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ASYMPTOTICALLY EFFICIENT SOLUTIONS TO
THE CLASSIFICATION PROBLEM

By Louis GorRDON! AND RICHARD A. OLSHEN?

Alza Corporation and University of California, San Diego

We study a class of decision rules based on an adaptive partitioning
of an Euclidean observation space. The class of partitions has a compu-
tationally attractive form, and the related decision rule is invariant under
strictly monotone transformations of coordinate axes. We provide suf-
ficient conditions that a sequence of decision rules be asymptotically Bayes
risk efficient as sample size increases. The sufficient conditions involve no
regularity assumptions on the underlying parent distributions.

1. Introduction and summary. In this paper we present asymptotic results for
the nonparametric, multivariate classification problem. The rules we study are
asymptotically Bayes risk efficient with no assumptions whatever regarding the
underlying distributions. Our results apply to show asymptotic efficiency of
variations of many successive partitioning solutions to the classification problem,
for example those of Anderson (1966) and of Morgan and Sonquist (described
in Sonquist (1970)). No result in such generality for this type of rule has been
available before. Recently Stone (1977) also has presented completely general
asymptotically efficient solutions to the classification problem. The rules to
which his and our results apply are different, and naturally the proofs are quite
different also.

Our work flows from ideas of Friedman (1977). He offers convincing evidence
that the recursive partitioning algorithms he studies are computationally at-
tractive for large data sets and are well suited for dealing with highly nonlinear
discrimination problems. Our interest in the present paper grew out of our at-
tempts to demonstrate the asymptotic efficiency of Friedman’s algorithms. First
we review some related previous work of others.

Fix and Hodges (1951) showed in effect that when both parent distributions
are Lebesgue absolutely continuous with almost everywhere continuous densities,
then kth nearest neighbor classification rules are asymptotically Bayes risk ef-
ficient as k and the sample size increase indefinitely in a prescribed way. The
Fix-Hodges result was the first in a.long line of results which in effect show
that when the parent distributions are Lebesgue absolutely continuous, then
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consistent estimates of densities provide asymptotically efficient solutions to
the classification problem. For example, Van Ryzin (1966) showed that under
various regularity conditions both kernel and orthogonal expansion estimates
of probability densities also give rise to asymptotically Bayes risk efficient clas-
sification procedures; moreover, he obtained rates of convergence. Pelto (1969)
studied adaptive asymptotically efficient kth nearest neighbor rules from a de-
cision theoretic viewpoint.

In work which has become famous in pattern,recdgnition, Cover and Hart
(1967) showed that (under regularity conditions) simple nearest neighbor clas-
sification asymptotically achieves at most twice the Bayes risk of the Bayes
classification rule for 0-1 loss. Stone’s cited work contains far reaching ex-
tensions of the Fix-Hodges, Pelto, and Cover-Hart results. His work explicitly
and our work implicitly also contain substantial general results on nonlinear
regression. Stone’s paper includes an extensive and useful bibliography on
related matters.

The rules discussed in the last paragraph lack an invariance enjoyed by the
classification problem: invariance under all strictly monotone transformations
of the coordinate axes. The maximal invariants are vectors of coordinate-wise
ordered population labels of the training sets. This invariance was discussed
by Anderson (1966, pages 22 to 24) in his work on statistically equivalent blocks.
Anderson’s rules are invariant and do partition the “feature space” by hyper-
planes as do ours, but their partitioning is not based on the data. Our theorems
show that Anderson’s rules can be universally asymptotically efficient.

Morgan and Sonquist have developed algorithms for nonlinear regression
which specialize to the classification problem when the dependent variable
assumes only two values (see Sonquist (1970)). They recursively partition
boxes (rectangular parallelopipeds with sides parallel to the coordinate axes)
so as to effect the greatest reduction in the variance of the dependent indicator
variable. Their rules for classification are invariant in the sense described.
From our theorems it follows that suitable extensions of their procedures are
asymptotically Bayes risk efficient.

Our work can be viewed as a continuation of the approach to classification
through consistent estimation of a pair of densities, but our densities are with
respect to a perfectly general dominating measure which need not be known to
the experimenter. In order that our mathematical results be pertinent to data
from the medical and social sciences, they must apply to distributions which are
partly discrete and partly continuous. In fact, they apply to data sampled from
arbitrary mixtures of purely discrete, absolutely continuous, and continous
singular distributions. Some of the technical difficulties encountered below
are the price paid for the full generality of the main result.

"It is useful here to introduce some notation. Throughout the paper we shall use
F and G to denote the distribution functions of our two populations. We assume
that in classifying a “test point” we suffer losses /, and /; for misclassifying
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when, respectively, F and G apply. We lose nothing for a correct classification.
Moreover, by x, and 7, we mean the respective prior probabilities that a test
point is from F and from G. Throughout the body of the paper we suppose
that n,l, = n;l;. (Extensions to the general case are easy and are mentioned
briefly in Section 5.) Statements of both Bayes classification rules and our
proofs in subsequent sections are facilitated by the introduction of H = . F +
75 G, the unconditional distribution function of the data.

(1.01) A Bayes rule for classifying an observation x assigns x to F whenever
(dF/dH)(x) exceeds 1, and to G otherwise, where dF/dH is some version of the
derivative. We say a procedure is asymprotically Bayes risk efficient if, as the
sizes of both training samples become arbitrarily large, the Bayes risk in clas-
sifying one additional observation approaches the Bayes risk of a Bayes procedure
based on complete knowledge of the underlying distributions F and G.

