
Asymptotically Improved Circuit for d-ary Grover’s Algorithm with Advanced
Decomposition of n-qudit Toffoli Gate

Amit Saha1,2,∗ Ritajit Majumdar3, Debasri Saha1, Amlan Chakrabarti1, and Susmita Sur-Kolay3

1A. K. Choudhury School of Information Technology,
University of Calcutta, India

2ATOS, Pune, India
3Advanced Computing & Microelectronics Unit,

Indian Statistical Institute, India
(Dated: May 19, 2022)

The progress in building quantum computers to execute quantum algorithms has recently been
remarkable. Grover’s search algorithm in a binary quantum system provides considerable speed-up
over classical paradigm. Further, Grover’s algorithm can be extended to a d-ary (qudit) quantum
system for utilizing the advantage of larger state space, which helps to reduce the run-time of the
algorithm as compared to the traditional binary quantum systems. In a qudit quantum system, an
n-qudit Toffoli gate plays a significant role in the accurate implementation of Grover’s algorithm. In
this article, a generalized n-qudit Toffoli gate has been realized using higher dimensional qudits to
attain a logarithmic depth decomposition without ancilla qudit. The circuit for Grover’s algorithm
has then been designed for any d-ary quantum system, where d ≥ 2, with the proposed n-qudit Toffoli
gate to obtain optimized depth compared to earlier approaches. The technique for decomposing an
n-qudit Toffoli gate requires access to two immediately higher energy levels, making the design
susceptible to errors. Nevertheless, we show that the percentage decrease in the probability of
error is significant as we have reduced both gate count and circuit depth as compared to that in
state-of-the-art works.

I. INTRODUCTION

The proliferation of quantum algorithms is gradually
grabbing the eye of researchers. Quantum computer
hardware is now available for physical implementation of
these algorithms to attain significant speedups [1]. Con-
ventionally, classical computers are designed on transis-
tors, which deal with binary bits at the physical level.
Quantum computers are designed to deal with qubit
technology. Albeit, the fundamental physics behind the
quantum systems is not inherently binary, on the con-
trary, a quantum system can have an infinite arity of
discrete energy levels. In reality, the limitation lies in
the fact that we need to control the system as per our
needs. Including additional discrete energy levels for the
purpose of computation helps us to realize the qudit tech-
nology quite comprehensively, which makes the system
more flexible with data storage and faster in processing
of quantum information.

Qudit technology generally deals with d-ary quantum
systems, where d > 2 [2]. For providing a larger state
space and simultaneous multiple control operations, we
consider qudits which eventually reduce the circuit com-
plexity and enhance the efficiency of quantum algorithms
[3–6]. For example, N qubits can be expressed as N

log2d

qudits, which shaves off by a log2d-factor from the run-
time of a quantum algorithm [7, 8]. The d-ary quan-
tum computing system can be realized on various phys-
ical technologies, for instance, continuous spin systems

∗ abamitsaha@gmail.com

[9, 10], superconducting transmon technology [11], nu-
clear magnetic resonance [12, 13], photonic systems [14],
ion trap [15], topological quantum systems [16–18] and
molecular magnets [19]. In this work, we consider the
implementation of Grover’s search algorithm [20] gen-
eralised to a d-ary quantum system. The goal of d-
ary Grover’s search algorithm is to search data from an
unstructured database, and attain significant speed-up
compared to its classical counterpart.

In this article, we have designed an efficient quantum
circuit for Grover’s algorithm using the proposed novel
decomposition of an n-qudit Toffoli gate [21]. For phys-
ical realization of n-qudit Toffoli gate, it is of utmost
importance to decompose it into one-qudit and/or two-
qudit gates. In [22], authors have proposed a qubit-qutrit
approach to decompose a generalized Toffoli gate, which
we have extended to n-qudit Toffoli decomposition with
the use of |d〉 and |d+ 1〉 quantum states as temporary
storage. We propose here an approach similar to that
in [22] for extending the decomposition of generalized n-
qudit Toffoli gate in terms of d+1-ary Toffoli gate. How-
ever, instead of decomposing d + 1-ary Toffoli gate for
simulation purpose, the d + 1-ary Toffoli gate has been
decomposed into d + 1-ary and d + 2-ary CNOT gates
to achieve optimized depth. By simply adding a discrete
energy level, we can easily have a higher dimension quan-
tum state for temporary use, since these are present only
as intermediate states in a qudit system, whereas the in-
put and output states are qudits. In the intermediate
operations alone, we introduce the |d〉 and |d+ 1〉 quan-
tum state of d + 2-ary quantum systems without ham-
pering the operation of initialization and measurement on
physical devices. By introducing the d+ 2-ary quantum
systems, the constraint of multi-valued multi-controlled

ar
X

iv
:2

01
2.

04
44

7v
3

 [
qu

an
t-

ph
]

 1
8

M
ay

 2
02

2

mailto:abamitsaha@gmail.com

2

Toffoli decomposition can be avoided. To the best of our
knowledge, it is a first of its kind approach. As the d-ary
system may need to occasionally access states beyond the
d-ary computational space — an engineering challenge,
it makes the system particularly susceptible to error [23].
We have shown the effect of generic noise models on the
proposed implementation of Toffoli decomposition.

Our contributions are the following:

• a novel technique to decompose a generalized n-
qudit Toffoli gate into a log2 n depth and no-ancilla
qudit equivalent circuit — as an example, a 8-qubit
Toffoli (C7NOT) gate realization has been demon-
strated and a comparative study depicts that our
approach is better than the existing approaches in
terms of a constant factor of gate cost reduction;

• a circuit for Grover’s search algorithm achieves a
logarithmic depth in any d-ary quantum system us-
ing the proposed decomposed n-qudit Toffoli gate
as compared to linear depth;

• study of the effect of the generic error models (gate
error and idle error) for the proposed decomposi-
tion, keeping aside the noise mitigation techniques
which are not addressed here.

The layout of this article is as follows. Section 2 de-
scribes the universal qudit gates. Section 3 presents the
d-ary Grover’s search algorithm. Section 4 illustrates the
decomposition of the proposed n-qudit Toffoli gate and
its comparative analysis. The performance of the de-
composition under various types of noise is presented in
Section 5. Section 6 captures our conclusions.

II. GENERALIZED QUDIT GATES

A qudit is the unit of quantum information for d-ary
quantum systems[24, 25]. Qudit states can be expressed
by a vector in the d dimensional Hilbert space Hd [7, 26].
The vector space is the span of orthonormal basis vectors
{|0〉 , |1〉 , |2〉 , . . . |d− 1〉}. The general form of qudit state
can be described as

|ψ〉 = α0 |0〉+α1 |1〉+α2 |2〉+· · ·+αd−1 |d− 1〉 =

α0

α1

α2

...
αd−1

(1)

where |α0|2 + |α1|2 + |α2|2 + · · ·+ |αd−1|2 = 1 and α0, α1,
. . . , αd−1 ∈ Cd. An overview of generalized qudit gates
is presented in this section. The generalisation can be
defined as discrete quantum states of any arity [27]. Uni-
tary qudit gates [28, 29] are applied on qudits to modify
the quantum state in a quantum algorithm [30]. For logic
synthesis of Grover’s algorithm in d-ary quantum sys-
tems, one needs to consider one-qudit generalized gates

such as NOT gate (Xd), Hadamard gate (Fd), two-qudit
generalized CNOT gate (CX,d) and Generalized n-qudit
Toffoli gate (Cn

X,d). These gates are defined next.

A. Generalized NOT Gate

Xd is the generalized NOT or increment gate [31].

B. Generalized Hadamard Gate

Fd is the generalized quantum Fourier transform or
generalized Hadamard gate [5, 32], which produces the
superposition of the input basis states.

C. Generalized CNOT Gate

Quantum entanglement is a phenomenal property of
quantum mechanics, and can be achieved by a controlled
NOT (CNOT) gate in binary quantum systems. For d-
ary quantum systems, the binary two-qubit CNOT gate
is generalised to CX,d |x〉 |y〉 = |x〉 |(y + 1) mod d〉 only
if x = d− 1, and otherwise = |x〉 |y〉 [33].

D. Generalized n-qudit Toffoli Gate

Next, we extend the generalized CNOT further to op-
erate over n qudits as a generalized n-qudit Toffoli gate
Cn

X,d [21]. For Cn
X,d, the target qudit is incremented by

1 (mod d) only when all the n − 1 control qudits are
d−1. The (dn×dn) matrix representation of generalized
n-qudit Toffoli gate is as follows:

Cn
X,d =

Id 0d 0d . . . 0d
0d Id 0d . . . 0d
0d 0d Id . . . 0d
...

...
...

. . .
...

0d 0d 0d . . . Xd

where Id and 0d are both d×dmatrices as shown below:

Id =

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 and 0d =

0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

Due to technology constraints, a multi-controlled Tof-

foli gate can be replaced by an equivalent circuit com-
prising one-qudit and/or two-qudit gates, albeit at first
the multi-controlled Toffoli has to be decomposed into
a set of Toffoli gates for an arbitrary finite-dimensional
quantum system [34]. In FIG. 1, we have shown an ex-
ample of the state-of-the-art approach of decomposition

3

of an 8-qubit Toffoli gate with the help of an intermediate
qutrit state [23, 35]. The equivalent circuit temporarily
stores information directly in the qutrit state |2〉 as the
controls,which are marked in blue color.

