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Abstract. Wepresent a general framework that converts certain types of linear collision-
resistant hash functions into one-time signatures. Our generic construction can be in-
stantiated based on both general and ideal (e.g., cyclic) lattices, and the resulting sig-
nature schemes are provably secure based on the worst-case hardness of approximating
the shortest vector (and other standard lattice problems) in the corresponding class of
lattices to within a polynomial factor. When instantiated with ideal lattices, the time
complexity of the signing and verification algorithms, as well as key and signature size,
is almost linear (up to poly-logarithmic factors) in the dimension n of the underlying
lattice. Since no sub-exponential (in n) time algorithm is known to solve lattice problems
in the worst case, even when restricted to ideal lattices, our construction gives a digital
signature scheme with an essentially optimal performance/security trade-off.
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1. Introduction

Digital signature schemes, initially proposed in Diffie and Hellman’s seminal paper [9]
and later formalized by Goldwasser, Micali and Rivest [13], are among the most impor-
tant andwidely used cryptographic primitives. Still, our understanding of these intriguing
objects is somehow limited. The definition of digital signatures clearly fits within the
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public key cryptography framework, yet their existence can be shown to be equivalent
to the existence of symmetric cryptographic primitives like pseudorandom generators,
one-way hash functions, private key encryption, or even just one-way functions [33,36].
When efficiency is taken into account, however, digital signatures seem much closer

to public key primitives than to symmetric ones. In the symmetric setting, functions are
often expected to run in time which is linear or almost linear in the security parameter
k. However, essentially all known digital signatures with a supporting proof of security
are based on algebraic functions that take at least Ω(k2) time to compute, where 2k is
the conjectured hardness of the underlying problem. For example, all factoring-based
schemes must use keys of size approximately O(k3) to achieve k bits of security to
counter the best known sub-exponential time factoring algorithms, and modular expo-
nentiation raises the time complexity to over ω(k4) even when restricted to small k-bit
exponents and implementedwith an asymptotically fast integermultiplication algorithm.
Digital signatures based on arbitrary one-way hash functions have also been consid-

ered, due to the much higher speed of conjectured one-way functions (e.g., instantiated
with common block ciphers as obtained from ad hoc constructions) compared to the cost
of modular squaring or exponentiation operations typical of number theoretic schemes.
Still, the performance advantage of one-way functions is often lost in the process of
transforming them into digital signature schemes: constructions of signature schemes
from non-algebraic one-way functions almost invariably rely on Lamport andDiffie’s [9]
one-time signature scheme (and variants thereof) which requires a number of one-way
function applications, essentially proportional to the security parameter. So, even if the
one-way function can be computed in linear time O(k), the complexity of the resulting
signature scheme is again at least quadratic Ω(k2).
Therefore, a question of great theoretic and practical interest is whether digital signa-

ture schemes can be realized at essentially the same cost as symmetric key cryptographic
primitives.While a generic construction that transforms any one-way function into a sig-
nature scheme with similar efficiency seems unlikely, one may wonder whether there
are specific complexity assumptions that allow to build more efficient digital signature
schemes than currently known. Ideally, are there digital signature schemes with O(k)
complexity, which can be proved as hard to break as solving a computational problem
which is believed to require 2Ω(k) time?

1.1. Results and Techniques

The main result in this paper is a construction of a provably secure digital signature
schemewith key size and computation time almost linear (up to poly-logarithmic factors)
in the security parameter. In other words, we give a new digital signature scheme with
complexity O(k logc k)which can be proved to be as hard to break as a problemwhich is
currently conjectured to require 2Ω(k) time to solve. The signature scheme is a particular
instantiation inside of a general framework that we present for constructing one-time
signatures from certain types of linear collision-resistant hash functions.
We show how to instantiate our general framework with signature scheme construc-

tions based on standard lattice and coding problems. The lattice problem underlying
our most efficient scheme is that of approximating the shortest vector in a lattice with
“cyclic” or “ideal” structure, as already used in [29] for the construction of efficient
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lattice-based one-way functions, and subsequently extended to collision-resistant func-
tions in [17,34]. As in most previous work on lattices, our scheme can be proved secure
based on the worst case complexity of the underlying lattice problems.
Since one-way functions are known to imply the existence ofmanyother cryptographic

primitives (e.g., pseudorandom generators, digital signatures, private key encryption),
the efficient lattice-based one-way functions of [29] immediately yield corresponding
cryptographic primitives based on the complexity of cyclic lattices. However, the known
generic constructions of cryptographic primitives from one-way functions are usually
very inefficient. So, it was left as an open problem in [29] to find direct constructions
of other cryptographic primitives from lattice problems with performance and security
guarantees similar to those of [29]. For the case of collision-resistant hash functions, the
problem was resolved in [17,34], which showed that various variants of the one-way
function proposed in [29] are indeed collision resistant. In this paper, we build on the
results of [17,29,34] to build an asymptotically efficient lattice-based digital signature
scheme.

Theorem 1.1. There exists a signature scheme (with security parameter k) such that
the signature of an n-bit message (for any message size n = kO(1)) is of length Õ(k)
and both the signing and verification algorithms take time Õ(n + k). The scheme is
strongly unforgeable in the chosen message attack model, assuming the hardness of
approximating the shortest vector problem in all ideal lattices of dimension k to within
a factor Õ(k2).

Our signature scheme is based on a standard transformation from one-time signa-
tures (i.e., signatures that allow to securely sign a single message) to general signature
schemes, together with a novel construction of a lattice-based one-time signature. We
remark that the same transformation from one-time signatures to unrestricted signature
schemes was also employed by virtually all previous constructions of digital signatures
from arbitrary one-way functions (e.g., [28,33,36]). This transformation, which com-
bines one-time signatures together with a tree structure, is relatively efficient and allows
one to sign messages with only a logarithmic number of applications of a hash func-
tion and a one-time signature scheme [38]. The bottleneck in one-way function-based
signature schemes is the construction of one-time signatures from one-way functions.
The reason for the slowdown is that the one-way function is typically used to sign a
k-bit message one bit at a time, so that the entire signature requires k evaluations of the
one-way function. In this paper, we give a direct construction of one-time signatures,
where each signature just requires two applications of the lattice-based collision-resistant
function of [17,29,34]. The same lattice-based hash function can then be used to effi-
ciently transform the one-time signature into an unrestricted signature scheme with only
a logarithmic loss in performance.

One-time signature. The high-level structure of our general framework is easily ex-
plained (see Fig. 1). The underlying hardness assumption is the collision resistance of a
certain linear hash function family mapping a subset S of Rm to Rn , where R is some
ring. The linear hash function can be represented by a matrixH ∈ Rn×m , and the secret
key is a matrix K ∈ Rm×k . The public key consists of the function H and the image
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K̂ = HK. To sign a message m ∈ Rk , we simply compute s = Km. To verify that s is
the signature of m, the verifier checks that s is in S and that Hs = K̂m. To make sure
that the scheme is complete (i.e., valid signatures are accepted), we need to choose the
domain of the secret keys and messages so that Km is always in S.
Depending on the choice of the ring R, we obtain one-time signatures based on

different complexity assumptions. Choosing R = Zp results in schemes based on the
SIS problem, R = Z2 gives us a scheme based on the Small Codeword Problem, and
setting R = Z[x]/(xn + 1) produces the most efficient scheme based on the Ring-SIS
problem.

