It is clear that this is “essentially” bounded for S2. However, for  S1 and S3 we have both numerators 

and denominators that are going to 0. The result is not immediately obvious. In Verrill et al. (2012a) 

we use Lemma 1 to show that S1 and S3 are Op(1). 

This establishes result (27). Thus, to complete the proof of (22) we need to establish 

result (28). In general, the proof of result (28) is essentially the same as the proof of result 

(27); see Verrill et al. (2012a) for details. 

As noted above, results (27) and (28) establish results (25) and (26) which establish 

result (22) which establishes 

∼ 
n D1 = Op(1).  (B.30) 

To complete the proof of the theorem we now need to show that 

∼ 
n D2 = Op(1).  (B.31) 

To establish (31), we first need to establish a few facts about yi and ŷi . By the Cauchy-

Schwarz inequality and result (22), we have 

n∼ � � ∼ L 
n ȳ − ȳ̂ � n |yi − ŷi | /n 

i=1 

1/2n 

�
∼ 

n  
L 

(yi − ŷi)
2 /n 

i=1 

1/2n 
L 

= (yi − ŷi)
2 = Op(1). 

i=1 
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2970 Verrill et al. 

Thus, 

∼ ( ) ∼ ( ) ( )2 2n ŷ̄ − ȳ = n ŷ̄ − ȳ ŷ̄ + ȳ = Op(1). (B.32) 

By the Cauchy-Schwarz inequality, we have 

n n 
L L 

(ŷi + yi)
2/n = (ŷi − yi + 2yi)

2/n (B.33) 

i=1 i=1 

� n n n 
� 

L L L 
� 2 � = 
� (ŷi − yi)

2/n + 4 (ŷi − yi)yi/n + 4 y /n
�i 

i=1 i=1 i=1 

1/2 1/2n n n 
L L L 

2� (ŷi − yi)
2/n + 4 (ŷi − yi)

2/n y /ni 

i=1 i=1 i=1 

n 
L 

+4 y 2/n. i 

i=1 

By results (22) and (33) and the fact that 

n 
L p2 y /n ≤ E(Y 2)i 

i=1 

we have 

n 
L 

(ŷi + yi)
2/n = Op(1) (B.34) 

i=1 

By the Cauchy-Schwarz inequality and results (22) and (34) we have 

n 
� n 

� � �∼ L

( ) ∼ L 
� 2 2 � � � 

n
� ŷ − y /n

� = n
� (ŷi − yi) (ŷi + yi) /n

� (B.35)i i 

i=1 i=1 

1/2 1/2n n∼ L L 
� n (ŷi − yi)

2 /n (ŷi + yi)
2 /n 

i=1 i=1 

= Op(1) 

By results (32) and (35) we have 

n n∼ ( ) ∼ L L

22 2 2 n ŝyy/n − syy/n = n ŷi /n − ŷ̄ − yi /n − ȳ (B.36) 

i=1 i=1 

n∼ L

( )

( )

22 2 2= n ŷ − y /n − ŷ̄ − ȳi i 

i=1 

= Op(1) 
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2971 Efficient Estimation of a Bivariate Gaussian-Weibull 

From result (36) we have 

∼ (/ /

) ∼ ( )

(

/ /

)

n ŝyy/n − syy/n = n ŝyy/n − syy/n / ŝyy/n + syy/n 

= Op(1). (B.37) 

Now 

n n 
1(xi − x̄)(ŷi − ȳ̂) 1(xi − x̄)(ŷi − ŷ̄)i= i=D2 � ∼ − / (B.38) 

sxxsyy sxx ŝyy 

/ /

n 
i=1(xi − x̄)(ŷi − ŷ̄) sxx ŝyy/n2 − sxxsyy/n2 

= × /

n sxxsyysxx ŝyy/n4 

� F1 × F2. 

By the Cauchy-Schwarz inequality and (36) 

1/2 1/2n n 
L L 

|F1| �  (xi − x̄)2/n (ŷi − ȳ̂)2/n (B.39) 

i=1 i=1 

/ / p= sxx/n ŝyy/n ≤ θ × 1. 