We study classification rules associated with partitions of a feature space into
boxes. Each partition of interest is a result of successive refinements of ancestor
partitions. The classification rule is by relative majority vote within each box
of the final partition. In essence, this relative majority vote provides an estimate
of the ratio of densities within the box in question. We introduce the notion
of a p-quantile cut with reference to the successive refinement of partitions to
enable us to obtain our principal contribution: if increasingly many p-quantile
cuts are performed relative to each coordinate axis as the training sample sizes
grow large, then the decision rule obtained from the final partition is asymp-
totically Bayes risk efficient, regardless of the parent distributions or intervening
cuts. Hence, in proving asymptotic efficiency, we may force p-quantile cuts,
or we may restrict our attention to parent distributions which guarantee that
such cuts will be made. Application of the result to Anderson’s and Morgan
and Sonquist’s classification schemes illustrates the former alternative.

The classification rules of this paper all involve a preprocessing of training
samples prior to any classification of data of unknown origin. A preprocessing
approach to a classification rule is foreshadowed, though not fully exploited,
in the work of Belson (1959) and Hills (1967). Both authors emphasize the
classification problem based on data with dichotomous features, and so typically
they do not have to deal with the question of how to cut again on a previously
sectioned axis. Belson remarks that he has implemented his procedure by means
of a card sorter.

The rules we introduce informally in (1.02) and study in detail in Section 4
are all asymptotically Bayes risk efficient for any pair of parent distributions.
In Section 2 we give precise conditions that any successive partitioning rule be
efficient in the described sense. The proofs there use the (martingale) argu-
ment that the conditional expectations of an integrable function relative to an
increasing sequence of sigma-fields tend almost surely to the conditional expec-
tation relative to the limiting sigma-field. Our sigma-fields are not nested,
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however, and we obtain only convergence in probability at the crucial juncture.
From one point of view, the arguments of Section 2 resemble those of, for
example, Jessen, Marcinkiewicz and Zygmund (1935) on the almost-everywhere
differentiability of multiple integrals where, in effect, the sigma-fields need not
be nested nor, for bounded functions, need the diameters of the boxes of the
partitions be controlled. However, the cited results pertain only to differenti-
ation with respect to Lebesgue measure. Recent related work on strong maxi-
mal theorems (for example, Cordoba and Fefferman (1975)) do not seem to
help either.

In Section 3 we apply the conditions of Section 2 to a set of criteria which
may be enforced upon any successive partitioning rule. Our basic mathematical
tools here are two-fold: first, a large deviation result of Kiefer (1961) concerning
deviations of multivariate empirical distribution functions and their expectations
and, second, an optional stopping inequality on the expected marginal probabili-
ty content of certain projections determined by the boxes of a partition. (The
Kiefer result is also used in Section 2.) The connection between the mathematics
outlined so far and the actual Bayes risk of a rule is made by an argument in
Section 2. There only the dominated convergence theorem and the splitting of
an integral are needed.

Section 4 contains a theorem whose implications are discussed informally in
(1.02) and also elaborations on the algorithms of (1.02). Section 5 includes
extensions of the results of the first four sections.

(1.02) Nonatomic marginal distributions. In the remainder of this section we
present applications of our theorem in a highly specialized context. Suppose
that we are given X, - - -, Xy, and Y,, - - -, Y,,» two training samples consisting
of independent observations from respective multivariate cumulative distribution
functions £ and G. We assume here that the one-dimensional marginal cumu-
lative distribution functions for each coordinate axis are nonatomic and that
¥r = #; = n. The first assumption obviates the need for the technical conside-
rations which preoccupy us in the remaining sections, and the second makes
for simpler prose.

We defer formal definition of box, and refer to any rectangular parallelopiped
with sides parallel to the coordinate axis as a box. Our decision rules may be
ambiguously defined on the boundary of a finite number of boxes, but this is
necessarily a set of F 4+ G measure 0.

We associate with any partition Q™ of feature space the decision rule d,:
classify any new observation having value x as drawn from F or G depending
on the sign of £,(B) — G,(B). The box in Q» containing x is denoted by B,
while £, and G, are the empirical probability measures associated with the X
and Y training samples. This rule corresponds to the choice of prior proba-
bilities 7, = m; = .
The algorithm (1.03) introduces the successive partitioning rules to which
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our results apply, though as it stands we cannot prove that the associated
decision rule is asymptotically Bayes risk efficient.

(1.03) We simplify Friedman’s (1977) algorithm to the following operations:

(a) Given a box check whether it contains fewer than nt points of the
combined training sample. If it does, refine this box no further. Classify
any new observation lying in this box as F or G by the cited criterion. If
the box has more than nf points, continue.

(b) Compute the d coordinatewise conditional empirical marginal cdf’s
of the training samples restricted to the box in question. Evaluate the
Kolmogorov-Smirnov distance between each of the 4 pairs of marginal
distributions, and cut the original box into two boxes at a sample point
maximizing the Kolmogorov-Smirnov distance with a cut perpendicular
to that axis yielding maximum separation over all axes. Repeat (a) for each
of the two resulting boxes.

(By Kolmogorov-Smirnov distance, we mean the distance between two cumu-
lative distribution functions with regard to the uniform metric, i.e., the two-
sided Kolmogorov-Smirnov statistic.)

Motivation for maximizing the Kolmogorov-Smirnov criterion when 7/, =
rgl, flows from an observation of Stoller (1954). For suppose that Fand G are
known univariate distributions, and that we are to cut the real line at a point,.
assigning the left region to one distribution and the right region to the other
so as to minimize the Bayes risk. Stoller observed that a solution consists of
choosing a point which maximizes the Kolmogorov-Smirnov distance between
the two distributions and making the obvious assignment.

Note that the algorithm (1.03) gives rise to a sequence of successively refined
partitions, and that, in the course of refinement, a parent box is cut into at
most two daughter boxes at each implementation of step b.

The following example illustrates a potential problem with successive par-
titioning algorithms (such as the one given) which are completely determined
by the coordinatewise marginal distributions of the box which next is to be cut.