Security proof. The security of our general framework relies on the assumption that for
a randomH ∈ Rn×m it is hard to find twodistinct elements s, s̃ ∈ S such thatHs = Hs̃. In
the security proof, when given a randomH by the challenger, the simulator picks a valid
secret key K and outputs H, K̂ = HK as the public key. Since the simulator knows the
secret key, she is able to compute the signature,Km, of anymessagem. If an adversary is
then able to produce a valid signature s̃ of some message m̃, he will satisfy the equation
Hs̃ = K̂m̃ = HKm̃. Thus, unless s̃ = Km̃, we will have found a collision for H. The
main technical part of our proof (Theorem 3.2) clarifies the necessary condition so that
the probability of s̃ �= Km̃ is non-negligible. Toward this end, we define a condition
called (ε, δ)-Hiding and then prove that if the domains of the hash function, key space,
and message space satisfy this requirement for a constant ε and a δ close to 1, then the
one-time signature scheme will be secure based on the hardness of finding collisions in
a random H. We remark that the (ε, δ)-Hiding property is purely combinatorial, and so
to prove security of different instantiations based on SIS, Ring-SIS, or coding problems,
we simply need to show that the sets used in the instantiations of these schemes satisfy
this condition.

1.2. Related Work

Lamport showed the first construction of a one-time signature based on the existence of
one-way functions. In that scheme, the public key consists of the values f (x0), f (x1),
where f is a one-way function and x0, x1 are randomly chosen elements in its domain.
The elements x0 and x1 are kept secret, and in order to sign a bit i , the signer reveals xi .
This construction requires one application of the one-way function for every bit in the
message. Since then, more efficient constructions have been proposed [2,5,6,11,15,27],
but there was always an inherent limitation in the number of bits that could be signed
efficiently with one application of the one-way function [12].
Provably secure cryptography based on lattice problems was pioneered by Ajtai [1]

and attracted considerable attention within the complexity theory community because of
a remarkableworst-case/average-case connection: it is possible to show that breaking the
cryptographic function on the average is at least as hard as solving the lattice problem
in the worst case. Unfortunately, functions related to k-dimensional lattices typically
involve a k-dimensional matrix/vector multiplication and therefore require k2 time to
compute (aswell as k2 storage for keys).A fundamental step towardmaking lattice-based
cryptography more attractive in practice was taken by Micciancio [29] who proposed a
variant of Ajtai’s function which is much more efficient to compute (thanks to the use of
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certain lattices with a special cyclic structure) and still admits a worst-case/average-case
proof of security. The performance improvement in [29] (as well as in subsequent work
[17,34]) comes at a cost: the resulting function is as hard to break as solving the shortest
vector problem in the worst case over lattices with a cyclic structure. Still, since the
best known algorithms do not perform any better on these lattices than on general ones,
it seems reasonable to conjecture that the shortest vector problem is still exponentially
hard. It was later shown in [17,34] that, while the function constructed in [29] was only
one-way, it is possible to construct efficient collision-resistant hash functions based on
the hardness of problems in lattices with a similar algebraic structure.

1.3. Comparison to the Proceedings Version of this Work

In the proceedings version of this work [18], we gave a direct construction of a one-time
signature scheme based on the hardness of the Ring-SIS problem. The major difference
of that scheme with the Ring-SIS scheme in this paper is the key generation algorithm.
In the current work, the secret key is simply chosen according to the uniform distribution
from some set. In [18], however, choosing a secret key first involved selecting a “shell”
with a geometrically degrading probability and then picking a uniformly randomelement
from it. The security proof in the current paper is also much more modular. In particular,
wefirst present an abstract framework for constructing one-time signatures of a particular
type and then show how this framework can be satisfied with instantiations based on
various problems such as SIS, Ring-SIS over the ring Z[x]/〈xn + 1〉, and the Small
Codeword Problem. Essentially, this paper is a simpler, more modular, and more general
version of [18].
We also showed, in the proceedings version, constructions of a Ring-SIS signature

scheme that worked over rings Z[x]/〈 f (x)〉 for an arbitrary monic, irreducible polyno-
mial f (x). Since the main focus of the current paper is on abstracting out the properties
needed for constructions of one-time signatures from linear collision-resistant hash func-
tions, we choose not to complicate matters by also presenting the various manners in
which one could do these constructions based on different forms of theRing-SIS problem
(some of which would require first presenting some background from algebraic number
theory). Below, we sketch the different manners in which one could proceed to define
and instantiate the one-time signature using different rings. The main difference lies in
the manner in which the length of polynomials is defined and the domain and range of
the hash function H.

The simplest definition of length is the “coefficient embedding,” where it is defined
by taking the norm of the vector formed by the coefficients of the polynomial. This is
the approach taken in [18] and involves the use of the “expansion factor” [17] which
gives an upper bound on the size of the norm of the product compared to the norm
of the multiplicands. A different way to define the norm of elements in Z[x]/〈 f (x)〉
is the “canonical embedding,” which is the norm of a vector formed by evaluating the
polynomial on the n (complex) roots of f (x). The advantage of this latter approach is
that bounding the product of the norm is very simple and does not depend on themodulus
f (x), because multiplication is component-wise in the canonical embedding.
If one uses the canonical embedding to define the norm, then one also has a choice as

to the domain and range of the hash function H. Instead of being restricted to the ring
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Z[x]/〈 f (x)〉, one may follow the approach taken in [35] and define collision-resistant
hash functions over the ring of integers of number fields Q(ζ ) where ζ is a primitive
root of f (x). In the case that f (x) is a cyclotomic polynomial and ζ is one of its roots
(i.e., some root of unity), the ring of integers of Q(ζ ) is exactly Z[x]/〈 f (x)〉, but in
other cases, the ring of integers may be a superset of Z[x]/〈 f (x)〉 and more “compact.”
Since keys need to be sampled from the domain of H, it is important that the ring of
integers ofQ(ζ ) is efficiently samplable in practice—which is not known to be the case
for particularly compact choices. Another choice for the domain (and range) ofH, most
applicable when f (x) is a cyclotomic polynomial, is the dual of the ring of integers (see
[19,20]). The idea here would be to haveH andm be elements of the primal ring, while
having K come from the dual one, which is sometimes a little bit more compact.
We point out that in the case of an irreducible f (x) of the form f (x) = xn + 1,

the coefficient and canonical embeddings are simply rigid rotations (and scalings) of
each other. Also, the ring of integers of Q(ζ ), where ζ is a root of xn + 1, is exactly
Z[x]/〈xn + 1〉, and the dual of this ring is the same ring scaled by an integer. Therefore,
if we choose to work modulo xn + 1, all the above choices are exactly equivalent.

2. Preliminaries

2.1. Signatures

We recall the definitions of signature schemes and what it means for a signature scheme
to be secure. In the next definition, G is called the key generation algorithm, S is the
signing algorithm, V is the verification algorithm, and s and G(s) are, respectively, the
signing and verification keys.

Definition 2.1. A signature scheme consists of a triplet of polynomial-time algorithms
(G, S, V ) such that for any n-bit message m and secret key s (of length polynomial in
n), we have

V (G(s),m, S(s,m)) = 1

i.e., S(s,m) is a valid signature for message m with respect to public key G(s).