In the schematic diagram of the circuit, a circle de-
notes a control qubit, and a rectangle the target qubit.
As shown in FIG. 1, each of the two circles for the two
control qubits of the binary Toffoli gates in the first level
has 1 marked in it with blue color, and ‘X+1

3 ’ in the rect-
angle for the target qubit to represent the modulo 3 incre-
ment operation. The decomposed circuit can be treated
as a binary tree of gates which establishes the logarith-
mic depth for a multi-controlled Toffoli gate. It has the
property that the intermediate qubit of each sub-tree as
well as the root can only be raised to |2〉 if all of its seven
control leaves are |1〉. In order to verify this property,
we perceive that the qubit q3 can only become |2〉 if and
only if it was originally |1〉, and q1 and q5 qubits were
previously |2〉. Then at the subsequent level of the tree,
we observe that (i) qubit q1 could have been |2〉 only if
it was previously |1〉, and both q0 and q2 were |1〉 earlier,
(ii) qubit q5 could have been |2〉 only if it was previously
|1〉 and both q4 and q6 qubits were |1〉 earlier. If any of
the controls were not |1〉, the |2〉 state would fail to move
to the root of the tree. Hence, the CNOT gate toggles
the target qubit only if all controls are |1〉. The right half
of the circuit is the mirror circuit to restore the control
qubits to their original states. The authors in [33] have
further decomposed their ternary Toffoli gate into 13 one-
qutrit and two-qutrit gates for physical implementation
as shown in FIG. 2.

|q0〉 • |q0〉 1 1

|q1〉 • |q1〉 X+1
3 2 2 X−1

3

|q2〉 • |q2〉 1 1

|q3〉 • ≡ |q3〉 X+1
3 2 X−1

3

|q4〉 • |q4〉 1 1

|q5〉 • |q5〉 X+1
3 2 2 X−1

3

|q6〉 • |q6〉 1 1

|q7〉 X |q7〉 X

FIG. 1. Decomposition of an 8-qubit Toffoli gate with an
intermediate qutrit [23]. Each input and output is a qubit.
The red control qubits activate on |1〉 and the blue controls
activate on |2〉. In the rectangle for the target qubit X+1

3 and
X−1

3 denote the modulo 3 increment and decrement operation
respectively.

These works are nonetheless restricted to binary quan-
tum systems as they have mentioned the use of qutrits
only. In our proposed approach, we have generalized the
decomposition for an arbitrary finite-dimensional quan-
tum system.

III. GENERALIZED GROVER’S ALGORITHM
IN d-ARY QUANTUM SYSTEMS

We present the details of our proposed generalized
Grover’s algorithm in d-ary quantum systems here. The
algorithm has two sub-parts: Oracle and diffusion [20].
Formally, Grover’s algorithm for searching in an unstruc-
tured database can be defined as follows: given a collec-
tion of unstructured database elements x = 1, 2, . . . , N ,
and an Oracle function f(x) that acts on a marked ele-
ment s as follows [36],

f(x) =

{
1, x = s,
0, x 6= s,

(2)

find the marked element with as few calls to f(x) as possi-
ble [20, 36]. The database is encoded into a superposition
of quantum states with each element being assigned to
a corresponding basis state. Grover’s algorithm searches
over each possible outcome, which is represented as a
basis vector |x〉 in an n-ary Hilbert space in d-ary quan-
tum systems. Correspondingly, the marked element is
encoded as |s〉. Thus, after applying unitary operations
as an oracle function to the superposition of the differ-
ent possible outcomes, the search can be done in par-
allel. Then the generalized diffusion operator, which is
also known as inversion about the average operator, am-
plifies the amplitude of the marked state to increase its
measurement probability using constructive interference,
with simultaneous attenuation of all other amplitudes,
and searches the marked element in O(

√
N) steps, where

N = dn [36].
The generalized circuit for Grover’s operator, the com-

bination of the oracle and the diffusion in d-ary quantum
systems is shown in FIG. 3. As portrayed, the diffusion
operator can be constructed using generalized Hadamard
gate, generalized NOT gate and generalized n-qudit Tof-
foli gate. As discussed in Section 2, for implementing
Grover’s algorithm in technology specific physical de-
vices, the n-qudit Toffoli gate needs to be decomposed
using one-qudit or two-qudit gates. While decompos-
ing the n-qudit Toffoli gate, if the depth and the ancilla
qudits increase arbitrarily then the time complexity of
Grover’s algorithm also increases, which is undesirable.
In the next subsection, we have shown a novel approach
for the decomposition of an n-qudit Toffoli gate with op-
timized depth as compared to the state-of-the-art. Thus,
the circuit depth of Grover’s algorithm is also optimized.

IV. IMPROVED CIRCUIT FOR d-ARY
GROVER’S SEARCH

In order to execute Grover’s algorithm on quantum
devices, it has to be ideally decomposed using one-qudit
and/or two-qudit gates. It is important to carry out the
effective low depth and low gate count decomposition in
near term quantum devices and beyond [37].

4

|q0〉 1 1 |q0〉
|q1〉 1 1 1 1 |q1〉

|q2〉 Ry,01(−π
4

) X12
3 Ry,01(−π

4
) X12

3 Ry,01(π
4

) X12
3 Ry,01(π

4
) ·Ry,12(π

4
) X01

3 Ry,01(π
4

) X01
3 Ry,01(−π

4
) X01

3 Ry,01(−π
4

) |q0 ∧ q1〉

FIG. 2. Decomposition of ternary Toffoli gate into 13 one-qutrit and two-qutrit gates [33].

Oracle

Fd Xd d-1 X−1
d Fd

Fd Xd d-1 X−1
d Fd

Fd Xd d-1 X−1
d Fd

Fd Xd Fd Xd Fd X−1
d Fd

FIG. 3. Generalized Circuit for Grover’s Operator in d-ary
quantum systems [36].

A. Proposed Decomposition of n-qudit Toffoli Gate

The most important aspect of our proposed work is
the decomposition of n-qudit d-ary Toffoli gate. In the
decomposition of generalized Toffoli gate, all the figures
below have inputs and outputs as d-ary qudits, but the
states |d〉 and |d+ 1〉 may be used in intermediate levels
during the computation. The idea of keeping d-ary in-
put/output enables these circuit constructions to be ap-
plied for any already existing d-ary qudit-only circuits.

A generalized Toffoli decomposition in a d-ary system
using |d〉 state is shown in FIG. 4. A similar construc-
tion for the Toffoli gate in binary using qutrit is evi-
dent from previous state-of-the-art work [23]; we have
extended it for d-ary quantum systems. The aim is to
carry out an Xd operation on the target qudit (third qu-
dit) as long as the two control qudits, are both |d− 1〉.
First, a |d− 1〉-controlled X+1

d+1, where +1 and d+ 1 are
used to denote that the target qudit is incremented by
1 (mod d + 1), is performed on the first and the sec-
ond qudits. This upgrades the second qudit to |d〉 if
and only if the first and the second qudits were both
|d− 1〉. Then, a |d〉-controlled Xd gate is applied to the
target qudit. Therefore, Xd is executed only when both
the first and the second qudits were |d− 1〉, as expected.
The controls are reinstated to their original states by a
|d− 1〉-controlled X−1d+1 gate, which reverses the effect of
the first gate. That the |d〉 state from d+1-ary quantum
systems can be used instead of ancilla to store temporary
information, which is the most important aspect in this
decomposition.

As in [23], the circuit decomposition of generalized
Toffoli gate is realized in terms of ternary Toffoli gate

|q0〉 • |q0〉 d-1 d-1

|q1〉 • ≡ |q1〉 X+1
d+1 d X−1

d+1

|q2〉 Xd |q2〉 Xd

FIG. 4. Generalized Toffoli in d-ary quantum systems.

instead of one-qutrit and two-qutrit gates in order to ob-
tain lower circuit depth. But during simulation, they
decomposed the ternary Toffoli gate into six two-qutrit
and seven one-qutrit physically implementable quantum
gates. We have also followed a similar approach for ex-
tending the decomposition of generalized n-qudit Toffoli
gate in terms of d+1-ary Toffoli gate. But, the approach
of further decomposition of the Toffoli for simulation pur-
pose has not been adopted. Instead, the d+ 1-ary Toffoli
gate has been decomposed into d + 1-ary and/or d + 2-
ary CNOT gates. Let us consider a generalized CNOT
gate for d+ 2-ary quantum systems as C+1

X,d+2, where +1
and d+ 2 denote that the target qudit is incremented by
1 (mod d+ 2) only when the control qudit value is d+ 1.
The ((d + 2)2 × (d + 2)2) matrix representation of the
C+1

X,d+2 gate is as follows:

C+1
X,d+2 =

Id+2 0d+2 0d+2 . . . 0d+2

0d+2 Id+2 0d+2 . . . 0d+2

0d+2 0d+2 Id+2 . . . 0d+2

...
...

...
. . .

...
0d+2 0d+2 0d+2 . . . X+1

d+2

where X+1

d+2 and 0d+2 are both (d+2)×(d+2) matrices
as shown below:

X+1
d+2 =

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 and, 0d+2 =

0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

For example, let there be an 8-qudit Toffoli gate as

shown in FIG. 5(a). First, we decompose it as in [23]
as shown in FIG. 5(b). Further, we decompose all the
d + 1-ary Toffoli gate into d + 1-ary and/or (d + 2)-ary
CNOT gates as shown in FIG. 5(c) with the help of the

5

FIG. 5. (a) An 8-qudit Toffoli gate, (b) its decomposition which follows [23], (c) our proposed decomposition using a few
d + 1-ary and/or d + 2-ary CNOT gates, and (d) our proposed optimized decomposition.

proposed decomposition of generalized Toffoli in any ar-
bitrary finite-dimensional quantum system. As shown in
FIG. 5(c), all the d − 1-controlled Toffoli gates are de-
composed into d − 1-controlled and d-controlled CNOT
gates. Similarly, all the d-controlled Toffoli gates are de-
composed into d-controlled and d + 1-controlled CNOT
gates. Thus, with the help of |d〉 and |d+ 1〉 quantum
state of (d+ 2)-ary system, Xd is executed if all the con-
trolled qudits are in |d− 1〉 state. In this manner, an
n-qudit Toffoli gate can be decomposed. Further, the
optimized n-qudit Toffoli gate decomposition has been
portrayed in FIG. 5(d), where two generalized CNOT
gates operating one after another on the same qudits are
removed by applying the optimization rule as described
in [38]. As an example, in FIG. 5(c), the two generalized
CNOT gates marked within a blue boundary, have been
eliminated by using identity rule, as no other gates are
involved in between these two generalized CNOT gates
on the q0 and q2. Hence, in FIG. 5(d), we conclude that
for each generalized Toffoli decomposition, two general-
ized CNOT gates are sufficient for our proposed n-qudit
Toffoli decomposition. For better understanding, as for
example, we have highlighted the corresponding decom-
position of FIG. 5(c), highlighted with blue boundary, in
FIG. 5(d) with dotted boundary. Now, if we want to ap-
ply our approach to a binary quantum system, then it
could be easily carried out if a quaternary (4-ary quan-
tum) [39] system can also come into play. Moreover, we
have achieved logarithmic depth as well as reduced the

constant factor from 13 to 2, which is thoroughly dis-
cussed in the next subsection with the help of an example.
By simulation, we have verified our circuits. The simula-
tion results for the 8-qubit Toffoli gate of FIG. 6, appears
in the Appendix. In Table V of Appendix, we have shown
the input and output states as well as intermediate states
for each time cycle of the circuit for all possible combina-
tion of input states |00000000〉, |00000010〉, |00000100〉,
. . . , |11111110〉. We have shown that only for the input
state |11111110〉, the output state changes to |11111111〉,
otherwise there is no change of output states for corre-
sponding input states.