(1.04) Suppose the “feature space” is the unit cube U in R®. Let Fand G
have densities f and g, where

f(x) =1
0(x) = (% + $)(cos [2n(x, + )] + 1) -

Both distributions have uniform marginal distributions on the first two
coordinates; for both, the third coordinate is independent of thefirst two.
Therefore, part (a) of the Friedman algorithm applied to the true cumulative
distribution functions would always cut orthogonal to the x, axis (in fact at the
dyadic rationals) and never on the x, or x, axes. The resulting decision rule
would not ultimately arbitrarily well approximate the Bayes rule. Indeed, the

‘
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conditional marginal cdf’s would become increasingly similar as the number of
cuts increased. With training samples one might hope that the algorithm would
homogenize the sample variation in the x, dimension within the given box to
such a degree that random fluctuations alone would eventually prevail to force
a cut in one of the other directions. Once one such cut were made, the apparent
uniformity of marginals within the cut box would disappear, and further cuts
in the x; and x, directions would be forced. Rather than rely on such thin
hopes, we here introduce an elementary notion of p-quantile cuts in the context
of parent distributions with nonatomic marginals. A substantial generalization
is necessitated in Section 3 by consideration of general parent distributions.

We say an ith p-quantile cut has been achieved if a box B is refined by a cut
perpendicular to coordinate axis i so that at most p of the original contents of
B lie in either of the two daughter boxes obtained. Note that of necessity p is
at least 4. In practice, p is close to 1. Our theorem (4.01) below shows that
if, in arriving at each box belonging to the final partition on which the decision
rule is based, an algorithm ultimately performs arbitrarily many quantile cuts
relative to each coordinate axis, then that rule is asymptotically Bayes risk
efficient.

In the following, we reformulate the algorithm (1.03) so that our theorem
(4.01) applies to it. The modifications force every coordinate to be used
occasionally and preclude refining cuts from being made too near the face of
a box.

(1.05) The following algorithm produces a decision rule which is asymp-
totically Bayes risk efficient for parent distributions with nonatomic coordi-
natewise marginals and prior probabilities 7, = 7, = 4.

(a) Given a box, check whether it contains fewer than nt points in the
combined training sample. If it does, refine this box no further. Classify
any new observation lying in this box as an F or G by the cited criterion.
If the box has more than nt points, continue.

(b) The user chooses a large integer M. If any axis i has not been cut
in the preceding M refinements of boxes ancestor to the box in question,
cut that box at the median ith coordinate of the combined X’s and Y’s lying
in that box, and return to step (a). Otherwise, employ the Kolmogorov-
Smirnov criterion as in algorithm (1.(53 b) to determine on which axis i the
refining cut is to be made. Cut perpendicular to axis i at the middle one
of the following three values: the (1 — p)th quantile of the i-coordinates
of the points belonging to the box, the pth quantile of the i-coordinates of
the points belonging to the box, a point at which the Kolmogorov-Smirnov
statistic is attained.

(1.06) The Morgan Sonquist AID algorithms (with sorting of classes sup-
pressed) described in Sonquist (1971, especially pages 221-230) may be used to
implement rules for the classification problem it the dependent variable is treated
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as a 0-1 indicator. The partition ultimately produced is used in the usual clas-
sification scheme by relative majority rule.

Since the dependent variable is two-valued, the Morgan-Sonquist criterion
for the decision to cut box B into boxes B, and B, perpendicular to axis i reduces
to a quantity proportional to the uncorrected chi-square statistic fora 2 x 2
contingency table. It is then straightforward to show that both daughter boxes
must have at least v/2 of the contents of the parent box whenever a Morgan-
Sonquist cut is mandated. Here v, a parameter specified by the user of the AID
algorithm, represents a minimal fraction of total variance explained. Therefore
all Morgan-Sonquist cuts are of necessity (1 — v/2)-quantile cuts. Note that
since each Morgan-Sonquist cut is predicated on an absotute reduction of the
within-partition sum of squares, no more than 1/v Morgan-Sonquist cuts can
be made in toto on any given axis.

(1.07) A prescription for minor modifications to the AID rules which render
them asymptotically Bayes risk efficient for parent distributions with nonatomic
marginals now follows:

(a) Given a box, check whether it contains fewer than nt points of the
combined training sample. If it does, refine this box no further. Classify
any new observation lying in this box as F or G by the cited criterion. If
the box has more than nt points, continue.

(b) Choose v(n) such that v(n) — 0 and 1/v(n) = o[log (n)]. Refine par-
titionsaccording to the AID criterion whenever possible. When no Morgan-
Sonquist cut can be made, cut the least recently cut axis at the median value
of the coordinates of training sample points in the box.

Notice that if the majority votes in all daughter boxes of a given box produce
the same winner, then, with regard to the classification rule, the partitioning
of the given box was gratuitous. Thus, we believe that the Morgan-Sonquist
algorithm alone suffices to produce asymptotically Bayes risk efficient procedures
for many problems.

2. Consistent estimation of densities. We here begin to face the technical
problems which result from allowing the parent distributions F and G to be
arbitrary. For example, suppose the data are two-dimensional, and that we are
required to perform a p-quantile cut on a box, perpendicular to the horizontal
axis. It may happen that all the data of the box lie on a vertical line running
through the box. We could cut the box in the vertical direction by partition-
ing the line on which the data lie so that part of the line is assigned the left
daughter box, and the remainder is assigned to the right daughter box. The
reader should see from this example that care is required in order to define
exactly the objects upon which our algorithms operate. It is to that end that
the following definitions are made.

(2.01) A basic box in R® is a triple (a, b, r) of vectors with a, b in R? and
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r.e{0, 1,2, 3}, foralli < d. We identify the basic box with the subset:
(2.02) B=Np-0xeRa, <x, <b}N Ny {xe R|a; < x; < by}
N N (X ER 6, < Xy S b} N Npyyog (X[ R @ < %, < b}

(2.03) A vertex of (a, b, r) is a vector v in R* with v, = a, or v, = b, for all
dimensions i. The vertex b is called the upper vertex and a is the lower vertex
of the basic box (a, b, r).