Notice that, for simplicity, we have restricted our definition to signature schemes where
the key generation and signing algorithms are deterministic, given the scheme secret key
as input. This is without loss of generality because any signature scheme can be made
to satisfy these properties by using the key generation randomness as secret key, and
derandomizing the signing algorithm using a pseudorandom function.
A signature scheme is said to be strongly unforgeable (under chosen message attacks)

if there is only a negligible probability that any (efficient) adversary, after seeing any
number of message/signature pairs for adaptively chosen messages of his choice, can
produce a new message/signature pair. This is a stronger notion of unforgeability than
the standard one [13], which requires the adversary to produce a signature for a new
message. In this paper, we focus on strong unforgeability because this stronger property



780 V. Lyubashevsky, D. Micciancio

is required in some applications, and all our schemes are easily shown to satisfy this
stronger property. A one-time signature scheme is a signature scheme that is meant to be
used to sign only a single message, and is only required to satisfy the above definition of
security under properly restricted adversaries that receive only one signature/message
pair. The formal definition is given below.

Definition 2.2. A one-time signature scheme (G, S, V ) is said to be strongly unforge-
able if for every polynomial-time (possibly randomized) adversaryA, the success prob-
ability of the following experiment is negligible: choose s uniformly at random, compute
v = G(s), pass the public key to the adversary to obtain a query message m ← A(v),
produce a signature for the message s = S(s,m), pass the signature to the adversary to
obtain a candidate forgery (m̃, s̃) ← A(v, s), and check that the forgery is valid, i.e.,
(m, s) �= (m̃, s̃) and V (v, m̃, s̃) = 1.

2.2. Lattices and the SIS Problem

An n-dimensional integer lattice L is a subgroup of Zn . A lattice L can be represented
by a set of linearly independent generating vectors, called a basis.

Definition 2.3. For an n-dimensional lattice L and all 1 ≤ i ≤ n, p ∈ {Z+,∞}, the
positive real numbers λ

p
i (L) are defined as

λ
p
i (L) = argmin

x∈R
(∃ i linearly independent vectors in L of �p − norm at most x).

Definition 2.4. The approximate search Shortest Vector Problem SVPp
γ (L) asks to find

a vector v ∈ L such that ‖v‖p ≤ γ · λ
p
1 (L).

Definition 2.5. For an n-dimensional lattice, the approximate search Shortest Indepen-
dent Vector Problem, SIVPp

γ (L) asks to find n linearly independent vectors v1, . . . , vn ∈
L such that maxi ‖vi‖p ≤ γ · λ

p
n (L).

Definition 2.6. In the Small Integer Solution problem (SIS∞
p,n,m,β), one is given a

matrixH ∈ Z
n×m
p and is asked to find a nonzero vector s ∈ Z

m such that ‖s‖∞ ≤ β and
Hs = 0 (mod p).

Ajtai’s breakthrough result [1] and its subsequent improvements (e.g., [31]) showed
that if one can solve SIS in the average case, then one can also solve the approximate
Shortest Independent Vector Problem (SIVP) in every lattice.

Theorem 2.7. [14,30,31] For any β > 0 and modulus p ≥ β
√
mnΩ(1) with at most

nO(1) factors less than β, solving the SIS∞
p,n,m,β problem (on the average, with non-

negligible probability n−Ω(1)) is at least as hard as solving SIVPγ in the worst case on
any n-dimensional lattice within a factor γ = max{1, β2√m/p} · Õ(β

√
nm).

In particular, for any constant ε > 0, β ≤ nε , and p ≥ β
√
mnε , SIS∞

p,n,m,β is hard on

average under the assumption that SIVPγ is hard in the worst case for γ = Õ(β
√
nm).
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2.3. Codes and the Small Codeword Problem

Definition 2.8. In the Small Codeword (SCn,m,β) problem, one is given a matrix H ∈
Z
n×m
2 and a positive integer β, and is asked to find a nonzero vector s ∈ Z

m
2 such that

‖s‖1 ≤ β and Hs = 0(mod 2).

In this paper, wewill be interested in the above problemwherem is a small polynomial
in n and β = Θ(n). If β is too big (e.g., n/2), then the problem is trivially solved by
Gaussian elimination, but if β < n/4 (or really β < n/c for any constant c > 2), the
best algorithm seems to be the Generalized Birthday attack [4,39] where one only has
few samples, and so it runs in time 2Ω(n/ log log n) [21] when m > n1+ε for a constant ε.

2.4. Ring-SIS in the Ring Zp[x]/〈xn + 1〉
Let R be the ring Zp[x]/〈xn + 1〉 where n is a power of 2. Elements in R have a
natural representation as polynomials of degree n − 1 with coefficients in the range[
− p−1

2 ,
p−1
2

]
. For an element a = a0 + a1x + . . .+ an−1xn−1 ∈ R, we define ‖a‖∞ =

maxi (|ai |). Similarly, for a tuple (a1, . . . , am) ∈ Rm , we define ‖(a1, . . . , am)‖∞ =
maxi (‖ai‖∞). Notice that ‖·‖∞ is not exactly a norm because ‖αa‖∞ �= α‖a‖∞ for all
integers α (because of the reduction modulo p), but it still holds true that ‖a + b‖∞ ≤
‖a‖∞+‖b‖∞ and ‖αa‖∞ ≤ α‖a‖∞. It can also be easily checked that for any a,b ∈ R,
we have ‖ab mod xn +1‖∞ ≤ n‖a‖∞ ·‖b‖∞ and if a only had w nonzero coefficients,
then ‖ab mod xn + 1‖∞ ≤ w‖a‖∞‖b‖∞.

Definition 2.9. Let R be the ring Zp[x]/〈xn + 1〉. In the Small Integer Solution over
Rings problem (Ring-SISp,n,m,β), one is given a matrixH ∈ R1×m and is asked to find
a nonzero vector s ∈ Rm such that ‖s‖∞ ≤ β and Hs = 0 (mod p).

Theorem 2.10. [17] For m > log p/ log (2β), γ = 16β ·m · n log2 n, and p ≥ γ ·√n
4 log n ,

solving the Ring-SISp,n,m,β problem in uniformly random matrices in R1×m is at least
as hard as solving SVP∞

γ in any ideal in the ring Z[x]/〈xn + 1〉.

3. The One-Time Signature Scheme

In this section, we present our one-time signature scheme. The security of the scheme
is based on the collision resistance properties of a linear (e.g., lattice or coding based)
hash function. The scheme can be instantiated with a number of different hash functions,
leading to digital signature schemes that are ultimately based on the worst-case hardness
of approximating lattice problems in various lattice families (ranging from arbitrary
lattices, to ideal lattices) or similar (average-case) problems from coding theory.
The scheme is parametrized by

– integers m, k, n,
– a ring R
– Subsets of matrices H ⊆ Rn×m , K ⊆ Rm×k , and vectors M ⊆ Rk , S ⊆ Rm .



782 V. Lyubashevsky, D. Micciancio

Key Generation Sign(m) Verify(m, s)

Secret Key: K ∈ K Signature Check that m ∈ M,

Public Key: H ∈ H, K̂ = HK s = Km s ∈ S, and Hs = K̂m

Fig. 1. One-time signature scheme.

The parameters should satisfy certain properties for the scheme to work and be secure,
but before stating the properties, we describe how the sets of matrices are used to define
the one-time signature scheme.
The scheme is defined by the following procedures (also see Fig. 1):

– Setup: A random matrixH ∈ H ⊆ Rn×m is chosen and can be shared by all users.
The matrix H will be used as a hash function mapping (a subset of) Rm to Rn and
extended to matrices in Rm×k in the obvious way.1

– Key Generation: A secret key K ∈ K ⊆ Rm×k is chosen uniformly at random.
The corresponding public key K̂ = HK ∈ K̂ = Rn×k is obtained by hashing the
secret key using H.

– Signing: Messages are represented as vectors m ∈ M ⊂ Rk . On input secret key
K and message m ∈ M, the signing algorithm outputs s = Km ∈ Rm .