B. Comparative Analysis of Cost of Decomposition

A comparative study of our multi-controlled Toffoli de-
composition with some previous works [23, 24, 30, 40–43]
is shown in Table I. Our work outperforms all of them
in terms of depth of the circuit, even the best till now
[23]. We simulate our work taking the conventional con-
struction proposed by Gokhale et al. [22] into account,
since it is the benchmark in the ancilla-free frontier zone.
The technique makes the decomposition typically exor-
bitant in gate count and depth as a large number for
constant factor of gate-count is required as compared to
our approach. This is better explained with the following
example.

6

FIG. 6. (a) An 8-qubit Toffoli gate, (b) its decomposition in [23], (c) our proposed decomposition using a few ternary and/or
quaternary CNOT gates, and (d) our proposed optimized decomposition..

TABLE I. Asymptotic comparison of n-controlled Toffoli gate decomposition
This Work Gokhale[23] Gidney [42] He [40] Barenco [30] Wang [41] Lanyon [24], Ralph [43]

Depth log2 n log2 n n log2 n n2 n n
Ancilla 0 0 0 n 0 0 0

Qudit Types Controls are qudits Controls are qutrits Qubits Qubits Qubits Controls are qutrits/qudits Target is d = n-level qudit
Constants 2 13 9 9 9 2 9

Generalization d-ary Binary Binary Binary Binary Ternary/d-ary Binary

As shown in FIG. 6(a), a multi-controlled Toffoli gate
with 7 control qubits and 1 target qubit is considered.
FIG. 6(b) depicts the decomposition of the generalized
8-qubit Toffoli gate as shown in FIG. 6(a) with the help
of the design proposed by Gokhale et al. [23]. Their cir-
cuit temporarily stores information directly in the qutrit
|2〉 state of the controls, so does our approach. However,
instead of storing temporary results further with qua-
ternary |3〉 state, they simply decompose their ternary
Toffoli into 13 one-qutrit and two-qutrit gates [33] as
shown in FIG. 2 [23]. In our approach, we decompose
ternary Toffoli further into three ternary and/or quater-
nary CNOT gates using |3〉 state as control, as shown
in FIG. 6(c) on FIG. 5, three ternary and/or quater-
nary CNOT gates can be further reduced to two ternary
and/or quaternary CNOT gates by using identity rule, as
shown in FIG. 6(d). Thus, our optimization can lead to
the reduction of gate-count from 13 to 2 such for a single
Toffoli decomposition and our approach can be gener-
alised for qudits also.

Our circuit construction as shown in 6(c) or 6(d), as

in [23], can also be interpreted as a binary tree of gates.
More elaborately, the inputs/outputs are qubits, but we
grant inhibition of the |2〉 and |3〉 quaternary states in
between. The circuit maintains a tree structure and has
the property that the intermediate qubit, of each sub-tree
as well as root can only be raised to |2〉 if all of its seven
control leaves were |1〉. In order to verify this property,
we perceive that the qubit q4 can only become |2〉 if and
only if it was originally |1〉 and qubit q6 was previously
|3〉. At the following level of the tree, we see qubit q6
could have only been |3〉 if it was previously |1〉 and both
q3 and q7 qubits were |2〉 before. If any of the controls
were not |1〉, the |2〉 or |3〉 states would fail to move to
the root of the tree. Hence, the X gate is only carried
out if all controls are |1〉. The right half of the circuit
undergoes computation to get back the controls to their
original state. The construction applies more generally
to any multi-controlled U gate.

After each succeeding level of the tree structure, the
number of qubits under inspection is reduced by a factor
of ∼ 2. This leads to the circuit depth being logarithmic

7

in n, where n is the number of controls. On top of that,
each quaternary qudit (termed as ququad) is operated on
by a small constant number of three gates, so the total
number of gates is optimized. Wang et al. Prior work of
[41] has also mentioned about n-qudit Toffoli decomposi-
tion. In Table I, we have shown that our approach gives
better result in terms of circuit depth and gate cost than
[41]. Further, we have shown an 8-qudit Toffoli decom-
position but this can be easily extended to n-qudit also,
thus our proposed approach is generalized in nature.

The proposed n-qudit Toffoli decomposition is novel
not only for its logarithmic depth optimization as com-
pared to [41], but also the maximum number of CNOT
gates required is 2n−3 (n+1 number of d+1-ary CNOT
gates and n−4 number of d+2-ary CNOT gates), which
is less compared to 2n+ 1 needed by the decomposition
by Wang et al. [41]. We have also illustrated an example
with 16-qudit Toffoli decomposition elaborately in FIG.
7 for better understanding. Mapping the structure to a
binary tree topology helps in establishing the claim for
logarithmic depth.

Recall that in a d-ary quantum systems, general-
ized Grover’s algorithm for search over N unstructured
database items requires O(

√
N) iterations of Grover’s op-

erator, whereN = dn and d ≥ 2. As discussed earlier, the
Grover’s operator is the combination of the oracle and the
diffusion. However in each iteration, Grover search has
multi-controlled Toffoli gate in diffusion operator with
M = dlogdNe controls [36]. In other words, each of the
iterations has n-qudit Toffoli gate or (logdN)-qudits in
Grover’s diffusion operator as already discussed in FIG.
3. The best known Toffoli decomposition in a qudit sys-
tem [41], specifically in ternary quantum systems shows
that the depth of the realized circuit is linear, i.e., logdN
or n. But, our decomposition of the n-qudit Toffoli gate
leads to a reduction of the logdN factor in Grover’s algo-
rithm to a log2 logdN factor in each iteration. Hence, our
proposed n-qudit Toffoli decomposition achieves a loga-
rithmic factor in circuit-depth, i.e., O(log2 logdN) in the
time complexity of generalised Grover search, compared
to the previous works [36, 44], as shown in Table II.

TABLE II. Comparison of circuit depth, i.e., worst case time
complexity for d-ary Grover’s search, d > 2.

This Work Hunt [44] Ivanov [36]
Depth log2 (logdN) logdN logdN

We have presented the proposed decomposition of a d-
ary Toffoli gate, and showed that it is superior to other
decomposition in the literature in terms of the depth as
well as the number of ancilla qudits required. We have
considered every gate to be ideal, and therefore, the suc-
cess rate of the Grover’s algorithm remains same as for
any other decomposition of the Toffoli Gate. It has been
shown in the literature that if the input state is an entan-
gled state (e.g. GHZ or W state), then the success rate
of the algorithm is (1− 1

n)n−1 where n is the number of
qudits [45–47]. However, unlike [45–47], in this article,

we start the algorithm with the equal superposition of all
the basis states, and hence the success probability is ∼ 1
after

√
N steps.

Next, we address the action of various error models on
our decomposition of n-qudit Toffoli gate.

V. EFFECT OF ERROR ON PROPOSED
DECOMPOSITION OF n-QUDIT TOFFOLI GATE

Any quantum system is susceptible to different types
of errors such as decoherence, noisy gates. For a d-ary
quantum systems, the gate error scales as d2 and d4 for
one and two-qudit gates respectively [23]. Furthermore,
for qubits, the amplitude damping error decays the state
|1〉 to |0〉 with probability λ1. For a d-ary system, every
state in level |i〉 6= |0〉 has a probability λi of decaying.
In other words, the usage of higher dimensional states
penalizes the system with more errors. Nevertheless, the
effect of these errors on the used decomposition of Tof-
foli gate has been studied by Gokhale et al. [23]. They
have shown that although the usage of qutrits leads to
increased error, the overall error probability of the de-
composition is lower than that for the earlier ones since
the number of ancilla qubits and the depth are both re-
duced. In this section we study the effect of generic gate
and relaxation error on our newly proposed decomposi-
tion, and show it to be superior to the decomposition of
[23] in terms of error probability.

A. Generic Error Model

The common quantum error or noise model is for gate
and relaxation error [23], which can be expressed by the
Kraus Operator formalism [1]. If the density matrix rep-
resentation of a (pure) quantum state is σ = |Ψ〉 〈Ψ|, the
evolution of this state for any channel is represented as
the function E(σ):

E (σ) = E (|Ψ〉 〈Ψ|) =
∑
i

KiσK
†
i (3)

where Ki are called the Kraus Operators, and K†i is the
matrix conjugate-transpose of Ki, ∀ i. Evolution of a
state under a noise model can also be represented by the
Kraus operator formulation. For example, in the depo-
larization noise model, the Kraus operators are simply
the Pauli matrices.