(2.04) The dimension of (a, b, r) is the cardinality of {i|a; < b;}.

(2.05) A subside of a basic box B = (a, b, r) is a basic box B’ = (a', V', r')
for which:

© (i) there exists a dimension i, for which a, < b, and
i
(ii) a, < a/ < b/ < b, for all dimensions i;

(iii) at least one vertex of B’ is a vertex of B.

a, = b;o = a;, or a, = béo = bio N

19

(2.06) A box is a union of a basic box and a set of subsides such that, for
each dimension i, for at most one subside is @/ = b, = b, and for at most one
subside is @/ = b/ = a,. Note that by definition, any box may be considered
a union of at most 2d 4 1 basic boxes, and that all boxes are convex.

(2.07) The closure of any box is a basic box. Given any box, we therefore
refer to the upper and lower vertices of its closure as the upper and lower
vertices of the original box. In (1.02) and in Sections 4 and 5 we explicitly
describe algorithms that provide classification rules invariant under the class
of coordinate by coordinate strictly monotone transformation of observations
(training samples). Therefore, without loss of generality, we assume that
F(U) = G(U) = 1, where U is the unit cube [0, 1]*.

(2.08) For the sake of a uniform notation, we reserve Q as a generic symbol
for a partition of U, all of whose component subsets are boxes B. For xe U,
we denote by B(x) the unique box in Q containing x. The upper and lower
vertices of B are denoted b(B) and a(B). We occasionally suppress the explicit-
ly stated dependence of a and b on B. If a sequence of partitions is discussed,
the index is superscripted, and the same indexing is carried to boxes. For ex-
ample, Q' denotes an element in a sequence of partitions and B™(x) is that
box in Q™ containing x.

(2.09) Suppose that we are confronted with a sequence of similar classifi-
cation problems and training samples on U, and that we apply a successive
partitioning algorithm to each. We then obtain a triangular array Q‘*? of par-
titions of U such that: (i) for the nth problem, Q*" is a refinement of Q™?,
and (ii) each partition is composed of a set of boxes. There is, however, no
refinement relation between Q% and Q" for n # n’. Proposition (2.10) is
addressed to that issue.
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(2.10) PROPOSITION. Let F, G be two arbitrary multivariate cumulative distri-
bution functions on U the unit cube in R*. Assume H = ¢F + (1 — ¢)G for some
¢ in (0, 1). Ler Q™ be a sequence of partitions of U satisfying:
(2.11) foreach n, Q™ s a finite set of boxes;
(2.12) there exists K with H(K) =1 such thatforeach xecK
and each dimension i,
sup {y:| y € B*(x) N K} — inf {y, |y e B¥(x) 0 K} - 0;

(2.13) H{x|H(B™(x)) > 0} —>1.
It follows that for any ¢ > 0,
(2.14) H{x||F(B™(x))/H(B"™(x)) — dF[dH(x)| > ¢} — 0.

ProoF. We show that any sequence satisfying (2.11), (2.12), (2.13) has a
subsequence satisfying (2.14). Let ¢ > 0 be arbitrary. H has only countably

many atoms, so we may proceed by the Cantor diagonal method to obtain a
subsequence 0™ such that for each direction i and atom x, eventually either

(2.15) x; = b(B™(x))  forall large n > N(x)

or B

(2.16) x; = d(B™(x))  for all large n > N(x)

or ,

(2.17) 4(B™(x)) < x, < by(B™(x))  forall n> N(x).

We now construct a monotone sequence of subsets 4, D 4, D --- and an in-
creasing sequence of integers n, < n, < - .. for which

(2.18) H(A)> 1—¢

(2.19) xed;y, 1mp11es B Mx) D B<ng+1>(x)

(2.20) xeA; implies K n B™i(x) C A4, .

Choose n, such that (2.13) is true for all n > n, on a set of mass at least 1 —
(¢/2). Let A, = K. Given n; and 4,, use (2.15-2.17) on the atoms and domi-
nated convergence elsewhere to obtain an n,,, with H{x|K n B™+(x) c K n
Bi(x)} > 1 — e. Now take 4,,, = {xe K|K n Bwi+(x) C K n B=(x)}.

Now denote by S, the o-algebra generated by {B™¥(x)|xe K, k < j}. Let §
be the c-algebra generated by the collection of S’j. The assumption (2.12) im-
plies that on K, § coincides with the Borel s-algebra restricted to K. By a well
known corollary to the martingale convergence theorem,

(2.21) dF|dH|S; — dF|dH |8 = dF|dH (H-almost surely) .
Further, (2.13) implies that on N 4;, dF/dH|S; eventually H-almost surely

equals F(ﬁ‘” P(x))/H(B(x)), and so F(B“”)/H(B‘”’) dF/dH tends to 0 H-
almost everywhere for the subsequence n; :
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(2.22) Denote by X, --- and Y, ... two independent sequences of inde-
pendent random vectors having respective distribution functions F, G with
support in U. Let H = ¢F 4 (1 — ¢)G where ¢ is a constant in (0, 1). Let
¥r-(n) and #4(n) be sequences of integers with #.(n) + #,(n) = n. We interpret
#r and %, as numbers of observations available at time n. Denote by F, the
empirical cumulative distribution function of X, ..., X, _, and similarly for G,.
Let A, = ¢F, + (1 — ¢)G,. Given a set 4 in U denote by #,(4) the number
of observations of either type in 4:

(2.23) $.(4) = () F(4) + $o(1)G,(4) -

(2.24) ProposITION. Let Q™ be as in (2.10). If in addition, eventually
(2.25) $-(n)/ne(6,1 — 0)  for some fixed, positive @,

(2.26) H{x|H(B™(x)) >0} > 1;

(2.27) there exists k(n) with k(n)/n} — 0o and

H{x|#.(B™(x)) > k(n)} — 1 in probability, then
(2.28)  H{x||F,(B™(x))/H,(B*(x)) — F(B™(x))[H(B™(x))| > ¢} -0
in probability for all positive «.