– Verification: The verification algorithm, on input public key K̂, message m and
signature s, checks that s ∈ S and Hs = K̂m.

The correctness and security of the scheme is based on the following three properties:

1. (Closure) Km ∈ S for all K ∈ K and m ∈ M.
2. (Collision Resistance) The function family {H : S → Rn | H ∈ H} is collision

resistant, i.e., any efficient adversary, on input a randomly chosen H, outputs a
collision (s �= s̃, Hs = Hs̃) with at most negligible probability.

3. (ε, δ-Hiding) For any H ∈ H, K ∈ K and m ∈ M, let

DH(K,m) =
{
K̃ ∈ K : HK = HK̃ ∧ Km = K̃m

}

be the set of secret keys that are consistent with the public keyHK andm-signature
Km associated with K. The scheme is (ε, δ)-Hiding if for any H ∈ H,

Pr
K∈K

[∀m �= m̃, |DH(K,m) ∩ DH(K, m̃)| ≤ ε|DH(K,m)|] ≥ δ.

In the analysis of the schemes in this paper, wewill only use the (ε, δ-Hiding) property
with ε = 1/2 and δ ≈ 1. For notational simplicity, if a scheme is (ε, δ-Hiding) for some
δ = 1− n−ω(1) overwhelmingly close to 1, then we simply say that it is (ε-Hiding). So,
the signature schemes analyzed in this paper can be described as being ( 12 -Hiding).

The (Closure) and (Collision Resistance) properties are self-explanatory, whereas the
(ε, δ-Hiding) one could use some motivation. For concreteness, let us use ( 12 -Hiding)

1To make sure that someone does not choose H with a planted trapdoor, it could be demanded that
H = XOF(x) where XOF is some extendable output function (e.g., SHAKE [32]) and x is a public seed.
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Fig. 2. (ε, δ)-Hiding property. IfDH(K,m) (respectively, DH(K, m̃)) is defined to be the set of secret keys
consistent with the public keyHK and signatureKm (respectively,Km̃), then we do not want the gray region
to be an overwhelming fraction of DH(K,m).

as an example. Recall from our proof sketch in Sect. 1.1 that we can find a collision to
the challenge hash functionH if the adversary returns a signature s̃ of a message m̃ such
that s̃ �= Km̃, where K is our chosen secret key with which we signed the message m.
If the adversary is to output a signature s̃ such that s̃ = Km̃, then K must be in the gray
intersection in Fig. 2. The ( 12 -Hiding) condition says that with probability≈ 1, this gray
region will be at most half the size of the setDH(K,m). Since after seeing the signature
of m, the secret key is equally likely to be anywhere in DH(K,m), it can be shown
that even an all-powerful adversary has at most an 1

2 chance of producing a signature
s̃ which equals Km̃. Thus, the reduction’s probability of outputting a valid collision is
1 − 1

2 = 1
2 .

Also note that the (Hiding) property precludes the message spaceM from containing
bothm and c ·m, for any c ∈ R. Intuitively, this should be disallowed because otherwise
an adversary who sees the signature s of messagem could output a forgery s̃ = c · s on
the message m̃ = c ·m. And indeed, this cannot happen if the scheme satisfies the (ε, δ-
Hiding) property for any ε < 1 and δ > 0. In fact, ifm and m̃ = c·m are both inM, then
one can see thatDH(K,m) ⊆ DH(K, c ·m). Therefore, |DH(K,m)∩DH(K, c ·m)| =
|DH(K,m)| and the (ε, δ-Hiding) property cannot hold for ε < 1 and δ > 0. Sincem is
a vector, the most natural way to enforce that c ·m cannot be inM (which is a necessary
condition a secure scheme needs to have) is to force all vectors in M to have 1 as their
last component. This is in fact how the message space is constructed in the examples in
Sect. 4.

Lemma 3.1. If the (Closure) property holds, then the scheme is correct, i.e., the veri-
fication algorithm always accepts signatures produced by the legitimate signer.

Proof. It immediately follows from the definition of the (Closure) property and the
signature verification algorithm.

Theorem 3.2. Assume the signature scheme satisfies the (ε, δ-Hiding) and (Closure)
properties. If there is an adversaryA that succeeds in breaking the strong unforgeability
of the one-time signature scheme with probability γ , then there exists an algorithm that
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can break the (Collision Resistance) property with probability at least (γ + δ −1) · (1−
ε)/(2 − ε) in essentially the same running time as the forgery attack.

In particular, if the (Closure), (Collision Resistance) and (ε-Hiding) properties hold
true for any constant ε < 1, then the one-time signature scheme is strongly unforgeable.

Proof. Let A be an efficient forger that can break the one-time signature scheme with
probability γ . We use A to build an attacker to the collision resistance of H that works
as follows:

1. Given an H ∈ H, pick a uniformly random secret key K ∈ K.
2. Send the public key (H,HK) to A.
3. Obtain query message m ← A(H,HK).
4. Check that m ∈ M and send the signature s = Km to A.
5. Obtain a candidate forgery (m̃, s̃) ← A(H,HK, s).
6. Output (Km̃, s̃) as a candidate collision to H.

By the (Closure) property, we may assume that s,Km̃ ∈ S are valid signatures. In the
rest of the proof,we assumewithout loss of generality thatA always outputs syntactically
valid messages m, m̃ ∈ M and a valid signature s̃ ∈ S satisfying Hs̃ = HKm̃. (An
adversary can always be modified to achieve this property, while preserving the success
probability of the attack, by checking that (m̃, s̃) is a valid message/signature pair, and
if not, output (m, s).) Under these conventions, the collision finding algorithm always
outputs a valid collision, and it is successful if and only if the collision is non-trivial,
i.e., the following event

Km̃ �= s̃ (Collision)

is satisfied. Similarly, the forger A always outputs a valid message-signature pair and
it is successful if and only if the pair is non-trivial, i.e., the condition

(m, s) �= (m̃, s̃) (Forgery)

holds true.
We know by assumption that this event has probability Pr{(Forgery)} = γ . We need

to bound the probability of (Collision). To this end, we replace step 6 in the above
experiment with the following additional steps

7. Choose a random bit b ∈ {0, 1} with Pr{b = 0} = (1 − ε)/(2 − ε), and Pr{b =
1} = 1 − Pr{b = 0} = 1/(2 − ε).

8. If b = 0, then set K̃ = K, and otherwise choose K̃ uniformly at random from the
set DH(K,m).

9. Output (K̃m̃, s̃) as an candidate collision to H.

Notice that the set DH(K,m) is always non-empty because it contains K. So, step 8 is
well defined. The success of the extended experiment is defined by the event

K̃m̃ �= s̃. (Collision’)
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Notice that this condition is identical to (Collision), except for the use of the new key
K̃ instead of the original one K. We remark that these additional steps are just part of
a mental experiment used in the analysis, and they are not required to be efficiently
computable.
We observe that the output of A only depends on its random coins and the messages

H,HK,Km received from the challenger. Moreover, by definition, DH is precisely
the set of keys K̃ that are consistent with these messages H, HK̃ = HK, K̃m =
Km. So, the conditional distribution of K given H,HK,Km is precisely the uniform
distribution over DH(K,m). This proves that the (K̃m̃, s̃) is distributed identically to
the output (Km̃, s̃) of the original collision finding algorithm. In particular, the original
and modified experiments have exactly the same success probability Pr{(Collision’)} =
Pr{(Collision)} at finding a non-trivial collision. So, in what follows, we will bound the
probability of (Collision’) rather than (Collision).
In order to bound the probability of (Collision’), we break the corresponding event

into three components:

Pr{(Collision’)} = Pr{(Collision’) ∧ (m = m̃)}
+Pr{(Collision’) ∧ (m �= m̃) ∧ (Collision)}
+Pr{(Collision’) ∧ (m �= m̃) ∧ ¬(Collision)}

and observe that the bit b is chosen independently ofm, m̃, s, s̃ and K, because only K̃
depends on b. In particular, the events (b = 0) and (b = 1) are statistically independent
from (m = m̃), (m �= m̃), the original (Collision) event Km̃ �= s̃, and the (Forgery)
event (m, s) �= (m̃, s̃).