By results (37) and (38) 

∼ 
sxx∼ 

nF2 = /

/n 
×

∼ 
n 
(

/

ŝyy/n −
/

syy/n 
) 

= Op(1) (B.40) 
sxxsyysxx ŝyy/n4 

Results (38)–(40) imply that 

∼ 
nD2 = Op(1) (B.41) 

This completes the proof of the theorem. D 

Appendix C—Elements of the Information Matrix 

Denote the information by 

⎛ ⎞ 
a11 a12 a13 a14 a15 

⎜ ⎟a12 a22 a23 a24 a25 
⎜ ⎟ 
⎜ ⎟I (θ ) � a13 a23 a33 a34 a35 
⎜ ⎟ 
⎝ ⎠a14 a24 a34 a44 a45 

a15 a25 a35 a45 a55 

Then, from Appendices D and E2 of Verrill et al. (2012a) we have 

σ2 ln(f (x, w)) 1 
a11 = −E = (C.42)

σµ2 θ 2(1 − �2) 

σ2 ln(f (x, w)) 2 − �2 

a22 = −E = (C.43)
σθ 2 θ 2(1 − �2) 
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2972 Verrill et al. 

σ2 ln(f (x,w)) (1 + �2) 
a33 = −E = (C.44)

σ�2 (1 − �2)2 

2
σ2 ln(f (x,w)) �2 σy β2 

a44 = −E = E + , (C.45)
σ� 2 1 − �2 σ�  � 2

where y is given by (11) and 

σy ∼ 
β 2= 2δ × β� β−1 × w × exp(−(�w)β) × exp(y /2)

σ�  

�2 2
σ2 ln(f (x,w)) σy 1 

a55 = −E = E + (C.46)
σβ2 1 − �2 σβ β2 

+E 
(

(ln(w))2
) 
+ 

2 
E (ln(w)) 

β 

2 ln(� )
+2 ln(� )E (ln(w)) +

β 

+ (ln(� ))2 , 

where 

σy ∼ 
2= 2δ × (�w)β ln(�w) × exp(−(�w)β) × exp(y /2)

σβ  

σ2 ln(f (x,w))  
a12 = −E = 0 (C.47) 

σµσθ  

σ2 ln(f (x,w)) 
a13 = −E = 0 (C.48) 

σµσ�  

σ2 ln(f (x,w)) � σy 1 
a14 = −E = E (C.49)

σµσ�  1 − �2 σ�  θ 

σ2 ln(f (x,w)) � σy 1 
a15 = −E = E (C.50)

σµσβ  1 − �2 σβ θ 

σ2 ln(f (x,w)) −� 
a23 = −E = (C.51)

σθσ�  θ (1 − �2) 

σ2 ln(f (x,w)) �2 σy 
a24 = −E = E y (C.52)

σθσ�  θ (1 − �2) σ�  

σ2 ln(f (x,w)) �2 σy 
a25 = −E = E y (C.53)

σθσβ  θ (1 − �2) σβ 

σ2 ln(f (x,w)) � σy 
a34 = −E = E y (C.54)

σ�σ� 1 − �2 σ�  
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2973 Efficient Estimation of a Bivariate Gaussian-Weibull 

σ2 ln(f (x, w)) � σy 
a35 = −E = E y (C.55)

σ�σβ 1 − �2 σβ 

σ2 ln(f (x, w)) �2 σy σy β 
a45 = −E = E + E (log(w))

σ�  σβ  1 − �2 σ� σβ � 

1 β ln(� )
+ + (C.56)

� � 

We know that the expectations above involving partial derivatives of y exist and are fi

nite by work done in Appendix H of Verrill et al. (2012a). To calculate approximations 
(

to most of the expectations above—E((σy/σ� )2), E (σy/σβ)2
)

, E ((σy/σ� ) (σy/σβ)), 

E (y (σy/σ� )), E (y (σy/σβ)), E (σy/σ� ), and E (σy/σβ)—one can use, for example, the 
(

QUADPACK numerical integration routine dqags. E (ln(w))2
) 

and E (ln(w)) are related 

to the Euler–Mascheroni constant (see Eqs. (17)–(19) of Verrill et al. (2012a)) and can be 

calculated from it. 