ProOF. According to a theorem of Kiefer (1961, Theorem 1-m), with arbi-
trarily high probability

(2.29) |E(B™) — F(B™)| < hs(n)
(2.30) (Go(B™) — G(B™)| < hy(n)
simultaneously for all B ¢ Q™ where n(hy(n) + he(n))/k(n) — 0. It therefore
suffices to observe that
(2:31) B (BW(x)[H(B®(x)) — F(B™(x))/H(B"(x))

< K(O)(nhp(m)[k(n) + [F(B™(x))[H(B™(x))][nho(n)/k(n)])
eventually with arbitrarily high probability for sufficiently large » on a subset

of U having arbitrarily large H-measure. This completes the proof of (2.24).
"~ Combination of the preceding two results proves

(2.32) PROPOSITION. [If Q'™ is a sequence of partitions satisfying (2.11), (2.12),
(2.13) of Proposition (2.10) and also satisfying (2.25), (2.26), (2.27) of Proposition
(2.24), then

(2.33) Hix||E(B™(x))/H,(B™(x)) — dF|dH(x)| > ¢} — 0
in probability for all positive ¢.
The proceeding result allows us to estimate consistently the Bayes rule (1.01).

(2.34)  Notation. We identify each classification rule with its associated indi-
cator function T(x), where 7(x) = 1 if the decision rule assigns an observation
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having value x to population F, and where 7(x) = 0 if the observation is assigned
to G. We denote the Bayes risk of procedure T by R(r) where

dF dG
(2.35) R(ty = E\rngpl(1 —T) i + n-GlGTEEdH.
The expectation reflects the data dependent nature of the decision rule 7.

(2.36) THEOREM. Let Q™ be a sequence of partitions derived from training
samples X, -+, Xy im and Y, - -, Y, i) satisfying (2.11), (2.12), (2.13), (2.25),
(2.26), and (2.27). Let T(x) = I yp/4zy>1, e the Bayes classification rule (1.01).
Let

(n) — A A
(2'37) ™ (x) - I(FW(Bln)m)/mm(B(M<z))>1) :

be the approximating rule based on Q'™ suggested by (2.33). Conclude that R(T™)
tends to R(T) as n tends to oo.

ProoF. Recall 7,1, = 7./, by assumption. Let

(2.38) R® = nyly + § 7pl, [_“iig_ _ gg] T™ dH |
Note that R™ is bounded. Since

dF . . dG (o
2.39 ar _ 1' lies |96 _ 1{ Trg,
( ) I < e implies ]dH < y 13

(2.32) implies that R™ tends in probability to 7yl + § nylx(dG/dH ~
dF|dH) T dH. This last assertion is made clear by breaking (2.38) into three
integrals: one over {dF/dH > 1 + ¢}, one over {dF/dH < 1 — ¢}, and one over
{|dF/dH — 1| £ ¢}. The dominated convergence theorem is applicable to the
first two integrals, while (2.39) is applicable to the third.

We next provide a criterion alternate to (2.12). This new criterion is easier
to verify.

3. Quantile cuts. The notion of p-quantile cut was motivated and introduced
in (1.02). When marginal distributions are continuous, it is intuitively clear
what such a partition of a box ought to be. However, the example discussed
at the outset of Section 2 suggests that more care is required when the distri-
butions F and G are arbitrary. In this section we give a careful definition of
p-quantile cut of a box in a specified direction, and explain how to perform one.
We expect that typically in practice the algorithms will automatically perform
these cuts with minimal external intervention. Also, in Section 2, the condition
(2.12) of (2.10) is not stated in a manner that appears to depend only on the
order statistics of the coordinates of the combined F and G observations in the
training sample. In what follows we define the norm of a partition and show
that convergence of that norm to 0 over a sequence of partitions ensures that
the condition (2.12) of the basic Proposition (2.32) holds.
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(3.01) Denote by H a Borel probability measure on U. Let H(x) =
H{y|y; < x;}. H, is the ith marginal of H, save that its argument has been
altered for notational convenience.

(3.02) Let B,, B,, B, be boxes contained in U. Let pe[4, 1) be a constant, -
and / index a coordinate in R¢. We say that B, and B, comprise an ith p-quantile
cut of B, relative to H if any of (3.03), (3.04) or (3.05) obtain.

(3.03) (a) through (e) hold.

(a) B, = B, U B,, a disjoint union;

(b) a,(B,) = a,(B,) = a,(B;) for all coordinate indices j = i;
(c) by(B,) = b,(B,) = b,(B,) for all coordinate indices j + i;
(d) ry(B,) = ry(B,) = ry(B,) for all coordinate indices j = i;
(e) H(B,) < pH(B,) for j =2, 3.

(3.04) (a) through (d) of (3.03) hold, and
(¢) H(B,) < H(B)) and H(b(B))) — H{(a(B) Z H(b(B,) — H(a(By).
(3.05) (a) B, = B, U B,, either a disjoint union or B, = By;
(b) ayB,) = by(B,) -

Note that (3.03) implies we may renumber B, and B, to obtain a,(B;) <
b(B,) = a(B;) < by(B,).

Note also that one can always perform an ith p-quantile cut on a given box
B. If one can satisfy neither (3.03) nor (3.05), then B = B, U B, U B, a disjoint
union of boxes which satisfy (3.03b—d). Further, we may take b,(B,) = ay(B,)
a constant. If H(b(B))) — H,(a(B))) < H,(b(B;)) — H/(a(B;)) then B, U B, and
B, comprise a p-quantile cut of B satisfying (3.04). Otherwise, B, and B, U B,
comprise a p-quantile cut satisfying (3.04).