1. Gate Errors

In a binary quantum system with only one-qubit and
two-qubit gates, there are four possible error channels for
a one-qubit gate, which can be expressed as products of

the two Pauli matrices, a NOT gate, X =

(
0 1
1 0

)
and a

8

FIG. 7. Decomposition of 16-qudit Toffoli Gate.

phase gate, Z =

(
1 0
0 −1

)
. The possible error channels

are: (i) no-error X0Z0 = I, (ii) the phase flip which
is the product X0Z1, (iii) the bit flip which is X1Z0

and (iv) the phase+bit flip channel given by X1Z1. We
can express this one-qubit gate error model in the Kraus
operator formalism in the following manner:

E(σ) =

1∑
j=0

1∑
k=0

pjk(XjZk)σ(XjZk)† (4)

where pjk is the probability of the corresponding Kraus
operator. For a symmetric depolarizing noise model,
pjk = pqr, ∀j, k, q, r ∈ {0, 1}, and for an asymmetric
noise model [48] pjk and pqr are in general different for

jk 6= qr. The total probability of error p =
∑

a,b∈{0,1}

pab.

A noisy gate is modelled as an ideal gate followed by
an unwanted Pauli operator [49]. In other words, a one-
qubit gate is followed by an unwanted Pauli ∈ {X,Y, Z}
with probability px, py, pz respectively; and a two-qubit
gate is followed by an unwanted Pauli ∈ {I,X, Y, Z}⊗2 \
{I, I} with probability pi · pj , where i, j ∈ {x, y, z}. For
the sake of convenience, we represent the one-qubit and
two-qubit gate error probabilities as p1 and p2 respec-
tively.

In a d-ary system, there are d types each of unwanted
X and Z Pauli errors that can follow a one-qudit gate [50,
51]. Therefore, there are d2−1 ways (without considering

the identity error) in which an error can occur after a
one-qudit gate. If p1 is the probability of a one-qudit
Pauli error, then the evolution of the system under noisy
one-qudit operations can be represented as in Eq. 5.

E(σ) = (1− (d2 − 1)p1)σ +
∑

jk∈{0,1}d\0∗d

pjkKjkσK
†
jk

(5)

where Kjk represents the various Pauli operators.
Similarly, for two-qudit gates, an unwanted Pauli op-

erator can occur on each of the two qudits after the gate
operation. Therefore, there are d4 − 1 ways (excluding
the identity operation on both the qudits) in which a
gate can be noisy. If p2 is the probability of two-qudit
gate errors, then the evolution of the system under noisy
two-qudit operations is represented as in Eq. 6.

E(σ) = (1− (d4 − 1)p2)σ +
∑

jklm∈{0,1}d\0∗d pjklmKjklmσK
†
jklm

(6)
where pjklm = pjk · plm. The probability that the den-

sity matrix remains error free is independent of whether
the underlying depolarizing channel is symmetric or
asymmetric. Rather, it depends on the total probabil-
ity of error.

Our proposed decomposition here deals with two-qudit
gates only on higher dimensional quantum systems. In
general, for the decomposition of a n-qudit Toffoli gate,

9

our method uses upto d + 2 dimension. Therefore, for a
d dimensional system, the error in our system scales as
O(d+ 2)4 as shown in Eq. 7.

E(σ) = {1− ((d+ 2)4 − 1)p2}σ +
∑

jklm∈
{0,1,2,...,d+1}4\0000

pjklmKjklmσK
†
jklm

(7)
For example, there are 16 two-qubit gate error channels

for d = 2, whereas our decomposition requires usage upto
d = 4. Therefore, there are 256 two-ququad gate error
channels for our decomposition. In Table III, we show the
decrease in the probability of no-error for two-qudit gates
due to the usage of higher dimensions for d = 2, 3, 4, 5.
Although our circuit constructions have adopted higher
dimensional gates, our proposed decomposition scales fa-
vorably in terms of asymptotically fewer gate errors as
our gate count is asymptotically lower. This is elabo-
rated upon in V B.

2. Amplitude Damping Error

a. Generalized Amplitude Damping: A qubit, when
kept idle, can change its state spontaneously. It can (i)
absorb some energy from the environment, and move to a
higher energy state, or (ii) release energy spontaneously
and move from a higher to a lower energy state. In a
more generalized scenario, a qubit can both absorb en-
ergy with probability p and release energy with probabil-
ity 1− p. This error is termed as Generalized Amplitude
Damping (GAD) [52]. For qubits, this noise channel is
characterized by the Kraus Operators

K0 =
√
p

(
1 0
0
√

1− λ

)
K1 =

√
p

(
0
√
λ

0 0

)

K2 =
√

1− p
(√

1− λ 0
0 1

)
K3 =

√
1− p

(
0 0√
λ 0

)
where λ ∝ exp(−t/T1), T1 being termed as relaxation
time. Note that the time duration, t, in general depends
on the depth of the circuit. Here two of the Kraus Oper-
ators govern the change of state from |0〉 → |1〉, and the
other two vice-versa. For a fixed value of T1, this decay
is governed by the values of p and t. For example, when
p = 0.5, the initial state has an equal probability of being
in the states |0〉 or |1〉. The action of the GAD Kraus
operators on this state is to increase the probability of
obtaining |0〉, while decreasing that of |1〉. In FIG. 8 we
show the effect of GAD Kraus operators, when p = 0.5.

In FIG. 8, T1 is taken to be 133µs, which is the aver-
age T1 time of ibmq kolkata. The time duration is varied
from t = 0 to 450ns, where 445ns is the average duration
of a CNOT gate in the same device. We want to empha-
size here, that our methodology for multi-controlled Tof-
foli decomposition achieves logarithmic depth (i.e., the
time duration lowers from O(t) to O(log2 t). In general,

FIG. 8. Effect of Generalized Amplitude Damping Channel
when p = 0.5. Here Meas i, Prep i, i ∈ {0, 1}, denotes the
probability of measuring a quantum state as i when it was
prepared as i. We observe that the probability of measuring
|1〉 decreases gradually with time, while that of |0〉 increases

execution of higher dimensional quantum circuits is not
yet feasible in IBM Quantum Devices. Some studies us-
ing Pulse simulation has been made to use one or more
higher dimensions (we elaborate on this later). However,
although the intensity of noise may vary with dimension,
the effect of noise remains similar. Therefore, we give an
essence of the flavour of GAD in FIG. 8 for qubit systems
only. It readily shows the reduction in the effect of GAD
when the time reduces from ' 450ns to ' 10ns, which
is roughly the logarithm of the former.

Generalized Amplitude Damping is not always notable
in quantum computers, since change from lower to higher
energy state is not spontaneous, and requires external
driving energy. On the other hand, spontaneous relax-
ation from higher to lower energy state is a major bane in
modern quantum devices. In the following subsection, we
look deeper into this spontaneous relaxation. Henceforth,
the terms idle error, amplitude damping would both im-
ply this spontaneous relaxation only.

b. Spontaneous relaxation/Idle error: Idle errors
usually concentrate on the relaxation from higher to
lower energy states in quantum devices. This is also
known as amplitude damping. This noise channel ir-
reversibly takes qudits to lower states. For qubits, the
only amplitude damping channel is from |1〉 to |0〉, and
we denote this damping probability as λ1. For qubits,
the Kraus operators for amplitude damping are:

K0 =

(
1 0
0
√

1− λ1

)
and K1 =

(
0
√
λ1

0 0

)
(8)

For qudits, we also model damping from |d− 1〉 to
|0〉, which occurs with probability λd−1. For qudits, the
Kraus operator for amplitude damping can be modeled
as:

10

TABLE III. Probability of success of two-qudit gates due to the usage of higher dimensions

Dimension d Probability of success Probability of success
without our proposed decomposition with our proposed decomposition

2 1− 15p2 1− 255p2
3 1− 80p2 1− 624p2
4 1− 255p2 1− 1295p2
5 1− 624p2 1− 2400p2

K0 =

1 0 0 . . . 0
0
√

1− λ1 0 . . . 0
0 0

√
1− λ2 . . . 0

...
...

...
. . .

...

0 0 0 . . .
√

1− λd−1

 ,

K1 =

0
√
λ1 0 . . . 0

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 ,

. . .Kd−1 =

0 0 0 . . .

√
λd−1

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (9)

In each Kraus Operator Ki, the value of λi ∝
exp(−t/T1i), where t is the duration of the computa-
tion, and T1i are the relaxation time. Note that in the
previous subsection, we have used the well known termi-
nology of T1 for qubit systems instead of T11 . However, in
this subsection we shall use T1i for any finite-dimensional
quantum system to avoid confusion. We have qubit quan-
tum devices, where T11 ' 100µs in some higher end IBM
Quantum Devices [53]. However, due to the lack of qu-
dit quantum computers, we do not have explicit values
of other T1i ’s except 30µs for qutrit (T12) and quaquad
(T13) quantum devices [54]. Nevertheless, the time du-
ration depends on the circuit depth. Hence, idle errors
are reduced by decreasing the circuit depth. Recall that
the n-qudit Toffoli decomposition of [41] requires circuit
depth of n, so if ∆t is the time duration of each quantum
operation, the total time required n·∆t. On the contrary,
our proposed decomposition requires only log2n circuit
depth, so the duration of total computation is log2n∆t.
Hence, the decoherence due to our proposed decompo-
sition is O(exp(−log2n∆t/T1i)) which is notably lower
than O(exp(−n∆t/T1i)) for the previous decomposition.

B. Comparative analysis of success probability

In [23], the authors first proposed the usage of higher
dimension for efficient decomposition of Toffoli gates.

However, in that article, they restricted themselves for
decomposition of binary multi-controlled Toffoli gates
using up to three dimensional quantum systems only.
Therefore, it is not possible to compare our d-dimensional
Toffoli decomposition with that result. However, in this
section, we study the probability of success in the de-
composed circuit of an n-qubit Toffoli gate using the
method in [23], and our proposed method in this arti-
cle. Note that, while the decomposition of [23] requires
only ternary gates, our proposed decomposition requires
ternary and quaternary gates.