Appendix D—Positive Definite Information Matrix 

To invoke Lehmann’s Theorem 4.2, we need to establish that the information matrix is 

positive definite. In Appendices E2 and E3 of Verrill et al. (2012a), we establish that 

σ2 ln(f (x, w)) σf/σγi σf/σγj
E − = E × (D.57)

σγiσγj f f 

Thus, 

5 5 
LL σf/σγi σf/σγj

aT I(γ )a = aiaj E ×
f f 

i=1 j=1 

⎛ ⎞

2
5 
L σf/σγi 

⎝ ⎠ = E ai ∗ 0. (D.58)
f 

i=1 

To complete the proof that I(γ ) is positive definite we need to show that 

5 
L σf/σγi 

ai = 0 a.e. (D.59) 
f 

i=1 

implies a = 0. From result (172) of Verrill et al. (2012a) we have 

( )5 x−µ 
L σf/σγi 1 − �y

θ ai = a1 × (D.60)
f θ 1 − �2 

i=1 

( )

x−µ−1 1 θ 
− �y x − µ 

+ a2 × + 
θ θ 1 − �2 θ 

( ) ( )2x−µ x−µ
� − �y y − �y �

θ θ+ a3 × + −
1 − �2 1 − �2 (1 − �2)2 

http:AppendixHofVerrilletal.(2012a).To
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2974  Verrill et al. 

β x − µ � σyβ+ a4 × − w β� β−1 + − �y
� θ 1 − �2 σ�  

1 
+ a5 × ln � + + ln(w) − (�w)β ln(�w)

β 

x − µ � σy
+ − �y

θ 1 − �2 σβ 

From result (137) of Verrill et al. (2012a), we have 

σy β= β� β−1 × w  × exp(−(�w)β)/π(y). (D.61)
σ�  

From result (138) of Verrill et al. (2012a), we have 

σy 
= (�w)β ln(�w) × exp(−(�w)β)/π(y) (D.62) 

σβ 

Recall that 

y � ρ−1(1 − exp(−(�w)β) 

Now let β >  0 be given. Then results (59)–(62) imply that given any w0, we can find an 

associated x,w rectangle chosen so that (x − µ)/θ − �y is small in the rectangle such that 

� −1 � 
a2 × + a3 ×  (D.63)

θ  1 − �2  

β  β+ a4 × − w β� β−1 

� 

1  � 
+ a5 × ln � + + ln(w) − (�w)β ln(�w) < β/2 

β 

for some (x,w) in the rectangle. 

A suitable rectangle can be written as [x0 − �, x0 + �] × [w0 − �,w0 + �] where � can 

be made arbitrarily small, (x0 − µ)/θ − �y0 = 0, and y0 = ρ−1(1 − exp(−(�w0)β). By 
5 σf/σγi(59), there must be some (x,w) in the rectangle for which ai = 0.i=1 f 

Taking w0 large enough 

|a4 + a5K ln(�w)| < β   (D.64) 

for K fixed and positive and w arbitrarily large. As β was arbitrary, this implies that a4 and 

a5 equal 0. 

Now, given results (59) and (60) and the fact that a4 = a5 = 0, given any β >  0, we 

can find an x,w region of positive measure (chosen so that y is large and (x − µ)/θ is 

bounded) such that (taking y large enough) 

� −� �3 
� 

a3 × − < β.  (D.65)
1 − �2 (1 − �2)2 
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2975 Efficient Estimation of a Bivariate Gaussian-Weibull 

This implies that a3 = 0 or  � = 0. If � = 0, then (given that a4 = a5 = 0) 

L 5 
σf/σγi 1 x − µ −1 1 x − µ 

2 

ai = a1 × + a2 × + 
f θ θ θ θ θ 

i=1 

x − µ 
+ a3 × y . (D.66)

θ 

Given results (59) and (66), given any β >  0, we can find an x,w region of positive measure 

(chosen so that y is large and (x − µ)/θ is bounded above and bounded below away from 

0) such that (taking y large enough) 

� x − µ � 
a3 × < β  

θ 

for arbitrary (x − µ)/θ in the bounded region. Thus, a3 = 0. 

Next, given results (59) and (60) and the fact that a3 = a4 = a5 = 0, given any β >  0, 

we can find an x,w region of positive measure (chosen so that (x − µ)/θ is large and y is 

bounded) such that (letting x get large enough) 

� 
�a2 × 

1 
� 

� 
� < β.  

� 

(D.11)
θ (1 − �2) 

This implies that a2 = 0. 

Finally, results (59) and (60) and the fact that a2 = a3 = a4 = a5 = 0 imply that a1 = 0, 

or a = 0 as needed. 