First we consider the simple case whenm = m̃, i.e., the adversary attempts to forge a
different signature s̃ �= s for the same message m̃ = m. Formally, if (Forgery) ∧ (m =
m̃) ∧ (b = 0) holds true, then it must be that s �= s̃, K̃ = K and2

K̃m̃ = Km = s �= s̃.

But K̃m̃ �= s̃ is precisely the definition of (Collision’). So, (Forgery)∧(m = m̃)∧(b =
0) implies (Collision’) ∧ (m = m̃), and

Pr{(Collision’) ∧ (m = m̃)} ≥ Pr{(Forgery) ∧ (m = m̃) ∧ (b = 0)}
= Pr{(Forgery) ∧ (m = m̃)} · 1 − ε

2 − ε
.

We nowmove on to the case wherem �= m̃ and the (Collision) non-triviality property
s̃ �= Km̃ are satisfied, i.e., the adversary produces a forgery on a different message m̃
that leads to a collision in the original game. If (m �= m̃) ∧ (Collision) ∧ (b = 0), then
K̃ = K, and the (Collision’) property holds true because (Collision) and (Collision’)
are the same for K̃ = K. Therefore,

2 Notice that the following equality holds true alsowhenb = 1, because K̃m = Km for all K̃ ∈ DH(K,m).
But this is not used in this step of the proof.
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Pr{(Collision’) ∧ (m �= m̃) ∧ (Collision)}
≥ Pr{(m �= m̃) ∧ (Collision) ∧ (b = 0)}
= Pr{(m �= m̃) ∧ (Collision)} · Pr{b = 0}
≥ Pr{(Forgery) ∧ (m �= m̃) ∧ (Collision)} · 1 − ε

2 − ε
.

We remark that the last inequality is actually an equality because m �= m̃ implies the
(Forgery) property (m, s) �= (m̃, s̃), but this makes no difference in our proof.

For the last component, consider the set XH ⊆ K of all secret keys K satisfying the
(ε-Hiding) property

XH = {K ∈ K : ∀m �= m̃, |DH(K,m) ∩ DH(K, m̃)| ≤ ε|DH(K,m)|}.

We know that, by the (ε, δ-Hiding) assumption, for all H we have Pr{K ∈ XH} ≥ δ.
Using the independence of b, and a union bound, we see that the event

(m �= m̃) ∧ ¬(Collision) ∧ (K ∈ XH) ∧ (b = 1) (X )

has probability

Pr{(X )} = Pr{b = 1} · Pr{(m �= m̃) ∧ ¬(Collision) ∧ (K ∈ XH)}
≥ Pr{(m �= m̃) ∧ ¬(Collision)} − Pr{K /∈ XH}

2 − ε

≥ Pr{(Forgery) ∧ (m �= m̃) ∧ ¬(Collision)} − 1 + δ

2 − ε
.

Next, notice that the event (X ) implies ¬(Collision), i.e., s̃ = Km̃. So, given (X ),
the (Collision’) event K̃m̃ �= s̃ is equivalent to K̃m̃ �= Km̃. Therefore, for all K̃ such
that HK̃ = HK (in particular, for all K̃ ∈ DH(K,m)), and conditioned on (X ), the
(Collision’) property is satisfied if and only if K̃ /∈ DH(K, m̃), i.e.,

Pr{(Collision’) | (X )} = Pr{K̃ /∈ DH(K, m̃) | (X )}
= 1 − Pr{K̃ ∈ DH(K, m̃) | (X )}
≥ 1 − max

H,K∈XH,m �=m̃

|DH(K,m) ∩ DH(K, m̃)|
|DH(K,m)|

≥ 1 − ε

where, in the last inequality we have used the definition of XH. We can now compute

Pr{(Collision’) ∧ (m �= m̃) ∧ ¬(Collision)}
≥ Pr{(Collision’) ∧ (X )}
= Pr{(X )} · Pr{(Collision’) | (X )}
≥ (Pr{(Forgery) ∧ (m �= m̃) ∧ ¬(Collision)} − 1 + δ) · 1 − ε

2 − ε
.
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Adding up the three bounds gives

Pr{(Collision’)} ≥ (Pr{(Forgery)} − 1 + δ) · 1 − ε

2 − ε
= (γ − 1 + δ) · 1 − ε

2 − ε
.

Finally,we observe that for any δ = 1−n−ω(1) overwhelmingly close to 1 and constant
ε < 1, we have (γ − 1 + δ)(1 − ε)/(2 − ε) = O(γ − n−ω(1)). So, if the (Closure),
(ε-Hiding) and (Collision Resistance) properties hold true, then Pr{(Collision’)} and γ

are both negligible, and the signature scheme is strongly unforgeable. �

4. Instantiation with Lattices and Codes

In this section,we describe instantiations of our general one-time signature scheme based
on various classes of lattices and linear codes over finite fields. All schemes are proved
secure showing that they satisfy the [Closure], [ 12 -Hiding] and [Collision Resistance]
properties, and then using Theorem 3.2. Throughout this section, λ is a statistical security
parameter that can be set, for example, to λ = 128. The following simple lemma is used
in the analysis of all schemes.

Lemma 4.1. Let h : X → Y be a deterministic function where X and Y are finite sets
and |X | ≥ 2λ|Y |. If x is chosen uniformly at random from X, then with probability at
least 1 − 2−λ, there exists another x ′ ∈ X such that h(x) = h(x ′).

Proof. There are atmost |Y |−1 elements x in X forwhich there is no x ′ such that h(x) =
h(x ′). Therefore, the probability that a randomly chosen x does have a corresponding
x ′ for which h(x) = h(x ′) is at least (|X | − |Y | + 1)/|X | = 1 − |Y |/|X | + 1/|X | > 1
− 2−λ. �

4.1. One-Time Signature as Hard as SIS

The lattice-based signature scheme is defined by the sets in Fig. 3 parametrized by
integers n,m, k, p, w, and b which should satisfy certain relationships. The size of the
message space is

(k
w

)
, and so we need to set k and w so that this number is large enough.

The choice of k and w offers a trade-off between security and efficiency. Specifically,
the size of both secret and public keys is linear in k, so smaller values of k result
in more efficient schemes. On the other hand, larger values of w result in stronger
security assumptions. For proving the security of our scheme based on the SIS problem,

we also need to have b =
⌈

pn/m2λ/m−1
2

⌉
. For concreteness, the reader may assume

m = �(λ + n log2 p)/ log2 3�, which allows to set b = 1. In practice, larger values of
b may also be interesting, as they allow for smaller values of m. Again, this offers a
trade-off between security and efficiency, where smaller values of m result in shorter
signatures, while smaller values of b give better security guarantees.