The complexity of decomposition of an n-qubit Toffoli
gate in terms of the number of gates and depth of the
circuit for the method in [23] and our proposed one are
depicted in Table IV.

The gates used in quantum circuits often have small
errors which can be modelled as an ideal gate followed
by an unwanted Pauli operator as mentioned in earlier
subsections. However, in this comparison, we follow the
approach used in [55], and instead of comparing the prob-
ability of small errors in the circuit, we compare without
loss of generality, the probability that the circuit remains
error-free (probability of success) for the decomposition
in [23] and our proposed decomposition.

For any decomposition, the generalized formula for
probability of success (Psuccess) is the product that the
individual components does not fail. In other words,

Psuccess = Πgates((Psuccess of gate)
gates

× e−(depth/T1)),

where the product in the first term is over all the types of
gates used in the decomposition (one-qutrit, two-qutrit,
two-ququad), and the second term is the probability of no
relaxation error. Note that when a particular type of gate
is not used in a decomposition, the corresponding term
attains a value of 1 due to having a zero in the power. For
example, our proposed decomposition does not require
any one-qutrit gate, and hence the contribution of that
term in the product is 1.

Current quantum devices are mostly binary, and the
probabilities of one-qubit and two-qubit gates in the
IBMQ Quantum Devices are in the range of 10−4 and
10−2 respectively [53]. Moreover, the time T11 of most
of the IBM Quantum Devices are in the range of 100µs.
However, in [54], the authors experimentally showed that
the value of T12 and T13 for each ternary and quater-
nary gate is 30µs, which we have also assumed for our
experiment. We assume that the probability of error of

11

TABLE IV. Number of gates and depth of the decomposed circuit for an n-qubit Toffoli gate

one-qutrit gates # two-qutrit gates # two-ququad gates depth
Decomposition of [23] 7(n− 2) + 1 6(n− 2) 0 26dlog2 ne+ 1

Proposed Decomposition 0 n + 1 n− 4 4dlog2 ne

FIG. 9. Probability of success for the decomposition of an
n-qubit Toffoli gate using our proposed method versus the
method in [23]

each two-qutrit and two-ququad gate is 10−2, that of one-
qutrit gate is 10−4, and the time T12 and T13 is 30µs for
our simulation.

In FIG. 9, we show the probability of success for
the multi-controlled Toffoli gate decomposition using the
method of [23] (which we label as Gokhale et al.) and our
proposed method. We observe that our proposed method
has a significantly lower error rate than the decomposi-
tion in [23]. This can be attributed to the lower number
of gates and lower depth of our decomposition. Although
our decomposition uses a few ququad gates, which have
a higher error probability due to the curse of dimension-
ality (Table III), the overall significant decrease in the
gate count and the depth makes our method superior. In
fact, for n = 50, our decomposition has a probability of
success of ' 0.4, whereas that of [23] has a probability
of success of ' 0.05. Therefore, we obtain a percentage

decrease in the probability of error by ' 40% for n = 50.

VI. CONCLUSION

In this work, we have proposed a novel approach to
decompose a generalized n-qudit Toffoli gate into two-
qudit gates with logarithmic depth without using any
ancilla qudit. We have shown an instance of 8-qudit
Toffoli gate decomposition to establish the logarithmic
depth as an example in Section IV A. We have given a
comparative study to establish that our approach is bet-
ter than the existing state-of-the-art ones in Table I in
Section IV B, where it has been shown that the constant
factor of gate-count from 13 to 2 for single Toffoli de-
composition for n-qubit Toffoli gate. We have also shown
that Grover’s algorithm can be implemented in any d-ary
quantum system with the proposed n-qudit Toffoli gate
to get the advantage of optimized logarithmic depth as
compared to earlier approaches as shown in Table II in
Section IV B. Using our novel proposed decomposition of
n-qudit Toffoli gate, any quantum algorithm can be opti-
mized that employs generalized Toffoli gate. Finally, we
have studied the effect of different error models on this
decomposition technique. Our study shows that the few
gates in higher dimensional quantum systems which are
used in the proposed decomposition, are prone to more
errors. Nevertheless, as we have obtained asymptotically
improved gate count and circuit depth, leading to low
total error probability, the gates can operate with high
fidelity as compared to state-of-the art works in FIG. 9
of Section V B.

ACKNOWLEDGMENTS

The first author acknowledges the support by the
Grant No. 09/028(0987)/2016-EMR-I from CSIR, Govt.
of India.

[1] M. A. Nielsen and I. Chuang, Quantum computation and
quantum information (2002).

[2] J.-L. Brylinski and R. Brylinski, Universal quantum gates
(2001), arXiv:quant-ph/0108062 [quant-ph].

[3] H. H. Lu, Z. Hu, M. S. Alshaykh, A. J. Moore, Y. Wang,
P. Imany, A. M. Weiner, and S. Kais, Quantum phase
estimation with time-frequency qudits in a single photon,
Advanced Quantum Technologies 3, 1900074 (2020).

[4] Y. Cao, S.-G. Peng, C. Zheng, and G. Long, Quantum
Fourier transform and phase estimation in qudit system,
Communications in Theoretical Physics 55, 790 (2011).

[5] H. Li, C. Wu, W. Liu, P. Chen, and C. Li, Fast quantum
search algorithm for databases of arbitrary size and its
implementation in a cavity qed system, Physics Letters
A 375, 4249 (2011).

[6] A. Saha, S. B. Mandal, D. Saha, and A. Chakrabarti,
One-dimensional lazy quantum walk in ternary system,

https://arxiv.org/abs/quant-ph/0108062
https://doi.org/10.1002/qute.201900074
https://doi.org/10.1088/0253-6102/55/5/11
https://doi.org/https://doi.org/10.1016/j.physleta.2011.10.016
https://doi.org/https://doi.org/10.1016/j.physleta.2011.10.016

12

IEEE Transactions on Quantum Engineering , 1 (2021).
[7] M. Luo and X. Wang, Universal quantum computation

with qudits., Science China Physics, Mechanics & As-
tronomy 57, 10.1007/s11433-014-5551-9 (2014).

[8] M. Luo, X. B. Chen, Y. X. Yang, and X. Wang, Geometry
of quantum computation with qudits, Scientific reports
4, 4044 (2014).

[9] S. D. Bartlett, H. de Guise, and B. C. Sanders, Quantum
encodings in spin systems and harmonic oscillators, Phys-
ical Review A 65, 10.1103/physreva.65.052316 (2002).

[10] M. R. A. Adcock, P. Høyer, and B. C. Sanders, Quan-
tum computation with coherent spin states and the close
hadamard problem, Quantum Information Processing
15, 1361–1386 (2016).

[11] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Charge-insensitive qubit design de-
rived from the cooper pair box, Phys. Rev. A 76, 042319
(2007).

[12] S. Dogra, Arvind, and K. Dorai, Determining the par-
ity of a permutation using an experimental nmr qutrit,
Physics Letters A 378, 3452–3456 (2014).

[13] Z. Gedik, I. A. Silva, B. Çakmak, G. Karpat, E. L. G.
Vidoto, D. O. Soares-Pinto, E. R. deAzevedo, and F. F.
Fanchini, Computational speed-up with a single qudit,
Scientific Reports 5, 10.1038/srep14671 (2015).

[14] X. Gao, M. Erhard, A. Zeilinger, and M. Krenn,
Computer-inspired concept for high-dimensional multi-
partite quantum gates, Physical Review Letters 125,
10.1103/physrevlett.125.050501 (2020).

[15] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saave-
dra, Qutrit quantum computer with trapped ions, Phys-
ical Review A 67, 062313 (2003).

[16] S. X. Cui and Z. Wang, Universal quantum computa-
tion with metaplectic anyons, Journal of Mathematical
Physics 56, 032202 (2015).

[17] S. X. Cui, S.-M. Hong, and Z. Wang, Universal quan-
tum computation with weakly integral anyons, Quantum
Information Processing 14, 2687–2727 (2015).

[18] A. Bocharov, S. X. Cui, M. Roetteler, and K. M.
Svore, Improved quantum ternary arithmetics (2015),
arXiv:1512.03824 [quant-ph].

[19] M. N. Leuenberger and D. Loss, Quantum computing in
molecular magnets, Nature 410, 789–793 (2001).

[20] L. K. Grover, A fast quantum mechanical algorithm for
database search (ACM, New York, NY, USA, 1996) pp.
212–219.

[21] A. Muthukrishnan and C. R. Stroud, Multivalued logic
gates for quantum computation, Physical Review A 62,
10.1103/physreva.62.052309 (2000).

[22] P. Gokhale, J. M. Baker, C. Duckering, F. T. Chong,
N. C. Brown, and K. R. Brown, Extending the frontier
of quantum computers with qutrits, IEEE Micro 40, 64
(2020).

[23] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown,
K. R. Brown, and F. T. Chong, Asymptotic improve-
ments to quantum circuits via qutrits, in Proceedings of
the 46th International Symposium on Computer Archi-
tecture (2019) pp. 554–566.

[24] B. Lanyon, M. Barbieri, M. Almeida, T. Jennewein,
T. Ralph, K. Resch, G. Pryde, J. O’Brien, A. Gilchrist,
and A. White, Simplifying quantum logic using higher-
dimensional hilbert spaces, Nature Physics 5 (2009).

[25] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits
and high-dimensional quantum computing, Frontiers in
Physics 8, 10.3389/fphy.2020.589504 (2020).

[26] E. O. Kiktenko, A. S. Nikolaeva, P. Xu, G. V. Shlyap-
nikov, and A. K. Fedorov, Scalable quantum comput-
ing with qudits on a graph, Physical Review A 101,
10.1103/physreva.101.022304 (2020).

[27] S. Bullock, D. O’Leary, and G. Brennen, Asymptotically
optimal quantum circuits ford-level systems, Physical Re-
view Letters 94, 10.1103/physrevlett.94.230502 (2005).