(3.06) We next define the ith norm relative to H of a partition Q composed
of boxes:

QI = ZA[H.b(B)) — Hy(a(B))]H(B)| B e 0},

where i is a specified dimension in R¢. Note that ||Q||¥ is the expected value
of H,(b(X)) — H,(a(X)) where X is distributed as H. As a result, if Q® refines
QW, then ||Q®||¥ < ||@|#. The impact of the next proposition is to provide a
condition implying (2.12) which can be verified for the class of algorithms
presented in (1.02) and in Sections 4 and 5. The first hypothesis assures us that
the algorithm generating the partition frequently cuts boxes at about their cen-
ters on each of the axes. The proof of (3.07) is immediate from the combination
of Lemmas (3.09), (3.11), and (3.13), whose proofs complete this section.

(3.07) PROPOSITION. Let Q™ be a sequence of partitions of U composed of
boxes. Let p in [4, 1) be given. Let 6 in (0,1), F,G, H, X, ..., X,F(m and
Yy, -+, Yy, be given as in Section 2. In addition, assume:
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(a) for each Q™ there exists Q'™?, ..., Q"™ = Q™ a finite sequence of
partitions of U composed of boxes such that Q'™+V is a refinement of Q‘?;

(b) for each direction i, and fixed integer m, A (x| B™itD(a(B™(x))) and
B i+D(p(B™9(x))) comprise an ith p-quantile cut of B™?(x) relative to A,
for at least m distinct j’s} — 1,

(c) (without loss of generality for our applications) that each H, is of the
form H(t) = P(D(z) < t), where z is distributed as D;, an arbitrary univariate
cumulative distribution function;, ’

(d) k(n) has properties (2.27).

Conclude that
(3.08) H{x)b,(B"™(x)) — a,(B"™(x)) > ¢} -0
in probability for each positive e.

The following three lemmas all subsume the hypotheses and notation of the
previous proposition. The proofs of all three follow their statement. The
lemma (3.09) is the critical mathematical observation in the entire paper. The
reader is encouraged to intuit its implication for Lebesgue absolutely continu-
ous data, where (3.03¢) is the important assumption.

(3.09) LEMMA. Let M, = {x]B‘"»5+i’(b(B‘”'f)(x))) and B3+ (a(B™9(x))) are
ith p-quantile cuts of B™?(x) with respect to H, for at least m distinct values j}.
Conclude that for all n sufficiently large,

(3.10) Q@I < prH(M,) 4 (1 — p)TH(M,) + 0,(1),

where 0,(1) = (nfk(n))n~t + s, + O, (n"), and s, is a remainder term contributed

by the aggregate of those boxes containing fewer than k(n) observations.

(3.11) LEMMA. Let Z be the univariate random variable with cumulative distri-
bution function D. If a < B are elements of [0, 1}, § in the support of the measure
induced by D(Z), and P{D(Z) € (a, )} = O, then

(3.12) PD(Z) =}z f—a.
(3.13) LemMA. If ||Q™||¥ — O then there exists K with H(K) = 1 for which
(3.14) H{x|diameter (K N B™(x)) — 0} — 1

and . '

(3.15) if x, isan atom of the ith marginal of H, then

I(ai(B“""(a:))=x1) —1.

PROOF OF (3.09). Eventually an arbitrarily large proportion of observations
are in boxes of A, content greater than 6k(n)/n. Hence, there are at most
n/0k(n) such boxes in @, and, from Kiefer (1961) the difference between the
H, content and the H content of each is O (n%), so that

(3.16) Q]| — Q™| = 0,(1) .
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Now define iteratively the “stopping times”

(3.17) Ly(x) =0

(3.18) L (x) = min (n, min {k > L;_,(x)|B***(5(B*(x))) and
B*+b(a(b®(x))) are ith p-quantile cuts of
B®(x) with respect to H}).

Note that min (L,(x), k) is constant on the sets in Q. Define
(3.19) Q"m,m — {B(min(n,Lj(x)+l))(x) |xe U}
(3.20) Q30 = [BLi(x)|x e U} .

The O(n, ) are partitions composed of boxes. L; is measurable with respect to
the g-algebra generated by O(n, 2 — 1). For Be 0%~V and B c {L,;_, < n},
define

(3.:21) V(B) = A(B,)/A(B)
and
(3.22) W(B) = [H(b(B,)) — Hi(a(B)|/[H(b(B)) — H{(a(B))]

where B, is the box in 0?29 containing a(B). In case of division by 0, take ¥V’
or W to be 0. By backwards induction
(3.23) [0 < X {[A(b(B)) — H(a(B))]H(B)|Be O™
and L,,_,(x) < n for xeB} + H{x|L,, (x) = n}
< T {[B(5(B)) — H(a(B))|H(B)
(3.24) X [V(BYW(B) + (1 — V(B)X(1 — W(B))]| Be Qb
and L,;_(x) <n for xeB} + H{x|L,, (x) = n}
where, from the remark preceding (3.06), ¥(B) and W/(B) are in [0, 1], since
an ith p-quantile cut was done on B in going from Q-0 to 0. From
(3.02), (3.21) and (3.22)
(325) 0¥ < X {plH(6(B)) — H(a(B))]|B e G-
and L,;_(x) < n for xeB}+ H{x|L,,_(x) = n},
and so, from (3.16)

(3.26) 102/ < plIQ™*=*|[F] + H{Lyn_, = n} + 0,(1) -
PrROOF OF (3.11). It is well known that

(3.27) P{D(Z) < D(t)} = D()  for any scalar ¢

and that

(3.28) PID(ZYy<r} <7 forany ¢ in [0, 1].