Additionally, if we would like to preserve the connection between average-case SIS
and the worst-case SIVP problem from Theorem 2.7, then we will also need to have
p ≥ 2wb

√
mnΩ(1).
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R = Zp

H = Rn×m

K = {K ∈ Rm×k : ‖K‖∞ ≤ b}
M ⊆ {m ∈ {0, 1}k : ‖m‖1 = w}
S = {s ∈ Rm : ‖s‖∞ ≤ wb}.

Fig. 3. Instantiation of the one-time signature scheme based on general lattices. The sets are parametrized by
the integers n,m, k, p, w, b .

We now proceed to show that as defined above, our scheme satisfies the [Closure],
[Collision Resistance], and [ 12 -Hiding] properties defined in Sect. 3.

Lemma 4.2. The [Closure] property holds.

Proof. It is clear that for any secret key K and message m, we have ‖Km‖∞ ≤
‖K‖∞ · ‖m‖1 ≤ wb, and therefore Km ∈ S.

Lemma 4.3. The function family {H : S → Rn | H ∈ H} satisfies the [Col-
lision Resistance] property based on the average-case hardness of the SIS∞

n,m,p,2wb

problem. Furthermore, if p ≥ 2wb
√
mnΩ(1), then the property is satisfied based on

the worst-case hardness of SIVPγ in n-dimensional lattices for γ = Õ(wb
√
nm) ·

max{1, 4w2b2
√
m/p}.

Proof. The first part of the claim follows simply because if one can find x �= x′ ∈ S
for a random H from H such that Hx = Hx′, then one has that H(x − x′) = 0 and
‖x − x′‖∞ ≤ 2wb. The connection to SIVPγ follows directly from Theorem 2.7. �

Before analyzing the [ 12 -Hiding] property, we prove a simple lemma that states that
with very high probability, for a randomly chosen secret key K ∈ K, there are other
“similar-looking” possible secret keys K′ such that HK = HK′.

Lemma 4.4. Let b =
⌈

pn/m2λ/m−1
2

⌉
. For every H ∈ H, if K is chosen uniformly at

random from K, then with probability at least 1− k2−λ, there exists a key K′ ∈ K such
that HK = HK′ and K′ �= K differ in every column.

Proof. Consider H as a function mapping from domain X = {−b, . . . , b}m to range
Y = Z

n
p. Notice that by our choice of b, we have |X | = (2b + 1)m ≥ pn2λ; and |Y |

is exactly pn . By Lemma 4.1, we know that for a randomly chosen vector x ∈ X , with
probability at least 1 − 2−λ, there is another vector x′ ∈ X such that Hx = Hx′. Thus,
we have that for any particular columnK j , with probability at least 1−2−λ, there exists
a column K′

j such that HK j = HK′
j and K j �= K′

j . Applying the union bound, we get

that with probability at least 1− k2−λ this is true for every column j = 1, . . . , k, giving
a key K′ such that HK = HK′ and K j �= K′

j for all j . �
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Lemma 4.5. Let b =
⌈

pn/m2λ/m−1
2

⌉
as in Lemma 4.4. Then the scheme satisfies the

[ 12 -Hiding] property.

Proof. Fix a hash function H ∈ H. We know that with probability at least 1− k2−λ, a
randomly chosen key K has the property from Lemma 4.4, i.e., there is another key K′
such that HK′ = HK and K′

j �= K j for every j = 1, . . . , k. We now proceed to show
that for any such key K, and for any m �= m′, we have

|DH(K,m) ∩ DH
(
K,m′) | ≤ |DH(K,m) \ DH

(
K,m′) |, (1)

or, equivalently,

|DH(K,m) ∩ DH(K,m′)| ≤ 1

2
· |DH(K,m)|,

which proves the lemma.
In order to prove (1), we give an injective function f fromDH(K,m)∩DH(K,m′) to

DH(K,m) \ DH(K,m′). Sincem′ �= m, there must be a j such that the j th coefficient
is 0 in m and is 1 in m′. For any X ∈ DH(K,m) ∩ DH(K,m′), we define X′ = f (X)

as follows:

1. X′
i = Xi for all i �= j

2. X′
j ∈ {K j ,K′

j }\ {X j }. Notice that sinceK j �= K′
j , at least one of them is different

fromX j . If they are both different, thenX′
j can be chosen between them arbitrarily.

We need to show that X′ ∈ DH(K,m) \ DH(K,m′), and that f is injective.
For X′ ∈ DH(K,m) \ DH(K,m′), we need to verify the following three conditions:

HX′ = HK, X′m = Km and X′m′ �= Km′, under the assumption that HX = HK,
Xm = Km and Xm′ = Km′. For each i = 1, . . . , k, we have X′

i ∈ {Xi ,Ki ,K′
i }. Since

HX = HK and HK′ = HK (by our choice of K′), we have HX′ = HK, proving the
first condition. The second conditionX′m = Km follows from the fact thatX′m = Xm
(becauseX′ andX differ only in the j th column andm j = 0) andXm = Km. Similarly,
the third condition X′m′ �= Km′ follows from the fact that X′m′ �= Xm′ (because X′
and X differ only in the j th column and m′

j = 1) and Xm′ = Km′.
It remains to prove that f is injective. Assume for contradiction that f (X) = f (X′)

for some X �= X′ both in DH(K,m) ∩ DH(K,m′). Then, by definition of f , Xi = X′
i

for all i �= j . Therefore,X j andX′
j must differ. But thenXm′ �= X′m′ becausem′

j = 1,
and so they cannot both be in DH(K,m′). �

Combining the previous lemmas, and Theorem 3.2, we obtain the following corollary.

Corollary 4.6. For any ε > 0, let p ≥ 2wb
√
mnε and b =

⌈
pn/m2λ/m−1

2

⌉
. Then,

the one-time signature scheme from Sect. 3, instantiated with the sets in Fig. 3, is
strongly unforgeable under the assumption that SIVPγ is hard in the worst case for
γ = Õ(wb

√
nm)max{1, 2wb/nε}.
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R = Zp[x]/〈xn + 1〉
H = R1×m

K = {[k1,k2] ∈ Rm×2 : ‖k1‖∞ ≤ b, ‖k2‖∞ ≤ wb}
M ⊆ {m = [m1, 1]T ∈ R2, ‖m1‖∞ ≤ 1, ‖m1‖1 ≤ w}
S = {s ∈ Rm : ‖s‖∞ ≤ 2wb}.

Fig. 4. Instantiation of the one-time signature scheme based on ideal lattices.

In particular, for m = �(λ+n log2 p)/ log2 3�, b = 1 and p ≥ 2w
√
mnε , the scheme

is strongly unforgeable under the assumption that SIVPγ is hard in the worst case for
γ = Õ(w

√
nm)max{1, 2w/nε}.

4.2. One-Time Signature as Hard as Ring-SIS

Ourone-time signature basedon theRing-SISproblem fromDefinition2.9 is parametrized
by integers n,m, p, w, and b that must satisfy certain relationships. The integer n is as-
sumed to be a power of 2, so that the polynomial xn +1 is irreducible overZ[x]. The size
of the message spaceM is at most

∑
i≤w 2i

(n
i

)
, and so we need to set n and w to suffi-

ciently large integers.As usual, the choice ofn andw offers a trade-off between efficiency
and security. For proving the security of our scheme based on theRing-SIS problem, we
also need to have b = �(|M|1/n2λ/n p)1/m� and p > 8wb. Notice that by choosing m
large enough, one can set b = 1, but higher values of b can offer improved efficiency at
the cost of stronger security assumptions. Additionally, if we would like to preserve the
connection between average-case Ring-SIS and the worst-case SVP problem in ideal
lattices from Theorem 2.10, then we will also need to have p = ω(n1.5mwb).
The scheme is parametrized by the sets in Fig. 4. The message space is set to an

appropriate subset of all vectors with entries bounded by 1 in absolute value, and at most
w nonzero entries. The set M should be chosen in such a way that messages can be
efficiently encoded as elements of M.