[28] J. Daboul, X. Wang, and B. C. Sanders, Quantum gates
on hybrid qudits, Journal of Physics A: Mathematical
and General 36, 10.1088/0305-4470/36/10/312 (2003).

[29] M. Jafarzadeh, Y. D. Wu, Y. R. Sanders, and B. C.
Sanders, Randomized benchmarking for qudit clifford
gates, New Journal of Physics 22, 063014 (2020).

[30] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and
H. Weinfurter, Elementary gates for quantum computa-
tion, Physical Review A 52, 3457 (1995).

[31] J. Patera and H. Zassenhaus, The pauli matrices in n di-
mensions and finest gradings of simple lie algebras of type
an1, Journal of Mathematical Physics 29, 665 (1988).

[32] Y. Fan, A generalization of the deutsch-jozsa algo-
rithm to multi-valued quantum logic, 37th Interna-
tional Symposium on Multiple-Valued Logic (ISMVL’07)
10.1109/ismvl.2007.3 (2007).

[33] Y. M. Di and H. R. Wei, Synthesis of multivalued quan-
tum logic circuits by elementary gates, Physical Review
A 87, 10.1103/physreva.87.012325 (2013).

[34] F. S. Khan and M. Perkowski, Synthesis of multi-qudit
hybrid and d-valued quantum logic circuits by decom-
position, Theoretical Computer Science 367, 336–346
(2006).

[35] J. M. Baker, C. Duckering, P. Gokhale, N. C. Brown,
K. R. Brown, and F. T. Chong, Improved quantum
circuits via intermediate qutrits, ACM Transactions on
Quantum Computing 1, 10.1145/3406309 (2020).

[36] S. S. Ivanov, H. S. Tonchev, and N. V. Vitanov, Time-
efficient implementation of quantum search with qudits,
Physical Review A 85, 062321 (2012).

[37] J. Preskill, Quantum computing in the nisq era and be-
yond, Quantum 2, 79 (2018).

[38] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov,
Automated optimization of large quantum circuits with
continuous parameters, npj Quantum Information 4,
10.1038/s41534-018-0072-4 (2018).

[39] S. B. Mandal, A. Chakrabarti, and S. Sur-Kolay, A syn-
thesis method for quaternary quantum logic circuits, Lec-
ture Notes in Computer Science , 270–280 (2012).

[40] Y. He, M.-X. Luo, E. Zhang, H.-K. Wang, and X. F.
Wang, Decompositions of n-qubit Toffoli Gates with Lin-
ear Circuit Complexity, International Journal of Theo-
retical Physics 56, 2350 (2017).

[41] Y. Wang and M. Perkowski, Improved complexity of
quantum oracles for ternary grover algorithm for graph
coloring, in 2011 41st IEEE International Symposium on
Multiple-Valued Logic (2011) pp. 294–301.

[42] C. Gidney, Constructing large controlled nots (2015).
[43] T. C. Ralph, K. J. Resch, and A. Gilchrist, Effi-

cient toffoli gates using qudits, Physical Review A 75,
10.1103/physreva.75.022313 (2007).

[44] S. Hunt and M. Gadouleau, Grover’s algorithm and
many-valued quantum logic (2020), arXiv:2001.06316

https://doi.org/10.1109/TQE.2021.3074707
https://doi.org/10.1007/s11433-014-5551-9
https://doi.org/10.1038/srep04044
https://doi.org/10.1038/srep04044
https://doi.org/10.1103/physreva.65.052316
https://doi.org/10.1007/s11128-015-1229-0
https://doi.org/10.1007/s11128-015-1229-0
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1016/j.physleta.2014.10.003
https://doi.org/10.1038/srep14671
https://doi.org/10.1103/physrevlett.125.050501
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1063/1.4914941
https://doi.org/10.1063/1.4914941
https://doi.org/10.1007/s11128-015-1016-y
https://doi.org/10.1007/s11128-015-1016-y
https://arxiv.org/abs/1512.03824
https://doi.org/10.1038/35071024
https://doi.org/10.1103/physreva.62.052309
https://doi.org/10.1038/nphys1150
https://doi.org/10.3389/fphy.2020.589504
https://doi.org/10.1103/physreva.101.022304
https://doi.org/10.1103/physrevlett.94.230502
https://doi.org/10.1088/0305-4470/36/10/312
https://doi.org/10.1088/1367-2630/ab8ab1
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1063/1.528006
https://doi.org/10.1109/ismvl.2007.3
https://doi.org/10.1103/physreva.87.012325
https://doi.org/10.1016/j.tcs.2006.09.006
https://doi.org/10.1016/j.tcs.2006.09.006
https://doi.org/10.1145/3406309
https://doi.org/10.1103/PhysRevA.85.062321
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1007/978-3-642-31494-0_31
https://doi.org/10.1007/978-3-642-31494-0_31
https://doi.org/10.1007/s10773-017-3389-4
https://doi.org/10.1007/s10773-017-3389-4
https://doi.org/10.1103/physreva.75.022313
https://arxiv.org/abs/2001.06316

13

[cs.DS].
[45] A. Chamoli and C. M. Bhandari, Success rate and en-

tanglement evolution in search algorithm, arXiv preprint
quant-ph/0702221 (2007).

[46] A. Chamoli and C. M. Bhandari, Evolution of entan-
glement in groverian search algorithm: n-qudit system
(2007).

[47] A. Chamoli and C. M. Bhandari, Groverian entanglement
measure and evolution of entanglement in search algo-
rithm for n(= 3, 5)-qubit systems with real coefficients,
Quantum Information Processing 6, 255–271 (2007).

[48] C. Cafaro and S. Mancini, Quantum stabilizer codes for
correlated and asymmetric depolarizing errors, Physical
Review A 82, 10.1103/physreva.82.012306 (2010).

[49] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[50] R. Majumdar and S. Sur-Kolay, Approximate ternary
quantum error correcting code with low circuit cost, in
2020 IEEE 50th International Symposium on Multiple-
Valued Logic (ISMVL) (IEEE, 2020) pp. 34–39.

[51] R. Majumdar and S. Sur-Kolay, Optimal error correct-
ing code for ternary quantum systems, arXiv preprint
arXiv:1906.11137 (2019).

[52] C. Cafaro and P. van Loock, Approximate quantum
error correction for generalized amplitude-damping er-
rors, Physical Review A 89, 10.1103/physreva.89.022316
(2014).

[53] IBM Quantum, https://quantum-computing.ibm.com/

(2021).

[54] L. E. Fischer, D. Miller, F. Tacchino, P. K. Barkoutsos,
D. J. Egger, and I. Tavernelli, Ancilla-free implementa-
tion of generalized measurements for qubits embedded in
a qudit space (2022).

[55] R. Majumdar, D. Madan, D. Bhoumik, D. Vinayaga-
murthy, S. Raghunathan, and S. Sur-Kolay, Optimiz-
ing ansatz design in qaoa for max-cut, arXiv preprint
arXiv:2106.02812 (2021).

[56] E. Bisong, Google colaboratory (Apress, Berkeley, CA,
2019) pp. 59–64.

Appendix A: Simulation Results

The simulation result for 8-qubit Toffoli gate, FIG.
6(c), is given below. We have shown that only for
the input state |11111110〉, the output state changes to
|11111111〉, which is highlighted in Table V, otherwise
there is no change of output states for corresponding in-
put states. Similarly, if we initialize q8 of FIG. 6(c) with
|1〉, then the output state changes to |11111110〉 for the
input state |11111111〉. There is no change of output
states for other corresponding input states as well. The
simulation is carried out on Google Colab platform [56]
and the code is available at https://github.com/N-Qudit-
Toffoli-Decomposition.

https://arxiv.org/abs/2001.06316
https://doi.org/10.1007/s11128-007-0057-2
https://doi.org/10.1103/physreva.82.012306
https://doi.org/10.1103/physreva.89.022316
https://quantum-computing.ibm.com/
https://doi.org/10.48550/ARXIV.2203.07369
https://doi.org/10.48550/ARXIV.2203.07369
https://doi.org/10.48550/ARXIV.2203.07369
https://github.com/amitsaha2806/N-Qudit-Toffoli-Decomposition
https://github.com/amitsaha2806/N-Qudit-Toffoli-Decomposition