From the hypotheses, D(D~[3, 8 4 6]) > O for all scalar § > 0, so there exists
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t with D(#) = 8. Hence P{D(Z)¢e[a + 0, 8]} = B — (r + 0) for all positive o
sufficiently small.

ProoF oF (3.13). The Markov inequality implies that H{x|H,(b(B~(x))) —
H(a(B™(x))) > &} goes to O for any positive ¢. Choose K with H(K) = 1 such
that x in K implies that for each direction i, either H,{x} is positive or that for
each d positive, both H,(x 4 de;) — H,(x) and H(x) — H,(x — de;) are positive,
where ¢, is the unit vector having 1 in the ith coordinate and 0 elsewhere.

If xe K and H{x} = 0, then H,(b(B"™(x))) — H,(a(B"™(x))) goes to 0, only if
b(B™(x)) — a,(B™(x)) goes to 0, by the construction of K.

If instead H,{x} > 0, then by (3.11), a,(B™(x)) = x, for all sufficiently large n,
establishing (3.15). Another argument by contradiction using (3.11) establishes
the convergence of 4,(B'™(x)) to a,(B™(x)).

4. Implementation of efficient rules. We continue by restating the results of
the preceding two sections in a usable form. We then sketch four sets of rules.
The first two extend (1.05) and are similar to the variable metric classification
algorithms of Friedman. The next is from rules studied by Anderson. The last
extends (1.07) and is motivated by the Morgan-Sonquist algorithms. All the
rules studied here are asymptotically Bayes risk efficient for all parent distri-
butions F and G.

Combination of (2.32) and (3.07) yields:

(4.01) PROPOSITION. Let X, -+, X, ,, and Y, ---, Y, be as in (2.32).
Assume that an algorithm applied to the observations satisfies (a) through (d) and

either (e) or (&'):

(a) for each n, the algorithm generates a sequence of successively refined
partitions Q*V, ..., Q™" = Q" of d-dimensional space consisting of a finite
set of boxes;

(b) there exists k(n) such that k(n)[n* — oo, k(n)/n — 0;

(c) Afx|£.(B(x)) > k(n) for Be Q"} — 1 in probability;

(d) the algorithm produces partitions Q'™ invariant under strictly monotone
transformations of coordinates of the observations;

(e) there exist monotone nondecreasing sequences m, — oo and p, €[}, 1)
forwhich (p,)™» — 0 and H,{x| for at least m, indices j, B™7+"(a) and B™*" (b)
comprise an ith p,-quantile cut of B™9(x) relative to H,, where a and b are the
upper and lower vertices of B™#(x)} — 1 in probability.

(¢") ||Q™|ff» — O in probability for all i.

Then the decision rule (4.02) below applied to the partition Q'™ is asymptotically
Bayes risk efficient, for the prior placing mass n, on F and ng on G.

(4.02) Classify a new observation Z to population F if
£ (BH(Z)ABZ) > 1,
where H, = 7, F, + 7,G,. Compare with (1.01).
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The first two rules discussed below have similar structures. We first describe
the simpler rule, indicate its limitations, and then describe a possible modifi-
cation.

(4.03) RuLe 1. Choose k(n) satisfying (4.01b) and p in [4, 1). Define a
subroutine that occasionally but arbitrarily often ensures an ith p-quantile cut
relative to H,.

Define iteratively partitions Q™?, ..., Q»® according to the following
scheme:

(a) Set Q™ = (R4},

(b) For each box B in Q"?, if #,(B) < k(n), then copy B into Q™3*V.
Otherwise go to (c). ‘

(c) Decide whether to demand an ith p-quantile cut, and, if so, for which of
the d directions. This decision may include the need for completing the par-
titioning started in step (e). Also, note that the decision is sometimes made
while performing step (e). If a quantile cut is necessary go to (d); otherwise,
go to (e).

(d) One can always perform an ith p-quantile cut satisfying (3.03), (3.04) or
(3.05). If possible select a cut with at least k(n)/2 observations in each of the
two (possibly identical) boxes comprising the cut.

If such a cut cannot be made, then at least #,(B) — k(n) observations in B
share the identical ith coordinate. Isolate all those points sharing that coordinate
in a box unto itself. Relegate the other observations in B to at most two additional
boxes. These operations may be performed in two consecutive steps, consisting
of two ith p-quantile cuts, and result in three boxes in Q. Note that (3.05)
is trivially satisfied on the axis cut at each subsequent partition for that box
containing the #,(B) — k(n) of the observations originally in B.

(¢) Compute the Kolmogorov-Smirnov distance between the marginal
conditional empirical cumulative distribution functions Emw()/F»(B) and
Gim(-)/GAi("’(B). Select a direction i, at which the maximum Kolmogorov—
Smirnov separation is attained. Attempt to cut B perpendicular to the direction
i, Actually perform the cut only if both boxes resulting from the cut would
contain at least k(n) observations; otherwise, go to (c), and there perform an
i-quantile cut relative to H,.

We explicitly verify condition (3.07d). Let k’'(n) = ntk(n)t. Recall that a
box with fewer than k(n) points can be created only in (4.01d). Further, when
such a box is created from box B, we have at worst B = B, U B, U B,,a disjoint
union, where #,(B, U B,) < k(n), a(B,) = b,(B,). One of these 3 boxes must
have no fewer than k(n)/3 points, and additional cuts on the other axes will be
made only if ,(B,) = k(n). No further cuts can be made along coordinate i.
Hence the terminal boxes can be matched so that each box with fewer than
k(n)/3 points is associated with a box having more than k(n)/3 points. In ad-
dition, no terminal box with more than k(n)/3 points is associated with more
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than 2d terminal boxes having fewer. Let m, be the number of terminal boxes
with fewer than k’(n) points. Let m, be the number of terminal boxes having
more than k(n)/3 points. Then m, < 2dm,, and m k(n)/3 < n. Hence the em-
pirical measure of all boxes having more than k’(n) points is at least 1 —
(6dk’(n)/k(n)) which converges to 1 as n increases indefinitely. Hence k’(n)
satisfies (2.27). Note that the partitions at each stage are composed solely of
simple boxes. While this algorithm is asymptotically Bayes risk efficient, it is
not local in its selection of cut points, since the quantile cut criterion (3.02)
depends on the marginals A, and £, for i < d.