Lemma 4.7. The function family {H : S → R | H ∈ H} satisfies the [Collision
Resistance] property based on the average-case hardness of the Ring-SISn,m,p,4wb

problem. Furthermore, for γ = 64wbmn log2 n and p ≥ γ
√
n

4 log n , the property is satisfied
based on the worst-case hardness of SVP∞

γ in all n-dimensional ideals of the ring
Z[x]/〈xn + 1〉.

Proof. The first part of the claim follows simply because if one can find x �= x′ ∈ S
for a random H from H such that Hx = Hx′, then one has that H(x − x′) = 0 and
‖x − x′‖∞ ≤ 4wb. The connection to SVP∞

γ follows directly from Theorem 2.10. �

Lemma 4.8. The [Closure] property holds true.
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Proof. Notice that for any secret key K = [k1,k2] and message m = [m1, 1]T ,

‖Km‖∞ = ‖k1m1 + k2‖∞ ≤ ‖k1m1‖∞ + ‖k2‖∞ ≤ wb + wb = 2wb.

�

Lemma 4.9. Let b = �(|M|1/n2λ/n p)1/m�. For everyH ∈ H, ifK is chosen uniformly
at random from K, then with probability at least 1 − 2−λ, for every message m ∈ M
there is another K′ ∈ K such that HK = HK′ and Km = K′m.

Proof. For anyH andm, consider (H,m) as a function that maps any element K in K
to the ordered pair (HK,Km). We will first show that the domain size of this function is
at least |M| · 2λ times larger than its range. The domain size of this function is exactly
|K| = (2b + 1)mn · (2wb + 1)mn . To bound the size of the range, we first notice that
by Lemma 4.8 we have ‖Km‖∞ ≤ 2wb. Therefore, the number of possibilities for
Km is at most (4wb + 1)mn . We then notice that while there are p2n possibilities for
HK = [Hk1,Hk2] in general, if we have already fixedH,m,Hk1, andKm, thenHk2 =
HKm−Hk1m1 is completely determined. Thus, there are only at most (4wb+1)mn · pn
possibilities for (HK,Km). Therefore, the ratio of the sizes of the domain and range of
the function (H,m) is at least

(2b + 1)mn · (2wb + 1)mn

(4wb + 1)mn · pn >
(2b + 1)mn · (2wb + 1)mn

(4wb + 2)mn · pn =
(

(b + 1
2 )

m

p

)n

.

Using b = �(|M|1/n2λ/n p)1/m� ≥ (|M|1/n2λ/n p)1/m − 1
2 , we get that the ratio is at

least |M|·2λ. Applying Lemma 4.1, we obtain that with probability at least 1−2−λ/|M|
over the random choice ofK ∈ K, there exists anotherK′ ∈ K such thatHK = HK′ and
Km = K′m. Applying the union bound over all messages inM concludes the proof. �

Lemma 4.10. Let b = �(|M|1/n2λ/n p)1/m� and p > 8wb. Then the scheme satisfies
the [ 12 -Hiding] property.

Proof. Fix H. By Lemma 4.9, we know that with probability of at least 1 − 2−λ over
the random choice of K, for every message m, the size of the set DH(K,m) is at least
2. To complete the proof, we will show that for all H,K,m �= m′, the size of the set
DH(K,m) ∩ DH(K,m′) is at most 1.
We prove that for any X,X′ ∈ DH(K,m) ∩ DH(K,m′), it must be X = X′. By the

definition ofDH, we know thatXm = X′m andXm′ = X′m′. Therefore, (X−X′)(m−
m′) = 0. But m − m′ = [m1, 1]T − [m′

1, 1]T = [m1 − m′
1, 0]T , and

(
x1 − x′

1

) (
m1 − m′

1

) = (
X − X′) (

m − m′) = 0 (2)

in the ring R. Now we observe that, since the product of ‖x1 − x′
1‖∞ ≤ 2b and ‖m1 −

m′
1‖1 ≤ 2w is at most 4wb < p/2, no reduction modulo p takes place during the

multiplication of (x1−x′
1) by (m1−m′

1), and therefore (2) holds over the ringZ[x]/〈xn+
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R = Z2

H = Rn×m

K = {K ∈ Rm×k : ‖K‖1 ≤ b}
M ⊆ {m ∈ Rk : ‖m‖1 = w}
S = {s ∈ Rm : ‖s‖1 ≤ wb}

Fig. 5. Code-based instantiation of the one-time signature scheme, parametrized by integers n,m, k, w, b.

1〉. Since Z[x]/〈xn + 1〉 is an integral domain and m1 �= m′
1, we can conclude that (2)

is equivalent to x1 = x′
1. This proves that the keys X and X′ have the same first vector.

But if x1 = x′
1, then we also have x2 = Xm − x1m1 = X′m − x′

1m1 = x′
2, and so the

two keys X,X′ are identical. �

Combining the previous lemmas, and Theorem 3.2, we obtain the following corollary.

Corollary 4.11. Let b = �(|M|1/n2λ/n p)1/m� and p > 8wb. Then, the one-time sig-
nature scheme from Sect. 3, instantiated with the sets in Fig. 4, is strongly unforgeable
based on the assumed average-case hardness of the Ring-SISn,m,p,4wb problem. Fur-

thermore, for γ = 64wbmn log2 n and p ≥ γ
√
n

4 log n , the scheme is secure based on the
worst-case hardness of SVP∞

γ in all n-dimensional ideals of the ring Z[x]/〈xn + 1〉.

We remark that for the message space M to be superpolynomial size, we must have
w = ω(1). So, even using Ring-SIS average-case hardness assumptions, we must have
p = ω(1). The expression for b can be simplified by setting |M| = 2n and λ = n. This
gives b = �(4p)1/m�, which, for m > (2 + log2 p)/(log2 3 − 1) = O(log p) is just
b = 1. In practice, one may want to use higher values of b (and smaller values of m),
to improve the signature size and overall efficiency of the scheme, at the cost of making
stronger security assumptions.
When basing the problem on the worst-case hardness of SVP on ideal lattices, one

could set w = O(n/ log n), b = 1, m = O(log p), modulus p = n2.5 log n, and
worst-case approximation factor γ = O(n2 log2 n).

4.3. One-Time Signature as Hard as the Small Codeword Problem

The code-based signature scheme is defined by instantiating the abstract construction
from Sect. 3 with the sets in Fig. 5 parametrized by integers n,m, k, w, and b which
should satisfy certain relationships. The size of the message space will be

(k
w

)
, and we

will prove the security of our scheme based on the hardness of the SCn,m,2wb problem
from Definition 2.8.

Unlike for the lattice scheme in the previous section, we do not have as much freedom
in how to set the parameters. This is mostly due to the fact that the ring in this scheme
is fixed to Z2, whereas in the lattice scheme, we had a the freedom to set the parameter
p for R = Zp. For some constants c, c′, we instantiate the scheme with parameters
m = nc+1+cλ/n , b = n/(c log n), and w = c′ log n. These values satisfy the relation



Asymptotically Efficient Lattice-Based Digital Signatures 793

b∑
i=0

(
m

i

)
>

(
nc+1+cλ/n

n
c log n

)
>

(
nc(1+λ/n) n

c log n

)
= 2n+λ,

which will be used to prove the security of the scheme based on the hardness of
SCn,m,2wb. Notice that for k = nΩ(1), the size of the message space size is |M| =(k
w

) = 2Ω(c′ log2 n), which is superpolynomial, but much smaller than the exponential
message space size of our lattice-based schemes. Finally, for the SCn,m,2wb problem to
be hard (see Lemma 4.13), we need 2wb = 2nc′/c < n/4. Thus, we require c′ < c/8.