14

TABLE V. Simulation result for 8-qubit Toffoli shown in Figure 6.
Input State After 1st time cycle After 2nd time cycle After 3rd time cycle After 4th time cycle After 5th time cycle After 6th time cycle After 7th time cycle Output State after Mirror
|00000000〉 |00000000〉 |00000000〉 |00000000〉 |00000000〉 |00000000〉 |00000000〉 |00000000〉 |00000000〉
|00000010〉 |00000010〉 |00000010〉 |00000010〉 |00000010〉 |00000010〉 |00000010〉 |00000010〉 |00000010〉
|00000100〉 |00000100〉 |00000100〉 |00000100〉 |00000100〉 |00000100〉 |00000100〉 |00000100〉 |00000100〉
|00000110〉 |00000110〉 |00000110〉 |00000110〉 |00000110〉 |00000110〉 |00000110〉 |00000110〉 |00000110〉
|00001000〉 |00001010〉 |00001010〉 |00001000〉 |00001000〉 |00001000〉 |00001000〉 |00001000〉 |00001000〉
|00001010〉 |00001020〉 |00001120〉 |00001110〉 |00001110〉 |00001110〉 |00001110〉 |00001110〉 |00001010〉
|00001100〉 |00001110〉 |00001110〉 |00001100〉 |00001100〉 |00001100〉 |00001100〉 |00001100〉 |00001100〉
|00001110〉 |00001120〉 |00001220〉 |00001210〉 |00001210〉 |00001210〉 |00001210〉 |00001210〉 |00001110〉
|00010000〉 |00010000〉 |00010000〉 |00010000〉 |00010000〉 |00010000〉 |00010000〉 |00010000〉 |00010000〉
|00010010〉 |00010010〉 |00010010〉 |00010010〉 |00010010〉 |00010010〉 |00010010〉 |00010010〉 |00010010〉
|00010100〉 |00010100〉 |00010100〉 |00010100〉 |00010100〉 |00010100〉 |00010100〉 |00010100〉 |00010100〉
|00010110〉 |00010110〉 |00010110〉 |00010110〉 |00010110〉 |00010110〉 |00010110〉 |00010110〉 |00010110〉
|00011000〉 |00011010〉 |00011010〉 |00011000〉 |00011000〉 |00011000〉 |00011000〉 |00011000〉 |00011000〉
|00011010〉 |00011020〉 |00011120〉 |00011110〉 |00011110〉 |00011110〉 |00011110〉 |00011110〉 |00011010〉
|00011100〉 |00011110〉 |00011110〉 |00011100〉 |00011100〉 |00011100〉 |00011100〉 |00011100〉 |00011100〉
|00011110〉 |00011120〉 |00011220〉 |00011210〉 |00011210〉 |00011210〉 |00011210〉 |00011210〉 |00011110〉
|00100000〉 |00100000〉 |00100000〉 |00100000〉 |00100000〉 |00100000〉 |00100000〉 |00100000〉 |00100000〉
|00100010〉 |00100010〉 |00100010〉 |00100010〉 |00100010〉 |00100010〉 |00100010〉 |00100010〉 |00100010〉
|00100100〉 |00100100〉 |00100100〉 |00100100〉 |00100100〉 |00100100〉 |00100100〉 |00100100〉 |00100100〉
|00100110〉 |00100110〉 |00100110〉 |00100110〉 |00100110〉 |00100110〉 |00100110〉 |00100110〉 |00100110〉
|00101000〉 |00101010〉 |00101010〉 |00101000〉 |00101000〉 |00101000〉 |00101000〉 |00101000〉 |00101000〉
|00101010〉 |00101020〉 |00101120〉 |00101110〉 |00101110〉 |00101110〉 |00101110〉 |00101110〉 |00101010〉
|00101100〉 |00101110〉 |00101110〉 |00101100〉 |00101100〉 |00101100〉 |00101100〉 |00101100〉 |00101100〉
|00101110〉 |00101120〉 |00101220〉 |00101210〉 |00101210〉 |00101210〉 |00101210〉 |00101210〉 |00101110〉
|00110000〉 |00110000〉 |00110000〉 |00110000〉 |00110000〉 |00110000〉 |00110000〉 |00110000〉 |00110000〉
|00110010〉 |00110010〉 |00110010〉 |00110010〉 |00110010〉 |00110010〉 |00110010〉 |00110010〉 |00110010〉
|00110100〉 |00110100〉 |00110100〉 |00110100〉 |00110100〉 |00110100〉 |00110100〉 |00110100〉 |00110100〉
|00110110〉 |00110110〉 |00110110〉 |00110110〉 |00110110〉 |00110110〉 |00110110〉 |00110110〉 |00110110〉
|00111000〉 |00111010〉 |00111010〉 |00111000〉 |00111000〉 |00111000〉 |00111000〉 |00111000〉 |00111000〉
|00111010〉 |00111020〉 |00111120〉 |00111110〉 |00111110〉 |00111110〉 |00111110〉 |00111110〉 |00111010〉
|00111100〉 |00111110〉 |00111110〉 |00111100〉 |00111100〉 |00111100〉 |00111100〉 |00111100〉 |00111100〉
|00111110〉 |00111120〉 |00111220〉 |00111210〉 |00111210〉 |00111210〉 |00111210〉 |00111210〉 |00111110〉
|01000000〉 |01000000〉 |01000000〉 |01000000〉 |01000000〉 |01000000〉 |01000000〉 |01000000〉 |01000000〉
|01000010〉 |01000010〉 |01000010〉 |01000010〉 |01000010〉 |01000010〉 |01000010〉 |01000010〉 |01000010〉
|01000100〉 |01000100〉 |01000100〉 |01000100〉 |01000100〉 |01000100〉 |01000100〉 |01000100〉 |01000100〉
|01000110〉 |01000110〉 |01000110〉 |01000110〉 |01000110〉 |01000110〉 |01000110〉 |01000110〉 |01000110〉
|01001000〉 |01001010〉 |01001010〉 |01001000〉 |01001000〉 |01001000〉 |01001000〉 |01001000〉 |01001000〉
|01001010〉 |01001020〉 |01001120〉 |01001110〉 |01001110〉 |01001110〉 |01001110〉 |01001110〉 |01001010〉
|01001100〉 |01001110〉 |01001110〉 |01001100〉 |01001100〉 |01001100〉 |01001100〉 |01001100〉 |01001100〉
|01001110〉 |01001120〉 |01001220〉 |01001210〉 |01001210〉 |01001210〉 |01001210〉 |01001210〉 |01001110〉
|01010000〉 |01010000〉 |01010000〉 |01010000〉 |01010000〉 |01010000〉 |01010000〉 |01010000〉 |01010000〉
|01010010〉 |01010010〉 |01010010〉 |01010010〉 |01010010〉 |01010010〉 |01010010〉 |01010010〉 |01010010〉
|01010100〉 |01010100〉 |01010100〉 |01010100〉 |01010100〉 |01010100〉 |01010100〉 |01010100〉 |01010100〉
|01010110〉 |01010110〉 |01010110〉 |01010110〉 |01010110〉 |01010110〉 |01010110〉 |01010110〉 |01010110〉
|01011000〉 |01011010〉 |01011010〉 |01011000〉 |01011000〉 |01011000〉 |01011000〉 |01011000〉 |01011000〉
|01011010〉 |01011020〉 |01011120〉 |01011110〉 |01011110〉 |01011110〉 |01011110〉 |01011110〉 |01011010〉
|01011100〉 |01011110〉 |01011110〉 |01011100〉 |01011100〉 |01011100〉 |01011100〉 |01011100〉 |01011100〉
|01011110〉 |01011120〉 |01011220〉 |01011210〉 |01011210〉 |01011210〉 |01011210〉 |01011210〉 |01011110〉
|01100000〉 |01100000〉 |01100000〉 |01100000〉 |01100000〉 |01100000〉 |01100000〉 |01100000〉 |01100000〉
|01100010〉 |01100010〉 |01100010〉 |01100010〉 |01100010〉 |01100010〉 |01100010〉 |01100010〉 |01100010〉
|01100100〉 |01100100〉 |01100100〉 |01100100〉 |01100100〉 |01100100〉 |01100100〉 |01100100〉 |01100100〉
|01100110〉 |01100110〉 |01100110〉 |01100110〉 |01100110〉 |01100110〉 |01100110〉 |01100110〉 |01100110〉
|01101000〉 |01101010〉 |01101010〉 |01101000〉 |01101000〉 |01101000〉 |01101000〉 |01101000〉 |01101000〉
|01101010〉 |01101020〉 |01101120〉 |01101110〉 |01101110〉 |01101110〉 |01101110〉 |01101110〉 |01101010〉
|01101100〉 |01101110〉 |01101110〉 |01101100〉 |01101100〉 |01101100〉 |01101100〉 |01101100〉 |01101100〉
|01101110〉 |01101120〉 |01101220〉 |01101210〉 |01101210〉 |01101210〉 |01101210〉 |01101210〉 |01101110〉
|01110000〉 |01110000〉 |01110000〉 |01110000〉 |01110000〉 |01110000〉 |01110000〉 |01110000〉 |01110000〉
|01110010〉 |01110010〉 |01110010〉 |01110010〉 |01110010〉 |01110010〉 |01110010〉 |01110010〉 |01110010〉
|01110100〉 |01110100〉 |01110100〉 |01110100〉 |01110100〉 |01110100〉 |01110100〉 |01110100〉 |01110100〉
|01110110〉 |01110110〉 |01110110〉 |01110110〉 |01110110〉 |01110110〉 |01110110〉 |01110110〉 |01110110〉
|01111000〉 |01111010〉 |01111010〉 |01111000〉 |01111000〉 |01111000〉 |01111000〉 |01111000〉 |01111000〉
|01111010〉 |01111020〉 |01111120〉 |01111110〉 |01111110〉 |01111110〉 |01111110〉 |01111110〉 |01111010〉
|01111100〉 |01111110〉 |01111110〉 |01111100〉 |01111100〉 |01111100〉 |01111100〉 |01111100〉 |01111100〉
|01111110〉 |01111120〉 |01111220〉 |01111210〉 |01111210〉 |01111210〉 |01111210〉 |01111210〉 |01111110〉
|10000000〉 |10100000〉 |10100000〉 |10000000〉 |10000000〉 |10000000〉 |10000000〉 |10000000〉 |10000000〉
|10000010〉 |10100010〉 |10100010〉 |10000010〉 |10000010〉 |10000010〉 |10000010〉 |10000010〉 |10000010〉
|10000100〉 |10100100〉 |10100100〉 |10000100〉 |10000100〉 |10000100〉 |10000100〉 |10000100〉 |10000100〉
|10000110〉 |10100110〉 |10100110〉 |10000110〉 |10000110〉 |10000110〉 |10000110〉 |10000110〉 |10000110〉
|10001000〉 |10101010〉 |10101010〉 |10001000〉 |10001000〉 |10001000〉 |10001000〉 |10001000〉 |10001000〉
|10001010〉 |10101020〉 |10101120〉 |10001110〉 |10001110〉 |10001110〉 |10001110〉 |10001110〉 |10001010〉
|10001100〉 |10101110〉 |10101110〉 |10001100〉 |10001100〉 |10001100〉 |10001100〉 |10001100〉 |10001100〉
|10001110〉 |10101120〉 |10101220〉 |10001210〉 |10001210〉 |10001210〉 |10001210〉 |10001210〉 |10001110〉
|10010000〉 |10110000〉 |10110000〉 |10010000〉 |10010000〉 |10010000〉 |10010000〉 |10010000〉 |10010000〉
|10010010〉 |10110010〉 |10110010〉 |10010010〉 |10010010〉 |10010010〉 |10010010〉 |10010010〉 |10010010〉
|10010100〉 |10110100〉 |10110100〉 |10010100〉 |10010100〉 |10010100〉 |10010100〉 |10010100〉 |10010100〉
|10010110〉 |10110110〉 |10110110〉 |10010110〉 |10010110〉 |10010110〉 |10010110〉 |10010110〉 |10010110〉
|10011000〉 |10111010〉 |10111010〉 |10011000〉 |10011000〉 |10011000〉 |10011000〉 |10011000〉 |10011000〉
|10011010〉 |10111020〉 |10111120〉 |10011110〉 |10011110〉 |10011110〉 |10011110〉 |10011110〉 |10011010〉
|10011100〉 |10111110〉 |10111110〉 |10011100〉 |10011100〉 |10011100〉 |10011100〉 |10011100〉 |10011100〉
|10011110〉 |10111120〉 |10111220〉 |10011210〉 |10011210〉 |10011210〉 |10011210〉 |10011210〉 |10011110〉
|10100000〉 |10200000〉 |11200000〉 |11100000〉 |11100000〉 |11100000〉 |11100000〉 |11100000〉 |10100000〉
|10100010〉 |10200010〉 |11200010〉 |11100010〉 |11100010〉 |11100010〉 |11100010〉 |11100010〉 |10100010〉
|10100100〉 |10200100〉 |11200100〉 |11100100〉 |11100100〉 |11100100〉 |11100100〉 |11100100〉 |10100100〉
|10100110〉 |10200110〉 |11200110〉 |11100110〉 |11100110〉 |11100110〉 |11100110〉 |11100110〉 |10100110〉
|10101000〉 |10201010〉 |11201010〉 |11101000〉 |11101000〉 |11101000〉 |11101000〉 |11101000〉 |10101000〉
|10101010〉 |10201020〉 |11201120〉 |11101110〉 |11101110〉 |11101110〉 |11101110〉 |11101110〉 |10101010〉
|10101100〉 |10201110〉 |11201110〉 |11101100〉 |11101100〉 |11101100〉 |11101100〉 |11101100〉 |10101100〉