(4.04) RuLe 2. It is with a view toward proposing a remedy to the non-
locality of the preceding example that the propositions were proved for boxes,
rather than simple boxes. We sketch in the following paragraphs an alternative
way to perform an ith p-quantile cut that always satisfies (3.03) or (3.05).

(4.05) LemMmA. Let A, ---, A, be events in the same sample space. Suppose
that P(A;) = (1 — 2a) and that « < 1/4n. Then P(4, 0 .. N A,) = 4.

ProoF. Boole’s inequality implies that P(4,° U - .- U 4,°) < 3172 - 1/4n = 4.

A box B and axis on which a quantile cut is to be made are assumed given.
For convenience, and without loss, assume the axis to be the dth. For present
purposes, by a “quantile cut” we mean a cut at, say, x,* with this property.
If H% , is the conditional empirical measure in the box induced by the first n
observations, then H} (B N {x, < x,*}) = p and H} ;(B N {x, > x,*}) = p. It
may happen that there is no such x,*. Instead there is a set {x, = x,**} which
has H} , probability at least 1 — 2p. Order the coordinates 1 through d — 1
according to their importance: the number of times they have been cut previ-
ously in arriving at B. (The ordering may not be unique.) Cycle through the
axes and pick the first axis which permits a cut of the given box intersected
with {x, = x,**} yielding two subboxes of the original box with the stated
“quantile cut property.” Were there not to exist such an axis, there would,
according to (4.05) and the implicit assumption that B has at least k observations,
be a point z of B N {x, = x,**} with at least 1k observations. To complete our
prescription, suppose now that the cited z exists. Separate z as a box unto itself
in the following manner. Cycle through the axes, cutting by hyperplanes par-
allel to the axes, where possible reducing the dimension of the box containing
z by 1 with each hyperplane. Make no cuts on any box not containing z.
Thereby, at most 2d 4 1 new boxes are created. The box’containing z has
dimension 0. The discussion following (4.03e) shows that (2.27) is satisfied
for the now completed rule.

(4.07) RULE 3. A particularly simple application of Theorem (4.01) is to
Anderson’s (1966, page 26) class of rules employing statistically equivalent
blocks. These rules are completely specified for parent distributions F and G
having nonatomic marginals. Conditions (b), (c), and (e’) can be verified di-
rectly for the sequence of rules in question, since for the rules based on these
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Q™, H{x|#,(B(x)) > k(n)} and ||Q(">||{:’n are strictly deterministic functions. Hence
a sequence of Anderson’s rules may be verified to be asymptotically Bayes risk
efficient for any pair of parent distributions having nonatomic marginals. The
latter restriction is convenient because Anderson’s rules are not well defined as
stated for parent distributions whose marginals do possess atoms.

(4.08) RULE 4. The Morgan-Sonquist AID algorithms (with sorting of classes
suppressed) have been described in (1.06). The general Morgan-Sonquist algo-
rithm uses (3.03)—(3.05), or (4.05), in place of cuts at the medians of (b) of
(1.07); (4.01) applies in a straightforward manner.

5. Extensions. Results of the previous sections have been contingent upon
the assumption that [z, = [;7;, where the I’s and z’s are losses and prior
probabilities introduced in Section 1. When the cited equality does not hold,
easy modifications of the previous algorithms are appropriate. Thus, in place of
the rule (1. 01) a more general Bayes rule assigns x to F whenever 7, [.(dF [dH )(x)
exceeds 7,ly(dG/dH)(x). In place of (4.02), therefore, a generalized rule would
classify Z to population F if

(3.01) 7plp E(B™(Z)) > 714G (B™(Z)) -

Recall that Rules 1 and 2 of the previous section both make repeated use
of the Kolmogorov-Smirnov distance between within-box empirical marginal
distributions and that motivation for maximizing the Kolmogorov-Smirnov
criterion when [, 7, = l;7; flows from an observation of Stoller (1954).
case l.m, +# l;m; the solution to Stoller’s problem, if one exists, consists of
picking x, which minimizes

(5.02) min {min, (L7, F(x) + lprg(l — G(x))),
min, (l7,G(x) + Lpag(l — F(x)))}

and again making the obvious assignment. When F and G are replaced by F
and G, solutions do exist, and we therefore recommend that the Kolmogorov-
Smirnov critericn for partitioning be replaced by the generalization which
follows from (5.02): partition on that axis and at that point for which (5.02) is
minimized for £® and G,™.

Our theorems show that when the ajgorithms are so modified—but quantile
cuts are kept—then asymptotic Bayes risk efficiency obtains as before. More-
over, it obtains also when the Kolmogorov-Smirnov criterion is retained but
the criterion (5.01) is employed.

Our theorems are stated for R?* (or without loss [0, 1]?) valued data. Because
no assumptions on F or G are required for the results, they apply as well when
some coordinates are manufactured from others given by the “raw data.” For
example, the sum or difference of two coordinates, or for that matter some
nonlinear function of a given set of coordinates, may be of scientific interest
a priori. These “fictitious coordinates” can be incorporated into the present
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rules. Both F and G will necessarily be singular with respect to Lebesgue
measure, but our conclusions are unaffected. So long as the input for the algo-
rithms is understood to consist of both “raw” and “fictitious” coordinates, the
rules retain their invariance.
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