Lemma 4.12. The [Closure] property holds

Proof. It is clear that for any secret key K and message m, we have ‖Km‖1 ≤ wb.

Lemma 4.13. The function family {H : S → Rn | H ∈ H} satisfies the [Collision
Resistance] property based on the average-case hardness of the SCn,m,2wb problem.

Proof. If one can find x �= X′ ∈ S for a random H from H such that Hx = Hx′, then
one has that H(x − x′) = 0 and ‖x − x′‖1 ≤ 2wb. �

Lemma 4.14. For every H ∈ H, if K is chosen uniformly at random from K, then
with probability at least 1 − k2−λ, there exists a key K′ ∈ K such that HK = HK′ and
K′ �= K differ in every column.

Proof. Consider H as a function mapping from domain X = {x ∈ Z
m
2 : ‖x‖1 ≤ b} to

range Y = Z
n
2. Notice that by our setup, |X | =

b∑
i=0

(m
i

) ≥ 2n+λ and |Y | is exactly 2n .

By Lemma 4.1, we know that for a randomly chosen vector x ∈ X , with probability at
least 1 − 2−λ, there is another vector x′ ∈ X such that Hx = Hx′. Thus, we have that
for any particular column K j , with probability at least 1 − 2−λ, there exists a column
K′

j such that HK j = HK′
j and K j �= K′

j . Applying the union bound, we get that with

probability at least 1− k2−λ this is true for every column j = 1, . . . , k, giving a keyK′
such that HK = HK′ and K j �= K′

j for all j . �

Lemma 4.15. The [ 12 -Hiding] property holds true.

Proof. The proof is verbatim the proof of Lemma 4.5 except that references to Lemma
4.4 should be replaced with references to Lemma 4.14. �

Combining the previous lemmas, and Theorem 3.2, we obtain the following corollary.

Corollary 4.16. Let m = nc+1+cλ/n, b = n/(c log n) and w = c′ log n for some
constants c > 8c′ > 0. The one-time signature scheme from Sect. 3, instantiated with
the set in Fig. 5, is strongly unforgeable based on the assumed average-case hardness
of the SCn,m,p,2wb problem.
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5. Conclusions and Open Problems

The main technical contribution of this work is a construction of a one-time digital sig-
nature scheme that takes Õ(k) time to compute and has conjectured security of 2Ω(k).
Since its original publication, the techniques in this paper were used as a starting point
in constructions of more “advanced” lattice primitives such as identification schemes
[22,23], signature schemes (without the “one-time” restriction) [3,8,10,23,24], blind
signature schemes [37], and ring signature schemes [26].3 The main conceptual differ-
ence between the one-time signature in this paper and the schemes listed above is that
it is fine to leak a little information about the secret key in the one-time construction as
long as it does not information-theoretically reveal the secret key. In the latter schemes,
however, this leakage occurs with every signature (not just once) and so will eventually
reveal the entire key. To prevent leakage while retaining efficiency, one needs to use the
“Fiat-Shamir with Aborts” technique introduced in [22,23] and refined in subsequent
works.
Because the full digital signature schemes mentioned above are fairly compact (signa-

tures and public keys around 2KB for 128 bits of conjectured security against quantum
attackers), one might think that the one-time signature in this paper would have even
smaller parameters. Unfortunately, this is not the case. Starting from [24], it was ob-
served that the optimal way to set parameters is to have the secret key K come from a
domain for which there is a unique K satisfying HK = K̂.4 The signature s = Km, on
the other hand, comes from a domain for which there are multiple possible s′ satisfying
Hs′ = K̂m. The reason for setting parameters in this manner is due to the fact that
the hardest knapsack problems have density 1 [16]—that is if H : D → R is a linear
function and D′ ⊂ D is a subset of D with small coefficients, then finding a pre-image
s ∈ D′ satisfying Hs = t is hardest when |D′| ≈ |R| and gets progressively easier as
|D′| increases or decreases. Positioning both the key and signature parameters around
density 1 knapsacks (unlike in this paper where the problem of recovering the key is
close to a density 1 problem, whereas recovering the signature is further away) therefore
allows us to base the hardness of the scheme on a harder problem.
In our current scheme, we crucially need that there exist multiple secret keys K for

every public key K̂, and so cannot use the smaller secret key domain mentioned above.
One may try to overcome this problem (and indeed this is what was done in [24]) by
using the indistinguishability of (H, K̂ = HK) from uniform based on the hardness of
the Learning with Errors problem to argue that we can substitute a real public by one
that comes from the domain we need for the proof. But using this idea, we run into the
problem that the reduction is not able to generate a valid signature. In [24] this was not an
issue because the random oracle could be programmed so that valid signatures could be
simulated even with an invalid public key. Without a random oracle, we do not see how

3All the signature schemes are proved secure in the random oracle model.
4We are just using the notation from this paper as an analogy. The actual keys in the full-fledged signature

are constructed a little differently. In particular, the (secret and public) keys in this work actually comprise
both the (secret and public) keys and the “commit” step of the Σ-protocols underlying the full signature
schemes. We refer readers to [23] for a more in-depth discussion about the relationship of collision-resistant
hash functions, one-time signatures, Σ-protocols, and full signatures.
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this step could be accomplished. Even with a random oracle, it is not straightforward to
adapt our current construction so that uses programming. In full-fledged signatures, the
distribution of the signature is independent of the secret key; thus, one could simulate a
valid signature (using standard simulation techniques for Σ-protocols) by first picking
a signature from the correct distribution and then filling in the other parts. In our case,
however, the signature depends on the secret key, and so the same simulation technique
does not work. In short, constructing a one-time signature scheme that is more practical
than full-fledged signatures in the random oracle model remains an open problem.
We mention that there was also recent work [25] that showed how to construct digital

signatures in the random oracle model based on the simultaneous hardness of the SIVP
problem simultaneously in all rings Z[x]/〈 f (x)〉. The construction was built on top of a
collision-resistant hash function defined over the ring Z[x] in which finding collisions is
as hard as solving the SIVP problem in all rings. It is relatively straightforward to adapt
our instantiation from Sect. 4.2 to this collision-resistant hash function.
An interesting question deals with improving the efficiency of the code-based scheme

in this paper.We show that it is possible to instantiate our general framework based on the
hardness of the Small Codeword Problem, but the resulting scheme is quite inefficient.
In particular, to get superpolynomial hardness, we are only able to sign messages of
length approximately log2 k and base the hardness of our scheme on a problem that is
only 2Ω(log2 k) hard. Interestingly, themore practical hash-and-sign code-based signature
schemeofCourtois et al. [7] is also asymptotically basedon the hardness of a problem that
is at most 2O(log2 k) hard. Furthermore, technical reasons prevent us from instantiating
the code-based scheme based on a problem allowing for a more structured public key,
analogous to Ring-SIS. Thus, the problem of constructing efficient code-based one-time
signatures without using random oracles remains open.
It would also be interesting to see whether our general framework can be instantiated

using different assumptions, such as those from multivariate cryptography.
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