15

Input State After 1st time cycle After 2nd time cycle After 3rd time cycle After 4th time cycle After 5th time cycle After 6th time cycle After 7th time cycle Output State after Mirror
|10101110〉 |10201120〉 |11201220〉 |11101210〉 |11101210〉 |11101210〉 |11101210〉 |11101210〉 |10101110〉
|10110000〉 |10210000〉 |11210000〉 |11110000〉 |11110000〉 |11110000〉 |11110000〉 |11110000〉 |10110000〉
|10110010〉 |10210010〉 |11210010〉 |11110010〉 |11110010〉 |11110010〉 |11110010〉 |11110010〉 |10110010〉
|10110100〉 |10210100〉 |11210100〉 |11110100〉 |11110100〉 |11110100〉 |11110100〉 |11110100〉 |10110100〉
|10110110〉 |10210110〉 |11210110〉 |11110110〉 |11110110〉 |11110110〉 |11110110〉 |11110110〉 |10110110〉
|10111000〉 |10211010〉 |10211010〉 |11211000〉 |11111000〉 |11111000〉 |11111000〉 |11111000〉 |10111000〉
|10111010〉 |10211020〉 |11211120〉 |11111110〉 |11111110〉 |11111110〉 |11111110〉 |11111110〉 |10111010〉
|10111100〉 |10211110〉 |11211110〉 |11111100〉 |11111100〉 |11111100〉 |11111100〉 |11111100〉 |10111100〉
|10111110〉 |10211120〉 |11211220〉 |11111210〉 |11111210〉 |11111210〉 |11111210〉 |11111210〉 |10111110〉
|11000000〉 |11100000〉 |11100000〉 |11000000〉 |11000000〉 |11000000〉 |11000000〉 |11000000〉 |11000000〉
|11000010〉 |11100010〉 |11100010〉 |11000010〉 |11000010〉 |11000010〉 |11000010〉 |11000010〉 |11000010〉
|11000100〉 |11100100〉 |11100100〉 |11000100〉 |11000100〉 |11000100〉 |11000100〉 |11000100〉 |11000100〉
|11000110〉 |11100110〉 |11100110〉 |11000110〉 |11000110〉 |11000110〉 |11000110〉 |11000110〉 |11000110〉
|11001000〉 |11101010〉 |11101010〉 |11001000〉 |11001000〉 |11001000〉 |11001000〉 |11001000〉 |11001000〉
|11001010〉 |11101020〉 |11101120〉 |11001110〉 |11001110〉 |11001110〉 |11001110〉 |11001110〉 |11001010〉
|11001100〉 |11101110〉 |11101110〉 |11001100〉 |11001100〉 |11001100〉 |11001100〉 |11001100〉 |11001100〉
|11001110〉 |11101120〉 |11101220〉 |11001210〉 |11001210〉 |11001210〉 |11001210〉 |11001210〉 |11001110〉
|11010000〉 |11110000〉 |11110000〉 |11010000〉 |11010000〉 |11010000〉 |11010000〉 |11010000〉 |11010000〉
|11010010〉 |11110010〉 |11110010〉 |11010010〉 |11010010〉 |11010010〉 |11010010〉 |11010010〉 |11010010〉
|11010100〉 |11110100〉 |11110100〉 |11010100〉 |11010100〉 |11010100〉 |11010100〉 |11010100〉 |11010100〉
|11010110〉 |11110110〉 |11110110〉 |11010110〉 |11010110〉 |11010110〉 |11010110〉 |11010110〉 |11010110〉
|11011000〉 |11111010〉 |11111010〉 |11011000〉 |11011000〉 |11011000〉 |11011000〉 |11011000〉 |11011000〉
|11011010〉 |11111020〉 |11111120〉 |11011110〉 |11011110〉 |11011110〉 |11011110〉 |11011110〉 |11011010〉
|11011100〉 |11111110〉 |11111110〉 |11011100〉 |11011100〉 |11011100〉 |11011100〉 |11011100〉 |11011100〉
|11011110〉 |11111120〉 |11111220〉 |11011210〉 |11011210〉 |11011210〉 |11011210〉 |11011210〉 |11011110〉
|11100000〉 |11200000〉 |12200000〉 |12100000〉 |12100100〉 |12100100〉 |12100000〉 |12100000〉 |11100000〉
|11100010〉 |11200010〉 |12200010〉 |12100010〉 |12100110〉 |12100110〉 |12100010〉 |12100010〉 |11100010〉
|11100100〉 |11200100〉 |12200100〉 |12100100〉 |12100200〉 |12100200〉 |12100100〉 |12100100〉 |11100100〉
|11100110〉 |11200110〉 |12200110〉 |12100110〉 |12100210〉 |12100210〉 |12100110〉 |12100110〉 |11100110〉
|11101000〉 |11201010〉 |12201010〉 |12101000〉 |12101100〉 |12101100〉 |12101000〉 |12101000〉 |11101000〉
|11101010〉 |11201020〉 |12201120〉 |12101110〉 |12101210〉 |12101210〉 |12101110〉 |12101110〉 |11101010〉
|11101100〉 |11201110〉 |12201110〉 |12101100〉 |12101210〉 |12101210〉 |12101110〉 |12101110〉 |11101100〉
|11101110〉 |11201120〉 |12201220〉 |12101210〉 |12101310〉 |12111310〉 |12111210〉 |12111210〉 |11101110〉
|11110000〉 |11210000〉 |12210000〉 |12110000〉 |12110100〉 |12110100〉 |12110000〉 |12110000〉 |11110000〉
|11110010〉 |11210010〉 |12210010〉 |12110010〉 |12110110〉 |12110110〉 |12110010〉 |12110010〉 |11110010〉
|11110100〉 |11210100〉 |12210100〉 |12110100〉 |12110200〉 |12110200〉 |12110100〉 |12110100〉 |11110100〉
|11110110〉 |11210110〉 |12210110〉 |12110110〉 |12110210〉 |12110210〉 |12110110〉 |12110110〉 |11110110〉
|11111000〉 |11211010〉 |12211010〉 |12111000〉 |12111100〉 |12111100〉 |12111000〉 |12111000〉 |11111000〉
|11111010〉 |11211020〉 |12211120〉 |12111110〉 |12111210〉 |12111210〉 |12111110〉 |12111110〉 |11111010〉
|11111100〉 |11211110〉 |12211110〉 |12111100〉 |12111200〉 |12111200〉 |12111100〉 |12111100〉 |11111100〉
|11111110〉|11111110〉|11111110〉 |11211120〉|11211120〉|11211120〉 |12211220〉|12211220〉|12211220〉 |12111210〉|12111210〉|12111210〉 |12111310〉|12111310〉|12111310〉 |12121310〉|12121310〉|12121310〉 |12121210〉|12121210〉|12121210〉 |12121211〉|12121211〉|12121211〉 |11111111〉|11111111〉|11111111〉

	Asymptotically Improved Circuit for d-ary Grover's Algorithm with Advanced Decomposition of n-qudit Toffoli Gate
	Abstract
	I Introduction
	II Generalized Qudit Gates
	A Generalized NOT Gate
	B Generalized Hadamard Gate
	C Generalized CNOT Gate
	D Generalized n-qudit Toffoli Gate

	III Generalized Grover's Algorithm in d-ary quantum systems
	IV Improved Circuit for d-ary Grover's Search
	A Proposed Decomposition of n-qudit Toffoli Gate
	B Comparative Analysis of Cost of Decomposition

	V Effect of error on proposed decomposition of n-qudit Toffoli gate
	A Generic Error Model
	1 Gate Errors
	2 Amplitude Damping Error

	B Comparative analysis of success probability

	VI Conclusion
	 Acknowledgments
	 References
	A Simulation Results

